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Incommensurate many-body localization in the presence of long-range hopping
and single-particle mobility edge
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We study many-body localization (MBL) in the quasiperiodic t1-t2 model, focusing on the role of next-nearest-
neighbor (NNN) hopping t2, which introduces a single-particle mobility edge. The calculated phase diagram can
be divided into three distinct regimes, depending on the strength of the short-range interaction U . For weak
interactions (U � t1), this model is always nonthermal. For intermediate interactions (U ∼ t1), the thermal-
MBL phase transition in this model is qualitatively the same as that of the Aubry-Andre (AA) model, which is
consistent with existing experimental observations. For strong interactions (U � t1), the NNN hopping produces
qualitatively new physics because it breaks down the Hilbert space fragmentation present in the AA model. The
NNN hopping is thus irrelevant when the interaction is intermediate but relevant for strong interactions.
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I. INTRODUCTION

An interacting quantum many-body system may escape
thermalization if sufficiently strong disorder is present. This
novel dynamical phase, known as many-body localization
(MBL), has been studied extensively in the past decade. Due
to the challenges of dealing with strong interaction and strong
disorder simultaneously, most theoretical work on MBL re-
lies on numerical studies in small 1D lattice models [1–4],
although some rigorous results exist in 1D systems with ar-
bitrarily strong disorder [5,6]. Recently there have also been
some debates about the stability of MBL in the thermody-
namic limit [7–14], which is outside the scope of the current
work. Nonetheless, MBL remains the only generic mechanism
to break the eigenstate thermalization hypothesis [15,16] and
provides crucial insights into the foundations of quantum sta-
tistical mechanics.

One of the most intriguing open questions in this field is
the fate of MBL when both extended and localized degrees
of freedom are present in the corresponding single-particle
spectrum [17–27]. This question is particularly timely given
the recent experimental interests in energy-resolved MBL
[28]. In this context, incommensurate lattice models with a
single-particle mobility edge (SPME) are particularly relevant
for studying such questions because they provide a concrete
example and are relatively easy to implement in the exper-
iment [23–27]. Remarkably, it is still unclear whether the
extended states can serve as an efficient bath for the localized
states in the presence of (as one would expect) interactions
and lead to a faster relaxation, probably because the Hilbert
space spanned by these extended states is often comparable
to (or even smaller than) that spanned by localized states.
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Among the numerous models with SPME [29–36], the t1-t2
model [33] stands out because it is close to the system im-
plemented in recent cold atom experiments which have been
shown to have an SPME [37,38]. Hence, a careful analysis of
the t1-t2 model in the context of MBL will provide important
theoretical and experimental insights into the open question
of how SPME affects thermalization (or MBL) in interacting
incommensurate systems. In particular, we are interested in
understanding whether SPME can lead to the appearance of
energy-resolved MBL.

In this work, we study the MBL phase diagram of the
t1-t2 model and compare it to that of the Aubry-Andre (AA)
model, which has been studied extensively [39,40]. The cen-
tral message of our work is that SPME does not survive finite
interactions. Specifically, for intermediate interactions U ∼
t1, we find that the thermal to MBL transition is qualitatively
similar between the AA and the t1-t2 model. This obser-
vation qualitatively explains the recent experimental finding
that no fast relaxation was observed in a system with an
SPME when the interaction is of order O(t1) [38]. For the
noninteracting t1-t2 model, SPME emerges because the next-
nearest-neighbor (NNN) hopping breaks the duality of the AA
model [32–36]. However, this duality is naturally broken in
interacting systems because the extended phase is only char-
acterized by a few conserved quantities while the localized
phase has many more [41,42], so a direct mapping between
them is unlikely. On the other hand, it is proposed that the
MBL transition is driven by only a few parameters, i.e., typical
coupling and the typical energy deviation [43]. As a result,
the role of the t2 hopping should at best be perturbative in the
intermediate interaction regime, which we verify numerically.
We believe that such a conclusion is very general and is valid
for other models with an SPME as well. Meanwhile, for strong
interactions U � t1, we demonstrate a qualitative difference
between the AA and t1-t2 models. In particular, while the
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AA model dynamics for strong short-range interactions is
dominated by Hilbert space fragmentation [40], we show that
the t1-t2 model does not have this feature. The existence of
NNN hopping t2 fundamentally breaks down the fragmenta-
tion structure in the strongly interacting Hilbert space. This
finding is a specific feature limited to the t1-t2 model only.
Our results provide an understanding of the role of SPME
and NNN hopping in the physics of incommensurate MBL.
Importantly, our numerical results span the weak, intermedi-
ate, and strong interaction regimes, providing the complete
physics of the reentrant process where the NNN hopping in
the single-particle model is rendered irrelevant at intermedi-
ate interactions but becomes qualitatively important again at
strong interactions as it is for the U = 0 noninteracting model.

II. MODEL

We consider the following fermionic system on a chain of
length L,

H =
∑

j

(t1c†
j+1c j + t2c†

j+2c j + H.c.)

+ V
∑

j

cos(2πq j + φ)nj + U
∑

j

n jn j+1, (1)

where t1 and t2 are the strength of the nearest-neighbor (NN)
and the NNN hopping, respectively, q = (

√
5 − 1)/2, and φ

is a random phase. In addition, V and U are the strength of the
on-site quasiperiodic potential and the short-range interaction,
respectively. Note that t2 = 0 corresponds to the AA model
with no SPME for U = 0. The NN hopping t1 is set as the
energy unit throughout (t1 = 1). Here we only consider the
t2 = 1/6 case in the main text but leave results for other t2
values in the appendices. Finally, we adopt the open bound-
ary condition (OBC) for calculations using tensor network
methods for numerical accuracy and take the periodic bound-
ary condition (PBC) for simulating half-filled lattices using
the exact diagonalization (ED) method.

We first review the single-particle physics of these two
models. The single-particle eigenstates of the AA model are
localized for V > 2 [44], while for the t1-t2 model, there exists
an SPME [33]. To quantify the extent of localization, we intro-
duce the single-particle inverse participation ratio (SIPR) of a
single-particle state |ψ〉 = ∑

j ψ j | j〉 as Is = ∑
j |ψ j |4, where

| j〉 is the single-particle state completely localized on site j.
Hence, Is is close to 0 for an extended state and Is > 0 for a
localized state. In Fig. 1, we plot the SIPR of all eigenstates in
the t1-t2 model with t2 = 1/6, which indicates that localized
states start to appear at V = 1.05 and that all states are local-
ized at V = 2.85 (thus, an SPME for 1.05 < V < 2.85; see
Fig. 1). Note that though t2 = 1/6 is relatively small, its effect
on the single-particle spectrum is profound since for t2 = 0,
all states are extended up to V = 2 in the AA model. In fact,
we estimate that when t2 � t1, the width of the SPME region
(in terms of V ) is about 10.4t2; see Appendix A.

III. INTERACTING PHASE DIAGRAM

To characterize the MBL phase diagram of these two mod-
els, we evaluated two diagnostics: the many-body inverse
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FIG. 1. The SIPR of the eigenstates of the noninteracting t1-t2

model with t2 = 1/6 (t1 = 1 always) and L = 1000. The color rep-
resents the SIPR 〈Is〉, and the two dashed lines mark the range of
SPME in this model. In contrast, the AA model (i.e., t2 = 0) has a
single localization transition at V = 2 without an SPME.

participation ratio (MIPR) and the mean gap ratio. The MIPR
of a many-body eigenstate |ψ〉 is defined as [40]

I = 1

1 − ν

[
1

νL

L∑
i=1

n̄2
i − ν

]
, (2)

where n̄i is the average particle number on site i and ν = 1/2
is the filling factor. Essentially, MIPR describes the particle
distribution in real space. One can show that I → 0 for an
extended state and I → 1 for a localized state. Hence, the
mean MIPR 〈I〉 (averaged over all eigenstates) characterizes
the localization properties of a system at infinite temperature.
Note that because our study spans both strong and weak inter-
actions, we cannot simply examine the middle of the energy
spectrum, as shown in Appendix B.

In addition, we use the mean gap ratio to distinguish the
thermal and MBL phases. The gap ratio is defined as ri =
min{ δEi

δEi+1
,

δEi+1

δEi
}, where δEi = Ei+1 − Ei is the energy gap be-

tween two adjacent eigenenergies, and the mean gap ratio 〈r〉
is averaged over all eigenstates. In the thermal phase, the spec-
trum follows the Gaussian orthogonal ensemble (GOE) with
〈r〉 = 0.53, whereas in the MBL phase, it obeys the Poisson
distribution with 〈r〉 = 0.38. In Fig. 2, we compare the MBL
phase diagrams of the AA model and t1-t2 model. Both MIPR
[Figs. 2(a) and 2(b)] and the mean gap ratio [Figs. 2(c) and
2(d)] indicate that the phase diagram can be clearly divided
into three regimes: the weakly interacting “single-particle”
regime (U < Uc1), the intermediate interaction “many-
body” regime (Uc1 < U < Uc2), and the strongly interacting
“Mott” regime (U > Uc2). We estimate that Uc1 ∼ 0.1 and
Uc2 ∼ 10. For more details on why MIPR can distinguish
the three distinct regimes of these two models, including the
scaling analysis of the MIPR, see Appendix B. Additionally,
in the Mott regime where the Hilbert space is energetically
partitioned, the existence of an unexpected dynamics in the
t1-t2 model model is a new qualitative finding.

In the single-particle regime, the interaction is too weak to
thermalize the system. Consequently, we always have 〈r〉 =
0.38 for all V and weak interactions. By contrast, 〈I〉 can
still identify the localization transition as V increases. We
approximately determine the effective finite-size localization
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FIG. 2. Left panel: The MIPR and the mean gap ratio of the AA model. Right panel: The MIPR and the mean gap ratio of the t1-t2 model
with t2 = 1/6. The color represents the corresponding quantities. Here we consider an L = 16 system at half filling. The dashed lines mark the
contour for 〈I〉 = 0.21 in the AA model and 〈I〉 = 0.10 in the t1-t2 model. These two values of 〈I〉 are chosen because they correspond to the
point when localized states start to appear in each model when U = 0.01.

transition point by drawing a contour with 〈I〉 = I0, where
I0 is the mean MIPR in each model where localized states
start appearing in the noninteracting spectrum (V = 2 for AA
model and V = 1.05 for the t1-t2 model). Note that in the non-
interacting limit (U = 0) MIPR equals the scaled SIPR, i.e.,
〈I〉 = L〈Is〉−1

L−1 [40], in which case 〈I〉 > 0 unless all single-
particle states are extended. Therefore, we expect I0 = 0 in
the thermodynamic limit. For both models, we find that in
this single-particle regime, the critical V does not change
notably as U increases. Hence, this regime is dominated by the
single-particle properties as discussed in the previous section.

The many-body regime, by contrast, possesses a much
richer structure than the weakly interacting single-particle
regime. First, the thermal phase appears in the many-body
regime as indicated by 〈r〉 = 0.53. Second, 〈I〉 manifests a
behavior similar to that of 〈r〉, with 〈I〉 > 0 indicating the
MBL phase. In particular, at U = Uc1, the thermal phase is
continuously connected to the single-particle extended phase,
indicating that the system is thermal only if all single-particle
states are extended. As a result of their different single-particle
localization properties (i.e., existence or not of SPME),
the two models are quite different at U = Uc1. However, as
U increases, the localized single-particle states become ther-
malized, causing the thermal phase to expand. Meanwhile,
the difference between the localization transition points of the

two models decreases, as indicated by the MIPR and mean
gap ratio results in Fig. 2. Eventually, despite their drastically
different single-particle properties, these two models behave
quite similarly for U ∼ O(1) in the many-body regime. For
example, when U = 1, both models have an MBL transi-
tion at V ∼ 3.3, as shown in Appendix C. This intermediate
U ∼ O(1) regime is neither a weakly interacting perturbative
nor strongly interacting Mott regime, leading to both models
behaving similarly. The similarity between these two models
at U ∼ O(1) is further verified below by the imbalance dy-
namics and the butterfly velocity results. Finally, the boundary
determined previously by the contour of 〈I〉 also qualitatively
delineates the boundary of the MBL phase, although it cannot
completely describe the behavior of 〈I〉 and 〈r〉 near U = Uc2.

A. Imbalance dynamics

We now provide additional evidence that the AA model
and the t1-t2 model are qualitatively similar in the many-body
regime. We first consider the imbalance dynamics around the
thermal-MBL transition. A hallmark of this transition is a
slow-dynamics regime [23,38] in the AA model such that
typical initial density profiles relax algebraically slowly to
the equilibrium. This slow relaxation can be probed by the
imbalance dynamics starting from the Néel state

∏
j c†

2 j |0〉,
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FIG. 3. Exponent α of the imbalance dynamics of the Néel state
for the AA and the t1-t2 model with t2 = 1/6. Here we take U = 1,
L = 24 and the imbalance is averaged over 20 phase realizations.

given by I (t ) = 2
∑

j (−1) j n̄ j (t )/L, where n̄ j (t ) is the expec-
tation value of particle density at site j at time t . This process
can be simulated efficiently by the KPM method [45]. In the
thermal phase the imbalance decays exponentially fast to zero,
while in the MBL phase the imbalance remains close to 1.
By contrast, the imbalance exhibits a power-law decay in the
slow-dynamics regime. Therefore, by fitting the imbalance to
I (t ) ∝ t−α , we can extract the exponent α, whose peak can be
regarded as the onset of the slow-dynamics regime. Hence, a
natural question is what happens for the t1-t2 model, which
has an SPME. In Fig. 3, we compare the exponent α of the
AA model with that of the t1-t2 model. The interaction
strength is U = 1 for both models so that the system is not just
trivially connected to the single-particle regime. We find that
the peak of α occurs at V ≈ 1.6 for the AA model and V ≈ 1.3
for the t1-t2 model. If we compare the latter to the V = 1.05
point where single-particle localized states first appear in
the t1-t2 model, we find that the onset of the slow-dynamics
regime is less sensitive to the NNN hopping. We further verify
this point by studying systems with different t2, as shown in
Appendix C.

B. Butterfly velocity

To further demonstrate that NNN hopping does not play an
essential role in the many-body regime, we compare these two
models from the quantum information scrambling perspec-
tive. In particular, we study the out-of-time-ordered correlator
(OTOC) [46,47]

Cx(r, t ) = 1

2L
tr([nx(t ), nx+r][nx(t ), nx+r]†), (3)

where nx(t ) is the particle number operator of site x in the
Heisenberg picture. The early growth of OTOC can be fitted
to the following form:

Cx(r, t ) ∝ exp[−a(r − vBt )1+p/t p], (4)

where vB is the butterfly velocity and a, p are fitting parame-
ters. When vB > 0, there exists a ballistic spread of quantum
information in the system. Therefore, tracking the point when
vB drops to zero can provide useful diagnostics on the onset
of slow dynamics. In a system of L = 201 sites with OBC, we
take x = 0 without loss of generality and set 20 < r < 180 in
our calculation to minimize the boundary effects.
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FIG. 4. Butterfly velocity for the AA model and the t1-t2 model
with t2 = 1/6. The dashed vertical lines indicate the corresponding
single-particle critical V where all single-particle states are localized.
Finally, the two dotted lines mark the MBL transition points for each
model. Here we take L = 201.

We first study the OTOC in the single-particle limit as a
consistency check. In this case Eq. (3) simplifies to

Cx(r, t ) = 1
2 u(x, x + r, t )2[1 − u(x, x + r, t )2], (5)

where u(x, y, t ) = |〈0|cye−iHt c†
x |0〉|, with |0〉 being the vac-

uum state. We note that vB > 0 as long as there exist extended
states because any extended state can cause c†

x |0〉 to spread
throughout the system and hence dominate the early growth
of u(x, y, t ). Furthermore, since we only require Cx(r, t ) to be
proportional to the right-hand side of Eq. (4), vB is always
finite unless the entire single-particle spectrum is localized. In
Fig. 4(a), we calculate the butterfly velocity by ED for the AA
and the t1-t2 model with L = 201 in the noninteracting limit.
Within the fitting uncertainty, we find that vB vanishes around
V = 2 for the AA model and around V = 2.85 for the t1-t2
model, which is exactly the single-particle localization point
for the respective model.

Next, we evaluate the OTOC in the interacting system
with U = 1. We use the time-dependent variational principle
(TDVP) method to compute the butterfly velocity in a system
with L = 201 sites. We choose a bond dimension of χ = 40,
as the calculation of the early growth of OTOC usually does
not require a large bond dimension [47]. We have also verified
this fact explicitly in Appendix D. In addition, the time step
of our calculation is h̄/(200t1), while the time window used
for the fitting is [0, 200h̄/t1]. Our results for the interacting
OTOC are shown in Fig. 4(b). Remarkably, in contrast to the
noninteracting case, vB in the interacting model almost van-
ishes at the same point V ≈ 2 for both models, even though
the two models have very different single-particle physics.
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Interestingly, for the AA model, the vB = 0 diagnostics sug-
gests the same onset of the slow-dynamics regime as the
imbalance, but for the t1-t2 model, they are different. This
difference may be attributed to finite-size effects but also can
arise because the density imbalance measures charge relax-
ation while the OTOC measures the information propagation.
Nonetheless, both the imbalance dynamics and the butterfly
velocity suggest that the dynamics in the many-body regime
is insensitive to the NNN hopping and has no connection to
the SPME.

IV. THE MOTT REGIME

In contrast to the intermediate-coupling many-body
regime, the NNN hopping plays a crucial role in the Mott
regime (U > Uc2), leading to important differences between
the AA model and the t1-t2 model. In this regime, the critical
V for the MBL transition decreases suddenly. In addition, we
find that while the mean MIPR 〈I〉 can still distinguish the
thermal-to-MBL transition in the Mott regime in both models
[see Figs. 2(a) and 2(b)], we need to be more careful about
interpreting the mean gap ratio 〈r〉 results. In particular, it
seems that 〈r〉 for the t1-t2 model exhibits a clear MBL tran-
sition when U � Uc2 [Fig. 2(c)], while that for the AA model
fails to show the same transition [Fig. 2(d)]. The reason is that
in the Mott regime, the Hilbert space is highly fragmented in
the strongly interacting AA model [40], and thus 〈r〉 mixes
the spectrum of different invariant subspaces, resulting in a
seemingly uncorrelated spectrum. However, the fragmenta-
tion structure in the AA model is broken down by the NNN
hopping in the t1-t2 model, and the whole many-body spec-
trum becomes correlated. We develop a rigorous domain wall
argument to show that even a small t2 can break down the
fragmentation structure in the AA model because particles can
now form doublons that connect different invariant subspaces,
as shown in Appendix E.

V. DISCUSSION AND CONCLUSION

We present the MBL phase diagram in the t1-t2 model and
compare it with the AA model. The central message of our
work is that SPME may not survive finite interactions in the
t1-t2 model. In particular, in the many-body regime, we find
that the effect of t2 is negligible, which is likely the reason
that the SPME does not affect the MBL physics. In fact, we
have verified that both the interacting AA model and the t1-t2
model have extended states concentrated in the midspectrum
and localized states at the edges of the spectrum, as shown
in Appendix F. This generic feature is probably related to
the Lifschitz tail in the Anderson model and not a direct
extension of the SPME. Therefore our work shows that the
many-body mobility edge, even if it may exist in certain cases,
has no connection to the SPME. This conclusion is likely very
general and applicable to other models with an SPME. The
other finding of our work is that, in the Mott regime, t2 gives
rise to qualitatively new physics: it breaks down the Hilbert
space fragmentation structure in the AA model, leading to
an extended thermal region. In fact, one can show that the
thermal region in the t1-t2 model grows with increasing t2
in the Mott regime; see Appendix E. This difference can be

attributed to how the many-body Hilbert space is connected by
different hopping processes (t1 vs t2), as shown in Appendix F.
However, we emphasize that this conclusion is specific to the
t1-t2 model. Our predictions can be verified by experiments
using ultracold atoms. In particular, we anticipate that our re-
sults are valid even if longer-range hopping terms are present
(beyond NNN), which are inevitable in these experiments.
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APPENDIX A: THE WIDTH OF SPME REGION
FOR SMALL t2

In the main text, we have shown that a small t2 can give
rise to a wide SPME region in the t1-t2 model. Hence, one
may think that the critical V is singular at t2 = 0. After all,
the NNN hopping t2 breaks the self-duality of the AA model
under Fourier transformation, which may induce an abrupt
change. However, as we now prove, the critical V has a finite
derivative at t2 = 0.

To start with, we consider a long-range hopping model

H =
∑

j

∑
d�1

t d−1
2 (c†

j+d c j + H.c.) + V
∑

j

cos(2πq j)n j,

which is known to possess an exact mobility edge [32]

E =
(
1 + t2

2

)
V − 2

2t2
. (A1)

Note that here we have again set the nearest-neighbor hopping
term t1 as the energy unit. The only difference between this
model and the t1-t2 model is the long-range hopping on the
order of O(t2

2 ). This difference is thus irrelevant for the deriva-
tive at t2 = 0 and we can study the long-range model instead.
Following Eq. (A1), we know the onset of the localization V
is determined by

2t2 f (V, t2) = (
1 + t2

2

)
V − 2, (A2)

where f (V, t2) is the lower bound of the energy spectrum as
a function of V and t2. After collecting terms on the order of
O(t2

2 ), we obtain

V = 2 + 2t2 f (V, 0) + O
(
t2
2

)
, (A3)

and therefore we have

dV

dt2

∣∣∣∣
t2=0

= 2 f (V, 0). (A4)

The above result indicates that the derivative is twice the
lower bound of the spectrum of the AA model at V = 2.
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FIG. 5. (a) Density of states (DOS) of the interacting AA model
with L = 16, V = 2.5, and U = 30. (b) The integrated DOS of the
same model as (a).

Numerically we find that f (V = 2, t2 = 0) = −2.6 in the AA
model, and thus the width of the SPME is approximately

δV = 10.4t2. (A5)

We have verified that this approximation agrees with the nu-
merical result for t2 = 1/6 very well.

APPENDIX B: SCALING OF THE MIPR

In this section, we study the finite-size scaling of the MIPR.
To begin with, we emphasize the importance of studying the
entire energy spectrum instead of just focusing on the middle
of the spectrum. The reason is that, in the presence of strong
interactions, the many-body spectrum in the interacting AA
model in any finite system will split into several bands ac-
cording to the number of domain walls, as shown explicitly
in Fig. 5(a). Compared with Fig. 12 below (where U ∼ 1),
the spectrum in the Mott regime is clearly modified. We
further calculate the integrated DOS P(E ) = ∫ E

−∞ ρ(ε)dε in
Fig. 5(b), which shows that all the bands, including the one in
the center, share only a finite fraction of the states. Hence, the
spectrum is by no means dominated by states in the middle
of the spectrum, and focusing only on the middle in the Mott
regime is misleading.

Following the analysis in Ref. [40], we adopt the fit-
ting equation 〈I〉/(1 − 〈I〉) ∝ Nκ , where N is the particle
number and the fitting parameter κ is the scaling exponent.
In the localized regime, 〈I〉 does not scale with the system
size, and therefore κ ≈ 0. Additionally, both the thermal and
single-particle extended regimes have a nonvanishing scaling
exponent. In contrast, the thermal regime generally has a
smaller MIPR and more negative scaling exponent than the
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FIG. 6. (a) Scaling exponent κ and (b) extrapolated IPR I∞ of
the t1-t2 model with t2 = 1/6.

single-particle extended regime, as shown in the main text and
Fig. 6(a).

Further, utilizing the scaling exponent, one can extrapolate
the MIPR in the thermodynamic limit according to the follow-
ing piecewise fitting [40],

〈I〉
1 − 〈I〉 =

{
a1/N + I∞, 0 > κ > −1,

a2Nκ + a1/N + I∞, κ < −1,
(B1)

where a1, a2 are the fitting parameters, and I∞ is the extrapo-
lated IPR. We present the result in Fig. 6(b).

APPENDIX C: EFFECTS OF t2 ON THE MBL PHASE
DIAGRAM AT INTERMEDIATE INTERACTIONS

In this section, we provide additional data on the AA model
and the t1-t2 model at intermediate U . In particular, we set
U = 1 for both models, and study the entanglement entropy
(EE) and the density imbalance.
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FIG. 7. (a) Exponents for t2 = 1/6 with various system sizes. (b) Solid lines are the exponents extracted from the imbalance dynamics in a
L = 24 system, and the dashed vertical lines are the critical points Vc where single-particle localized states start to appear in the corresponding
noninteracting limit. (c) Solid lines are the imbalance dynamics for t2 = 1/6 and L = 24, and the dashed lines are the fitting. Here we take
U = 1, and average over 20 phase realizations.

1. Density imbalance

Recall from the main text that the imbalance results are
fitted to the functional form I (t ) ∝ t−α . We first show in
Fig. 7(a) that there is no simple monotonic scaling for the re-
laxation exponent α as the system size increases from L = 20
to L = 24. Notwithstanding, the exponents of different system
sizes peak around the same V , and manifest a similar trend
with respect to V . Second, we present the exponent extracted
from the imbalance dynamics for various additional t2 values
in Fig. 7(b), and particularly, we provide the dynamics and the
fitting for some parameters explicitly in Fig. 7(c) to show the
typical behavior of the imbalance. Remember from the main
text that the peak of the exponent can be regarded as the start
of the slow-dynamics regime. Figure 7(b) thus demonstrates
that the onset Vs for the slow-dynamics regime decreases as
t2 increases. However, the decrease of Vs is less significant
than the decrease of the critical Vc at which point localized
single-particle states start to appear in the system. As a result,
although the single-particle critical Vc is greater than the slow-
dynamics critical Vs initially (in the AA model), it will become
smaller than Vs as t2 increases.

2. Entanglement entropy

To determine the MBL transition at intermediate U more
precisely, we study the finite-size scaling of the EE. Note that
if a system is divided into two subsystems A and B, the second
Renyi entropy of a state |ψ〉 is defined as S = − ln trAρ2

A,
where ρA = trB|ψ〉〈ψ |. We calculate the average half-chain
EE of all eigenstates for different sizes in Fig. 8. In the thermal
phase, the EE approaches the Page value ST = (L ln 2 − 1)/2
[48], whereas the EE does not vary with the system size
in the MBL phase. In Fig. 8, curves of different L cross at
V = 3.4 for the AA model and at V = 3.3 for the t1-t2 model,
suggesting that the effect of t2 is rather insignificant.

APPENDIX D: MORE DETAILS ON
THE BUTTERFLY VELOCITY

We now provide more details regarding the evaluation of
the Butterfly velocity vB. We first discuss the OTOC calcula-
tion. Note that we cannot use ED to evaluate OTOC for the

interacting case since it can only be carried out in a small
system (L ∼ 18), which does not provide enough data for the
fitting. Instead, tensor network methods can evaluate the but-
tery velocity rather accurately. Because of the Lieb-Robinson
bounds [49], the operator entanglement far outside the light
cone (the early growth) is also exponentially small. As a
result, the information in such regions can be faithfully stored
with a small bond dimension [47]. Specifically, we utilize the
time-dependent variational principle (TDVP) to compute the
butterfly velocity in a system with L = 201 sites.

As mentioned in the main text, in order to extract the
butterfly velocity, we fit the early growth of OTOC to the
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FIG. 8. Entanglement entropy of the AA model and the t1-t2

model with t2 = 1/6. Additionally, we set U = 1 for both models.
The results are averaged over 1000, 200, and 5 random phase real-
izations for a system size of L = 14, 16, and 18, respectively.
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FIG. 9. Butterfly velocity vB in (a) the noninteracting AA model, (b) the noninteracting t1-t2 model, (c) the interacting AA model, and
(d) the interacting the t1-t2 model. The color represents the butterfly velocity itself. We set t2 = 1/6 in (b) and (d), and U = 1 in (c) and (d).
The white dash-dotted lines in (a) and (c) mark the V = 2 point (which is the single-particle localization transition in the AA model), and the
white dashed lines in (b) and (d) mark the region of SPME in the t1-t2 model.

following form,

Cx(r, t ) ∝ exp[−a(r − vBt )1+p/t p], (D1)

which is Eq. (4) in the main text. A subtlety here is how
“early growth” should be defined. We choose to fit the regime
where log10 Cx(r, t ) ∈ [slow, supper], where slow and supper are
the lower and the upper bound of the fitting, respectively.
Specifically, we fix slow to be slightly larger than the machine
precision, and in Fig. 4 in the main text, we take supper = −14
for the noninteracting case and supper = −10 for the interact-
ing one. In practice, we find that vB only weakly depends
on supper. For example, we present the butterfly velocity ex-
tracted using various supper in Fig. 9, which indeed shows
that vB hardly depends on supper. One of the most important
features of the early growth of the OTOC is that it hardly
suffers from finite-size effects, which we verify explicitly
here. As an example, we use exact diagonalization to cal-
culate the OTOC between site 1 and site 7 [i.e., evaluating
C(r = 6, t )] using various system sizes, and the result is
shown in Fig. 10(a). It is clear from the figure that all OTOC
traces agree with each other. The underlying reason is that the
Lieb-Robinson bounds [49] guarantee an exponentially small
correction outside the light cone. In the early growth regime of
the OTOC, the physical boundary of the lattice is far outside
the light cone, and hence one cannot observe the effect of the
boundary.

Second, other than the theoretical analysis on the bond
dimension in [47], we also numerically check the convergence
of the calculation with respect to the bond dimension, which
is shown in Fig. 10(b). Recall from the previous section that
we extracted the butterfly velocity for the interacting AA

model and t1-t2 model from the regime of log10 Cx(r, t ) ∈
[slow, supper], where slow is slightly larger than the machine pre-
cision, while supper = −10. One can see from Fig. 10(b) that
a bond dimension of χ = 32 is already enough to accurately
simulate the early growth of OTOC in this regime, as there
is no difference between χ = 32 and χ = 48. Therefore, our
calculation with a bond dimension of χ = 40 should suffice.

APPENDIX E: HILBERT SPACE FRAGMENTATION IN
THE MOTT REGIME

Hilbert space fragmentation for strongly correlated 1D
systems has attracted much interest recently [50–52]. For
example, if there exists a strong nearest-neighbor (NN) inter-
action, the number of domain walls between an occupied and
an empty site becomes a conserved quantity. Moreover, the
invariant subspace is further fragmented if only NN hopping
exists in the model (which is the case for the AA model).
The same mechanism has been established in a similar model
[53,54], and we recapitulate it here for our discussion of the
t1-t2 model.

1. Hilbert space fragmentation in the AA model

In the AA model, the effective model is derived from the
first-order perturbation theory,

Heff =t1
∑

j

(c†
j c j+1 + H.c.)Pj−1, j+2

+ V
∑

j

cos(2πq j + φ)nj, (E1)
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FIG. 10. (a) Convergence of OTOC in a small system. The
OTOC between site 1 and site 7 in the AA model with U = 1 and
V = 1 for various system sizes. Note that L = 7 is the smallest
system size for the OTOC between site 1 and site 7, and even this one
has almost no finite-size effect. (b) Convergence of our calculation.
The OTOC in the AA model of length L = 201 with U = 1, V = 1
for different bond dimensions. The 20 groups of curves correspond
to (from left to right) r = 10, 20, . . . , 200. Within each group, the
three different line styles represent different bond dimensions χ .

where Pi, j = 2nin j − ni − n j + 1 is the constraint imposed
by the strong NN interaction. Hence, the system only allows
two types of constrained hopping processes to conserve the
number of domain walls,

• ◦ • • ⇐⇒ • • ◦•
◦ • ◦ ◦ ⇐⇒ ◦ ◦ •◦, (E2)

where ◦ or • represents an empty or an occupied site, respec-
tively. The first process can be regarded as a hole hopping
and the second is a particle hopping. Hence, we notice that a
single hole (or particle) always moves freely in a particle (or
hole) sea, and we call it a mobile hole (or particle). However,
when multiple holes appear in one particle sea, different holes
cannot meet, i.e.,

• • ◦ • ◦ •• � • • • ◦ ◦ • •. (E3)

Then, a question is how to distinguish the mobile part from
the localized part (the sea). Here, we summarize the procedure
to extract the sea configuration of a 1D many-body state on
a ring (due to periodic boundary conditions, or PBCs) as
follows:

(1) Find out all particles whose neighbors are both holes
and all holes whose neighbors are both particles, i.e., config-
urations like ◦ • ◦ and • ◦ •. Then remove these sites from
the ring, which is thus divided into several disconnected frag-
ments.

(2) Glue the edges of the fragments together. If
two edges are different, we directly glue them together.
However, if both edges are identical (i.e., both occupied or
both empty), we need to remove an extra site (either of the
two edges).

We call the resulting pattern the sea configuration of
a many-body state. It can be readily proved that the sea
configuration is invariant under the two constrained hop-
ping processes in Eq. (E2). Note that the sea configuration
should be considered in a translation-invariant way for PBCs.
The remaining sites are mobile particle-hole pairs. If Ns is the
length of the sea configuration and Nm is the number of mobile
particle-hole pairs, then we have

Ns + 2Nm = L. (E4)

Therefore, the system can be viewed as Nm particles moving
on a ring of length Ns + Nm. We emphasize that the sea config-
uration is a structure beyond the conservation of domain walls
and therefore causes the Hilbert space fragmentation [50–52],
which is similar to the one proposed in Refs. [53,54].

2. The breakdown of fragmentation by the NNN hopping t2

We now demonstrate that the NNN hopping t2 can break
down the fragmentation in the AA model in the Mott regime.
Consider the following example,

• • ◦ ◦ ◦ ◦ • ◦ • •• (E5)

�⇒ • • ◦ ◦ ◦ • ◦ ◦ • •• (E6)

�⇒ • • ◦ ◦ ◦ • • ◦ ◦ •• (E7)

�⇒ • • ◦ • • ◦ ◦ ◦ ◦ •• (E8)

�⇒ • • • ◦ • ◦ ◦ ◦ ◦ •• , (E9)

which has been presented in Fig. 5(b) in the main text. Here
we provide additional details. We compare the two many-body
states in Eq. (E5) and Eq. (E9). According to our rules, the
former has a sea configuration of • • ◦ ◦ ◦ ◦ • • •, while the
latter has a different sea configuration of • • • ◦ ◦ ◦ ◦ • •.
Without NNN hopping t2 (i.e., in the AA model), these two
sea configurations are dynamically disconnected due to the
Hilbert space fragmentation mechanism.

With the inclusion of the NNN hopping t2, the effective
model has an additional constrained hopping,

H̃ = t2
∑

j

(c†
j−1c j+1 + H.c.)Pj−2, j+2, (E10)

which is able to connect different sea configurations. Particu-
larly, we can show that NNN hopping can transform the state
in Eq. (E5) into the one in Eq. (E9). To see this, first note that
in addition to the processes in Eq. (E2), Eq. (E10) allows the
t1-t2 model to move a doublon of particles in the hole sea and
vice versa:

◦ • • ◦ ◦◦ ⇐⇒ ◦ ◦ • • ◦ ◦ . (E11)

Hence, with the help of the NNN hopping, we can form a
particle doublon [see Eqs. (E5)–(E7)] at the boundary between
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FIG. 11. (a) Mean gap ratio as a function of t2. (b) Entanglement
entropy as a function of t2. The color represents the corresponding
quantities. We choose U = 500, deep in the Mott regime. The system
size is L = 16 and at half filling.

a particle sea and a hole sea, which then moves freely in the
hole sea [Eq. (E8)]. If we compare the sea configurations of

the two states in Eq. (E5) and Eq. (E9) (i.e., • • ◦ ◦ ◦ ◦ • • •
vs • • • ◦ ◦ ◦ ◦ • •), we realize that in this example the NNN
hopping effectively transfers a particle from the right particle
sea to the left one.

The fragmentation and its breakdown result in two im-
portant phenomena in the Mott regime. First, the whole
spectrum of the AA model resembles the Poisson distribution,
while that of the t1-t2 model follows GOE when V is small.
Second, the EE in the AA model is generally lower than that
in the t1-t2 model, because the dimension of the subsystem
of each fragment in the AA model is less than 2L/2 (due
to fragmentation) [53,54]. Both features can be observed in
Fig. 11.

Finally, we find that the thermal region in the t1-t2 model
increases as t2 increases, which is evident from both the level
statistics and the EE result in Fig. 11. Interestingly, this trend
is opposite to the U = 0 limit, where the region of the purely
extended phase actually shrinks as t2 increases, as shown in
Eq. (A5).

APPENDIX F: HILBERT SPACE PATH ANALYSIS AND
THE MANY-BODY MOBILITY EDGE

1. The many-body mobility edge in the AA and t1-t2 models

We now present the energy-resolved IPR spectrum for
the t1-t2 model and the AA model with L = 14, Ne = 7,
and V = 2.5 in Fig. 12. As the interaction is turned on,
there is a hybridization between noninteracting Slater de-
terminant states, resulting in the spectrum being evenly
covered and fitted to a Gaussian distribution. In addition, the

Energy

D
en
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ty

 o
f s

ta
te

s

IPR

U = 1 U = 2

AA

t1t2

FIG. 12. Density of states and energy-resolved IPR for the AA and the t1-t2 model. As the interaction is turned on, the distinction between
the AA and t1-t2 model spectra is suppressed and the two models become quite similar, with extended states concentrated in the midspectrum
and localized states pushed to the edges.
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FIG. 13. (a) The t2-hopping process moves an electron by two sites and is equivalent to two consecutive t1-hoppings. The empty/filled
dots correspond to the respective empty/filled lattice sites. (b) In the Hilbert space, each link generated by t2 can be substituted by two t1 links.
(c) Amplitude A(1)

t2 (dashed lines) and A(2)
t1 (solid lines) as a function of U for V = 2 and half-filled lattices. Different colors correspond to

different system sizes.

energy-resolved IPR of the two models starts to converge
into a universal form, i.e., extended states concentrated in the
middle of the spectrum while localized states are pushed to
the edges. This shows that the observed many-body mobility
edge is universal and not tied to the single-particle mobility
edge.

2. Hopping strength under resonance

In this subsection, we study the relative relevance of NNN
hopping term t2 compared to the nearest hopping t1, which
helps us better understand Fig. 2 in the main text. Given that
the NNN hopping moves an electron by two lattice sites, such
a process can also be substituted by two consecutive single-
site hopping terms t1 [see Fig. 13(a)]. MBL can be studied
in the Hilbert space map where each vertex is a Fock config-
uration and the link is generated by the hopping term [55].
Accordingly, each link generated by t2 has the same effect as
two consecutive links generated by t1 [see Fig. 13(b)]. The
amplitudes of links A → B and A → C → B are respectively

given by

∣∣A(1)
t2

∣∣ = t2√
(EA − EB)2 + δ

,

∣∣A(2)
t1

∣∣ = t1√
(EA − EC )2 + δ

t1√
(EA − EB)2 + δ

. (F1)

Numerically we fix δ = 0.01 to soften singularities caused by
accidental degeneracy and average over all possible links and
phases φ of the quasiperiodic potential Vj = V cos(2πq j +
φ). As shown in Fig. 13(c), |A(1)

t2 | only weakly depends on the
interaction strength U and decreases after U > 3. On the con-
trary, |A(2)

t1 | increases significantly when U increases up to 3
because it is more sensitive to interaction-induced resonances.
Around this point, the NN hopping is much larger than the
NNN hopping, rendering the latter irrelevant. For U > 4, A(1)

t2

and A(2)
t1 stabilize and are comparable to each other, making

the t2-hopping process important again. This is qualitatively
consistent with our results in the main text.
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[27] F. A. An, K. Padavić, E. J. Meier, S. Hegde, S. Ganeshan, J. H.
Pixley, S. Vishveshwara, and B. Gadway, Phys. Rev. Lett. 126,
040603 (2021).

[28] Q. Guo, C. Cheng, Z.-H. Sun, Z. Song, H. Li, Z. Wang, W. Ren,
H. Dong, D. Zheng, Y.-R. Zhang, R. Mondaini, H. Fan, and H.
Wang, Nat. Phys. 17, 234 (2021).

[29] S. Das Sarma, A. Kobayashi, and R. E. Prange, Phys. Rev. Lett.
56, 1280 (1986).

[30] S. Das Sarma, S. He, and X. C. Xie, Phys. Rev. Lett. 61, 2144
(1988).

[31] D. J. Thouless, Phys. Rev. Lett. 61, 2141 (1988).
[32] J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601

(2010).
[33] J. Biddle, D. J. Priour, B. Wang, and S. Das Sarma, Phys. Rev.

B 83, 075105 (2011).
[34] S. Ganeshan, J. H. Pixley, and S. Das Sarma, Phys. Rev. Lett.

114, 146601 (2015).
[35] X. Li, X.-P. Li, and S. Das Sarma, Phys. Rev. B 96, 085119

(2017).
[36] X. Li and S. Das Sarma, Phys. Rev. B 101, 064203 (2020).

[37] H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia,
X. Li, S. Das Sarma, and I. Bloch, Phys. Rev. Lett. 120, 160404
(2018).

[38] T. Kohlert, S. Scherg, X. Li, H. P. Lüschen, S. Das Sarma,
I. Bloch, and M. Aidelsburger, Phys. Rev. Lett. 122, 170403
(2019).

[39] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev. B
87, 134202 (2013).

[40] D. D. Vu, K. Huang, X. Li, and S. Das Sarma, Phys. Rev. Lett.
128, 146601 (2022).
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