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We discuss the modified quantum electrodynamics from a time-reversal-breaking Weyl semimetal coupled
with a U (1) gauge (electromagnetic) field. A key role is played by the soft dispersion of the photons in a
particular direction, say ẑ, due to the Hall conductivity of the Weyl semimetal. Due to the soft photon, the
fermion velocity in ẑ is logarithmically reduced under renormalization group flow, together with the fine-structure
constant. Meanwhile, fermions acquire a finite lifetime from spontaneous emission of the soft photon, namely,
the Cherenkov radiation. At low-energy E , the inverse of the fermion lifetime scales as τ−1 ∼ E/PolyLog(E ).
Therefore, even though fermion quasiparticles are eventually well-defined at very low energy, over a wide
intermediate energy window the Weyl semimetal behaves like a marginal Fermi liquid. Phenomenologically,
our results are more relevant for emergent Weyl semimetals, where the fermions and photons all emerge from
strongly correlated lattice systems. Possible experimental implications are discussed.
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I. INTRODUCTION

Weyl fermions, since their original proposal, have been
widely studied due to their chiral nature [1–9]. In the recent
decades, much focus has been put on the condensed matter
realization, namely, the Weyl semimetal (WSM) [7–10]. In
Weyl semimetals, due to the separation of Weyl fermions in
momentum space, various intriguing phenomena have been
observed, e.g., the Fermi arc [8,9], the anomalous Hall ef-
fect [7,11], the quantized circular photogalvanic effect [12],
etc. The dynamical properties of WSMs have also attracted
much attention [13–16]. While a magnetic Weyl semimetal
is typically subject to weak interaction of a particular form
(short-ranged or Coulomb), an emergent WSM is a more
versatile playground for studying interaction effects, e.g.,
topological orders in three dimensions [17–19], generaliza-
tions of the standard QED [20], etc.

An emergent WSM is a strongly interacting lattice system
of spins or electrons, of which the low-energy effective theory
is described by an emergent U (1) gauge field (or some Zm

descendent) coupled to a WSM formed by emergent fermions.
In spin liquid terminology, these are U (1) (or Zm) spin liq-
uids with spinon Weyl semimetals. Unlike in ordinary Weyl
semimetals, the emergent Weyl fermions could naturally have
a velocity close to that of the U (1) gauge field, and the gauge
coupling strength (fine-structure constant) does not have to be
small at a given energy scale. The possibility of an emergent
WSM phase has been demonstrated in Refs. [17,21–24]. The
emergent WSM phase has further been proposed to be the
parent state of topological orders in three dimensions [17–19].
While the descendent topologically ordered phases are stable
by the formation of many-body gaps, the properties of the
emergent WSM phase itself are largely studied at the mean-
field level. In particular, the dynamical consequences of gauge
fluctuations in emergent WSMs remain unexplored.

In this work, we focus on the case with the emergent
U (1) gauge field, also referred to as the emergent electro-
magnetic (EM) field. One important notion in studying the
WSM phase is the unquantized anomaly, which guarantees
the gaplessness of the WSM [11,25–27]. When an EM field
emerges, the dynamical aspect of the anomalies is also an
important piece of information. The unquantized anomaly
appears as a Chern-Simons-like action in (3 + 1) dimensions
[11,25–27]. Together with the Maxwell action, the modified
electrodynamics is usually referred to as Carroll-Field-Jackiw
electrodynamics [20]. In the modified electrodynamics, the
physical polarization of propagating photons is different from
that of those in the vacuum. Another important feature is the
anisotropy. In particular, one of the photon modes becomes
soft in a particular direction [20]. Emergent photons with
similar features have also been found in the coupled layers
of Laughlin states [28].

In this article, we study the interplay between the fermionic
degrees of freedom and the modified electrodynamics in an
emergent WSM. The situation under consideration is really
a simple, non-Lorentz-symmetric generalization of textbook
QED, but with unconventional outcomes. Indeed, we will
show that due to the interaction with the soft photons, the
emergent WSM represents an unconventional quantum liquid.

More specifically, the presence of soft photons signifi-
cantly influences the low-energy properties of the fermions.
There are two major results. First, the fermion dispersion is
strongly dressed by the photons. Namely, the fermion veloc-
ity in the soft photon direction is reduced to zero under the
renormalization group (RG) flow. Besides, the system flows
to a noninteracting limit under the RG. Second, fermions can
spontaneously emit photons. As a result, the fermions acquire
a finite lifetime, due to the Cherenkov radiation of the soft
photons, that is inversely proportional to the fine-structure
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constant and the fermion energy. The two effects just men-
tioned make the emergent WSM significantly different from
the free WSM or the standard QED. Indeed, over a wide
energy window, the emergent WSM behaves like a marginal
Fermi liquid due to the finite lifetime [29]. Meanwhile, the
infrared behavior shows an asymptotic two-dimensional char-
acter and is well-controlled under the RG flow. Hence, the
emergent WSM represents an unconventional type of quan-
tum liquid. Lastly, we propose that the reported feature of
an emergent WSM can be observed from the specific heat
measurement at low temperature [30,31].

The rest of the article is organized as follows. Section II
reviews the low-energy description of a Weyl semimetal as
well as the modified electrodynamics. A physical picture is
developed for the dynamical effects. Section III is devoted
to quantum mechanical one-loop-diagram calculations, from
which the RG flow and the fermion lifetime can be obtained.
Section IV concludes the article and discusses the possible
experimental implications. Supplemental Material [32] is pro-
vided for the technical details in Sec. III.

II. (EMERGENT) WEYL SEMIMETAL AND MODIFIED
ELECTRODYNAMICS

In this section, we review the low-energy description of
the fermions and the modified electrodynamics in an emergent
Weyl semimetal (WSM) at the mean field level. A qualitative
picture for the dynamical effects is provided.

The mean field description of the emergent WSM starts
with a parton decomposition, which formally corresponds
to fractionalizing the electron annihilation operator c into a
neutral fermion (spinon, ψ) and a charged boson (chargon,
eiθc ): c = eiθcψ [33]. The local U (1) gauge ambiguity of this
decomposition,

ψ → eiαψ, eiθc → e−iαeiθc , (1)

dictates the necessity of the emergence of a dynamical U (1)
gauge field [34]. In other words, there is a dynamical U (1)
gauge field that couples to both the the spinon and the chargon
with gauge charge q = ±1. We then consider mean field states
in which the chargons eiθc are gapped (and therefore can be
integrated out at low energy), while the spinons ψ form a Weyl
semimetal band structure, with two Weyl cones of the opposite
chirality separated in momentum space by 2Q [see Fig. 1(a)].

At low energy, the fermionic excitation of a Weyl
semimetal is effectively described by a Dirac Lagrangian [11]:

Lf = ψ̄ Vμi∂μψ, with Vμ = [γ 0, γ 1, γ 2, v3γ
3], (2)

where γ 0,1,2,3 are the 4 × 4 γ matrices satisfying {γ μ, γ ν} =
2ημν and ημν = Diag[1,−1,−1,−1] is the metric used
within the real-time formalism. The indices are raised and
lowered with the metric ημν . Here, we assume the velocity in
the xy plane to be 1, and we assume the velocity in the z direc-
tion to be different, namely, v3. The energy of the fermions is
E±(k) = ±E (k) = ±

√
k2

x + k2
y + v2

3k2
z . We should comment

that, in this article, we interchangeably use μ = (0, 1, 2, 3) or
μ = (t, x, y, z) to indicate the time and space directions. The
former is algebraically convenient, while the latter is more
descriptive and intuitive.

FIG. 1. Low-energy dispersions for (a) free WSM. (b) Photons
in the modified electrodynamics with qx = qy = 0. (a) Around two
Weyl nodes, fermions have linear dispersion. The two Weyl nodes are
separated in momentum space by 2Q = λz3 in the z direction. On the
sample boundary, there is a Fermi arc connecting two Weyl nodes,
an indication of the anomalous Hall effect. (b) There are two photon
modes. The gapped mode (green) has a gap given by e2λz3

2π
. The other

mode is soft (red), with a quadratic dispersion, Eq. (5). The gray
dashed line corresponds to ω = e

e3
qz, namely, the photon dispersion

when λ = 0. (c) Cartoon of fermions moving in a soft electroma-
gentic environment. Fast-moving fermions constantly interact with
virtual photons (red dashed-dotted lines) and spontaneously emit
soft photons (red solid lines). The emitted soft photons are roughly
confined around the z axis indicated by the red dashed lines.

One should notice that the simplicity in Eq. (2) is decep-
tive. Indeed, when a lattice model of WSM is considered, the
two Weyl components of a Dirac fermion are separated in the
Brillouin zone [7], as shown in Fig 1(a). As a result, there will
be chiral edge states for a finite-size system. The intersection
of the chiral edge state and the Fermi level is the Fermi arc,
which is a hallmark of WSMs [8,9]. In terms of transport, the
features just mentioned imply that WSMs show an anoma-
lous Hall conductivity [7,10,11,35]. The anomaly argument
requires the value of the Hall conductivity to be given by 2Q,
even though high-energy fermions may be strongly interacting
with no well-defined quasiparticles [18,26].

Due to the Hall effect, the Lagrangian for the emergent
U (1) gauge field has a Chern-Simons (CS)-like term, in ad-
dition to the Maxwell term [20]:

LM = − 1

4e2
fi j f i j − 1

2e2
3

fiz f iz, (3a)

LCS-like = λz3

4π
ε3i jkai∂ jak, (3b)

where ε3i jk is the total antisymmetric tensor in (3 + 1)
dimensions with one index fixed and i, j, k = 0, 1, 2 labels
time as well as the x (y) direction. aμ is the dynamical gauge
field potential and fμν = ∂μaν − ∂νaμ is the corresponding
field strength tensor. Here, two coupling constants, e and
e3, are introduced. As a result, the Maxwell term, Eq. (3a),
is anisotropic. The Chern-Simons term, Eq. (3b), introduces
more anisotropy, as discussed below.
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The second line, Eq. (3b), is the CS-like term and is re-
sponsible for the Hall effect. In this work, z3 is essentially
the reciprocal lattice constant along the z direction. As shown
in Fig. 1(a), 2Q = λz3 measures the separation between Weyl
points in momentum space. We should mention that to em-
phasize the anomaly aspect, the CS-like term is sometimes
compactly written as LCS-like ∼ z ∧ a ∧ da in terms of differ-
ential forms and the translation gauge field zμ = (0, 0, 0, z3)
[26,27]. Indeed, the CS-like term dictates the mixed unquan-
tized anomaly of translation and U (1) gauge symmetry. The
mixed anomaly is a manifestation of the chiral anomaly. As
we point out, the dynamical effect is also important. Namely,
the CS-like term significantly alters the photon dispersion,
which in turn influences the properties of the fermions as well
as the infrared description of an emergent WSM.

The photon dispersions can be straightforwardly found
based on the Euler-Lagrange equation for the U (1) gauge field
Lagrangian, Eq. (3). There are two propagating photon modes
with the following dispersion relation [20]:

ω2
±=q2

x + q2
y+

e2

e2
3

q2
z +e4 λ2z2

3

8π2
± e4 λ2z2

3

8π2

√
1 + 2

8π2

e4λ2z2
3

e2

e2
3

q2
z .

(4)

When the CS-like term vanishes, λ = 0, the photons retain a
linear dispersion as usual, with an anisotropy in the speed of
light: the speed of light in the xy plane is unity, while in the z
direction cz = e

e3
.

The presence of the CS-like term, λ �= 0, significantly al-
ters the photon dispersion. As plotted in Fig. 1(b), there are
two photon modes: a gapped mode as well as a gapless soft
mode. The gapped photon mode has the gap e2 λz3

2π
. Notice that

the gap only depends on the coupling e2, not e2
3. This mode

mimics the gapped mode of Maxwell-Chern-Simons theory
in (2 + 1) dimensions [34].

The other photon mode is gapless and quite soft. At low
energy, the soft photon takes the following dispersion:

ω2
− ≈ q2

x + q2
y + 4π2

e4
3λ

2z2
3

q4
z . (5)

Namely, the soft photon dispersion is extremely anisotropic
due to the CS-like term, Eq. (3b). When moving along the
z direction, the photon has a quadratic dispersion with an
effective inertia mass ms ∼ e2

3λz3. Notice that only e2
3 (not e2)

enters the low-energy dispersion at leading order. Such a soft
nature will play a central role in our subsequent analysis.

Finally we consider the fermions and the photons to be
minimally coupled:

Lc = ψ̄ Vμaμψ. (6)

Equations (2), (3), and (6) form our full Lagrangian. Such a
Lagrangian captures all the essential infrared (IR) features of
an emergent WSM, while containing only a limited number of
parameters.

The coupling between the fermions and the photons puts
some dynamical constraint on the kinematics. In the absence
of the CS-like term, Eq. (3b), the fermion velocity and the
speed of light renormalizes to be identical in all directions
[36]. The same holds true for the velocities in the xy plane

FIG. 2. One-loop diagrams: (a) fermion self-energy, (b) interac-
tion vertex correction, and (c) polarization operator.

when the CS-like term is present. The renormalization effect
is more relevant when the gauge field is emergent, in which
case the typical velocities of photons and fermions are actually
comparable [34]. Based on the considerations just mentioned,
we have assumed the velocities of both fermions and photons
in the xy plane to be unity. A more drastic effect occurs for the
motion in the z direction.

A cartoon of fermions moving in the z direction is depicted
in Fig. 1(c). In an emergent WSM, the linearly dispersive
fermions and the soft photon coexist and are coupled. In the z
direction, the fermions move much faster than the photons at
low energy. There are two major effects following from this
observation.

One effect is related to the photon dressing of the fermion
dispersion. Namely, fermions constantly emit and absorb vir-
tual photons [Fig. 1(c)]. Pictorially, the fermions constantly
“hit,” in particular, the soft photons. Because of the slow ve-
locity, the soft photons serve as an impedance of the fermion
motion in the z direction. Therefore, one would expect that the
fermion would be dressed by the soft photons and the velocity
in the z direction would be reduced.

Another effect is that fermions can radiate photons spon-
taneously. As schematically shown in Fig. 1(c), the radiated
photons are all soft, with the momentum roughly confined in
a cone structure around the z axis. This is exactly the picture
of Cherenkov radiation in classical electrodynamics [37,38].
Thus, the fermions will acquire a finite lifetime. As we show
later, the inverse of the fermion lifetime is proportional to its
energy and the fine-structure constant.

In conclusion, we expect that the soft photon renormalizes
the fermion velocity in the z direction and gives the fermion a
finite lifetime. Such an expectation is supported by the quan-
tum mechanical one-loop calculations as detailed in Sec. III.
In the end, the emergent WSM represents an unconventional
quantum liquid, whose infrared properties differ significantly
from the noninteracting WSM or the standard QED. The
unconventional features are the result of the CS-like term,
namely, the mixed unquantized anomaly of the WSM.

III. IMPLICATIONS FROM 1-LOOP DIAGRAMS

In this section, we show that the qualitative picture de-
veloped in Sec. II is supported by quantum mechanical
calculation. In particular, we study the one-loop diagrams in
Fig. 2 as in the standard QED [1,2]. More technical details can
be found in the Supplemental Material [32].
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We first investigate the full set of the one-loop diagrams
(Fig. 2). We show that both the fermion velocity, v3, and
the Maxwell speed of light, cz = e/e3, in the z direction
renormalize to zero. At the same time, the electromagnetic
coupling constants renormalize to zero. Namely, in the IR
limit, the photon dressed fermions are noninteracting and
show an asymptotic two-dimensional (2D) dispersion.

Then, we study the imaginary part of the fermion self-
energy [Fig. 2(a)]. We show that the inverse of the fermion
lifetime (and equivalently the one-photon emission rate) is
proportional to the fermion energy. At weak (and even moder-
ate) coupling, the proportionality vanishes logarithmically in
the IR limit due to the RG effect. The associated photon radi-
ation process is the quantum version of Cherenkov radiation
for the modified electrodynamics of Eq. (3) [38]. Besides, we
should mention that the fermion lifetime is also sensitive to the
direction of the fermion momentum. Therefore, the emergent
WSM represents an unconventional quantum liquid. Over a
wide energy range, it behaves like a marginal Fermi liquid,
yet with a well-controlled IR behavior.

Before proceeding, it is worthwhile to discuss the typical
energy scales. There are three typical energy scales in the
current setup. One is �f ∼ v3λz3. Below �f, the linear ap-
proximation of fermion dispersion, Eq. (2), applies. Second is
the photon gap, mp ∼ e2λz3, below which the gapped photon
mode decouples from the rest of the fields. The last one is
slightly subtler: at low enough energy, the photon mode ax,y,
with quadratic dispersion in ẑ, ωph ∼ q2

z /2ms, with inertia
mass ms ∼ e2

3λz3, and the fermions, with linear dispersion
ω f ∼ v3k3, will not be able to couple efficiently due to a large
energy mismatch when q3 is comparable to k3. This kinematic
constraint leads to the dynamical decoupling of the quadratic-
dispersing photon mode with other fields in the theory, which
happens when the energy scale is below msv

3
3 ∼ v2

3e2
3λz3. Be-

low we work with the energy scale � � Min{�f, mp, msv
2
3}.

With such a small energy scale (and the corresponding long
wavelength), the photon propagator is primarily given by

Ga
μν (q) = e2

3
1

q2
0 − q2

1 − q2
2

zμzν

z2
3

, (7)

where zμ = (0, 0, 0, z3). The corrections are on the order of
O(q/mp,s ) � 1. There is also dependence on the gauge fixing
parameter, which may not be small in magnitude. One useful
gauge fixing term is given by Lgf = 1

2ξ (∂iai + e2

e2
3
∂zaz )2, with

ξ being the gauge fixing parameter [32]. Nevertheless, the
gauge fixing parameter does not enter any physical properties,
as generally expected from the gauge invariance principle.

One last ingredient is the fermion propagator:

Gf(k) = Vμkμ

k2
0 − k2

1 − k2
2 − v2

3k2
3

. (8)

Notice that both the gauge field and the fermion propaga-
tor show some anisotropy. The anisotropy in the gauge field
propagator is more important. Indeed, at low energy, only one
pole is present in Eq. (7). This pole exactly corresponds to
the soft photon at low energy and long wavelength. (Notice
that qz dependence of the soft photon dispersion in Eq. (5) is
now subleading and neglected.) Therefore, the unconventional

behaviors of the emergent WSM reported in this section are
indeed due to the soft photon.

A. Fermion velocity renormalization and the RG equations

For weak interaction, the fermionic excitations are presum-
ably underdamped. Then, we can ask the question of how
fermion band structure renormalizes. Along the z direction,
the fast-moving fermions are dressed by the slow-moving
photons due to the interaction. Therefore, a reduction in the
fermion velocity v3 is expected from the RG analysis.

To be more specific, we aim at the renormalization of the
dispersion of fermions and photons as well as the coupling
strength between them. Namely, we would like to obtain the
RG flow of v3, e, and e3. To achieve this goal, the following
bare scaling dimension is considered:

[kμ] = [qμ] = 1, [ψ̄] = [ψ] = 3
2 , [aμ] = 1. (9)

Under this bare scaling, the CS-like term, Eq. (3b), is relevant.
Meanwhile, all the other terms in the Lagrangian, Eqs. (2),
(3a), and (6), are marginal. The relevance of the CS-like
term implies that all the three typical scales, �f, mp, and
msv

2
3 , renormalize to infinity. This is indeed the case when

we consider the full RG equation below. The relevance of
the three typical energy scales is also reflected in the gauge
field propagator. As shown in Eq. (7), at low energy, only one
pole at q2

0 = q2
1 + q2

2 is present in the leading-order term of
the gauge field propagator.

The fermion velocity renormalization can be obtained from
either the fermion self-energy, �(k) in Fig. 2(a), or the ver-
tex correction, �μ(k, q′) in Fig. 2(b). The two diagrams are
related by the Ward identity. In particular, we focus on the
following quantity [1,2]:

�
μ

1-loop(k, q′ = 0)|k=0 = −∂kμ
�(k)|k=0. (10)

Combined with the bare interaction vertex, Eq. (6), the full
interaction vertex is given by

�
μ

full(k, q′ = 0)|k=0 = Z−1
f [γ 0, γ 1, γ 2, ṽ3γ

3], (11)

where all the gauge fixing parameters enter the fermion field
renormalization factor Zf. As a result, the effective velocity ṽ3

is independent of the gauge fixing parameter:

ṽ3 = v3 − e2
3

6π2

v3
3

|v3| ln
�

μIR
, (12)

where � and μIR are the UV and IR cutoff in the loop momen-
tum integral. This result suggests that the fermion velocity v3

is reduced by the photon dressing.
The renormalization of the coupling constants e and e3

can be obtained from the vacuum polarization �μν (q) as
in Fig. 2(c). Technically, the vacuum polarization is evalu-
ated with the dimensional regularization scheme, in order to
maintain gauge invariance [1,2]. Assuming the space-time di-
mension as d = 4 − ε, Fig. 2(c) contains a factor of �μν (q) ∝
�ε[ 2

ε
− ln �2(q)] ∼ ln �2

�2(q) , which is reduced to a logarith-
mically divergent factor by minimal subtraction [32]. Here,
�2(q) = q2

0 − q2
1 − q2

2 − v2
3q2

3.
Physically, the vacuum polarization operator [Fig. 2(c)]

gives a correction to the bare Maxwell term, Eq. (3a). The
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FIG. 3. Renormalization group flow with Nf = 1 pair of Weyl
fermions.

resultant Lagrangian is of the same form as Eq. (3a), with the
effective coupling constants [39]:

1

ẽ2
= 1

e2
+ Nf

12π2

1

|v3| ln
�2

�2(q)
,

1

ẽ2
3

= 1

e2
3

+ Nf

12π2
|v3| ln

�2

�2(q)
,

(13)

where Nf is the number of pairs of the Weyl points. Notice
that the CS-like term is unaffected by the vacuum polarization
operator. This is because the CS-like term comes from inte-
grating out the high-energy fermionic states away from the
Weyl points [18,26], while the polarization operator computed
here only involves the low-energy fermions around the Weyl
points.

Based on the bare scaling dimension, Eq. (9), and the re-
sults of Eqs. (12) and (13), we obtain the main results, namely,
the RG equations:

dz3

dl
= z3, (14a)

dv3

dl
= − e2

3

6π2

v3
3

|v3| , (14b)

de2

dl
= −Nf

e4

6π2

1

|v3| ,
de2

3

dl
= −Nf

e4
3

6π2
|v3|, (14c)

where the RG process is defined through the change in the
UV scale as � → � exp[−dl] with dl > 0. The RG equa-
tion for the reciprocal lattice constant z3, Eq. (14a), follows
from the bare scaling equation (9).

Figure 3 plots the RG flow of a few typical parameters.
Figure 3(a) shows the RG flow of the fermion velocity v3

and the speed of light (as defined solely from the Maxwell
term) cz = e/e3. While the fermion velocity always flows to a
smaller value, there is a slow increase in cz when the fermion
velocity is large v3 > cz. Nevertheless, both velocities flow
to zero eventually. Figure 3(b) shows that in addition to the
reduction of the velocities in the z direction, the coupling
constant e3 also flows to zero. From the RG flow, we con-
clude that, in the deep IR limit, the emergent WSM coupled
with the dynamical U (1) gauge field shows asymptotic two-
dimensional dispersion and is free of interaction. The weakly
coupled IR limit also justifies our perturbative loop expansion.

We should comment on the flow of the three typical en-
ergy scales, �f, mp, and v2

3ms. Notice that those scales are
of the form {v3, e2, v2

3e2
3} × z3. From the RG equation, the

fermion velocity and the coupling constants renormalize to
zero as 1/PolyLog(�), as suggested by Eqs. (12) and (13).
Meanwhile, the reciprocal lattice constant z3 renormalizes
to infinity in a way faster than logarithmic growth, z3 →
z3 exp[l]. As a result, the three energy scales should renor-
malize to infinity, as mentioned at the beginning of this
subsection. This justifies our assumption that the probing en-
ergy scale is always much smaller than �f, mp, and v2

3ms.
The most interesting feature of our result is that the fermion

band structure is strongly dressed by the soft photons. In
particular, the velocity in the z direction, v3, renormalizes to
zero. Such a result matches the qualitative expectation that
the soft photons are essentially an impedance of the fermion
motion in the z direction. One may wonder about the non-
analyticity of the RG flow equations, Eqs. (12) and (13), at
v3 = 0. This is because the momentum shell at the cutoff
�2 = q2

0 + q2
1 + q2

2 + v2
3q2

3, as a surface in momentum space,
has different topology for v3 �= 0 (ellipse) and v3 = 0 (infinite
cylinder). The nonanalyticity in v3 also makes the velocity
term dangerously irrelevant [40], and the limit v3 → 0 should
always be taken with caution, even if one is primarily inter-
ested in the fixed point properties.

B. Photon emission rate and fermion lifetime

The second effect is related to the spontaneous emission
of photons and correspondingly the fermion lifetime. As
schematically illustrated in Fig. 1(c), when moving in the z
direction, fermions can spontaneously emit the soft photons.
A comment on the definition of the soft (slow) and fast photon
is due. Qualitatively, the criteria amounts to the comparison
between the photon’s phase velocity cphase and the fermion’s
group velocity vgroup [37]. When the photon’s phase velocity
is small cphase < vgroup, the photons are soft and slow and can
be emitted spontaneously. In the opposite limit, the photons
are fast and cannot be emitted. A careful analysis of energy-
momentum conservation generally gives a stricter kinematic
constraint on the emitted photons.

The one-photon emission rate can be calculated from the
imaginary part of the fermion self-energy [Fig. 2(a)] by
the optical theorem [1,2,41]. When the external fermions
are put on mass-shell, the result of the calculation is fully
independent of gauge choice, according to the Ward iden-
tity [1,2]. Thus, the imaginary part of the on-mass-shell
fermion self-energy is considered in this subsection, τ−1 =
2Im tr�(k)P̂±(k)|k0=±E (k) [32], where P̂±(k) is the projection
operator onto the positive (negative)-energy fermion bands.

Given the rotation symmetry in the xy plane, we can as-
sume the external fermion has a momentum in the xz plane
without loss of generality. Namely, the momentum of the
external fermion is k = |k|(sin θ, 0, cos θ ). To leading order
in the coupling constant e2

3, we found that the one-photon
emission rate or equivalently the inverse fermion lifetime is
given by

τ−1 = e2
3

3π
E (k)

|v3|3 cos2 θ

sin2 θ + v2
3 cos2 θ

. (15)

It is proportional to the fine-structure constant e2
3

4π
and the

fermion energy E (k) = |k|
√

sin2 θ + v2
3 cos2 θ . In addition,
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FIG. 4. Inverse fermion lifetime versus the direction of fermion
momentum at various values of velocity v3. The fermion has a
momentum in the xz plane of k = |k|(sin θ, 0, cos θ ) and energy
E (k) = |k|√sin2 θ + v2

3 cos2 θ . Here, the fermion energy is small
compared to the typical energy scales in the system.

the fermion lifetime also depends on the fermion velocity and
the direction of momentum.

As plotted in Fig. 4, the inverse of the fermion lifetime
increases with increasing velocity v3. This matches the expec-
tation of Cherenkov radiation [37]. The inverse lifetime also
depends on the direction of the fermion momentum. Indeed,
the inverse lifetime is maximum when the fermion moves in
the z direction (θ = 0). Meanwhile, the fermions do not emit
photons when moving in the xy plane (θ = π/2).

At weak coupling, e2
3/4π � 1, the fermions are indeed

underdamped. The presumption of weak damping in the RG
analysis is justified. The parameters in Eq. (15) can be thought
of as the renormalized ones. The inverse of the fermion life-
time is proportional to its energy, τ−1 ∝ E (k). Meanwhile, the
coefficient of proportionality approaches zero logarithmically
upon approaching the IR limit.

In addition, when the coupling strength is moderate,
e2

3/4π � 1, the inverse fermion lifetime is still proportional
to the energy. The ratio between the two quantities may not
be small, [τE (k)]−1 � O(1). This suggests that the fermions
are significantly damped at the moderate electromagnetic
coupling. Accordingly, the fermionic quasiparticles are not
sharply defined.

We expect the RG still plays some role in the moderate-
coupling regime. Then the coupling constants flow to a
smaller value. The assumed relevance of the RG implies the
emergence of a new energy scale �1. Above �1, the fermionic
excitations are overdamped as discussed in the previous para-
graph. Below �1, the coupling strength becomes small. The
fermionic excitations eventually become weakly interacting
or even noninteracting and underdamped. We should mention
that the determination of the energy scale �1 is beyond the
scope of the perturbative analysis presented in this article.

Therefore, we conclude that the emergent WSM repre-
sents an unconventional quantum liquid. Over a wide energy
window above �1, it behaves like a marginal Fermi liquid
and lacks sharply defined quasiparticles [29]. Meanwhile, in
the IR limit below �1, even though the fermionic quasipar-
ticles are well-defined, the dispersion shows an asymptotic
two-dimensional feature. This conclusion means that the

properties of an emergent Weyl semimetal are significantly
different from its mean field description as in Sec. II at both
IR and intermediate energy scales.

At strong coupling, the fermionic quasiparticles are over-
damped. Then, perhaps a hydrodynamic description for such
chiral plasma is in order, which we do not pursue in great
detail here.

IV. CONCLUSION AND DISCUSSIONS

To conclude, we investigate the dynamical effect of the
chiral anomaly, through the question of what is the infrared
description of an emergent Weyl semimetal. We found that the
emergent WSM represents an unconventional quantum liquid.
The anomaly term guarantees the softness of the emergent
photons. Due to the soft nature of the emergent U(1) gauge
field, the IR behavior of the emergent WSM is quite distinct
from that of the noninteracting WSM in two aspects.

First, the fermions get dressed by the soft photons signif-
icantly. The fermion velocity in the z direction renormalizes
to zero. In the IR limit, both fermions and gauge fields show
an asymptotic 2D dispersion. Meanwhile, the emergent fine-
structure constant renormalizes to zero as well, leading to a
decoupled IR limit.

Second, the fermions acquire a finite lifetime through spon-
taneous emission of soft photons. The inverse of the fermion
lifetime is found to be proportional to the fine-structure
constant and, more interestingly, the fermion energy. This
suggests that the emergent WSM behaves like a marginal
Fermi liquid at finite energy. However, due to the RG effect,
the emergent WSM has a well-controlled (noninteracting) IR
limit.

The reported features of an emergent WSM is potentially
detectable through specific heat measurement [30,31]. The
specific heat of fermions scales with temperature T as Cf ∼
T 3/|v3|. At low-temperature T � ms, the contribution from
the soft photons has a different power, Csp ∼ m1/2

s T 5/2. There-
fore, it is possible to single out the fermionic contribution to
the specific heat [42]. The measurement of fermionic specific
heat reveals the velocity renormalization effect. In particu-
lar, Cf/T 3 ∼ 1/|v3| should show a logarithmic increase upon
lowering the temperature. Notice that the acoustic phonon in
3D also has a specific heat of cubic temperature dependence,
Cap ∼ T 3. We expect the renormalization effect on phonon
dispersion is limited. Hence, Cap/T 3 is basically tempera-
ture independent. Therefore, after singling out the emergent
photons, an increase in (Cf + Cap)/T 3 with lowering the tem-
perature should reflect the renormalization effect of reducing
the fermion velocity v3 in the IR limit.

ACKNOWLEDGMENTS

We are grateful to Sung-Sik Lee, Ruochen Ma, Alex
Kamenev, Adam Nahum, and Jinmin Yi for the valuable dis-
cussions. We acknowledge support from the Natural Sciences
and Engineering Research Council (NSERC) of Canada.
A.A.B. was also supported by the Center for Advancement
of Topological Semimetals, an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, through the

035131-6



DYNAMICAL EFFECTS FROM ANOMALIES: MODIFIED … PHYSICAL REVIEW B 107, 035131 (2023)

Ames Laboratory under Contract No. DE-AC02-07CH11358.
Research at the Perimeter Institute is supported in part by the
Government of Canada through the Department of Innovation,

Science and Economic Development, and by the Province of
Ontario through the Ministry of Economic Development, Job
Creation and Trade.

[1] S. Weinberg, The Quantum Theory of Fields (Cambridge Uni-
versity, Cambridge, England, 1995), Vol. 1.

[2] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum
Field Theory (Addison-Wesley, Reading, MA, 1995).

[3] G. E. Volovik, The Universe in a Helium Droplet (Clarendon,
Oxford, 2003).

[4] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).
[5] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).
[6] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 193, 173 (1981).
[7] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011).
[8] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P.

Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai,
T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

[9] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang,
H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou,
P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349,
613 (2015).

[10] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.
90, 015001 (2018).

[11] A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133
(2012).

[12] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore,
Nat. Commun. 8, 15995 (2017).

[13] H. Isobe and N. Nagaosa, Phys. Rev. Lett. 116, 116803 (2016).
[14] C. Rylands, A. Parhizkar, A. A. Burkov, and V. Galitski, Phys.

Rev. Lett. 126, 185303 (2021).
[15] Z. Wang and S.-C. Zhang, Phys. Rev. B 87, 161107(R) (2013).
[16] J. Maciejko and R. Nandkishore, Phys. Rev. B 90, 035126

(2014).
[17] E. Sagi, A. Stern, and D. F. Mross, Phys. Rev. B 98, 201111(R)

(2018).
[18] C. Wang, L. Gioia, and A. A. Burkov, Phys. Rev. Lett. 124,

096603 (2020).
[19] M. Thakurathi and A. A. Burkov, Phys. Rev. B 101, 235168

(2020).
[20] S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41, 1231

(1990).
[21] F. Hotz, A. Tiwari, O. Turker, T. Meng, A. Stern, M. Koch-

Janusz, and T. Neupert, Phys. Rev. Res. 1, 033029 (2019).
[22] T. Meng, A. G. Grushin, K. Shtengel, and J. H. Bardarson, Phys.

Rev. B 94, 155136 (2016).

[23] W. Witczak-Krempa, M. Knap, and D. Abanin, Phys. Rev. Lett.
113, 136402 (2014).

[24] O. Türker and T. Meng, SciPost Phys. 8, 031 (2020).
[25] A. G. Grushin, Phys. Rev. D 86, 045001 (2012).
[26] L. Gioia, C. Wang, and A. A. Burkov, Phys. Rev. Res. 3, 043067

(2021).
[27] C. Wang, A. Hickey, X. Ying, and A. A. Burkov, Phys. Rev. B

104, 235113 (2021).
[28] M. Levin and M. P. A. Fisher, Phys. Rev. B 79, 235315

(2009).
[29] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E.

Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996
(1989).

[30] M. Sitte, A. Rosch, J. S. Meyer, K. A. Matveev, and M. Garst,
Phys. Rev. Lett. 102, 176404 (2009).

[31] S. Dzsaber, L. Prochaska, A. Sidorenko, G. Eguchi, R. Svagera,
M. Waas, A. Prokofiev, Q. Si, and S. Paschen, Phys. Rev. Lett.
118, 246601 (2017).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.035131 for detailed discussion of (i)
the gauge fixing term, (ii) the gauge field propagator, (iii) the
one-loop vertex correction, (iv) the vacuum polarization opera-
tor, and (v) the fermion self-energy and lifetime.

[33] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[34] X.-G. Wen, Quantum Field Theory of Many-Body Systems: From
the Origin of Sound to an Origin of Light and Electrons (Oxford
University, Oxford, 2004).

[35] A. A. Burkov, Phys. Rev. Lett. 113, 187202 (2014).
[36] M. M. Anber and J. F. Donoghue, Phys. Rev. D 83, 105027

(2011).
[37] J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-Y. Tsai,

Classical Electrodynamics (Westview, Boulder, CO, 1998).
[38] K. Tuchin, Phys. Rev. D 98, 114026 (2018).
[39] A. Zee, Quantum Field Theory in a Nutshell, Nuclear Physics in

a Nutshell (Princeton University, Princeton, NJ, 2010), Vol. 7.
[40] J. Cardy, Scaling and Renormalization in Statistical Physics,

Cambridge Lecture Notes in Physics (Cambridge University,
Cambridge, England, 1996), Vol. 5.

[41] A. Kamenev, Field Theory of Non-equilibrium Systems (Cam-
bridge University, Cambridge, England, 2011).

[42] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,
New York, 2005).

035131-7

https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1038/ncomms15995
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1103/PhysRevLett.126.185303
https://doi.org/10.1103/PhysRevB.87.161107
https://doi.org/10.1103/PhysRevB.90.035126
https://doi.org/10.1103/PhysRevB.98.201111
https://doi.org/10.1103/PhysRevLett.124.096603
https://doi.org/10.1103/PhysRevB.101.235168
https://doi.org/10.1103/PhysRevD.41.1231
https://doi.org/10.1103/PhysRevResearch.1.033029
https://doi.org/10.1103/PhysRevB.94.155136
https://doi.org/10.1103/PhysRevLett.113.136402
https://doi.org/10.21468/SciPostPhys.8.2.031
https://doi.org/10.1103/PhysRevD.86.045001
https://doi.org/10.1103/PhysRevResearch.3.043067
https://doi.org/10.1103/PhysRevB.104.235113
https://doi.org/10.1103/PhysRevB.79.235315
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.102.176404
https://doi.org/10.1103/PhysRevLett.118.246601
http://link.aps.org/supplemental/10.1103/PhysRevB.107.035131
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/PhysRevLett.113.187202
https://doi.org/10.1103/PhysRevD.83.105027
https://doi.org/10.1103/PhysRevD.98.114026

