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Propagation effects in high-harmonic generation from dielectric thin films
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A theoretical investigation is conducted of high-order harmonic generation (HHG) in silicon thin films to
elucidate the effect of light propagation in reflected and transmitted waves. The first-principles simulations are
performed of the process in which an intense pulsed light irradiates silicon thin films up to 3 μm thickness.
Our simulations are carried within the time-dependent density functional theory (TDDFT) with the account of
coupled dynamics of the electromagnetic fields and the electronic motion. It was found that the intensity of
transmission HHG gradually decreases with the thickness, while the reflection HHG becomes constant from a
certain thickness. Detailed analyses show that transmission HHG has two origins: the HHG generated near the
front edge and propagates to the back surface and the HHG generated near the back edge and emitted directly.
The dominating mechanism of the transmission HHG is found to depend on the thickness of the thin film and the
frequency of the HHG. At the film thickness of 1 μm, the transmission HHG with the frequency below 20 eV
is generated near the back edge, while that with the frequency above 20 eV is generated near the front edge and
propagates from there to the back surface.
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I. INTRODUCTION

The phenomenon of high-order harmonic generation
(HHG) from solids irradiated with an intense ultrashort pulsed
light has been very actively studied in recent years [1–14].
Apart from being at the focus of basic science, there is a
strong interest from the perspective of applications, such as
the creation of compact XUV light sources. Numerous ex-
perimental investigations have been conducted on HHG in
various targets including simple dielectrics, two-dimensional
materials [8,15–18], topological materials [19,20], and so on.
Light pulses of linear, circular, or elliptical polarization have
been used. Frequencies of light pulses range from terahertz
to visible light. It has been shown that the HHG spectrum
depends sensitively on the angle between the polarization
direction of the light pulse and the crystal axes [6,7,21].

There have also been conducted numerous theoretical stud-
ies of HHG from solids examining the motion of electrons
in a single unit cell of a crystal [22]. Extensive discussions
have been conducted on the mechanisms of HHG, either in-
terband electronic transitions or intraband electronic motion.
Various theoretical approaches have been tried such as a one-
dimensional model [23–26], the time-dependent Schrödinger
equation [27,28], density matrix models [29–31], the Floquet
theory [32,33], and ab initio descriptions such as the time-
dependent density functional theory (TDDFT) [34–39].
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To explore HHG from solids, light propagation effects
are another important issue to be considered [11,40]. In the
case of HHG from thin films, higher-order harmonics in both
transmitted and reflected waves [16,41] appear, which we call
reflection HHG (RHHG) and transmission HHG (THHG),
respectively, for which propagation effects work differently.
There has also been interest in HHG from three-dimensional
nanostructures to produce intense and characteristic HHG
[42,43]. The precise way in which HHG depends on the shape
of the nanostructure can only be investigated by examining
the propagation effects.

Theoretical studies of HHG considering light propagation
effects have come to be actively studied recently [29,44–50].
For such studies, it is necessary to couple the description of
electronic motion with the Maxwell equations which describe
the light propagation.

We previously reported the light propagation effect on
RHHG and THHG from silicon films of thickness up to
200 nm [48]. In that work, we developed and utilized the first-
principles approaches combining the TDDFT for electronic
motion with the Maxwell equations in two different schemes.
For relatively thin (thick) films, calculations were performed
using the single-scale [51] (multiscale [52]) Maxwell-TDDFT
method in which the Maxwell and TDKS equations are cou-
pled without (with) a coarse-graining approximation. It was
found that the HHG signals are strongest in both the reflection
and transmission waves at the film thickness of 2–15 nm. It
was also found that there appears a clear interference effect in
the RHHG.

In the present work, we extend the first-principles
Maxwell-TDDFT approach of the previous study to much
thicker films up to 3 μm using the multiscale method with
the course-graining approximation. We suggest that it is
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important to clarify the propagation effect for materials whose
size is comparable or larger than the wavelength of the
laser pulse. Indeed, as will be shown, we find two kinds of
propagation effects for films of about 1 μm thickness. One is
the nonlinear propagation effect of the intense incident pulse
in the frequency region of the fundamental wave. Another is
the propagation of the generated high harmonic wave that is
described by the linear optical response in a wide spectral
region.

This paper is organized as follows: Sec. II describes
theoretical methods and numerical details. In Sec. III, the cal-
culation results are presented and analyzed in detail. Finally,
a summary is presented in Sec. IV.

II. THEORETICAL METHODS

A. Single unit-cell calculation

We first consider a simulation of the electronic motion
in a unit cell of a crystalline solid driven by a pulsed elec-
tric field E(t ) with a given time profile. In the real-time
TDDFT, the electronic motion is described by the following
time-dependent Kohn-Sham (TDKS) equation for the time-
dependent Bloch orbitals unk(r, t ) [53,54],

ih̄
∂

∂t
unk(r, t ) = hKS[A(t )]unk(r, t ), (1)

with the Hamiltonian

hKS[A(t )] = 1

2m

(
−ih̄∇ + h̄k + e

c
A(t )

)2
− eφ(r, t )

+ v̂
k+ e

h̄c A(t )
NL + Vxc(r, t ). (2)

Here we treat dynamics of the valence electrons with the
norm-conserving pseudopotential [55]. The scalar potential,
φ(r, t ), is periodic and satisfies the equation

∇2φ(r, t ) = −4πe(nion(r) − ne(r, t )), (3)

where ionic charge density nion(r) is prepared so that to pro-
duce the local part of the pseudopotential in φ. The density of
electrons, ne(r, t ), is given by

ne(r, t ) = 1

Nk

occ∑
n,k

|unk(r, t )|2, (4)

where Nk is the number of k points. The sum is taken over
the occupied bands in the ground state. The nonlocal part
of the pseudopotential is modified as v̂k

NL ≡ e−ik·rv̂NLeik·r,
where v̂NL is the usual separable form of the norm-conserving
pseudopotential [56]. Vxc(r, t ) is the exchange-correlation po-
tential for which the adiabatic local-density approximation
[57] is assumed.

The Bloch orbitals are initially set to the ground state
solution. Solving the TDKS equation, we obtain the electric
current density averaged over the unit-cell volume � as

J[A(t )](t ) = − e

m

∫
�

dr
Nk�

occ∑
n,k

u∗
nk(r, t )

×
{
−ih̄∇ + h̄k + e

c
A(t ) + m

ih̄

[
r, v̂

k+ e
h̄c A(t )

NL

]}

× unk(r, t ). (5)

Taking the Fourier transformation of the current, we obtain
a spectrum that will be used to analyze HHG,

I (ω) =
∣∣∣∣
∫ Ttot

0
dt eiωt f

(
t

Ttot

)
J[A(t )](t )

∣∣∣∣
2

. (6)

Here we introduce a smoothing function f (x) ≡ 1 − 3x2 +
2x3. Ttot is the total calculation time.

B. Multiscale Maxwell-TDDFT calculation

We consider an irradiation of a free-standing thin film
of thickness d in a vacuum by an ultrashort light pulse of
a linearly polarized plane wave at the normal incidence.
The multiscale Maxwell-TDDFT method [52] is used to de-
scribe the light propagation. In the method, we combine the
one-dimensional Maxwell equation that describes the light
propagation and a number of TDKS equations that describe
the electonic motion using a course-graining approximation.

The light propagation is described in the macroscopic scale
by solving the following wave equation:(

1

c2

∂2

∂t2
− ∂2

∂Z2

)
AZ (t ) = 4π

c
JZ (t ), (7)

where Z is the macroscopic coordinate. AZ (t ) and JZ (t ) are
the vector potential and the current density, respectively. This
wave equation is solved using a one-dimensional grid for
the Z variable. At each grid point of Z inside the film, we
consider an infinite crystalline system of the film material.
The electronic motion at each grid point Z is described by the
Bloch orbitals unk,Z (r, t ) which satisfy the TDKS equation:

ih̄
∂

∂t
unk,Z (r, t ) = hKS[AZ (t )]unk,Z (r, t ), (8)

where the Kohn-Sham Hamiltonian is given by Eq. (2). Here,
the scalar potential and the exchange-correlation potential de-
pend on Z . The macroscopic current density JZ (t ) at each Z
is expressed using Eq. (5) as

JZ (t ) = J[AZ (t )](t ). (9)

By solving Eqs. (7)–(9) simultaneously, we obtain the so-
lution AZ (t ) for a given initial pulse that is prepared in the
vacuum region in front of the thin film. At the beginning of
the calculation, the Bloch orbitals unk,Z (r, t ) are set to those
of the ground state for all grid points of Z .

The multiscale Maxwell-TDDFT calculation provides the
time profile of the electric field, EZ (t ). The time profiles of the
reflected and transmitted fields are given by those at the grid
points of the front (Z = 0) and back (Z = d) edges, respec-
tively, where the incident pulse is subtracted for the former.
We evaluate the HHG spectra via the square of the Fourier-
transformed electric field |Ẽ (ω)|2, where Ẽ (ω) is defined by

Ẽ (ω) =
∫ Ttot

0
dt eiωt E (t ) f

(
t

Ttot

)
. (10)

Here, Ttot is the total calculation time for which we use Ttot =
200 fs. In Eq. (10), we use again a smoothing function f (x) ≡
1 − 3x2 + 2x3 to remove noises that originate from the end of
the pulse. We further apply a frequency averaging using the
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Gaussian convolution as follows:

〈|Ẽ (ω)|2〉 =
∫

dω′ e
−(ω−ω′ )2/ε2

√
πε2

|Ẽ (ω′)|2. (11)

Here we will use ε = 5 × 10−3 a.u. Equation (11) will be
used when plotting figures of HHG spectra. When we examine
strength of the nth-order harmonics, we will use

In =
∫ (n+ 1

2 )ω0

(n− 1
2 )ω0

dω |Ẽ (ω)|2, (12)

where ω0 is the frequency of the fundamental wave.

C. Numerical detail

We utilize an open-source software package SALMON

(scalable ab initio light-matter simulator for optics and
nanoscience) [58,59] for which some of the present authors
are among the leading developers. In this code, solutions for
the electronic orbitals as well as the electromagnetic fields are
found by using the finite-difference method. The time evo-
lution of the electron orbitals is carried out using the Taylor
expansion method [60].

In solving the TDKS equation, we use a conventional unit
cell of the diamond structure containing eight Si atoms with
the lattice constant of a = 0.543 nm. The numbers of grid
points for discretizing the unit cell volume and the Brillouin
zone are set to Nr = 163 and Nk = 323, respectively. A uni-
form 1D grid is introduced to describe the wave equation of
Eq. (7) with the grid spacing of 6.25 nm, except the d = 5
nm case where the grid spacing of 5 nm is used, that is, the
film is expressed as a single grid point. The time step is set to
2.5 × 10−3 fs. We have carefully examined the convergence
of the calculations with respect to the discretization in spatial,
k-space, and time variables.

III. RESULTS AND DISCUSSION

A. Single unit-cell calculation

Before discussing propagation effects in HHG, we show
calculations of electronic motion and HHG spectrum in a unit
cell of crystalline Si under a pulsed electric field of a given
time profile. They will be useful to understand results of mul-
tiscale Maxwell-TDDFT calculations that involve complex
coupling with light propagation.

We employ a pulsed electric field of linear polarization
given by the following time profile for the vector potential,

A(t ) = −cE0

ω0
sin

[
ω0

(
t − T

2

)]
sin6

(
πt

T

)
x̂ (0 < t < T ).

(13)

Here E0 is the maximum amplitude of the electric field, ω0

is the fundamental frequency, and T is the total duration of
the pulse. The value of the maximum amplitude E0 will be
specified later. In the following calculations, we set as h̄ω0 =
1.55 eV and T = 100 fs. The electric field E(t ) is related to
the vector potential A(t ) by E(t ) = −(1/c)(dA/dt ).

In Fig. 1, we show results of a typical calculation solving
the TKDS equation (1). Panel (a) shows the applied pulse

FIG. 1. (a) Time profile of the applied electric field with the max-
imum amplitude of E0 = 0.3 V/Å. (b) The induced current density
in the unit cell of Si. (c) The energy deposition per atom to electrons
in the unit cell of Si.

shape of Eq. (13) with the maximum amplitude of E0 = 0.3
V/Å. Panel (b) shows the induced current density averaged
over the unit cell volume given by Eq. (5). At the beginning of
the calculation, the induced current looks proportional to the
applied electric field. In fact, there is a phase shift of π/2 since
the average frequency of the pulse is below the direct band
gap of Si that is equal to 2.6 eV in the local density approxi-
mation. At around the peak of the applied electric field and
immediately after, there appear high-frequency oscillations
in the current that are related to HHG. Panel (c) shows the
electronic excitation energy per atom. Although the average
frequency is below the band-gap energy, we find an increase of
electronic excitation energy due to nonlinear excitation. The
amount of the excitation energy after the applied electric field
termination is about 0.68 eV per atom. We consider that this
amount of the excitation energy is close to, but still below, the
value that causes permanent damage to a surface of bulk Si
[61–64].

Figure 2(a) shows HHG spectra of single-cell calculations,
Eq. (6), for applied pulses of several intensities, E0 = 0.1,
0.2, 0.3, and 0.4 V/Å. The average frequency and the pulse
duration are chosen to be common as h̄ω = 1.55 eV and T =
100 fs, respectively. As is evident from the figure, the HHG
becomes more pronounced and extended to higher orders as
the field amplitude increases. Clear HHG signals are seen
up to 11th order for E0 = 0.1 V/Å, up to 25th for E0 = 0.2
V/Å, and more than 30th for E0 = 0.3 V/Å. We note that
production of HHG of very high order can be observed by
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FIG. 2. (a) HHG spectra calculated in the unit cell of Si for an
applied electric field of Eq. (13) with the maximum amplitude of
E0 = 0.1, 0.2, 0.3, and 0.4 V/Å. (b) The energy deposition per atom
after the pulse end plotted against the maximum amplitude of the
applied electric field.

using sufficiently long pulse, as we have shown previously
[39].

Figure 2(b) shows the energy deposition to electrons after
the pulse end. Since two photons are required to excite elec-
trons across the direct bandgap, the energy deposition should
scale as �E ∝ E4

0 at low intensity region. For the pulse of the
maximum amplitude of 0.35 eV/Å, the energy deposition per
atom exceeds 1.0 eV per atom that eventually leads, as we
mentioned previously, to a permanent damage to the material.
These results indicate that a pulse of maximum amplitude
around 0.3 V/Å produces HHG of very high orders extending
beyond 50 eV, while avoiding to produce permanent damage
to the material.

B. Multiscale calculation

1. Light propagation

Figure 3 summarizes an overview of the multiscale
Maxwell-TDDFT calculation for the light propagation of a
pulsed light through a Si thin film. Figure 3(a) shows a
schematic view of the numerical method. The light propaga-
tion is solved on a uniform 1D grid along the Z axis. At each
grid point inside the thin film, electron dynamics calculation

FIG. 3. (a) Overview of the multiscale Maxwell-TDDFT method
for a light propagation through a Si thin film. The electron density
changes driven by the light pulse are illustrated for the first three grid
points. (b) Electric field at t = 0 is shown. In front of the Si thin
film that is exhibited as a gray area, the incident pulse is prepared. In
the inset, a Fourier spectrum of the incident electric field is shown.
(c) Electric field at t = 150 fs is shown for the case of two incident
pulses: a strong pulse (I = 4 × 1012 W/cm2, red solid line) and a
weak pulse (I = 109 W/cm2, blue dotted line) scaled up by a factor
of

√
4000. In the upper inset, the energy deposition as a function of

penetration depth is shown. In the lower insets, a Fourier spectrum of
the reflected and transmitted pulses are shown for the case of a strong
incident pulse.

is carried out in a unit cell of Si. In the figure, electron density
changes driven by the light pulse are illustrated for the first
three grid points of the Z-coordinate.
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Figures 3(b) and 3(c) show snapshots of the electric field of
the light pulse propagating through a Si thin film of d = 3000
nm thickness. In Fig. 3(b), the electric field of the initial pulse
(t = 0 fs) that locates in front of the film is shown where
the film is exhibited as a thin gray area. The initial pulse
with the time profile given by Eq. (13) is used with the fun-
damental frequency of h̄ω = 1.55 eV, total duration of T =
100 fs, and the maximum intensity of I = 4 × 1012 W/cm2

that corresponds to E0 = 0.55 V/Å. Note that the maximum
field amplitude and the maximum intensity is related by I =
cE2

0 /(8π ). In Fig. 3(c), a snapshot of the electric field at
t = 150 fs is shown. Here we display results corresponding
to initial pulses of two different maximum intensities, I =
4 × 1012 W/cm2 by red-solid line and I = 1.0 × 109 W/cm2

by blue-dotted line, respectively. For the weaker pulse of the
initial intensity of I = 1.0 × 109 W/cm2 (E0 = 8.7 × 10−3

V/Å), linear propagation is expected. In the figure, the field
is multiplied by a factor of

√
4000 so that the differences of

two lines manifest nonlinear effects in the stronger pulse. In
the snapshot, reflected and transmitted pulses are seen. They
are apart from the film (left for the reflected and right for the
transmitted pulses). There also appears a component around
the film that is caused by a reflection at the back surface of the
film.

It can be observed that the nonlinear effects appear more
significantly in the transmitted pulse than in the reflected
pulse. While the envelopes of the reflected pulses of the
weaker and the stronger cases look similar to each other and
do not change much from the envelope of the initial pulse, the
transmitted pulse of the stronger case suffers a strong nonlin-
ear effect with the nearly flat envelope. This can be understood
as follows: During the propagation, the high field component
of the electric field excites efficiently electrons in the medium
and, as the reaction, the amplitude of the high field part is
reduced to produce the flat envelope in the transmitted pulse.

As the inset of Fig. 3(c), the energy deposition from the
light field to electrons in the unit cell is shown as a function
of Z . At the front surface, the energy deposition is about 0.5
eV/atom and is close to the case of 0.25 V/Å pulse in the
single unit-cell calculation shown in Fig. 2(b). Since the elec-
tric field at the front surface is given as the sum of those of the
incident and the reflected pulses, the maximum electric field at
the front surface is smaller than that of the incident pulse. This
effect can be approximately evaluated using a linear relation
in which the electric field amplitude in the medium, Emedium,
and that for the incident field in vacuum, E0, are related by

Emedium = 2

1 + √
ε

E0, (14)

where ε is the dielectric constant of the medium [52]. Putting
ε = 16 and E0 = 0.55 V/Å, we obtain Emedium = 0.22 V/Å
and this explains the above. As we noted previously, this
amount of the energy deposition will not cause a permanent
damage to the material. The fluence of the incident pulse
is about 0.09 J/cm2 and this value is substantially smaller
than 0.2 J/cm2, which is the reported threshold value of Si
modification [61]. The energy deposition at the front surface,
0.5 eV/atom, is also smaller than 0.65 eV/atom, which is
the theoretical value of the threshold for the phase transition
of solid Si into a low-density liquid phase [62]. The energy

FIG. 4. Spectra of RHHG (a) and THHG (b) are shown for films
of thickness d of 5, 200, 500, 1000, and 3000 nm.

deposition shows the maximum value at the front surface and
decays quickly inside the material, less than 0.1 eV/atom at
200 nm from the surface. This is because the high amplitude
component of the light pulse is reduced during the propagation
by nonlinear interaction.

2. HHG spectra

A Fourier spectrum [Eq. (10)] of the incident pulse is
shown in the inset of Fig. 3(b), and those of the reflected and
transmitted pulses (RHHG and THHG) are shown in the insets
of Fig. 3(c) for the case of a strong incident pulse of I =
4.0 × 1012 W/cm2. We note that all the Fourier transforms
are taken with a sufficiently long duration of Ttot = 200 fs, in
which the pulse reflected at the back surface is included in the
RHHG. It can be seen that, although both the reflected and
transmitted pulses include HHG components, RHHG shows
clear signals of higher orders than THHG.

We next examine thickness dependence of RHHG and
THHG. Figures 4(a) and 4(b) show spectra of RHHG and
THHG, respectively, for Si films with thickness d of 5, 200,
500, 1000, and 3000 nm. The incident pulse is chosen to be
the same as that shown in Fig. 3(b). Figure 5 shows thickness
dependence of RHHG and THHG at several harmonics orders
for films of various thickness up to 3000 nm. In Fig. 5(b),
strengths of RHHG (solid lines) and THHG (dotted lines)
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FIG. 5. (a) Square of the maximum electric field amplitude at
the front surface (solid line) and back surface (dotted line) of the
film is shown for films of various thickness. (b) Strengths [Eq. (12)]
of the 3rd, 7th, 13th, and 19th harmonics for RHHG (solid lines)
and THHG (dotted lines) are shown for films of various thickness.
For the 3rd and 7th THHGs, black thin-dotted lines are attached to
indicate the 3rd and 7th powers, respectively, of the intensity of the
transmitted fundamental wave.

given by Eq. (12) are shown for the 3rd (4.65 eV), 7th
(10.85 eV), 13th (20.15 eV), and 19th (29.45 eV) harmonics.
In Fig. 5(a), a square of the maximum amplitude of the elec-
tric field in time, Emax = maxt |E (t )|, are shown at the front
surface (solid line) and back surface (dotted line) of the film.
We note that a similar plot was provided in Fig. 5 of Ref. [48]
up to 200 nm thickness.

As is seen from Figs. 4(a), 4(b) and 5(b), spectra of RHHG
and THHG for the film thickness of 5 nm are almost identical
with each other and are the strongest among signals of films
of different thicknesses. These features have already been
reported in our previous analysis [48] and can be understood
in terms of two-dimensional approximation for electromag-
netism that is valid for very thin films.

In Fig. 5(b), there appears an oscillatory behavior as a
function of thickness, clearly in RHHG and vaguely in THHG,
below 200 nm. It originates from the interference effect that
is seen in Fig. 5(a) at the front surface [48]. Since the average
frequency of the incident pulse, h̄ω = 1.55 eV is below the
direct band gap of Si that is 2.6 eV in the present LDA calcu-
lation, the propagation is regarded as in a transparent medium
in linear optics. Then, we expect that the electric field at the
front surface suffers a cancellation if the thickness is equal to
(λ/n)(2m + 1)/2, where λ is the wavelength of incident light,
n is the index of refraction, and m is an integer. In Fig. 5(a), the
maximum amplitude shows a dip at the thickness of d ∼ 50

nm. This corresponds to m = 0 case using the value of index
of refraction, n ∼ 4. However, such an interference effect
soon becomes ineffective as the thickness increases since the
strong pulse attenuates quickly during the propagation due to
nonlinear excitation processes. As seen in Fig. 5(a), the next
cancellation expected at around d = 150–200 nm is less clear.
We should note that the thickness at which the interference
disappears depends strongly on the choice of the intensity
of the initial pulse. In the present setting, we consider that
the interference is no more important for films thicker than
200 nm.

In both Figs. 4(b) and 5(b), as the thickness increases from
200 to 3000 nm, the RHHG signals change little by the thick-
ness. Meanwhile, the THHG signals decrease substantially
and monotonically with the thickness increase. These trends
look to follow the thickness dependence of the maximum
amplitude of the electric field at the front and the back surfaces
shown in Fig. 4(a). This finding indicates that RHHG (THHG)
is dominantly produced at the front (back) surfaces. However,
there takes place more complex dynamics that can be found if
we look carefully the thickness dependence of THHG.

We focus on the THHG generated from the film of
thickness d = 1000 nm that is shown by light blue line in
Figs. 4(b). At this thickness, we find an appearance of a dip
in THHG at around 20 eV. Looking at the spectrum carefully,
peaks of THHG below 20 eV show blue shift, while peaks
above 20 eV do not. We also note that THHG spectrum for
the film of d = 3000 nm thickness has no longer clear peaks
except for a few peaks at low frequency region. To understand
the mechanism that causes these features, we make an analysis
decomposing propagating pulse into frequency window in the
next subsection.

3. Analysis using frequency windows

To understand mechanisms that produce characteristic fea-
tures of THHG mentioned above, we investigate the pulse
propagation behavior separating frequency regions using a fil-
tered inverse-Fourier transformation as described below. Once
the multiscale Maxwell-TDDFT calculation is finished, we
take a Fourier transformation to obtain the electric field in
the frequency domain at each grid point Z , EZ (ω). We then
perform the inverse-Fourier transformation with the frequency
window as follows:

Ew
Z (t ) =

∫ ωmax

0

dω

π
Re[e−iωt EZ (ω)w(ω)]. (15)

As the window function for filtering the frequency region,
w(ω), we use the Blackman window function,

w(ω) = wBlackman

(
ω − ω′

ωwidth/2

)
, (16)

where ω′ is the central frequency and the frequency width
ωwidth is set as h̄ωwidth = 10 eV.

Figure 6(a) shows snapshots of the electric field at t = 25,
50, 75, 100, and 125 fs for a pulse propagation through the Si
thin film of d = 1000 nm thickness. The gray area indicates
the Si thin film. We note that the incident pulse ends at t = 100
fs. Figures 6(b), 6(c) and 6(d) show frequency-gated snapshots
of the propagating pulse using the filtered inverse-Fourier
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FIG. 6. (a) Snapshots of the electric field at t = 25, 50, 75, 100, and 125 fs for the pulse propagation through the Si film of d = 1000
nm thickness. [(b)–(d)] The same as (a) but for the filtered inverse-Fourier transforms [Eq. (15)] using the Blackman window with the central
frequency of 10, 20, and 30 eV, respectively.

transform of Eq. (15) with the central frequency of h̄ω′ = 10,
20, and 30 eV, respectively.

We first look at Fig. 6(a) which shows snapshots of the
whole pulse. The amplitude is maximal at t = 50 fs at the
front surface. Since HHG depends strongly on the ampli-
tude of the electric field as shown in Fig. 2(a), HHG takes
place most efficiently at this moment and at around the front
surface.

We next look at h̄ω′ = 10 eV case shown in Fig. 6(b).
There appears a strong reflection wave that corresponds to the
RHHG around 10 eV which is produced at the front surface.
However, inside the medium, the wave generated at the front
surface attenuates quickly as it propagates. This is because
silicon is strongly absorptive at around 10 eV in linear optics.
Nevertheless, we find a weak transmitted wave at t = 100 and
125 fs that should correspond to the THHG around 10 eV.
This THHG should be produced at the back surface of the
film. As seen in Fig. 6(a) at t = 50 fs, there is an electric field
of amplitude about 0.1 V/Å at around the back surface that
can produce HHG up to 20 eV, as shown in Fig. 2.

The waveform looks similar at 20 eV region, as shown in
Fig. 6(c), except for one important difference. There appears
no visible transmission wave at t = 100 and 125 fs. This can
be understood by noting that the electric field at the back
surface, shown in Fig. 6(a) at t = 50 fs, is not large enough
to produce HHG around 20 eV.

In contrast, at 30 eV case shown in Fig. 6(d), the HHG
wave produced at the front surface does not attenuate com-
pletely and appears as the transmitted wave. It indicates that
THHG at 30 eV region is mainly produced at the front surface
and propagate through the film.

To verify the different mechanisms of THHG below and
above 20 eV described above, we revisit RHHG and THHG

spectra emitted from the 1000 nm Si thin film that is shown
again in Fig. 7(a) by red and blue solid lines, respectively. As
we found in Fig. 6(d), the THHG around 30 eV is produced
at the front surface and propagates through the film. Then
we may expect that such THHG spectrum is proportional
to the RHHG spectrum multiplied by the penetration factor
exp[−α(ω)d], where α(ω) = (2ω/c)Imn(ω) is the attenua-
tion coefficient calculated from the dielectric function of Si.
This is plotted by green dotted line in Fig. 7(a) for which
a constant factor is multiplied to roughly coincide with the
THHG spectrum around 30 eV. The attenuation coefficient
used in the plot is shown in Figure 7(b) that is calculated by
linear response TDDFT. Above 20 eV, the dielectric function
of Si becomes rather transparent and the penetration factor is
close to unity. In the frequency region from 3 to 20 eV, the
green dotted line in Fig. 7(a) becomes extremely small due
to the penetration factor and cannot explain the THHG spec-
trum. From these observations, we can support the hypothesis
that THHG above 20 eV is indeed generated from the front
surface.

To confirm that THHG below 20 eV is generated at the
back surface, we carry out the following analysis. We first
examine the electric field at the front and the back surfaces
in frequency domain around the fundamental frequency. In
Fig. 8(a), spectra of electric fields at the front surface are
compared for three different intensities of the incident pulse,
I = 109 (red line), 1012 (blue line), and 4 × 1012 W/cm2

(green line). They are shown with a normalization such that
the incident pulse has the same amplitude. In Fig. 8(b), the
same spectra but at the back surface are shown. We observe
the following facts. For the electric field at the front surface,
the peak is equal to the average frequency of the incident
pulse, h̄ω = 1.55 eV, irrespective of the intensity. For the
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FIG. 7. (a) HHG spectra for the d = 1000 nm case. The red
and blue solid lines are RHHG and THHG, respectively. The green
dotted line is RHHG multiplied by a constant factor and the term
of exp(−α(ω)d ), where α(ω) is the attenuation coefficient of Si.
The orange dotted line is a spectrum of the electric current in the
Si unit cell driven by the fundamental wave at the back surface.
(b) Attenuation coefficient α(ω).

electric field at the back surface, the peak position does not
change for the weak intensity case of I = 109 W/cm2. How-
ever, as the intensity increases, the peak is blueshifted. At
the intensity I = 4 × 1012 W/cm2, the peak position becomes
h̄ω = 1.62 eV. We thus find that there is a nonlinear effect
that blueshifts the peak frequency during the propagation.
As we noted previously in Fig. 4(b), THHG below 20 eV
shows blueshift in the frequency as the intensity increases.
This blueshift can be naturally understood if we consider that
the THHG below 20 eV is generated at the back surface.

To further assure this mechanism, we carry out the follow-
ing analysis: We first extract the fundamental wave component
from the electric field at the back surface, removing the HHG
component. For this purpose, we make the inverse-Fourier
transformation of Eq. (15) using the following window func-
tion:

w(ω) =
⎧⎨
⎩

1 (ω < ω1),
wBlackman

(
ω−ω1
ω2−ω1

)
(ω1 < ω < ω2),

0 (ω2 < ω).
(17)

FIG. 8. (a) Spectra of the reflected fundamental waves normal-
ized by the peak intensity of the incident pulse. The intensity is set
to I = 109, 1012, or 4 × 1012 W/cm2. (b) The same as (a) but for the
transmitted fundamental waves.

with h̄ω1 = 3 eV, and h̄ω2 = 5 eV. Using the electric field thus
obtained, we perform a single unit cell calculation described
in Sec. II A. We show the calculated spectrum multiplied by a
constant as the orange dotted line in Fig. 7(a). As seen in the
figure, THHG (blue line) and the orange dotted line agree well
with each other, not only in relative intensity of each order but
also in positions of the peak frequency. Since the electric field
at the back surface is rather weak, it cannot produce harmonics
above 20 eV. From these analyses, we conclude that THHGs
below and above 20 eV have different origins and the dip at
20 eV appears due to the combination of two mechanisms.

After gaining a detailed understanding of the mechanism
of THHG, we revisit thickness dependence of THHG shown
in Fig. 5(b). As we mentioned previously, THHG signals
decrease as the thickness increases from 200 to 3000 nm. A
closer look at the figure shows that the decreasing behavior
of the signal depends on the order. While the THHG signal
of 19th order decreases exponentially (linearly in logarith-
mic plot), signals of other orders behave differently. Such
difference of the signals can be understood by the different
mechanisms of THHG discussed previously. Since THHG
below 20 eV is generated at the back surface, the intensities of
the 3rd and 7th harmonics are expected to behave as the 3rd
and 7th power of the intensity of the fundamental wave at the
back surface. On the other hand, the 19th HHG signal, whose
frequency is about 30eV, is generated at the front surface
and its thickness dependence is expected to be determined
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FIG. 9. HHG spectra for the d = 1000 nm film. The red and blue
solid lines are RHHG and THHG, respectively. (a) The case of the
fundamental frequency h̄ω0 = 1 eV and the intensity I = 6 × 1012

W/cm2. (b) The case of the fundamental frequency h̄ω0 = 2 eV and
the intensity I = 5 × 1012 W/cm2.

by the penetration factor, exp[−α(ω)d]. These explanations
are consistent with the results shown in Fig. 5(b). For the
13th harmonic that corresponds to about the dip position
of the spectrum at 20 eV, the THHG signal exhibits com-
plex dependencies reflecting the competition between the two
mechanisms. From the above discussions, we expect a similar
dip of THHG at around 20 eV even when using another funda-
mental frequency, because the dip of THHG originates from
the Si attenuation coefficient. Figure 9(a) shows RHHG and
THHG spectra with the thickness d = 1000 nm, the funda-
mental frequency h̄ω0 = 1 eV, and the intensity I = 6 × 1012

W/cm2. Other calculation conditions are the same as before.
Figure 9(b) is the same as Fig. 9(a) but with the fundamental
frequency h̄ω0 = 2 eV and the intensity I = 5 × 1012 W/cm2.
The THHG spectra in Fig. 9 have similar dips at around 20 eV
and apparent blueshift below 20 eV as expected. These results
clearly show that the position of the dip at 20 eV in THHG
is independent of the fundamental frequency and supports our
findings of the propagation effect.

IV. SUMMARY

We have investigated the impact of propagation effects
on high-order harmonic generation (HHG) in reflection and

transmission pulses (RHHG and THHG) from silicon (Si)
thin films. Using the multiscale Maxwell-TDDFT method, we
calculated the spectrum of RHHG and THHG for Si films
of various thickness up to 3000 nm and explored physical
mechanisms that determines their behavior. The fundamental
frequency of the incident pulse is set to 1.55 eV, well below
the direct band gap of Si. We have found the three following
mechanisms to play an important role: (1) propagation effect
on the strong pulse in the frequency region of the incident
pulse. (2) Generation of HHG that predominantly takes place
at either the front or the back surfaces. (3) Propagation effect
on the generated high harmonic waves under a linear light-
matter interaction.

We first note that HHG takes place efficiently at the front
surface since HHG is quite sensitive to the amplitude of the
electric field and it attenuates quickly as it propagate inside
the thin film. RHHG is considered to be produced at the front
surface. We reported previously that the intensity of RHHG
depends sensitively on the thickness of the film for thickness
less than 200 nm, because of the linear interference effect
inside the thin film. In the present work, we have found that
the interference effect becomes less important for films above
200 nm, since the propagating wave inside the film attenuates
quickly.

Propagation effects appear in a more complex way in
THHG. It shows different behavior in the frequency regions
below and above 20 eV. This distinction comes from the
linear absorption property of Si, strongly absorptive below
and almost transparent above 20 eV. THHG signals appear
in the transmitted wave after the propagation inside the thin
film. Then THHG that produced at the front surface attenu-
ates quickly for components below 20 eV. It was found that
THHG in the frequency region below 20 eV is produced at
the back surface. It is also observed that THHG below 20 eV
shows blueshift in the peak positions. This blueshift can be
understood in terms of the nonlinear propagation effect of the
pulse in the fundamental frequency region.

The present results show that the propagation dynamics
causes interesting and significant effects in HHG from Si
films of nano- to micrometer thickness and that the multi-
scale Maxwell-TDDFT scheme provides a reliable description
for them. Since the method can be applicable for three-
dimensional nanomaterials [65], it is expected to be useful
to design and simulate optimal nanomaterials that work as
efficient HHG sources.
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