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Over the past few decades, magnetic frustration has been under intense debate due to its unusual properties.
For instance, frustration in the kagome lattice suppresses long-range spin correlations, and it is expected to be a
candidate for a spin liquid system. Therefore, with the advent of experiments with ultracold atoms, the interest
in frustrated geometries has increased. Given this, in the present work we investigate the repulsive Hubbard
model on the kagome lattice using unbiased quantum Monte Carlo simulations. We examine its thermodynamic
properties, as well as the magnetic and transport response of the system at finite temperatures and different values
of the repulsive interaction. From these results, we discuss the possible occurrence of adiabatic cooling, a quite
important feature in ultracold systems, and the presence of a metal-to-insulator transition at a finite interaction
strength. Our findings may guide future experiments in ultracold fermionic atoms on the kagome lattice.
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I. INTRODUCTION

Magnetic frustration is a central issue in condensed mat-
ter physics, with great experimental effort being devoted,
over the past few decades, to understanding its effects. In-
deed, the interest comes from the emergence of a myriad
of correlated phases at low temperatures due to the highly
degenerate ground state of such systems. Among the many ge-
ometries leading to frustration, the kagome lattice (see Fig. 1)
has gained much attention recently due to the possibility of
the occurrence of a quantum spin liquid (QSL) state. The
experimental realization of this geometry is found, e.g., in
herbertsmithite compounds [1,2], exhibiting strong evidence
for the occurrence of QSL, although its nature is still under
debate [3–5]. The electronic properties of the kagome lattice
have also been investigated by the manipulation of atoms and
molecules on given substrates [6,7], although the tuning of the
interaction strength remains a challenge. The advent of optical
lattices has raised great expectations for unveiling fundamen-
tal properties of strongly correlated systems, in particular
those with frustration. Within this context, optical lattices
for the kagome geometry were recently realized for bosonic
atoms [8–10], and one expects that fermionic ones could be
realized in the near future. In spite of the experimental ef-
fort, manipulating these many-body states is an arduous task;
therefore, providing information that could guide experiments
is clearly in order.

From a theoretical point of view, the ground state prop-
erties of the Heisenberg model in the kagome lattice have
been extensively examined, with the nature of its QSL phase
(gapped or gapless) being a matter under debate [11,12].
However, this picture is less clear for the half-filled Hubbard
model: many studies, using different techniques, agree on the
occurrence of a Mott transition from a finite value of interac-

tion, although controversies on the critical value remain. For
instance, by using variational cluster approximation, Yamada
et al. [13] examined the occurrence of a metal-to-insulator
transition as the interaction strength increased, finding a crit-
ical point at Uc/t ≈ 5, while Higa and Asano [14] suggested
that such a transition should occur at Uc/t = 6.8. Similarly,
Ohashi et al. [15] found this Mott transition around Uc/t =
8.22, using cellular dynamical mean-field theory, while varia-
tional Monte Carlo studies, conducted by Kuratani et al. [16],
exhibit Uc/t ≈ 11. The lack of a consensus about Uc in these
studies may be due to the particularities of their implementa-
tions, i.e., due to the way their biased input is added and how
it improves their ground states.

Unbiased methodologies are usually limited by technical
issues, as the fermionic minus-sign problem for quantum
Monte Carlo (QMC) approaches, or by dimensionality for
the density-matrix renormalization group (DMRG). Early
attempts to perform finite-temperature determinant QMC
(DQMC) simulations were conducted by Bulut et al. [17],
without clear evidence for a Mott transition. Recently,
by combining dynamical vertex approximation, dynamical
mean-field theory, and DQMC, Kaufmann et al. [18] fur-
ther examined how the magnetic correlation evolves in the
kagome lattice and proposed a critical point within a range of
Uc/t = [7, 9]. On the other hand, DMRG results [19] provide
evidence for two critical points, one for a translational-
symmetry-broken insulator and the other one for a QSL, at
Uc1/t ≈ 5.4 and Uc2/t ≈ 7.9, respectively. Away from half
filling physical responses are even less clear, with the en-
hancement of unconventional pairing correlations [20].

Despite these recent advances, many of the thermodynamic
properties of the Hubbard model in the half-filled kagome
lattice are unknown. Knowing the many different energy
scales of the system is particularly important in cold atoms
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FIG. 1. The kagome lattice. The highlighted triangle describes
the unit cell with its A, B, and C basis sites.

experiments. In order to bridge this gap, in this work we
perform a tour de force using the DQMC method to exam-
ine the thermodynamic, magnetic, and transport properties of
such a frustrated system. These analyses allow us to show the
critical point within some accuracy and also unveil hints about
the ground state properties [21]. This paper is organized as
follows. In Sec. II we present the main features of the Hubbard
Hamiltonian and highlight the DQMC method together with
the quantities of interest. The results are presented in Sec. III,
in which we discuss the thermodynamic, magnetic, and trans-
port properties. Our main conclusions are then summarized in
Sec. IV.

II. MODEL AND METHODOLOGY

Here we investigate fermions under a repulsive on-site
interaction, namely, the Hubbard model. Its symmetric Hamil-
tonian reads

H = − t
∑
〈i,j〉,σ

(c†
iσ cjσ + H.c.) − μ

∑
i,σ

ni,σ

+ U
∑

i

(ni,↑ − 1/2)(ni,↓ − 1/2), (1)

where the sums run over sites of the kagome lattice, with
〈i, j〉 denoting nearest-neighbor sites under periodic boundary
conditions. In Eq. (1), we use the second quantization formal-
ism, with c†

iσ (ciσ ) being creation (annihilation) operators of
electrons on a given site i and spin σ , while niσ ≡ c†

iσ ciσ are
number operators. The first two terms on the right-hand side
of the Hamiltonian correspond to the hopping of fermions and
the chemical potential μ, respectively, with the latter deter-
mining the filling of the bands. The third term describes the
local repulsive interaction between fermions, with coupling
strength U. Hereafter, we define the lattice constant as unity
and the hopping integral t as the energy scale.

We investigate the thermodynamic properties of Eq. (1)
on the half-filled kagome lattice by performing DQMC
simulations [22–25]. The DQMC method is an unbi-
ased numerical approach which maps a many-particle
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FIG. 2. The average fermionic sign as a function of the temper-
ature for different values of U/t . When not shown, error bars are
smaller than the symbol size.

interacting fermionic system into a single-particle (quadratic
form) one, with the aid of bosonic auxiliary fields. In
summary, the method separates the exponentials of the
one-body and two-body terms, K̂ and P̂ , respectively,
in the partition function by performing a Trotter-Suzuki
decomposition, i.e., Z = Tr e−βĤ = Tr [(e−�τ (K̂+P̂ ) )

Lτ ] ≈
Tr [e−�τK̂e−�τP̂e−�τK̂e−�τP̂ · · · ]. Here Lτ = β/�τ is the
size of the imaginary-time coordinate, corresponding to the
number of incremental time evolution operators, with the in-
verse temperature β ≡ 1/(kBT ), where kB is the Boltzmann
constant. Such a decomposition has an error proportional to
(�τ )2, being exact in the limit �τ → 0. In this work, we
choose t�τ � 0.05, so that the error from the Trotter-Suzuki
decomposition is negligible compared to that from the Monte
Carlo sampling.

Proceeding, we perform a discrete Hubbard-Stratonovich
transformation to rewrite quartic operators into quadratic
(single-particle) ones, but at the cost of introducing auxiliary
fields s(i, τ ) on both real- and imaginary-time coordinates,
which are sampled by the regular Monte Carlo techniques.
Finally, from the Green’s function and by using Wick con-
tractions, all the higher-order correlation functions may be
obtained. More details about this methodology are discussed
in Refs. [26–29] and references therein.

III. RESULTS

A. Sign and the half filling

Although it is an unbiased methodology, DQMC suffers
the infamous minus-sign problem, leading to noisy averages
[30,31]. This problem does not exist in half-filled systems
with particle-hole symmetry (PHS), such as bipartite lattices
like the square and honeycomb ones. However, the kagome
lattice is nonbipartite, and there is no PHS for any filling,
which, in turn, may lead to a severe the sign problem de-
pending on the system size, temperature scale, and interaction
strength. To further illustrate the sign problem, Fig. 2 shows
the average sign as a function of temperature T/t at half filling
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FIG. 3. The chemical potential that leads to the half filling of
the system as a function of the temperature for different values of
interaction strengths.

on the kagome lattice for different U/t values and for the
fixed linear size L = 6, i.e., N = 6 × 6 × 3 sites. Notice that
the sign decreases as the temperature is lowered, and it is
strongly suppressed as U/t increases (this behavior is more
accentuated for larger system sizes). Therefore, the following
results are obtained for L = 6, keeping 〈sign〉 � 0.05, which,
for some cases, demands simulations up to 5 × 106 Monte
Carlo sweeps for measurements. Similarly, unless otherwise
indicated, the results for the noninteracting case (U/t = 0) are
obtained in the thermodynamic limit.

Another important feature of the kagome lattice is that,
due to the absence of the PHS, half filling is not at μ = 0.
Therefore, one needs to vary the chemical potential in order
to find which μ leads to 〈n〉 = 1. Figure 3 shows how the
chemical potential leading to a half-filled band at different U/t
changes with temperature.

B. Thermodynamic properties

We start our analysis by discussing the thermodynamic
properties of the system. First, we investigate the internal
energy density,

e(β,U ) = 1

N
〈H〉, (2)

which is shown in Fig. 4(a). Given this, one is able to obtain
the entropy per site (in units of the Boltzmann constant kB)
with [32]

s(β,U ) = ln 4 + βe(β,U ) −
∫ β

0
e(β ′,U )dβ ′, (3)

which is shown in Fig. 4(b). As expected, we obtain s(T →
∞) ≡ ln 4 for all U/t , while it decreases and goes toward
zero when T is reduced. However, the way s(T ) → 0 depends
on the value of U/t . For instance, for U/t = 3, the entropy
approaches zero in a way closely similar to that in the non-
interacting case, while for U/t = 7 it decays slowly at low
temperatures, directly affecting the specific heat, as discussed
later.
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FIG. 4. The (a) total energy and (b) entropy as a function of the
temperature for different values of U/t . When not shown, error bars
are smaller than the symbol size.

Interestingly, the entropy curves for different values of the
interaction strength cross around s ≈ ln 2. This crossing has
also been observed for the square [33–36] and honeycomb
[35–37] lattices and is closely connected to the possibility of
adiabatical cooling in the system. That is, for entropies greater
than s ≈ ln 2, Fig. 4(b) shows that increasing U/t (at fixed
entropy) pushes the temperature up. On the other hand, below
s ≈ ln 2, increasing U/t at fixed entropy actually cools the
system. At this point, we recall that this change in behavior
should occur around an energy scale where the entropy of a
Fermi liquid state becomes lower than the limit of the Heisen-
berg model (i.e., of localized spin 1/2). At high temperatures,
the latter exhibits weakly interacting spins, which, in turn,
leads to a crossing of entropies around s ≈ ln 2.

The adiabatic cooling/heating of the systems is shown in
Fig. 5, which was constructed by selecting fixed values of en-
tropy in Fig. 4(b) and gathering the temperature for each U/t
value. A comparison of the isentropic curves on the square
[38], honeycomb [35], and kagome lattices is also presented
and shows that, for low values of s, adiabatic cooling on the
kagome lattice is at least as effective as that in the honey-
comb lattice. Further evidence of the effectiveness of adiabatic
cooling in the kagome lattice is presented below in the
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FIG. 5. Isentropic curves as a function of U/t for the kagome
(solid symbols), honeycomb (open symbols), and square (crossed
symbols) lattices.

investigation of the behavior of the double occupancy at lower
temperatures.

Figures 6(a) and 6(b) display the behavior of the specific
heat,

c(T ) = 1

N

d〈H〉
dT

, (4)

for U/t = 3 and 6, respectively. The data points correspond
to the differentiation of the raw QMC results in Fig. 4(a),
while the solid lines are obtained by differentiating a nonlinear
fit of the energy; we use an exponential fit of the energy
by the function efit (T ) = a0 + ∑M

n=1 an exp(−βn�), with a
cutoff at M = 6. Figure 6(c) presents the specific heat from
the exponential fit for all values of U/t examined. For the
noninteracting case, one notices the occurrence of a single
peak around T/t ≈ 1, which is pushed up to higher temper-
atures as U/t increases. Such a high-temperature broad peak
is due to single-particle excitations and is closely related to
the formation of local moments [33]. When the temperature is
reduced, a soft shoulder appears for all U > 0, but without a
large second peak, as displayed in Fig. 6(c). The occurrence of
such a low-temperature peak is usually due to low-lying col-
lective spin-wave excitations, with the double-peak structure
indicating strong spin-spin correlations [33]. Interestingly, by
employing a cellular dynamical mean-field theory approach,
Udagawa and Motome [39] obtained a small second peak for
the specific heat at low temperatures, which they suggested is
related to spin chirality degrees of freedom. In view of these
issues, we further investigate the magnetic properties of the
Hubbard model in the kagome lattice in the next section.

C. Magnetic properties

Now, we turn our attention to the magnetic properties of
the system, starting our analysis with the double occupancy,

D = 1

3L2

〈∑
i,α

ni↑ni↓

〉
. (5)
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FIG. 6. The specific heat as a function of temperature for differ-
ent values of U/t . The curves in (a) and (b) display a comparison
between the numerical differentiation of the raw DQMC energy
values and the differentiation of the exponential fit performed for
U/t = 3 and U/t = 6, respectively. (c) The specific heat obtained
from the exponential fit. When not shown, error bars are smaller than
the symbol size.

The double occupation and the local moment are connected
by D = 1

2 [〈n〉 − 〈m2〉]; therefore, for fixed n, increasing the
local moment reduces the double occupancy. Figure 7(a) dis-
plays D as a function of temperature for different values of
U/t , where one can notice that D has a sharp decrease for
1 < T/t < 10 with a minimum (for all values of U) around
T/t � 1. This minimum suggests a competition between lo-
calization and delocalization of the fermions. As depicted
in Fig. 7(b), when T → 0, we find ∂D

∂T < 0 for all U/t , a
feature consistent with a metallic behavior. For U/t = 7, this
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FIG. 7. (a) Double occupancy and (b) its derivative as a function
of the temperature for different U/t . The derivatives were smoothed
through the usual methods. When not shown, error bars are smaller
than the symbol size.

minimum is shallow but has a large local moment, which
suggests an insulating or bad metallic behavior. At this point
it is worth mentioning that metallic or insulating behavior
is closely connected to adiabatic cooling features. Indeed,
since ( ∂D

∂T )N,U = −( ∂S
∂U )N,T , when ( ∂S

∂U )N,T > 0 (in the adia-
batic cooling region), ( ∂D

∂T )N,U < 0, which is consistent with a
Fermi liquid at lower temperatures.

We proceed by probing nonlocal spin-spin correlation
functions

cαγ (i − j) = 1
3 〈�Si,α · �Sj,γ 〉, (6)

with �Si,α = (Sx
i,α, Sy

i,α, Sz
i,α ) being the spin operator of a

fermion in given unit cell i and site index α = A, B, and
C. We first explore the nearest-neighbor case c(1), when
|i − j| = a (lattice parameter), i.e., the spin-spin correlations
between the pairs of sites that form a triangle (see Fig. 1).
Figure 8(a) shows c(1) averaged over all the combinations
of near-neighbor pairs in the lattice. c(1) is negative and in-
creases in magnitude as U/t increases; that is, there are strong
spin-spin correlations along the sides of the triangle.

On the other hand, spin correlations for longer distances are
suppressed, as displayed in Fig. 8(b) for next-nearest neigh-
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FIG. 8. The spin-spin correlation between (a) nearest neighbors,
(b) next-nearest neighbors, and (c) the homogeneous magnetic sus-
ceptibility as a function of temperature for different values of U/t .
When not shown, error bars are smaller than the symbol size.

bors [c(2), when |i − j| = 2a], presenting values one order of
magnitude smaller than those for c(1). For U/t � 4 and at low
temperatures, i.e., below the energy scale for local moment
formation (T/t � 2), c(2) is reduced to values very close to
those of the noninteracting case, in line with a nonmagnetic
state. Interestingly, for larger values of U , as for U/t � 5, c(2)
exhibits ferromagnetic correlations at high temperatures, and
the effects of frustration (antiferromagnetic correlations) set
in only for lower T/t . Finally, Fig. 8(c) displays the homoge-
neous susceptibility as a function of temperature. For U/t �
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FIG. 9. The average of the kinetic energy term as a function of
the temperature for different values of U/t . When not shown, error
bars are smaller than the symbol size.

5, χ (T ) has a response similar to the noninteracting case
and therefore is consistent with a metallic Pauli paramagnetic
state, while for U/t � 6 it has a monotonically increasing
behavior as T decreases (within the temperature range we
have analyzed). However, this increase in χ (T ) with decreas-
ing T for large interaction strengths is not enough to define
the nature of the spin excitations. The minus-sign problem
prevents us from reaching the very low temperatures required
to determine whether excitations are gapped or gapless.

D. Transport properties

Finally, we now investigate the transport properties of the
system starting with the kinetic energy. Figure 9 displays the
kinetic energy per site, 〈K̂〉 = − t

N 〈 ∑
〈i,j〉,σ (c†

iσ cjσ + H.c.)〉,
as a function of temperature for different values of interaction.
Since fermionic localization is favored in an insulating state,
〈K̂〉 has to be reduced as a function of temperature as U
increases, a feature noticed in Fig. 9. However, within the
temperature scale we investigated, we did not find ∂

∂T 〈K̂〉 < 0;
therefore, different from the analysis of the potential energy,
the behavior of the kinetic energy cannot provide clues to the
emergence of an insulating phase.

In view of this, other quantities should be investigated to
identify the metal-to-insulator transition. Among them, we
proceed to examine the fermionic compressibility,

κ = 1

n2

∂n

∂μ
, (7)

with n = 1
N 〈 ∑

i,σ niσ 〉, displayed in Fig. 10(a). Notice that,
due to the rotation symmetry, the three orbitals are equivalent,
along with their individual compressibilities. When dealing
with any degree of anisotropy (of hopping or interaction),
it is possible that some orbitals are insulating while others
exhibit metallic features, like an orbital-selective Mott phase.
However, that is beyond the scope of this work.

For a metallic phase, κ assumes finite values, as presented
in Fig. 10(a) for the noninteracting case (U = 0). For the in-
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FIG. 10. (a) The electronic compressibility as a function of the
temperature for different values of U/t . (b) The charge gap, obtained
through the compressibility data, as a function of U/t . When not
shown, error bars are smaller than the symbol size.

teracting case, in particular for U/t � 5, the system becomes
less compressible, but the trend of κ is still consistent with
a metallic phase. Otherwise, for an insulator state, a single-
particle gap at the Fermi level of the density of states (DOS)
is formed, leading to a plateau in n(μ) as the temperature
is reduced, i.e., to κ → 0. This behavior can be seen for
U/t � 6, where κ has a maximum in a high-temperature scale,
followed by an exponential suppression at lower temperatures,
as depicted in Fig. 10(a). In other words, there is clear evi-
dence of a metal-to-insulator transition from the behavior of
the compressibility.

We further investigate this change in the compressibil-
ity for U/t � 6 by recalling that, within an insulating state,
κ ∝ exp ( −�c

kBT ), with �c being the charge/single-particle gap
(kB ≡ 1). Then, we obtain �c by an exponential fit of κ for
U/t � 6.5, as displayed in Fig. 10(b). Assuming a second-
order phase transition and performing an extrapolation by a
polynomial or a power law function for U/t � 7.0, we obtain
the critical point at Uc/t = 6.5 ± 0.1, as shown by the black
solid line [40].
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At this point, some remarks are required. First, as the
charge gap is formed at high temperature for U/t � 7, we
expect that our analysis for �c in Fig. 10(b) has few finite-size
effects. Second, we have to recall that, in some circumstances,
κ may exhibit unconventional behavior in multiorbital sys-
tems, with the charge gap opening only for a few orbitals,
while others remain metallic. However, such an orbital-
selective Mott transition does not occur in the Hubbard model
on the kagome lattice; we have verified that all the orbitals are
metallic or insulators.

The previous analysis of κ indirectly points to a suppres-
sion of the spectral weight around the Fermi level. Given this,
it is important to directly probe the DOS as a complementary
study. In order to avoid complex methodologies for numerical
analytical continuations, here we examine the DOS only at the
Fermi level, which is obtained with [41]

N (ω = 0) ≈ β

π
G(|i − j| = 0, τ = β/2). (8)

Figure 11(a) displays N (ω = 0) as a function of temperature
for different values of U/t . Notice that N (ω = 0) exhibits a
finite value for U/t � 5 at low temperatures, consistent with
a metallic state. By contrast, for U/t � 6, the trend of the
DOS has a significant change, being reduced exponentially,
as expected for an insulator. In particular, within the range

of temperatures examined, the change in behavior occurs at
U/t ≈ 6.5, in very good agreement with the results for the
compressibility.

Finally, as further evidence of a metal-to-insulator transi-
tion we examine the dc conductivity,

σdc = β2

π
xx(q = 0, τ = β/2), (9)

in which

xx(q, τ ) = 〈 jx(q, τ ) jx(−q, 0)〉, (10)

with jx(q, τ ) being the Fourier transform of the unequal-time
current-current correlation functions

jx(i, τ ) = eτH

[
it

∑
σ

(c†
i+xσ ciσ − c†

iσ ci+xσ )

]
e−τH (11)

(see, e.g., Refs. [42–44]). Figure 11(b) exhibits the results
for σdc as a function of temperature for different values of
U/t . Similar to the previous analyses, a metallic behavior,
i.e., ∂σdc/∂T < 0, occurs only for U/t � 6.5. For interaction
strength larger than that, the behavior is consistent with an
insulator.

In summary, the analyses of the compressibility, the DOS
at the Fermi level, and the dc conductivity provide strong evi-
dence for a metal-to-insulator transition at Uc/t = 6.5 ± 0.5.

E. Finite-size effects

In this section, we investigate finite-size effects. To this
end, we perform simulations for an N = 10 × 10 lattice (i.e.,
with 300 sites), fixing U/t = 6 while varying temperature.
Figures 12(a)–12(d) display the total energy, the kinetic en-
ergy, the double occupancy, and nearest-neighbor spin-spin
correlation functions for this system size, respectively, in
comparison with our previous results for N = 6 × 6. Notice
that, for these quantities, finite-size effects may be disre-
garded within the range of temperature examined. Indeed,
short-range quantities must suffer much less from finite-size
effects than long-range quantities, such as structure factors or
susceptibilities. Concerning the latter, next-nearest-neighbor
spin correlation functions and the homogeneous magnetic sus-
ceptibility exhibit a small dependence on the lattice size at low
temperatures, as shown in Figs. 12(e) and 12(f), respectively.
However, these minor dependences do not affect the main
results discussed in the previous sections.

IV. CONCLUSIONS

In this work, we have investigated thermodynamic, mag-
netic, and transport properties of the repulsive Hubbard model
on the kagome lattice through unbiased DQMC simulations.
For the thermodynamic properties, we examined the entropy
for different interaction strengths and the behavior of the
isentropic curves as a function of U/t . We have found that adi-
abatical cooling is possible for entropies smaller than s ≈ ln 2.
In addition, we examined the specific heat: in contrast to what
is seen in the Hubbard model in the square or honeycomb
lattices, the low-temperature peak seems to be suppressed in
the kagome lattice for all U/t . This suggests the absence of
collective spin-wave excitations as temperature is reduced,
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FIG. 12. Comparison between results obtained for 6 × 6 (solid
squares) and 10 × 10 (open circles) lattices for (a) the total energy,
(b) the kinetic energy, (c) the double occupancy, (d) nearest-neighbor
and (e) next-nearest-neighbor spin-spin correlation functions, and
(f) homogeneous susceptibility as a function of the temperature at
U/t = 6. When not shown, error bars are smaller than the symbol
size.

i.e., the absence of magnetic long-range order in the ground
state.

In view of this, we investigated the spin-spin correlation
functions, in particular the local moment, nearest neighbors
(NNs), and next-nearest neighbors (NNNs). We obtained
well-formed local moments, with strong short-range NN
correlations functions, while the NNN (and farther) ones
are strongly suppressed, further evidencing the absence of
magnetic long-range order. Despite this, the homogeneous
magnetic susceptibility χ (T ) still increases as temperature is
reduced and is enhanced for larger values of U/t . However,
we are not able to conclude whether the nature of the spin
excitations is gapped or gapless. Furthermore, it is worth men-
tioning that identifying whether a spin liquid state emerges or
not is challenging and beyond the scope of this work.

Finally, we probed the metal-to-insulator transition. In par-
ticular, the behavior of the compressibility provides a clear
distinction between metallic and insulating states. Therefore,
we investigated the behavior κ (T ) for different values of U/t

0 1 2 3 4 5 6 7 8 9

1

Tmax
C Tmax

κ

Tmin
D Tmax

N(ω=0)

Tmax
χ Tmax

σ

T/
t

U/t

FIG. 13. Different energy scales for the Hubbard model on the
kagome lattice for several values of U/t .

and were able to identify the critical point around Uc/t ≈ 6.5.
As complementary analyses, we also examined the DOS at
the Fermi level, as well as the current-current correlation
functions, leading to results in line with those for the com-
pressibility. Together, these analyses provide clear evidence
of a Mott transition at Uc/t = 6.5 ± 0.5.

In summary, our work presented detailed finite-
temperature analyses for the Hubbard model in the kagome
lattice, allowing us to provide different energy scales of
the system. To this end, Fig. 13 presents (i) the minima of
the double occupancy T D

min, as well as the high-temperature
maxima for (ii) the specific heat peak T c

max, (iii) the magnetic
susceptibility T χ

max, (iv) the compressibility T κ
max, (v) the

DOS at Fermi level T N
max, and (vi) the dc conductivity T σ

max.
Together, Figs. 5 and 13 provide a broad description of the
model that could be relevant for future cold atom experiments.
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