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Rotating spacetime modulation: Topological phases and spacetime Haldane model
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Topological photonics has recently emerged as a very general framework for the design of unidirectional
edge waveguides immune to backscattering and deformations, as well as other platforms that feature extreme
nonreciprocal wave phenomena. While the topological classification of time-invariant crystals has been widely
discussed in the literature, the study of spacetime crystals formed by time-variant materials remains largely
unexplored. Here, we extend the methods of topological band theory to photonic crystals formed by “inclusions”
that are subject to a spacetime rotating-wave modulation that imitates a physical rotating motion. By resorting
to an approximate nonhomogeneous effective description of the electromagnetic response of the inclusions,
it is shown that they possess a bianisotropic response that breaks the time-reversal symmetry and may give
rise to nontrivial topologies. In particular, we propose an implementation of the Haldane model in a spacetime
modulated photonic crystal.
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I. INTRODUCTION

Topological photonics provides a very general framework
to classify different classes of photonic crystals with band
gaps, and to design unidirectional edge-type channels immune
to backscattering formed by photonic crystals with different
topologies [1–4]. Traditional photonic crystals are material
structures with a periodic space modulation of the refractive
index [5,6]. In recent years, time has been explored as a new
degree of freedom in material design, expanding the photonic
crystal notion also to structures presenting time or spacetime
modulations [7–14]. In particular, the spacetime modulation
has emerged as a promising new paradigm to break the
electromagnetic reciprocity and achieve giant electrically tun-
able nonreciprocal responses without using a magnetic bias
[15–18]. It is also worth pointing out that even a static elec-
tric bias can originate, in some conditions, a nonreciprocal
response [19–21].

It is known that reciprocal systems are necessarily charac-
terized by trivial Chern topologies [22–26]. However, it is not
sufficient to break the reciprocity (time-reversal symmetry T )
to achieve nontrivial topologies, as there are other symmetries
such as mirror (Px) and parity-time (PT ) symmetries that also
lead to trivial Chern indices. Typically, nontrivial topologi-
cal phases are engineered with the help of a static magnetic
bias, exploiting either an electric gyrotropic or a magnetic
gyrotropic material response [2,22–24,27,28]. The use of an
external magnetic bias leads to bulky components, which may
not be very practical for some nanophotonic applications. For
this reason, metamaterials with time or spacetime modulations
may be interesting alternatives to create magnetic-free nonre-
ciprocal systems.
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It is also possible to create Z2 topological phases in pho-
tonic systems through a combination of symmetries, most
notably relying on a duality symmetry [29–31]. However,
different from Chern insulators, such topologies are not robust
as they depend on balanced electric and magnetic responses,
which in practice are hard to implement.

Photonic crystals with spacetime traveling-wave modula-
tions, e.g., ε = ε(x−vt ) with v the modulation speed, have
recently attracted considerable attention as they can be used
to engineer a synthetic (electronic) motion that imitates the
translational motion of a material structure [12–14,32]. Dif-
ferent from moving systems, in a spacetime crystal the
modulation speed v is not bounded by the speed of light,
and hence superluminal regimes are physically admissible
[12–14,32].

Heuristically, a nontrivial topological phase must be asso-
ciated with some internal angular momentum of the material
[4,33], analogous to the angular momentum imparted by a
static magnetic bias through the generation of cyclotron or-
bits. This property suggests that the most suitable spacetime
modulation is related to a physical rotation. Motivated by
this idea, here we consider two crystals that consist of peri-
odic arrangements of “ring resonators” subject to a spacetime
rotating-wave modulation of the type ε = ε(ϕ − �0t ) and
μ = μ(ϕ − �0t ). This modulation is the angular equivalent
of the linear traveling-wave modulation. By resorting to an
approximate effective medium description of the resonators, it
is shown that they effectively behave as nonuniform materials
with a bianisotropic response that breaks simultaneously the
Px, T , and PT symmetries and generates a nontrivial topol-
ogy. Thereby, we introduce a paradigm to generate nontrivial
topological phases by exploiting spacetime modulations in a
two-dimensional (2D) crystal. It should be noted that different
topological aspects of time-varying structures have been dis-
cussed in previous works in the context of time crystals [8],
of systems with synthetic frequency dimensions [34–37], and
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FIG. 1. (a) Geometry of a cylindrical ring resonator subject
to a rotating spacetime modulation. (b) Effective parameters for
TE waves as a function of the modulation angular frequency.
The resonator is formed by layers with εr,1 = 14, μr,1 = 1 and
εr,2 = 8, μr,2 = 2. The volume fraction of the two materials is iden-
tical. The subluminal/superluminal thresholds are represented by
vertical dashed black lines.

of higher-order topological insulators [38,39]. Moreover, a
few other seminal works discussed the realization of elaborate
photonic Chern insulators based on ring resonators and related
structures [40–43].

The paper is organized as follows. In Sec. II, we develop
an effective medium model for a spacetime modulated ring,
which is the basic building block of the spacetime crystals.
Section III describes the theoretical methods used to compute
the band structure and the topological phases of the relevant
spacetime crystals. Section IV presents two cases of interest
that illustrate how the spacetime modulation of different sub-
lattices of ring resonators affects the Chern index: first, we
consider a honeycomb lattice; second, we propose a spacetime
analog of the Haldane model. Finally, the main results are
summarized in Sec. V.

II. EFFECTIVE MODEL FOR A SPACETIME
MODULATED RING RESONATOR

Let us consider a cylindrical spacetime modulated ring
resonator with internal and external radii Rin and Rext centered
at the origin. This resonator will be used in the following
sections as the basic building block of different spacetime
crystals. Related spacetime modulated ring resonators were
implemented using microwave technology in Refs. [15–17],
with the material response controlled by varactors. The
material parameters of the resonator are of the form ε =
ε(ϕ − �0t ) and μ = μ(ϕ − �0t ), with �0 the modulation
angular frequency as illustrated in Fig. 1. It is supposed that
ε(ϕ′) = ε(ϕ′ + �ϕ) and μ(ϕ′) = μ(ϕ′ + �ϕ) with �ϕ =
2π/N , N being the number of “unit cells” in the ring
perimeter.

Following Ref. [32], a one-dimensional (1D) crystal sub-
ject to a linear traveling-wave modulation behaves effectively

in the long wavelength limit as an equivalent bianisotropic
medium with a moving-type magnetoelectric coupling. Pro-
vided the thickness of the ring resonator δR = Rext − Rin is
much smaller than the average radius R = (Rext + Rin )/2, the
curvature effects may be locally neglected and the ring may be
regarded as a 1D crystal. In other words, we may lock the ref-
erence frame to a narrow section of the cylindrical resonator
where the rotating-wave modulation can be approximated by
a simple linear traveling-wave modulation as illustrated in
Fig. 2. The equivalent linear translation modulation velocity
is v0 = R�0 and is directed along the azimuthal direction ϕ̂.
The equivalent linear lattice constant is R�ϕ.

According to Ref. [32], the corresponding homoge-
nized material is characterized by uniaxial-type permittiv-
ity and permeability tensors with the optical axis along
ϕ̂:

εef = εef
|| ϕ̂ϕ ⊗ ϕ̂ϕ + εef

⊥ (ρ̂ϕ ⊗ ρ̂ϕ + ẑ ⊗ ẑ), (1a)

μef = μef
|| ϕ̂ϕ ⊗ ϕ̂ϕ + μef

⊥ (ρ̂ϕ ⊗ ρ̂ϕ + ẑ ⊗ ẑ). (1b)

We denote ρ̂ϕ = cos(ϕ)x̂ + sin(ϕ)ŷ and ϕ̂ϕ =
− sin(ϕ)x̂ + cos(ϕ)ŷ to show explicitly the dependence
of these unit vectors on the angular coordinate ϕ. In addition,
the effective medium is characterized by bianisotropic tensors
of the form ξef = −ζef = −ξ ef ϕ̂ϕ × 1, that is,

ξef = ξ ef (ẑ ⊗ ρ̂ϕ − ρ̂ϕ ⊗ ẑ). (1c)

The corresponding constitutive relations are(
D
B

)
=

(
εef (ϕ) ξef (ϕ)
ζef (ϕ) μef (ϕ)

)
︸ ︷︷ ︸

Mef (ϕ)

·
(

E
H

)
. (2)

Interestingly, due to the rotating nature of the spacetime
modulation the optical axes of the effective medium change
along the perimeter of the ring, and thereby the ring response
is effectively inhomogeneous.

In the above, the permittivity and permeability elements in
ϕ̂ϕ ⊗ ϕ̂ϕ are [32]

εef
|| =

[
1

�ϕ

∫ �ϕ

0

1

ε(ϕ)
dϕ

]−1

,

μef
|| =

[
1

�ϕ

∫ �ϕ

0

1

μ(ϕ)
dϕ

]−1

. (3)

The remaining permittivity, permeability, and magneto-
electric tensor elements are expressed in terms of the effective
parameters (〈ε′⊥〉, 〈μ′⊥〉, and 〈ξ ′〉) in a frame comoving with
the spacetime crystal as follows [32]:

εef
⊥ = 〈ε′⊥〉

(1 + R�0〈ξ ′〉)2 − R2�2
0〈ε′⊥〉〈μ′⊥〉 , (4a)

μef
⊥ = 〈μ′⊥〉

(1 + R�0〈ξ ′〉)2 − R2�2
0〈ε′⊥〉〈μ′⊥〉 , (4b)

ξ ef = (1 + R�0〈ξ ′〉)〈ξ ′〉 − R�0〈ε′⊥〉〈μ′⊥〉
(1 + R�0〈ξ ′〉)2 − R2�2

0〈ε′⊥〉〈μ′⊥〉 . (4c)
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FIG. 2. The local traveling-wave modulation approximation. For large curvature radii, each resonator section can be locally approximated
by a spacetime crystal with a linear traveling-wave modulation, which in the long wavelength limit behaves as an effective medium.

The effective parameters in the comoving frame are

〈ε′⊥〉 = 1

�ϕ

∫ �ϕ

0

ε(ϕ)

1 − ε(ϕ)μ(ϕ)R2�2
0

dϕ, (5a)

〈μ′
⊥〉 = 1

�ϕ

∫ �ϕ

0

μ(ϕ)

1 − ε(ϕ)μ(ϕ)R2�2
0

dϕ, (5b)

〈ξ ′〉 = 1

�ϕ

∫ �ϕ

0

ε(ϕ)μ(ϕ)R�0

1 − ε(ϕ)μ(ϕ)R2�2
0

dϕ. (5c)

The linear traveling-wave approximation is valid provided
the angular lattice period �ϕ = 2π/N satisfies �ϕ � 1, or
equivalently N � π . Since the condition depends solely on N
and not on R, this approximation can be used for sufficiently
small structures, although the practical implementation for a
large N may be challenging. Moreover, the validity of the
effective medium description requires that

kR�ϕ � 1 and (ω′/c)R�ϕ � 1, (6)

with k the wavelength measured along the ring resonator and
ω′ = ω−R�0k [32].

As discussed in Ref. [32], the bianisotropic term ξ ef

vanishes when only one constitutive parameter (ε or μ) is
modulated. Thus, it is essential to modulate simultaneously
the permittivity and permeability to break the reciprocity of
the effective medium model.

Figure 1(b) shows the relevant effective parameters
of the ring resonator for transverse electric (TE) waves
[E = Ez(x, y)ẑ] for different values of R�0. The ring has
a stratified geometry with two layers characterized by
(εr,1 = 14, μr,1 = 1) and (εr,2 = 8, μr,2 = 2). We choose a
large material contrast between layers to make more evident
the impact of the spacetime modulation (the topology of the
spacetime crystals considered in the following sections is
independent of the strength of the material contrast). The vol-
ume fraction of the layers is identical; i.e., f1 = f2 = 0.5. The
transition between the subluminal and superluminal regimes
(0.25c � |R�0| � 0.267c) is not smooth: while in the sublu-
minal regime the cylindrical shell has a regular bianisotropic
response (with the material matrix positive definite), in the
superluminal regime both the effective permittivity and per-
meability can be negative (material matrix is indefinite). The
cylindrical shell tends to an isotropic response as the rotation
velocity approaches infinity.

It was shown in Ref. [13] that a traveling-wave spacetime
modulation may result in a synthetic Fresnel drag. The rota-
tional drag has a sign opposite to the sign of ξ ef [13,14,32].
From Fig. 1(b), one sees that sgn(ξ ef ) = −sgn(�0) in the

subluminal regime. Thus, for all the examples of this article,
the synthetic Fresnel drag direction is coincident with the
angular rotation direction.

III. BAND STRUCTURE AND TOPOLOGY
OF THE SPACETIME CRYSTAL

Consider now a honeycomb lattice of spacetime modulated
ring resonators. For now, each unit cell is formed by two
rings embedded in a homogeneous and isotropic host medium,
as shown in Fig. 3. The spacetime modulated resonators are
modeled using the nonuniform and bianisotropic constitutive
relations (2).

We are interested in E-polarized waves (TE, with respect to
the xoy plane) such that E = Ez(x, y)ẑ and H = Hx(x, y)x̂ +
Hy(x, y)ŷ. Importantly, due to the homogenization, the ef-
fective response of the rings is effectively time independent
[see Eq. (2)]. The effects of the time modulation are indi-
rectly taken into account in the effective parameters. Within
these approximations, for a constitutive relation of type (2)
Maxwell’s equations reduce to

L̂ · � = i
∂

∂t
M(r) · �, L̂ =

⎛
⎝ 0 −i∂y i∂x

−i∂y 0 0
i∂x 0 0

⎞
⎠, (7)

where � = (Ez Hx Hy)T is a three-component state vector
determined by the electromagnetic fields, L̂ is a differential
operator, and M is a reduced material matrix determined by

FIG. 3. Geometry of the photonic crystal: honeycomb lattice of
cylindrical resonators with a rotating spacetime modulation. Each
unit cell contains two resonators subject to the angular velocities �1

and �2.
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the effective parameters of the homogenized ring:

M(r) =
⎛
⎝εzz(r) ξzx(r) ξzy(r)

ζxz(r) μxx(r) μxy(r)
ζyz(r) μyx(r) μyy(r)

⎞
⎠. (8)

The material matrix of the background host material is di-
agonal (ξzx = ξzy = 0 = ζxz = ζyz) and reduces to M = Mb =
diag(εb, μb, μb).

It is convenient to express the material matrix of the space-
time crystal in terms of the indicator functions χi(r) of the
ith inclusion in the unit cell (i = 1, 2). Specifically, the ith
indicator function is defined such that χi(r) = 1 in the rings

associated with the ith sublattice of the honeycomb structure
and χi(r) = 0 elsewhere. The material matrix can be written
as

M(r) = Mb +
∑
i=1,2

χi(r)[Mc,i(ϕi ) − Mb]. (9)

The matrix Mc,i(ϕi) is constructed from Eq. (2) [e.g.,
ξzx = ẑ · ξef (ϕi) · x̂] with ϕi = ϕi(r) = arg(r − r0,i ) and r0,i

the center of the ring in the ith sublattice that contains the
point r.

A. Band structure

As previously mentioned, in the effective medium description the material parameters are time independent. Thereby, the
natural modes of the photonic crystal are regular Bloch waves with a time variation of the type e−iωt . For Bloch modes, Eq. (7)
reduces to L̂ · � = ωM(r) · �. Using a plane wave expansion this secular equation can be reduced to a generalized eigenvalue
problem of the type⎛

⎝ [0] [(Gpi · ŷ)δi j] [−(Gpi · x̂)δi j]
[(Gpi · ŷ)δi j] [0] [0]

[−(Gpi · x̂)δi j] [0] [0]

⎞
⎠

︸ ︷︷ ︸
Lk

·
⎛
⎝(Ez,i )

(Hx,i )
(Hy,i )

⎞
⎠ = ω

⎛
⎝[εzz,pi−p j ] [ξzx,pi−p j ] [ξzy,pi−p j ]

[ζxz,pi−p j ] [μxx,pi−p j ] [μxy,pi−p j ]
[ζyz,pi−p j ] [μyx,pi−p j ] [μyy,pi−p j ]

⎞
⎠

︸ ︷︷ ︸
M

·
⎛
⎝(Ez,i )

(Hx,i )
(Hy,i )

⎞
⎠. (10)

Each sub-block [Ai j] of the matrices is an infinite-
dimensional matrix with Ai j the (i, j)−th element, whereas
each sub-block (Fi ) of the column vector represents the
Fourier coefficients of the generic field F = Ez, Hx, Hy,
such that F = ∑

i FieiGpi ·r with Gpi = k + G0
pi

. Here, G0
pi

is a generic point of the reciprocal lattice and k is the
wave vector of the Bloch mode. Moreover, εzz,pi are the
Fourier coefficients of εzz(r) defined such that εzz,pi =

1
Acell

∫
cell εzz(r)e−iG0

pi
·rd2r, etc, and Acell is the unit cell area.

The infinite matrices Lk and M are Hermitian. Furthermore,
M is positive definite in the subluminal regime. Of course, in
practice the infinite-dimensional vectors and matrices must be
truncated to some finite dimension Nmax, so that the eigenvalue
problem can be solved using numerical methods.

The Fourier coefficients of the material matrix in (10) are

εzz,q = εbδq0 + χq

∑
i=1,2

e−iG0
q·r0,i

(
εef

i,⊥ − εb
)
, (11a)

μmn,q = ûm · μq · ûn, m, n = x, y,

μq = μbδq012×2 +
∑
i=1,2

e−iG0
q·r0,i

[(
μef

i,|| − μb
)
χϕϕ

q

+ (
μef

i,⊥ − μb
)
χρρ

q

]
, (11b)

ζmz,q = ξzm,q = ξq · ûm, m = x, y,

ξq =
∑
i=1,2

ξ ef
i e−iG0

q·r0,iχρ
q, (11c)

where we introduced

χq = 1

Acell

∫
cell

χ (r)e−iG0
q·rd2r, (12a)

χρρ
q = 1

Acell

∫
cell

χ (r)ρ̂ϕ ⊗ ρ̂ϕe−iG0
q·rd2r, (12b)

χϕϕ
q = 1

Acell

∫
cell

χ (r)ϕ̂ϕ ⊗ ϕ̂ϕe−iG0
q·rd2r, (12c)

χρ
q = 1

Acell

∫
cell

χ (r)ρ̂ϕe−iG0
q·rd2r. (12d)

Explicit analytical formulas for the χq,χ
ρρ
q ,χ

ϕϕ
q ,χ

ρ
q coef-

ficients are given in Appendix A.

B. Gap Chern number

It is possible to assign a topological invariant for each
complete band gap of a photonic crystal known as the gap
Chern number [1,22]:

Cgap = 1

2π

∫∫
BZ

Fkd2k. (13)

Here, BZ stands for the first Brillouin zone and the Berry
curvature Fk = ∑

n∈F Fn,k is the sum of the Berry curvatures
of all the “filled” bands below the relevant band gap. The
Berry curvature can be calculated using the Green’s function
approach [27,44,45]:

Fk = i

2π

∫ ωgap+i∞

ωgap−i∞
Tr

{
∂kx Lk · Gk · ∂ky Lk · Gk · M · Gk

}
dω,

(14)

with the Green’s function defined as Gk = i(Lk − ωM)−1

and ωgap a frequency in the band gap. The integral in fre-
quency is over a line parallel to the imaginary frequency axis
and contained in the band gap [27,45] (ωgap ∈]ωL, ωU[ with
ωL < Re{ω} < ωU a vertical strip in the complex plane that
determines the gap). It is worth mentioning that the Green’s
function approach can also be applied to non-Hermitian sys-
tems. In the numerical calculations the Green’s function Gk is
replaced by a matrix that is constructed from the operators Lk,
M obtained from the plane wave expansion method [Eq. (10)].
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FIG. 4. (a) First Brillouin zone of the photonic crystal. (b) Band structures of the static photonic crystal (�1 = �2 = 0, solid blue lines) and
of the spacetime modulated crystal (�1 = �2 �= 0, dashed blue lines). The angular modulation opens a band gap represented by the horizontal
shaded blue strip.

For more details about the numerical evaluation of the gap
Chern number the reader is referred to Refs. [27,45].

IV. TOPOLOGICAL PHASES

In order to illustrate the ideas and the application of the
theory developed thus far, we analyze two cases of interest: in
the first example, we consider a spacetime crystal formed by a
honeycomb lattice of ring resonators; in the second example,
we propose a spacetime analog of the Haldane model by intro-
ducing an additional triangular sublattice of ring resonators.
We restrict our analysis to the subluminal regime.

A. Honeycomb lattice

First, let us suppose that the two ring resonators are subject
to the same modulation angular velocity, i.e., �1 = �2 ≡ �0.
The ring resonators have the same material parameters as in
Fig. 1(b). The inner, external, and average radii of the ring
resonators are Rin = 0.2a, Rext = 0.3a, and R = 0.25a, where
a is the distance between nearest neighbors.

Figure 4 depicts the photonic band structures for the static
(R�0 = 0, solid lines) and “rotating” (R�0 = 0.23c, dashed
lines) cases. The band structure was calculated using the plane
wave method. The plane wave expansion (10) is truncated
with Nmax = 3. We checked that using Nmax > 3 does not
change the topological phases and has a very limited impact
on the photonic band structure. As expected, the static case
presents a Dirac cone at the high-symmetry points K and K ′.
As seen in Fig. 4(b) (dashed lines), the spacetime modulation
lifts the degeneracy at the high-symmetry points and opens a
complete band gap represented by the shaded blue strip.

It is relevant to discuss the impact of the effective medium
approximation in the band structure of the crystal. To this
end, we use Eq. (6) to assess the validity of the homoge-
nization. For the worst-case scenario, one can take k ∼ π/a
and ω′a

c ∼ ωa
c + R�0

c π ∼ 3 in Eq. (6). The estimate of ω′a/c
is based on the frequency range considered in Fig. 4 and
assumes that the rings are operated in the subluminal regime
(R�0 < 0.25c). From Eq. (6), it follows that the effective de-
scription of the ring resonators is valid provided R�ϕ � a/π .
This condition does not depend on the modulation angular
velocity �0. Hence, we conclude that if the number of unit

cells N along the ring perimeter is large enough, the effective
medium description is in principle well justified.

To calculate the gap Chern number, we used the trape-
zoidal quadrature rule to numerically evaluate Eq. (13). The
Brillouin zone was discretized into N1 × N2 = 25 × 25 points
and the line integral in the complex frequency plane was
truncated to an upper limit ξmax = 5.0/a2 and discretized into
Nξ = 240 points. Figure 5 shows the convergence analysis for
R�1 = R�2 = 0.23c and the topological phases for differ-
ent pairs of modulation angular velocities in the subluminal
regime. It is found that the gap Chern number is given by
Cgap = sgn(�1 + �2), which is identical to the sign of the
average angular velocity. From the theory of Refs. [4,33],
−Cgap may be understood as a normalized angular momentum
of the edge modes at the photonic crystal boundary when it
is enclosed by opaque (e.g., metallic) walls. Thus, somewhat
counterintuitively, we find that the angular momentum of the
edge modes has a sign opposite to the angular modulation
speed, and thereby also opposite to the direction of the syn-
thetic Fresnel drag (see Sec. II).

When �1 = −�2 �= 0 there is no band gap due to the
formation of two Dirac cones, despite the broken time-reversal
symmetry. In this case, the topological phases are not defined.

B. Spacetime Haldane model

The concept of local traveling-wave modulation can be
extended to a wide range of scenarios where the spacetime
modulation creates a synthetic motion in arbitrary (not neces-
sarily circular) periodic closed orbits. In that case, one can
locally approximate the problem to a traveling-wave linear
modulation with synthetic velocity v(r). Following the same
ideas as in Sec. II, one can prove that in the long wavelength
limit the resulting effective bianisotropic tensors vary in space
as

ξef (r) = −ζef (r) = −ξ ef (r)v̂(r) × 1. (15)

Here, v̂(r) is the unit vector determined by the synthetic
velocity. Clearly, the effective bianisotropic tensors are anti-
symmetric, which corresponds to a moving-medium coupling.

Interestingly, a few recent works introduced a photonic
analog of the Haldane model [46] with the synthetic mag-
netic field implemented using a pseudo-Tellegen response
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FIG. 5. (a) Gap Chern number convergence analysis for R�1 = R�2 = 0.23c as a function of the number of points Nξ used to discretize
the integral path in the complex frequency plane. (b) Topological phase diagram as a function of the modulation angular velocities �1 and �2.

[45,47] (see also Ref. [48] for the corresponding electronic
Haldane model in artificial graphene, and Ref. [49] for a
different class of Tellegen metacrystals). The pseudo-Tellegen
response is described by tensors ξef = ζT

ef that are symmetric
and have vanishing trace [50]. Hence, seemingly the type of
coupling required to implement the synthetic magnetic field
has symmetry incompatible with the symmetry provided by
the rotating spacetime modulation [Eq. (15)].

The interesting observation is that TE waves cannot probe
the symmetry of ξef (r). In fact, for TE waves with E =
Ez(x, y)ẑ and H = Hx(x, y)x̂ + Hy(x, y)ŷ, the bianisotropic
response is fully determined by the elements ξzx, ξzy, indepen-
dent if ξef (r) is a symmetric or an antisymmetric tensor. Due
to this property, the pseudomagnetic field of Refs. [45,47] can
be as well implemented using the rotating spacetime modula-
tion [Eq. (15)].

A straightforward analysis shows that for TE waves the
pseudo-Tellegen coupling of Ref. [45] can be exactly mim-
icked by a rotating spacetime modulation such that (see
Appendix B)

ξ ef (r)v̂(r) = ξ0

√
3a

4π
ẑ × {b1 sin (b1 · R) + b2 sin (b2 · R)

+ (b1 + b2) sin [(b1 + b2) · R]}, (16)

where b1 and b2 are the reciprocal lattice vectors of the honey-
comb lattice, and R = r − rc with rc the honeycomb’s lattice
center [45].

The spatial distribution of the required normalized mod-
ulation “velocity” ξ ef (r)v̂(r) is shown in Fig. 6(a). As
seen, ξ ef (r)v̂(r) follows circular-type orbits centered at the
hexagons defined by scattering centers of the honeycomb lat-
tice. As further discussed in Appendix B, ξ ef (r)v̂(r) plays the
role of a synthetic vector potential A(r) that determines the
equivalent magnetic field.

An alternative and simpler synthetic vector potential with
exactly the same symmetry as the potential of Eq. (16) can be
implemented by inserting a spacetime modulated ring at the
center of each “hexagon,” as illustrated in Fig. 6(b). The rings
at the hexagon vertices play the role of the electric potential
sites of the Haldane model and thereby their material param-
eters are time independent (�− = 0). Strictly speaking, the
spacetime modulated rings at the centers of the hexagon cells
also modify the equivalent electric potential of the Haldane
model, but for simplicity we ignore such a small perturba-
tion (which may modify slightly the equivalent Haldane’s

tight-binding model). Note that since A(r) ∼ ξ ef (r)v̂(r) is a
periodic function the synthetic magnetic field ∇ × A has zero
spatial average. Furthermore, Figs. 6(a) and 6(b) show that
the synthetic magnetic potential does not contribute to the
nearest neighbor interactions as the contributions of adjacent
hexagons (unit cells) effectively cancel out, whereas it clearly
influences the next nearest neighbors coupling, similar to the
Haldane model [46].

To illustrate these ideas, next we consider a spacetime
crystal formed by a static honeycomb lattice (�− = 0) and
an additional triangular lattice of spacetime modulated ring
resonators (�+ �= 0). The unit cell is thus formed by a res-
onator at the center with mean radius R+ and modulation
angular velocity �+, and by two static resonators (�− = 0)
located at the cell’s vertices (the scattering centers) with mean
radius R−. All the ring resonators have a binary structure and
are formed by the same materials with the same volume frac-
tions as in Sec. IV A. We choose R− = 0.25a, R+ = 0.175a,
and R+�+ = 0.23c. Figure 6(c) presents the photonic band
structures for the static (�+ = 0) and dynamic (�+ �= 0)
cases: the spacetime modulation opens a band gap with Cgap =
−sgn(�+). Curiously, different from the first example, the
normalized angular momentum of the edge modes −Cgap is
now consistent with the direction of the synthetic angular
Fresnel drag in the bulk region. The two examples (Secs. IV A
and IV B) combined show that there is no universal link be-
tween the gap Chern number sign and the synthetic Fresnel
drag direction. Furthermore, it follows that the topology of ro-
tating spacetime crystals is not only a function of the average
angular velocity, but it also depends on where the spacetime
modulated rings are placed within the unit cell.

It is interesting to point out that any photonic crystal
formed by sublattices of ring resonators with a spacetime
rotating-wave modulation originates a periodic synthetic vec-
tor potential A(r) ∼ ξ ef (r)v̂(r). Thus, the corresponding
spatially averaged synthetic magnetic field 〈∇ × A(r)〉 is al-
ways zero. In particular, the spacetime crystals analyzed in
Sec. IV A are also associated with a pseudomagnetic field with
zero-mean average.

Furthermore, the symmetry of the crystals of Sec. IV A
is also compatible with the symmetry of the pseudo-Tellegen
coupling [Eq. (16)] provided �1 = �2 = �0. This can be
understood from Fig. 6(a), which shows that besides the
vortex at the center of the hexagonal cell, the synthetic mag-
netic potential associated with the pseudo-Tellegen coupling
has additional vortices at the vertices of the hexagonal cell.
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FIG. 6. (a) Spatial distribution of the local traveling-wave (normalized) modulation velocity A(r) ∼ ξ ef (r)v̂(r) required to emulate the
complete spacetime analog of the Haldane model for ξ0 = 1. The unit cell region is delimited by solid black lines. (b) Geometry of the
simplified spacetime Haldane model with the nonreciprocal coupling implemented with a spacetime modulated ring centered at the unit cell.
The rings centered at the vertices of the unit cell are static (�− = 0). (c) Photonic band structure of the simplified spacetime Haldane model
with the parameters R− = 0.25a, �− = 0, R+ = 0.175a for the static (�+ = 0, solid blue lines) and dynamic (R+�+ = 0.23c, dashed blue
lines) cases. The angular modulation opens a topological band gap represented by the horizontal shaded blue strip with topological charge
Cgap = −sgn(�+). (d) Photonic band structure for different values of the modulation angular velocity of the rings centered at the vertices of
the unit cell: R−�− = −0.23c (dashed blue lines), �− = 0 (solid blue lines), R−�− = 0.17c (solid black lines), R−�− = 0.22c (dashed black
lines). The photonic band gaps are represented by horizontal shaded blue (Cgap = −1) and gray (Cgap = +1) strips. The structural parameters
of the crystal are as in panel (c) and R+�+ = 0.23c.

Importantly, for ξ0 > 0 the magnetic potential vortices at the
corners of the hexagon cell whirl in the direction opposite
to the vortex at the center of the cell. In fact, the magnetic
potential lines rotate in the clockwise direction near the cor-
ners of the unit cell (ξ ef < 0 near the vertices of the hexagon),
whereas in the center they rotate in the anticlockwise direction
(ξ ef > 0 near the center).

The discussion of the previous paragraph implies that the
geometry of Sec. IV A with �1 = �2 = �0 may also be
regarded as another simplified implementation of the Haldane
model. Note that ξ0 > 0 requires �1 = �2 > 0 for the ge-
ometry of Sec. IV A and �+ < 0 for the geometry of this
subsection, because the sign of the synthetic angular velocity
is opposite to the sign of ξ ef (see Sec. II). Thus, in order to
implement a desired (fixed) topological phase of the Haldane
model the ring at the center is required to “rotate” in the direc-
tion opposite to that of the rings at the corners. In this sense,
the gap Chern numbers obtained for the two different imple-
mentations of the Haldane model are fully consistent for weak
vector potentials: Cgap = sgn(ξ0) with sgn(ξ0) = sgn(�0) for
the example of Sec. IV A and sgn(ξ0) = −sgn(�+) for the
geometry of the present subsection. Furthermore, the topo-
logical charge of the simplified spacetime implementation of
the Haldane model agrees with the topological charge of the
complete model [45,47] for weak vector potentials.

It is also interesting to analyze how the topology of the
spacetime crystal changes if both the rings at the vertices and
the ring at the center are spacetime modulated. Figure 6(d)
shows the photonic band structure for the same parameters
as in Fig. 6(c) (R− = 0.25a, R+ = 0.175a, R+�+ = 0.23c)
for different values of the synthetic angular velocity �− of
the rings centered at the unit cell’s vertices. As seen, when
�− < 0, the band gap becomes wider and Cgap = −1. This
property is consistent with the fact that values of �− < 0 and
�+ > 0 contribute to realize the same topological phase.

In contrast, when �− is gradually increased from zero to
positive values (�− > 0), the topological band gap (Cgap =
−1 due to R+�+ = 0.23c) shrinks until a Dirac cone de-
generacy is formed at the high-symmetry points K , K ′ for a
threshold value R−�− = R−�th ≈ 0.17c. For �− > �th the
band gap reopens with Cgap = +1. In fact, when �− and �+
have the same sign, they act to engineer different topologi-
cal phases. The topological phase transition occurs roughly
for �− = �th, which corresponds to the angular velocity for
which the spatially averaged Haldane parameter

〈ξ0〉 = 2π
(
R2

−,ext − R2
−,in

)
ξ ef
− − π

(
R2

+,ext − R2
+,in

)
ξ ef
+

=
∑

i

αiπ
(
R2

i,ext − R2
i,in

)
ξ ef

i
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vanishes. Here, αi = 1 if the resonators of sublattice i are
located at the unit cell’s vertices and αi = −1 if they are at
the unit cell’s center. This approximation leads to the estimate
of the gap Chern number (applicable to all the examples of
Sec. IV)

Cgap = sgn

[∑
i

αi
(
R2

i,ext − R2
i,in

)
ξ ef

i

]
. (17)

V. CONCLUSIONS

We introduced a spacetime modulated ring resonator as a
basic building block for the design of topological materials.
The ring resonator is subject to a rotating-wave modula-
tion, which may be interpreted as the angular analog of the
more familiar traveling-wave modulation. We derived a sim-
ple effective medium model for the ring resonator, which
describes the effect of the spacetime modulation in terms of
nonhomogeneous bianisotropic material parameters. Similar
to Ref. [32], the bianisotropic response is nontrivial only when
the two constitutive parameters ε and μ are simultaneously
modulated.

We applied the developed ideas to the study of the topo-
logical phases of two different spacetime crystals. The first
example deals with a honeycomb array of spacetime modu-
lated rings. Each sublattice of the honeycomb array is subject
to a rotating-wave modulation. It was shown that the topology
of the photonic crystal is controlled by the sign of the average
angular modulation velocity of the ring resonators. In the

second example, we introduced a simplified spacetime analog
of the photonic Haldane model [45,47] with the synthetic
magnetic potential implemented using an additional triangular
sublattice of resonators. Interestingly, in this second geometry
the topology induced by the spacetime modulation generally
depends not only on the sign of the synthetic angular velocity
of the ring resonators but also on their location within the unit
cell. In both examples, a nontrivial topology arises despite the
average equivalent magnetic field being zero. Furthermore,
our theory makes clear that there is no universal link between
the direction of the angular momentum of edge states and the
direction of the synthetic Fresnel drag or the direction of the
synthetic angular velocity. We believe that our findings unveil
an exciting route to engineer nontrivial material topologies
without the need of an external magnetic field bias.
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APPENDIX A: FOURIER COEFFICIENTS
OF THE MATERIAL MATRIX

In this Appendix, we present explicit analytical formulas
for the Fourier coefficients (12) of a single ring resonator
centered at the origin. We start with (12a), which can be
evaluated using polar coordinates:

χq = 1

Acell

∫ Rext

Rin

r
∫ π

−π

e−i|G0
q|r cos (ϕ−ϕq )dϕdr

= 2 fV∣∣G0
q

∣∣(R2
ext − R2

in

) [
RextJ1

(
Rext

∣∣G0
q

∣∣) − RinJ1
(
Rin

∣∣G0
q

∣∣)], q �= 0, (A1)

where Jn(z) is the Bessel function of order n, fV = π (R2
ext−R2

in )
Acell

is the volume fraction of the relevant ring, and G0
q =

|G0
q|(cos ϕq, sin ϕq).
Similarly, the Fourier coefficient χ

ρρ
q [Eq. (12b)] is given by

χρρ
q = 1

Acell

∫ Rext

Rin

r
∫ π

−π

ρ̂ϕ ⊗ ρ̂ϕe−i|G0
q|r cos (ϕ−ϕq )dϕdr

= 1

Acell
Rϕq ·

[∫ Rext

Rin

r
∫ π

−π

ρ̂ν ⊗ ρ̂νe−i|G0
q|r cos νdνdr

]
· RT

ϕq
, (A2)

with the rotation matrix Rϕq defined as

Rϕq =
(

cos ϕq − sin ϕq
sin ϕq cos ϕq

)
. (A3)

After integration of (A2), one finds (for q �= 0)

χρρ
q = − 2 fV∣∣G0

q

∣∣2(
R2

ext − R2
in

)[
J0

(∣∣G0
q

∣∣Rext
) − J0

(∣∣G0
q

∣∣Rin
)](− cos 2ϕq − sin 2ϕq

− sin 2ϕq cos 2ϕq

)

+ 2 fV∣∣G0
q

∣∣(R2
ext − R2

in

) [
RextJ1

(∣∣G0
q

∣∣Rext
) − RinJ1

(∣∣G0
q

∣∣Rin
)]( cos2ϕq cos ϕq sin ϕq

cos ϕq sin ϕq sin2ϕq

)
. (A4)
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On the other hand, we can note that χ
ϕϕ
q [Eq. (12c)] is related to χ

ρρ
q in such a manner that χ

ϕϕ
q + χ

ρρ
q = χq1. This implies

that

χϕϕ
q = − 2 fV∣∣G0

q

∣∣2(
R2

ext − R2
in

) [
J0

(∣∣G0
q

∣∣Rext
) − J0

(∣∣G0
q

∣∣Rin
)](cos 2ϕq sin 2ϕq

sin 2ϕq − cos 2ϕq

)

+ 2 fV∣∣G0
q

∣∣(R2
ext − R2

in

) [
RextJ1

(∣∣G0
q

∣∣Rext
) − RinJ1

(∣∣G0
q

∣∣Rin
)]( sin2ϕq − cos ϕq sin ϕq

− cos ϕq sin ϕq cos2ϕq

)
. (A5)

Finally, the coefficient χ
ρ
q [Eq. (12d)] may be expressed as

χρ
q = 1

Acell

[∫ Rext

Rin

r
∫ π

−π

ρ̂νe−i|G0
q|r cos νdνdr

]
· RT

ϕq

= χρ
q (cos ϕq, sin ϕq)T , q �= 0, (A6)

with

χρ
q = −iπ fV∣∣G0

q

∣∣2(
R2

ext − R2
in

) [
F

(
Rext

∣∣G0
q

∣∣) − F
(
Rin

∣∣G0
q

∣∣)], (A7)

where F (u) = uJ1(u)H0(u) − uJ0(u)H1(u) and Hn(z) is the
Struve function of order n.

APPENDIX B: LINK BETWEEN THE SPACETIME
MODULATION AND THE PSEUDO-TELLEGEN

MATERIAL RESPONSE

In this Appendix, we establish a link between the bian-
isotropic pseudo-Tellegen response of the photonic Haldane
model [45,47] and the antisymmetric (moving-medium type)
tensor determined by the rotating spacetime modulation
[Eq. (15)].

The pseudo-Tellegen response of Refs. [45,47] is described
by

ξ(r) = ζ(r) = ξT(r) ⊗ ẑ + ẑ ⊗ ξT(r), (B1)

with ξT(r) a pseudo-Tellegen vector in the xoy plane whose
formula is given below.

If the structure is invariant along the z direction, neither the
moving-medium coupling [Eq. (15)] nor the pseudo-Tellegen
coupling mix the transverse electric (TE) and the transverse
magnetic (TM) polarizations. Thus, the TE and TM waves are
always decoupled. In particular, for TE waves, the responses
obtained with the two couplings are exactly identical when the
elements ξzx, ξzy are the same in the two models. This can be
enforced by taking

ξ ef (r)v̂(r) = ẑ × ξT(r). (B2)

In Refs. [45,47], the photonic Haldane model is im-
plemented in a honeycomb lattice of air rods embedded
in a Drude metal background (photonic graphene) with
a pseudo-Tellegen response characterized by the pseudo-
Tellegen vector:

ξT(r) = ξ0

√
3a

4π
[b1 sin(b1 · R) + b2 sin(b2 · R)

+ (b1 + b2) sin (b1 + b2) · R]. (B3)

All the symbols are defined as in the main text. Thus, from
Eq. (B2) it follows that the corresponding equivalent moving-
medium coupling satisfies Eq. (16). Interestingly, ẑ × ξT(r)
is proportional to the magnetic potential of the electronic
analog of the Haldane model introduced in Ref. [48]. Thereby,
A(r) ∼ ξ ef (r)v̂(r) may be regarded as a synthetic magnetic
vector potential [47,48].
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