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Majorana zero modes in fermionic wires coupled by Aharonov-Bohm cages
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We devise a number-conserving scheme for the realization of Majorana zero modes in an interacting fermionic
ladder coupled by Aharonov-Bohm cages. The latter provide an efficient mechanism to cancel single-particle
hopping by destructive interference. The crucial parity symmetry in each wire is thus encoded in the geometry
of the setup, in particular, its translation invariance. A generic nearest-neighbor interaction generates the desired
correlated hopping of pairs. We exhibit the presence of an extended topological region in parameter space,
first in a simplified effective model via bosonization techniques, and subsequently in a larger parameter regime
with matrix-product-states numerical simulations. We demonstrate the adiabatic connection to previous models,
including exactly solvable ones, and we briefly comment on possible experimental realizations in synthetic
quantum platforms, like cold atomic samples.
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I. MOTIVATION

In the last decade, the quest for topological states of matter
has arguably been one of the driving directions in condensed
matter physics [1–3], partially motivated also by their en-
visioned usage as platforms for quantum computation [4].
Among all possible topological states, Majorana zero modes
(MZMs) are one of the simplest examples realizing an any-
onic excitation, i.e., not obeying either fermionic or bosonic
statistics [4–6]. Despite them being conceptually quite simple,
an ongoing quest is being pursued towards an unambiguous
measurement of their existence. While they do not enable a
universal set of gates, they have been proposed to serve as a
topological protected quantum memory [7,8].

Stemming from the cornerstone paper by Kitaev [9], most
efforts have focused on a one-dimensional realization of
Majorana zero modes via coupling some semiconducting
nanowire to a bulk superconductor [10–16]. The superconduc-
tor serves as a reservoir inducing p-wave superconductivity
into the nanowire via the proximity effect resulting in an ef-
fective breaking of the U(1) symmetry of number conserving
down to a residual fermionic parity symmetry Z2.

In recent years, alternative proposals for realizing MZMs
without breaking the number conservation were put forward
[17,18]. These schemes are based on the field-theoretical ob-
servation that a minimal U(1) × Z2 model of two (fermionic)
Luttinger liquids coupled exclusively by a pair-hopping term
indeed leads to the same topological signatures [19]. No-
ticeably, even some exactly solvable instances were found
[20,21], giving deep insights into the nature of this phase.
Moreover, a number-conserving scheme is particularly ap-
pealing for synthetic quantum matter platforms like cold
atoms [22]. However, a perfect cancellation of single-particle
tunnelings between the chains is needed to ensure the Z2 pro-
tection of MZMs. In previous works, this was only achievable
in an approximate fashion via some perturbative suppres-

sion. Here, we present an alternative scheme which makes
use of exact interference terms of complex hopping ampli-
tudes, also known as Aharonov-Bohm cages [23,24], and
perfectly cancels all single-particle poisoning. These cages
are arranged in a translation-invariant sequence across the
two target fermionic chains, and a generic nearest-neighbor
interaction term enables the sought-after correlated hopping
of particles.

The paper is structured as follows: First in Sec. II we
introduce our model which involves four spinless fermionic
species. After discussing the basic properties of that model,
we integrate out two of these spinless fermions using a
Schrieffer-Wolff (SW) transformation [25], and show that the
obtained effective Hamiltonian falls into the same class as
those of previous proposals. This effective Hamiltonian is first
investigated in Sec. III by using bosonization [26,27], in order
to find the most favorable parameter regime for realizing the
MZM phase. In this section we also review the basic indicators
used for detecting the MZM phase: the nonlocal behavior of
the end-to-end correlation function together with a relative
sign between the ground states of the two parity sectors and
the exact double degeneracy of the entanglement spectrum
[28]. Next, in Sec. IV, we show numerical results using tensor
network techniques [29], exhibiting all defining features of
the MZM phase, not only for the effective model but also
for the full four-flavor setup in regimes very far from the
perturbative expansion conducted before. Finally, in Sec. V
we summarize our findings and give a short outlook of open
questions.

II. MODEL INTRODUCTION

Let us consider two (lattice) wires a and b, populated by
spinless fermions, and connected to each other via additional

2469-9950/2023/107(3)/035124(16) 035124-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7167-3793
https://orcid.org/0000-0002-8283-1005
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.035124&domain=pdf&date_stamp=2023-01-17
https://doi.org/10.1103/PhysRevB.107.035124


TAUSENDPFUND, DIEHL, AND RIZZI PHYSICAL REVIEW B 107, 035124 (2023)

sites c and d in a rhomboidal configuration pierced by a π

phase, as described by the following Hamiltonian:

H♦ = −J
∑

j

(a†
j c j + c†

j b j + b†
jd j − d†

j a j + H.c.) (1)

= −J
√

2
∑

j

(a†
jm j + b†

j p j + H.c.), (2)

where α
(†)
j annihilates (creates) a fermion in the site of kind

α = a, b, c, d at the jth lattice position, and p = (c + d )/
√

2
(m = (c − d )/

√
2) are the (anti)symmetric superposition of

the intermediate modes. For the sake of simplicity, we picked
up a gauge where the whole π phase has been collected on

a single link; however, any redistribution along the rhombi
would, of course, lead to the same Aharonov-Bohm caging
effect in the end. As made explicit by Eq. (2), indeed, destruc-
tive interference prohibits single-particle motion between the
(decorated) wires; i.e., the two charges

N± = (Na + Nm) ± (Nb + N p), (3)

with Nα = ∑
j nα

j = ∑
j α

†
j α j , are separately conserved and

denoted as the U(1)± symmetries in the following.
In order to let Majorana physics emerge, we need to

partially break the U(1)− associated to the N− charge into
a residual Z2 symmetry for each dressed chain. We could
naturally achieve it by considering nearest-neighbor density-
density interaction terms of the kind

Hint =
L−1∑
j=1

[
V1

(
nc

jn
c
j+1 + nd

j nd
j+1

) + V2
(
nc

jn
d
j+1 + nd

j nc
j+1

)]

=
L−1∑
j=1

[
V1 + V2

2

(
np

j + nm
j

)(
np

j+1 + nm
j+1

) + V1 − V2

2
(p†

jm j + m†
j p j )(p†

j+1mj+1 + m†
j+1 p j+1)

]
, (4)

which does not preserve N p and Nm (but still preserves their
parity) away from the fine-tuned point V1 = V2. The residual
unbroken symmetry is actually (Z4)−/(Z2)+, since the parity
of the conserved overall population fixes the parity of the
relative population, too: as a convention, we decide to look
at the parity in the dressed a chain, i.e.,

P = eiπ (Na+Nm ) = e
iπ
2 N+e

iπ
2 N− . (5)

Actually, we show in Appendix C that our model is adia-
batically connected to a regime where the U(1)+ symmetry
is further broken and the residual group is an even simpler
Z2 × Z2, i.e., the same symmetry class as two individual
Majorana chains. Later we will abuse this relation to derive
the signatures of the topological regime in the single-particle
correlation functions.

Any additional generic intrawire Hamiltonian Hα=a,b and
any Hamiltonian of the kind

Hc,d =
∑

j

[
μ

(
nc

j + nd
j

) + t‖(c†
j c j+1

+ d†
j d j+1) + t⊥(c†

j d j+1 + d†
j c j+1) + H.c.

]
(6)

acting on the intermediate sites would still fall in the same
U (1)+ × (Z2)− symmetry class. We initially set t‖ = t⊥ = 0
for the sake of keeping most calculations analytically feasible,
but in Appendix A we provide some estimate on their utility
for making the desired topological signatures even more evi-
dent.

A pictorial sketch of the generic Hamiltonian,

H = Ha + Hb + Hc,d + H♦ + Hint, (7)

is given in Fig. 1(b). Once we integrate out the intermediate
sites (c, d) via a Schrieffer-Wolff transformation along the
lines of Ref. [25], we are left with a low-energy description

of the dressed wires (a, b), illustrated in Fig. 1(c):

Heff = H̃a + H̃b + Unn

∑
j

(
na

j + nb
j

)(
na

j+1 + nb
j+1

)

−
∑

j

(W1 a†
j a

†
j+1b j+1b j + W2 b†

ja
†
j+1b j+1a j

+ W3 b†
ja

†
j a j+1b j+1 + H.c.). (8)

The form of Eq. (8) allows for a direct comparison with the
model of Ref. [17] and the exactly solvable one of Ref. [20],
as discussed in Appendix C. The two pair-hopping terms have
rather different effects: The interchain one, W1, embodies the
original Kitaev-chain model per each wire separately, and it
is indeed the one responsible for the desired topological effect
[17,19,20]. The intrachain one, W2 and W3, instead promotes a
(pseudo-)spin-density-wave ordering in the wire-label degree
of freedom, as we will discuss after considering the bosonized
version of Hamiltonian (8) below Eq. (13). The attainable
couplings with the presented microscopic derivation are

W1

μ
= W2

μ
=

(
J

μ

)4 8μ(V2 − V1)

(2μ + V1)(2μ + V2)
,

Unn

μ
=

(
J

μ

)4 8(μ(V1 + V2) + V1V2)

(2μ + V1)(2μ + V2)
,

(9)

and W3 = 0. Due to the similar effect of W2 and W3, we set
W3 = 0 for the rest of the main text. We will show in the
following, via a combination of field-theoretical calculations
and numerical simulations, that W2 = W1 does not impair the
formation of the wished topological order, at least in an ex-
tended region of the parameter space.
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FIG. 1. Pictorial representation of the main Hamiltonians of this
work: (a) Translation-invariant coupling of the two wires, a and b, via
the rhombi Hamiltonian H♦ encompassing a π flux, here denoted via
a single hopping with opposite sign to the rest (dashed line). (b) Full
model of Eq. (7), with intrachain hopping elements (black), inter-
chain ABC hoppings (blue) as in panel (a), and bubbles indicating
the density-density interactions. (c) Effective low-energy model of
Eq. (8), with the blue arrows standing for the correlated interchain
pair hopping, and the red and orange ones for the cross-correlated
hopping terms. From the microscopic derivation one finds W1 = W2

and W3 = 0; however, we considered all three couplings for compar-
ison to the exact solvable model of Ref. [20] (see Appendix C).

The dressed Hamiltonians H̃α (α = a, b) read

H̃α = Hα + t

(
J

μ

)2 ∑
j

[
(α†

jKα, j + H.c.) − 2t

μ
K†

α, jKα, j

]
,

(10)
where we used the abbreviation for the commutator Kα, j :=
[Hα , α j ]/t . Equation (10) is formulated for generic one-
particle Hamiltonians Ha and Hb. For making concrete
statements we will fix them to (Ha = Hb

∼= Hα)

Hα =
∑

j

(−t (α†
j α j + H.c.) + Uαnα

j nα
j+1

)
. (11)

In this case the commutator Kα, j amounts to a simple renor-
malization of the bare parameters in Eq. (11) along with some
three-body interactions, density-supported and next-nearest-

neighbor hoppings. From a renormalization point of view
these terms can be safely considered to be less relevant.
Therefore, we decide to drop them henceforth to keep the
model simpler, and leave details for the interested reader in
Appendix B.

III. BOSONIZATION

We now proceed with a field-theoretical analysis of the
toy Hamiltonian (8) via bosonization along the notation of
Ref. [26]. After having introduced density and phase fluctu-
ating fields, ϕα and ϑα , for both fermionic species, α = a, b,
and their (anti)symmetric combinations ϕ± = 1/

√
2(ϕa ± ϕb)

(same for ϑ±), we find the following Hamiltonian:

Hbos =
∑
τ=±

vτ

2

∫
dxKτ (∂xϑτ (x))2 + 1

Kτ

(∂xϕτ (x))2

+ β1

∫
dx cos(

√
8πϑ−(x))

+ β2

∫
dx cos(

√
8πϕ−(x)), (12)

where Kτ and vτ denote the Luttinger parameter and Fermi
velocity in the τ = ± sectors, and we already dropped less
relevant terms (see Appendix B), including those becoming
resonant only at half filling. We notice that a similar bosonized
Hamiltonian appears when considering spinful fermions with
anisotropic spin interactions [30], and moreover with β2 = 0
in other discussions of number-preserving models for Majo-
rana zero modes [17,19].

Besides an ordinary Tomonaga-Luttinger liquid in the sym-
metric (charge) sector, τ = +, which is therefore always
gapless, the antisymmetric (spin) sector, τ = −, exhibits a
double sine-Gordon interaction with bare couplings and scal-
ing dimensions:

β1 ∝ W1, 	β1 = 2

K−
; β2 ∝ W2 − Unn, 	β2 = 2K−. (13)

It is therefore apparent that a gap will arise whenever K− �= 1
[31]: while for K− < 1 the ϕ− field is pinned and the phase is
trivially a charge-density-wave or singlet pairing, depending
on the sign of the β2 coupling [32], the β1 term causes instead
the appearance of unpaired Majorana edge modes for K− > 1
[19]. Furthermore, the refermionization argument for K− = 2
given in Ref. [19] also shows that this mode has to be identi-
fied with single-particle transitions from one of the two chains
to the other.

Therefore, one expects certain overlaps like
〈
oo| a†

j b j |
ee〉 to be nonzero at the edges with an exponential
decay to a possible nonzero bulk value. Otherwise said, the
degenerate ground states in the topological phase are related
to the ground states of two independent Kitaev-Majorana
chains, once projected on a fixed total charge N+ [20]. Thus,
using the standard classification of topological insulators, one
expect two pairs of MZM to be present in the system, for the
unconstrained model, corresponding to the two independent
Kitaev-Majorana chains. However, after fixing the total
particle number we do not observe 4 = 2 × 2 Majorana
modes, but—depending on the total parity P+—only two out
of the four possible combinations.
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The picture of two unconnected chains is particularly
useful to get a grasp of some fundamental behavior of single-
particle correlation functions, which we will employ as a
fingerprint of the desired edge physics. Let us consider the
(four) ground states to be connected to

|
ee〉 = |
〉 , |
oo〉 = c†
a,E c†

b,E |
〉 , if N+ even,

|
oe〉 = c†
a,E |
〉 , |
eo〉 = c†

b,E |
〉 , if N+ odd,
(14)

with |
〉 being the vacuum of the theory, and cα,E the
fermionic operator formed by two Majorana edge modes,
cα,E = γα,L − iγα,R, {γα,r, γβ,s} = 2δα,βδs,r . The mode expan-
sion reads

α j = A(γα,Le−( j−1)/ − iγα,Re−(L− j)/) + · · · , (15)

with · · · denoting the (gapped) excitations of the system, 

the correlation length, and A being a normalization factor. For
each single chain then holds

〈
P| a1a†
j |
P〉 ∼ iA2e−(L− j)/ 〈
P| γLγR |
P〉 + G̃( j)

= −PA2e−(L− j)/ + G̃( j), (16)

where P = ± for the even or odd sector, and G̃( j) is the
exponentially decaying correlation function coming from the
residual (gapped) excitations of the spectrum. In Sec. IV we
will use this exponential revival of the end-to-end correlation
function together with this characteristic relative sign between
the two parity sectors as one of the indicators for having a
MZM phase. Closely related to that behavior of the corre-
lation function is the vanishing of the energy gap between
the two parity sectors: 	E = |E− − E+| ∼ e−2L/l . A second
indicator is provided by studying the entanglement spectrum
[33], which should be exactly double degenerate in the case of
being in a Majorana-like phase [28].

While working at fixed particle number might circumvent
the formation of a charge gap by forbidding hybridization of
different fillings (as it is indeed the case in our setup), the spin
sector remains instead gapped (see Appendix B). Therefore,
we expect an exponentially decaying behavior to the middle
of the system, followed by an exponential revival with a π

phase difference between the two ground states. The same
holds true for matrix elements of interchain operators like
the so-called Majorana wave function [20], 〈
ee| a j b

†
j |
oo〉.

Since the characteristics are similar for both observables, we
decide to only present results for the single-particle corre-
lation functions. This is also motivated from the fact that,
in a generic interacting model, the overlap 〈
ee| a j b

†
j |
oo〉

may have a nonzero bulk value, making it harder to uniquely
identify the edge contribution. This problem is absent for the
single-particle correlation function, since 〈aj〉 is fundamen-
tally zero.

In order to determine the most favorable regime of the
microscopic parameters for achieving the topological phase,
we consider the perturbative renormalization group (RG)

FIG. 2. RG-based estimates of the phase diagram of the
bosonized Hamiltonian (12) at ν = 1/3 in different, orthogonal
planes, according to the flow equations (17): magenta refers to
the dominance of β1 (topological phase), while yellow indicates
the dominance of β2 (trivial charge density wave or spin density
wave phase). (a) W1-W2 plane with Unn = Uα = 0: The blue line,
W1 = W2 = W , indicates the effective Hamiltonian (9), for which the
prediction depends strongly on cutoff details and, possibly, further
orders in the flow. (b) W -Uα plane with Unn = 0: by choosing a finite
negative Uα , we can move deep inside the topological phase, where
RG predictions are unambiguous, as represented by the shift from
the green to the blue star. The latter set of parameters is what is used
in the main text for the most simulations.

equations (strictly valid only around K− ≈ 1) [32]:

dβ1

dl
= 2

(
1 − 1

K−

)
β1,

dβ2

dl
= 2(1 − K−)β2,

dK−
dl

= 4π2A
v2−

(
β2

1
1

K−
− β2

2 K3
−

)
.

(17)

We now have to integrate these differential equations starting
from the bare values of K− and β j on the original lattice
couplings, Eq. (B17) (see Appendix B for details). Thereby
we get a rough estimation of the phase diagram, presented in
Fig. 2: The exact position of the phase boundaries is (highly)
dependent on the nonuniversal constant A.

035124-4



MAJORANA ZERO MODES IN FERMIONIC WIRES … PHYSICAL REVIEW B 107, 035124 (2023)

Interestingly, anyway, both the very asymmetric role
played by W2 and the strikingly almost straight critical lines in
the (W1,W2,Uα = 0) plane can be predicted by the equation

|W1| = D W2(sgn(W2) − C), (18)

with two nonuniversal constants D and C. This equation rep-
resents the linearized version of the criticality condition found
in Ref. [30] (see also Appendix B 1 for more details).

By inspecting Fig. 2, we notice that, in the absence of in-
trawire interactions (Uα = 0), the line W1 = W2 = W dictated
by Eq. (9) is well inside the topological phase for W < 0,
while no definite conclusion can be reached on the boundary
for W > 0. Noticeably, for Uα < 0 the bare parameters for the
RG flow are sensibly pushed away from the boundary, thus
making the topological phase observable also for W > 0 [see
Fig. 2(b)].

We stress here that the extra terms in Hc,d of Eq. (6)
are foreseen to contribute to stabilize the topological phase,
too. Including nonvanishing couplings t‖ and t⊥, indeed, a
regime with W1 > W2 can be achieved, which pushes the
model deeper into the topological region even for Uα = 0, as
can be seen from Fig. 2(a) (see Appendix A for more details).

IV. NUMERICAL RESULTS

Next, we validate the cutoff-dependent predictions of
bosonization against unbiased numerical simulations on the
lattice, performed via matrix product states (MPSs), not only
for the effective Hamiltonian (8) but also for the full model
(7), i.e., without introducing any perturbative description. We
focus on two pristine indicators of the emergence of unpaired
Majorana modes at the edges, i.e., (i) finite end-to-end single-
particle correlations with an exponential decay in the bulk,
with relative π -phase between the two parity sectors, and (ii)
double degeneracy of the entanglement spectrum, dictated by
the Z2 protecting symmetry.

We conduct our numerical investigations at a fixed density
of ν = N+/(2L) = 1/3, so that additional resonances arising
at half filling are avoided. As an exemplary parameter set for
the effective model we choose

W

J
= 0.5,

Uα

J
= −0.7,

Unn

J
= 0.0, (19)

with a chain of length L = 256 and N+ = 170 fermions in the
system. The specific choice of Unn = 0 was made to simplify
the number of parameters to a minimum, without affecting
the qualitative picture, as we verified for a wide range of
Unn. Indeed, from a RG point of view, the operator coupled
to Unn only has a minimal influence by slightly detuning the
bare Luttinger parameter K− and decreasing the bare coupling
strength β2 of the bosonized Hamiltonian (see Appendix B).
Moreover, this choice is always reachable, at least in this
fourth-order effective Hamiltonian description, by suitably
tuning the bare interaction parameters V1 and V2 relative to
μ and J .

First, Fig. 3 illustrates the decay of the single-particle terms
〈a1a†

x〉± with correlation length  ≈ 7.35 and their strong re-
vival at the opposite edge r ≈ ∓0.5, with the sign depending
on the parity sector, as discussed in Sec. III and predicted in
Eq. (16). The quantity r is thereby defined as the amplitude of

FIG. 3. Single-particle correlation function 〈a1a†
k〉 between the

leftmost site of the chain and the kth one. The magenta and blue lines
represent the expectation value to the ground state in the parity sector
P = ±. The black line displays a simulation neglecting the parity
conservation, allowing a superposition between the two different
sectors. The inset zooms around the right edge of the chain, revealing
the relative π phase between the recovery of the correlation function
in the two parity sectors.

an exponential fit performed on both ends of the correlation
function. Ignoring the underlying Z2 symmetry in the density
matrix renormalization group (DMRG) simulation results in
a pure exponential decay, indicating an equal weighted super-
position of the two (nearly) degenerated ground states of the
two parity sectors (see black line in Fig. 3). Such a scenario
is confirmed by examining the parity expectation value in this
setup, 〈P〉 ≈ 0. This is an expected behavior, since DMRG
favors the least entangled ground state [34–36].

Second, Fig. 4(a) shows the entanglement spectrum [33],
i.e., − ln λ2

j with λ j the Schmidt values of a L/2 biparti-
tion of the system, as a function of the quantum numbers
δN+ = n+ − N+/2 and P− = (−1)na . On one hand, the per-
fect double degeneracy between the two parity sectors is a
clear fingerprint of the symmetry-protected topological nature
of the antisymmetric channel (τ = −) [28]. On the other
hand, the parabolic shape (with particle-hole symmetry) in-
dicates the gapless nature of the symmetric channel (τ = +)
[37,38], with the curvature giving back a Luttinger parameter
K+ � 0.97 [39], pretty close to the bare value of Eq. (B17),
K (bare)

+ � 0.85.
Noticeably, from Fig. 5 it can be seen that, even in the pres-

ence of this gapless channel, the energy difference between
the even and the odd sectors vanishes exponentially, as one
would expect for a system with two topological ground states.
The finite-size gap inside each parity sector, instead, vanishes
algebraically with � L−1 as expected for a standard Luttinger
liquid with a linear dispersion relation ε+(q) = v+|q|. Ad-
ditionally, in Appendix C we show that an adiabatic path
exists between our effective model and the exactly solvable
one of Ref. [20]. In this article, a path is called adiabatic if
the U(1) × Z2 symmetry group is preserved all along that
path and the single particle gap, as defined by the antisym-
metric sector, stays finite. This is analogous to requiring that
we observe a finite correlation length of the single-particle
correlation function smaller than the system size along that
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FIG. 4. Entanglement spectrum for a bipartition cutting the sys-
tem exactly in the middle for a system with 256 sites at filling
ν = 1/3. (a) The system being in the Majorana-like phase with
W1/t = W2/t = 0.5, Uα/t = −0.7, and Unn/t = 0. The spectrum was
extracted from the ground state found in the even-parity sector;
however, taking the odd-parity-sector ground state is analogous.
(b) The system is in the trivial state with W1/t = 0.3, W2/t = 0.7,
and Uα/t = Unn/t = 0. The spectrum was extracted from the true
ground state given by the odd-parity sector.

path. Constructing such a path requires the insertion of some
extra operators, but its cartoon projection in the W1-W2-Unn

parameter space is illustrated as a dashed line in Fig. 8. The
energy gap, extracted via fitting the exponential decay of
single-particle correlation in the bulk, is plotted in Fig. 9(a),
and is evidently nonvanishing.

In the same Appendix C, we also demonstrate numeri-
cally the adiabatic connection to the two uncoupled Majorana
chains by further breaking the residual conservation of the
total particle number down to a total parity and only requiring
a residual global symmetry group of Z2 × Z2.

After reporting the topological fingerprints found in the
effective model, we also studied the full model of Eq. (7) with
the single-particle Hamiltonians fixed according to Eq. (11)
and showed that the topological phase persists once the full

FIG. 5. Scaling of the energy difference between and inside the
parity sectors for the parameter set W1/J = W2/J = 0.5, Uα/J =
−0.7, Unn = 0 for lengths from 16 to 80 sites and a filling of
ν = 1/3, i.e., ne = 2L/3 particles. The degeneracy split closes ex-
ponentially in system size, with a decay length roughly equal to
twice the single-particle correlation length l since this splitting orig-
inates in the exponential small overlap between the two Majorana
wave functions localized at the two ends of the chain [9]. On the
other hand, the energy gap to the first excited state vanishes as 1/L
originating from the discretization of the momentum in a finite-size
system as expected for a well-behaved Luttinger liquid [32] having a
linear dispersion relation.

four-flavor Hilbert space is taken into account. For this, we
studied at the same indicators as reported above, namely, the
nonlocal correlation functions with the characteristic relative
sign between the two parity sectors as predicted by Eq. (16)
and the double degeneracy of the low-lying entanglement
spectrum. As a warmup we treated the model with a set of
parameters deep inside the perturbative regime of the effective
Hamiltonian. The results are reported in Appendix E, where
we indeed find the full model to have nonlocal correlation
functions as expected. Nonetheless, the parameters in this
regime are not so appropriate to experimental realizations
with interaction strengths of several orders of magnitude in
difference.

However, we can do better by going away from the per-
turbative regime. Indeed, we showed that the Majorana-like
phase is not bounded to the perturbative regime, but is consid-
erably extended to a more realistic parameters, where we find
a double degenerated entanglement spectrum and non-local
correlation functions for a large range of parameters.

As an example consider Fig. 6(a). In this figure we com-
puted the average degeneracy of neighboring Schmidt values
of the low-lying entanglement spectrum for a cut at half of the
system of length L = 60,

λ̄ = 1

n

n∑
j=1

|λ2 j−1 − λ2 j |, (20)

computed by fixing the following set of parameters:

ne = 80, μ/J = 2, V1/J = −1,

V2/J = 1.25, t‖ = 0.1t, t⊥ = 0,
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FIG. 6. Analysis of the full model. (a) Logarithm of the average
degeneracy of neighboring Schmidt values of the low-lying entangle-
ment spectrum from Eq. (20) taking n = 4. Taking the logarithm was
motivated to highlight values near zero. (b) One example end-to-end
correlation function plotted for t = and Uα = [green star in panel
(a)]. The inset shows a zoom onto the last few sites showing the
relative π phase for the revival of both symmetry sectors.

t/J =∈ [0.1, 0.5], Uα/J ∈ [−0.5, 0].

Noticeably, there seems to be an overall separatrix region
of nearly vanishing λ̄ between two regions having a finite
splitting between the neighboring entanglement values. Along
that set of parameters we expect the Majorana-like phase to
appear: This is confirmed by the end-to-end correlation func-
tion showing the characteristic π -phase revival [see Fig. 6(b)
as one example]. Furthermore, we stress here that this result
is not sensitive to the concrete choice of the chemical po-
tential and the filling. We have explicitly checked it for all
μ/J ∈ [2, 5] and also for ne = 40, which corresponds to the
1/3 filling in the effective model.

As a final remark we want to discuss possible experimental
platforms. We emphasize that the crucial ingredient in realiz-
ing our proposal is the cylindrical-like structure defined by the
rhombi Hamiltonian H♦, Eq. (1). The requirement of having
periodic boundary conditions along one direction together
with imprinting an effective phase is usually a hard task in
physical setups. Recently this task was achieved by using
the internal degrees of freedom of cold atoms as synthetic
dimensions and imprinting arbitrary gauge fluxes to the atoms
[40,41]. Together with the good controllability of hopping

transition by loading the cloud of atoms to an optical lattice
[42–45] and the reliability of species with sizable nearest-
neighbor interactions such as polar atoms [46–48], cold atoms
are suggested as the perfect platform, but also other synthetic
platforms could be valid. However, a concrete realization goes
beyond the scope of this article.

V. CONCLUSION AND OUTLOOK

Motivated by the ongoing search for an unambiguous de-
tection of topological Majorana zero modes, we have put
forward a new number-conserving realization of a Majorana-
like phase. Our proposal uses the geometry of the underlying
lattice together with the Aharonov-Bohm effect to achieve
exact cancellation of all possible single-particle processes and
only allow for pair transitions.

Starting from a perturbative analysis, we found clear fin-
gerprints of a Majorana-like phase with Majorana zero modes
being present in an extended parameter regime. We also
showed that this is still true in the full model far away from
the perturbative regime, thus raising the hope for realizations
using synthetic dimensions in a cold-atom platform. Due to
the large amount of possible parameters to tune, we postpone
the development of a concrete scheme together with an exper-
imentally reachable parameter space to future work.

Among the important open questions for all possible quasi-
one-dimensional number-conserving setups, the influence of
finite temperature on the Majorana zero modes plays an
important role. To be concrete, it is unclear how possible
higher-order terms in the bosonization may couple the sym-
metric gapless sector to the antisymmetric gapped sector
hosting the Majorana zero modes. Such effects could lead to
a much smaller lifetime of the MZM than expected from the
limit of two unconnected Kitaev-Majorana chains. This will
be the subject for future investigations.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this Appendix, we briefly recall the basics of the
Schrieffer-Wolff (SW) transformation in the version of
Ref. [25], which we used to derive the effective model of
Eqs. (8) and (9). Furthermore, we discuss the effect of the
extra terms (t‖, t⊥) of Eq. (6), showing that they may lead to
an even more convenient regime for the topological phase to
arise.
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In the SW formalism, the Hamiltonian is considered to be
divided between a block-diagonal noninteracting part H0 with
a clear energy-scale separation, and some small interaction V ,
i.e.,

H = H0 + V,

H0 = PPH0PP + PQH0PQ,

V = PPV PQ + PQV PP + PQV PQ,

where H = P ⊕ Q denotes the division of the Hilbert space
such that

‖PPH0PP‖ � ‖PQH0PQ‖,
‖V ‖ � (‖PQH0PQ‖ − ‖PPH0PP‖),

in the sense that all eigenvalues from the P subspace are much
smaller than the eigenvalues from the Q subspace, and that
the matrix elements of the V operator are much smaller than
the energy separation between the two subspaces. We recall
that a possible term PPV PP can be set to zero without loss of
generality. The target SW transformation is a rotation X of the
Hilbert space, such that the Hamilton operator is brought back
to a block-diagonal form under its action:

H ′ = X −1(H0 + V )X = PPH ′PP + PQH ′PQ. (A1)

The desired effective low-energy Hamilton operator is then
given by

Heff = PPH ′PP . (A2)

While X , and thus Heff, are only known exactly for a few
special cases, there exists a perturbative solution in terms of
powers of the interaction V , with terms in the typical form

Ô(n) = PPV

(
PQ

1

E0 − PQH0PQ
PQV

)n

PP , (A3)

and variations thereof, especially in case the original low-
energy subspace is not exactly degenerate, i.e., if not all states
in P share the same eigenvalue E0 under H0. Anyway, we
can easily identify the Green operator Ĝ(ω) restricted to the
high-energy space Q and evaluated at E0:

ĜQ(E0) = PQ
1

E0 − PQH0PQ
PQ, (A4)

a fact which will come in handy in the following.
In our specific setup, we chose

H0 = Hc,d + Hint, (A5)

i.e., the Hamiltonian acting on the auxiliary sites. Thereby, it is
easy to identify the low-energy space P as the one containing
all states with empty c and d sites, while the high-energy
configurations Q are all the remaining ones with at least one
fermion placed on these auxiliary sites. As a consequence,
E0 = 0 and the energy separation is of the order of μ. As long
as t‖ = t⊥ = 0, H0 is already diagonal in the Fock basis, and
this allows for an exact evaluation of ĜQ(E0), leading to the
compact expressions of Eqs. (8) and (9).

If we now include such terms, i.e., t‖, t⊥ �= 0, this is not
true anymore since a fermionic excitation on the c and d
states is now allowed to delocalize across the auxiliary sites.
Fortunately, we can still evaluate ĜQ(E0) if we restrict for a

moment to the case in which at most one fermionic state in
the c and d sites can be occupied. The matrix elements of this
operator decay exponentially in real space. This in turn leads
to an additional exponentially decaying hopping in the a, b
chains of the form

Ht,exp =
∑
j,l,α

−t ′
αγ | j−k|

α α
†
j αk + H.c., γα < 1,

t ′
α = 2J2√

μ2 − 4(t‖ ± t⊥)2
,

γα = 1

2(t‖ ± t⊥)
{μ −

√
μ2 − 4(t‖ ± t⊥)2}, (A6)

where the − (+) holds for α = a (b). However, the fourth-
order term in the Schrieffer-Wolff transformation, which
generates the desired pair-hopping term, requires to deal with
two fermions on the c and d sites, and therefore to solve the
full interacting problem. However, an analytic solution is not
that easy any more. Anyway, in the limit of t‖, t⊥ � μ (consis-
tently with all other energy scales of the setup), one can treat
them as small perturbations and compute the Green operator
perturbatively. The sizable diagonal elements are responsible
for the generation of the pair-hopping terms, while the off-
diagonal contributions are again exponentially suppressed. We
finally arrive at the expression

W ′
j = W (1 + (t‖, t⊥)� j (t‖, t⊥)T ) + O(t4

‖ , t4
⊥), (A7)

where � j are 2 × 2 matrices, depending on all other param-
eters, with �1 �= �2, which allows for detuning W1 �= W2. In
Fig. 7 some examples for Wj (t‖, t⊥) are shown. Moreover, a
third pair coupling operator is generated:

HW3 = (t‖, t⊥)�3(t‖, t⊥)T
∑

j

a†
j a j+1b†

jb j+1 + H.c. (A8)

This was also one of the reasons to consider the slightly more
general toy model of Eq. (8) where one finds the relation
W3 = (t‖, t⊥)�3(t‖, t⊥)T . The possibility of detuning W1 rel-
ative to W2 and also the generation of W3 shifts the effective
model near the vicinity of the exactly solvable model [20],
for which the relation W2 = W3 = W1/2 holds. Comparing to
Fig. 7, indeed, we see that introducing t‖ increases W1 relative
to W2 and also introduces a positive W3.

APPENDIX B: BOSONIZATION DETAILS

In this Appendix, we provide the details of the derivation
of the bosonized low-energy theory and its bare couplings in
terms of the microscopic parameters. The starting point is the
effective Hamiltonian of Eq. (8). In order to keep the equa-
tions simple, we start here by using the simplified single-chain
Hamiltonian from the main text:

H̃α =
∑

j

(−t (α†
j α j + H.c.) + Uαnα

j nα
j+1

)
. (B1)

However, towards the end of this Appendix we will shortly
discuss additional operators which are generated by the
Schrieffer-Wolff transformation. The first step is to rewrite the
lattice annihilation and creation operators α(†) in terms of two
(slowly varying) envelope functions ψR/L,α defining the right
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FIG. 7. Dependence of the effective parameters W1, W2, and W3

for (a) t⊥/t = 0 and (b) t⊥/t = 0.5. The other parameters are chosen
to be V1/t = 1, V2/t ≈ −0.83.

and left moving fields:

α j = √
a
(
ψα,R(x j )e

ikFx j + ψα,L(x j )e
−ikFx j

)
. (B2)

The “continuum” position x j is defined as x j := a j, with a the
lattice spacing, in terms of which we will express all quanti-
ties (like lengths, energies, etc.) in the following. The Fermi
momentum is defined by kF = Nπ

2La , with N being the number
of fermions and L the number of lattice sites in the system. In
order to formulate a theory in the continuum, we send a → 0
while keeping constant the product akF := δ = πν, as well as
all energies ta,Uαa, . . . . This also amounts to replacing sums
by integrals according to the rule a

∑
j → ∫

dx. Henceforth,
we will also remove any residual explicit dependence on the
lattice spacing by appropriately rescaling the fields and the
coupling constants for better readability.

The next step is the assumption of linearity for the
fermionic dispersion relation near the (two) Fermi points. The
right- and left-moving fields become thus independent from
each other, and the free fermion Hamiltonian is written as

H0 = ∑
α=a,b

∫
dx h0,α (x):

h0,α (x) = −ivF[ψ†
α,R(x)∂xψα,R(x) − ψ

†
α,L(x)∂xψα,L(x)],

(B3)

where vF = 2t sin(δ) defines the Fermi velocity. The indepen-
dent left- and right-moving fields are then rewritten in terms of
vertex operators of continuous bosonic fields ϕα (x) and ϑα (x),
describing respectively the density and phase fluctuations:

ψα,σ = ηα,σ√
2π

exp(−i
√

π (ϑα + sσ ϕα )),

nα (x) := ψ
†
α,Rψα,R + ψ

†
α,Lψα,L = − 1√

π
∂xϕα (x),

∂xϑα (x, t ) = −∂vFtϕα (x, t ), (B4)

with sσ = +1 if σ = R (and −1 for L), and the latter relation
defined in the Heisenberg picture with explicit time-dependent
operators. It is particularly useful to recall also the expression
for the current densities:

Jα
σ (x) = − 1√

4π
∂x{ϕα (x) + sσϑα (x)}. (B5)

The Klein factors ηα,σ , forming a Clifford algebra (i.e.,
{ηα,σ , ηβ,ρ} = 2δα,βδσ,ρ), are essential to obtain the correct
anticommuting behavior of the fermionic operators [27].
However, thanks to the particle-number-preserving charac-
ter of the Hamiltonian, we can simply treat them as simple
Hermitian matrices and reorder their strings to be the same
in all terms; henceforth, we consider to have already per-
formed such a reordering and drop all Klein factors from our
formulas.

Subsequently, we rewrite the different lattice operators
in terms of the bosonic fields, according to the dictionary
presented in Eqs. (B4) and (B5), and taking care of normal
ordered products along standard procedures [32]. One major
consequence is that, in most cases, the algebra amounts to
directly summing the exponents appearing in Eq. (B4) when
dealing with products of ψ (†) fields. Since all terms turn out
to be diagonal in the bosonic fields, and we are considering
identical (a, b) species, it is convenient to resort to symmetric
and antisymmetric combinations of the fields:

ϕ±(x) = 1√
2

(ϕa(x) ± ϕb(x)). (B6)

The free Hamiltonian and the intrachain interactions are
thereby well known to be mapped to a quadratic form:

H0 =
∑
τ=±

vτ

2

∫
dx Kτ (∂xϑτ (x))2 + 1

Kτ

(∂xϕτ (x))2, (B7)

with vτ and Kτ the Fermi velocity and the so-called Luttinger
parameter in each sector. These are equal to vF and 1 in the
free case, and get renormalized by the interactions. Indeed, the
representation of the lattice number operator reads

α
†
j α j /a = · · · ≈ nα (x) + Oα

CDW + Oα†
CDW (B8)

with Oα
CDW = ψ

†
α,R(x j )ψα,L(x j )e−i2kFx j accounting for charge

density waves. By integrating their product on neighboring
sites over the whole lattice, all oscillating terms will average
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out unless we are at half filling, and we are left with

Uα

∑
j

nα
j nα

j+1 −→ Uα

∫
dx

(
Jα

R + Jα
L

)2 − 2 cos(2δ)Jα
R Jα

L

= 1

2π

∫
dx gU,ϑ (∂xϑα )2 + gU,ϕ (∂xϕα )2 (B9)

with the following coefficients:

gU,ϑ = Uα cos(2δ),

gU,ϕ = Uα (2 − cos(2δ)).
(B10)

By applying the same procedure to the total unit-cell inter-
action, the interchain terms give rise to an extra sine-Gordon
interaction involving the field ϕ−, originating from scattering
terms of the form

Ô(x) = ψ
†
a,R(x)ψa,L(x)ψ†

b,L(x)ψb,R(x) + H.c. (B11)

The bosonized expression reads

Hnn −→ 1

2π

∑
τ=±

∫
dx gnn,ϑ,τ (∂xϑτ )2 + gnn,ϕ,τ (∂xϕτ )2

− Unn cos(2δ)

π2

∫
dx cos(

√
8πϕ−) (B12)

with coefficients

gnn,ϑ,+ = −gnn,ϕ,− = gnn,ϑ,− = Unn cos(2δ),

gnn,ϕ,+ = Unn(4 − cos(2δ)).
(B13)

Finally, we can also translate the pair-hopping terms by simi-
lar algebra, and obtain

HW1 −→ −2 sin2(δ)W1

π2

∫
dx cos(

√
8πϑ−), (B14)

HW2 −→ 1

2π

∑
τ=±

τ

∫
dx gW,ϑ (∂xϑτ )2 + gW,ϕ (∂xϕτ )2

+ W2

π2

∫
dx cos(

√
8πϕ−),

(B15)

with coefficients

gW,ϑ = 2W2 sin2(δ),

gW,ϕ = 2W2 cos2(δ).
(B16)

Noticeably, the two kinds of pair hoppings give rise to sine-
Gordon terms for the two conjugate bosonic fields: it will be
the one in ϑ− which will be responsible for the topological
phase, while the one in φ− is already present with other
types of density interactions between the two chains. The
sine-Gordon term involving φ− favors the formation of either
a spin density wave or charge density wave, depending on the
sign of the coupling [32].

By putting all these contributions together, we get to
Eq. (12) with the bare couplings of the low-energy the-
ory expressed in terms of those of the microscopic lattice

Hamiltonian:

κτ = 1

2π
(πvF + gU,ϕ + gnn,ϕ,τ + τgW,ϕ ),

ξτ = 1

2π
(πvF + gU,ϑ + gnn,ϑ,τ + τgW,ϑ ),

K2
τ = ξτ

κτ

, v2
τ = 4κτ ξτ ,

β1 = −2W1 sin2(δ)

π2
, β2 = W2 − cos(2δ)Unn

π2
.

(B17)

In order to determine the actual phase the system will end up
in, such bare couplings should be analyzed from the renor-
malization group (RG) perspective, i.e., by integrating out
short-distance degrees of freedom and retaining the long-
distance ones only, thus moving from a full quantum action
to a low-energy effective one.

1. RG flow

The RG flow is controlled by the flow parameter l , repre-
senting the effective momentum cutoff in terms of the overall
ultraviolet one via �UV/� � 1 + dl . At first order, the equa-
tions for the sine-Gordon couplings βk , with k = 1, 2, are
determined by their scaling dimension 	k:

dβk (l )

dl
= (2 − 	k )βk (l ). (B18)

If a coupling flows to ∞ for l → ∞, then the theory acquires
a gap, and the coupling is dubbed relevant: this happens if
	k < 2. One should actually stop the flow when the value
overcomes the cutoff, and one could then estimate thereby
the value of the gap. If instead the scaling dimension is large,
	k > 2, the coupling is irrelevant, since it flows to zero and
disappears from the effective theory. In the limiting case,
	k = 2, the coupling is labeled as marginal, and higher orders
are required to find out its actual behavior. In our Eq. (12)
we find the common result 	1 = 2/K− and 	2 = 2K− [32]:
while K+ does not flow at all, and the symmetric sector re-
mains gapless in all cases, we should resort to higher orders of
perturbation theory to inspect the flow of K−, at least around
K− ≈ 1,

dK−
dl

= 4π2A
v2−

(
β2

1
1

K−
− β2

2 K3
−

)
, (B19)

where A is some cutoff-dependent constant. No additional
contribution to the flow of the βk couplings is generated at
second order, and thus the set of Eqs. (B18) and (B19) is
consistent.

Similar RG flow equations have been studied in the past,
and it has been shown that all points on the plane defined by

v−
π

√
A

(K− − 1) − |β2| + |β1| = 0 (B20)

flow to a critical model [30]. Upon inserting the bare values of
K− and β j in terms of the original lattice couplings, Eq. (B17),
and linearizing the dependence of v− and K− on small W2

values, the criticality condition can be recast, for Unn = 0, as

|W1| = D W2(sgn(W2) − C) (B21)
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with two nonuniversal constants D = π2/(2 sin2 δ) and C =
cos(2δ)/(π2

√
A) (in the case of Uα = 0). Therefore, we ex-

pect a pretty different behavior depending on the sign of W2,
while a symmetry in W1 should appear. For example, inserting
all numbers we would expect a slope α+ = 1 (α− = −1/3)
in the case of W2 > 0 (W2 < 0), which perfectly matches
the observed slope in Fig. 2(a). The same equation can also
be used to predict the behavior of the critical lines in the
W1 = W2 = W and Uα phase diagram of Fig. 2(b). However,
the equations are not compact and easy to write. But for the
choice of the nonuniversal constant A used for the numeri-
cal integration one finds a leading-order linear behavior for
W < 0 and a quadratic leading order for W > 0, matching the
numerical observations.

We tested these predictions by numerically integrating the
differential equations (B18) and (B19) starting from the bare
values of the couplings, up to a point where one of the two βk

coupling constants reaches a certain cutoff value βk (l∗) = c.
This indicates the formation of a spectral gap of one or the
other kind, which can be estimated according to 	 ∼ e−l∗ .
The precise predictions depend on the nonuniversal constant
A appearing in the flow equations, too; nevertheless, we can
use them for a rough estimation of the phase diagram, pre-
sented in Fig. 2. The (asymmetric) linearity of the boundaries
is evidently kept up to fairly large values of the W couplings.

2. Two Kitaev chains

In the context of the adiabatic connection between our
model and the situation of two independent Kitaev chains
(which will be deepened in Appendix C), it is worth briefly
mentioning the bosonization of the pair-hopping operator act-
ing equally on the two chains:

H	 =
∑
j,α

	α
†
j α

†
j+1 + H.c. (B22)

By using the recipe exposed above, one finds

H	 −→ −g	

∑
α

∫
dx cos(

√
4πϑα (x))

∼
∫

dx cos(
√

2πϑ+(x)) cos(
√

2πϑ−(x))

(B23)

with g	 = 2	 sin(δ)/π . In a situation where the ϑ− field is
already locked, as in the topological phase through the HW1

operator, H	 is basically the operator cos(
√

2πϑ+(x)). The
scaling dimension of this operator is given by 	 = (2K+)−1;
i.e., as long as K+ > 1/4, this operator becomes relevant and
gaps out the charge sector.

3. Irrelevance of additional effective terms

As promised at the beginning of this long Appendix, we
want to justify our assumption of dropping all the additional
terms which appear in the effective single-chain Hamiltoni-
ans H̃α . As a starting point, the single-chain Hamiltonians
of the full model are chosen as the usual spinless Fermi-
Hubbard Hamiltonian consisting of a hopping term and a

FIG. 8. Relation of the parameter space of Eq. (8) to some related
works in the literature. The model of Ref. [17] spans the red line
at W2 = W3 = Unn = 0; the effective model in Eq. (9) spans the
magenta plane at W2 = W1, W3 = 0; and the black dot indicates
the exactly solvable model of Ref. [20] at W2 = W3 = Unn = W1/2.
However, since the last lives in a higher-dimensional space, this is to
be understood as a cartoon, rather than an exact statement.

nearest-neighbor interaction term:

Hα =
∑

j

(−t (α†
j α j + H.c.) + Uαnα

j nα
j+1

)
. (B24)

The commutators Kα, j = [Hα , α j ]/t can be readily computed
to be

Kα, j = α j+1 + α j−1 − Uα

t

(
α j n

α
j+1 + nα

j−1α j
)

(B25)

and inserted into Eq. (10): while α
†
jKα, j + H.c. will only

redefine the effective values of t and U , the product Kα, jKα, j

will also generate three-body terms (n j−1 n j n j+1).
In general, the lowest order of an operator consisting of

N fermionic densities is given in bosonization by a power-N
operator ∼(∂xϕα )N . The scaling dimension of these operators
can be shown to be 	N = N ; i.e., their flow equations are of
the form dβN/dl = (2 − N )βN . Thus, these operators become
surely irrelevant for all N � 3.

In addition to these N-power operators, also some higher-
order harmonic cosine terms might appear, i.e., cos(n

√
4πϕα ).

However, their scaling dimension is a monotonic increasing
function of n, meaning that the most relevant operator is given
by the first harmonic n = 1. Nevertheless, with increasing in-
teraction strength these higher-order harmonics might become
relevant, if K± � 1; however, this is by far not the scenario we
are considering in this paper.

APPENDIX C: ADIABATIC CONNECTION TO EXACTLY
SOLVABLE MODELS

In this Appendix, we provide details about the two paths
in parameter space we chose for illustrating the adiabatic
connection between our effective model in Eq. (8) and (i)
the exactly solvable one of Ref. [20] or (ii) the setup with
two uncoupled noninteracting Majorana chains. In Fig. 8 we
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(a)

(b)

FIG. 9. Fitted single-particle correlation length l for the single-
chain correlation function 〈a1a†

l 〉 along the two paths of Appendix C.
(a) Interpolation between the effective model and the exactly solv-
able model of Ref. [20] via the path γ (s). (b) Linear interpolation
between the effective model with L = 100, ν = 1/3, W1 = W2 =
0.5, Uα = −0.7, and Unn = 0. We chose different starting points
of the effective model in both adiabatic paths. This was motivated
by finding the shortest connection between our effective model and
the target model. However, we explicitly checked that the effective
model was in both cases in the Majorana-like phase, and that all other
fingerprints of the MZM are present along the paths.

also show a cartoon picture of how all the different number-
conserving models of this article are related.

For the first one, whose nonvanishing gap is plotted in
Fig. 9(a), we chose

Hext =
∑

j;α=a,b

(
− t α

†
j+1α j + μ

2

(
nα

j + nα
j+1

)

− Uα nα
j nα

j+1 − Ur

2

(
na

j n
b
j + na

j+1nb
j+1

)
− Unn

(
na

j + nb
j

)(
na

j+1 + nb
j+1

)

− W1 b†
jb

†
j+1a j+1a j

+ W2 a†
j a j+1b†

jb j+1 + W3 a†
j a j+1b†

j+1b j

+ H.c.

)
, (C1)

where H.c. acts over every term which is not already explicitly
Hermitian. In the Hamiltonian above, the chemical potential
μ, half of the strength for the very first and very last site com-
pared to the bulk sites and compared to Eq. (8), an additional
interaction term between the two chains Ur is introduced. This
is necessary in order to solve the model exactly at the special
point considered in Ref. [20]. However, we explicitly checked
that the existence of the Majorana-like phase does not depend
on the lowering of the on-site potential for the first and last
sites, as one would expect for a topological phase.

The path (setting t = 1 for fixing the energy scale)

γ (s) = (W2(s),W3(s),Uα (s),Ur (s))

= (0.8 − 0.4s, 0.4s,−0.7 + 0.3s,−0.8s),
(C2)

with W1 = 0.8,Unn = −0.4, and μ = 4 kept constant,
stretches from s = 0 at our model to s = 1 at 1

4 Hλ=0.8 in the
notation of Ref. [20].

For the second case, we define a simple linear interpola-
tion, s ∈ [0, 1], between the two limiting cases,

H (s) = (1 − s)Heff + s(Hkitaev,a + Hkitaev,b), (C3)

with Heff the one in Eq. (8) and Hkitaev,α the Majorana chain
for the α = a, b species defined at the sweet spot:

Hkitaev,α = −t
∑

j

(α†
j − α j )(α j+1 + α

†
j+1)

= −t
∑

j

(α†
j α j+1 + α

†
j α

†
j+1 + H.c.).

(C4)

The correlation length extracted from the single-particle
correlation functions stays finite along the interpolation path,
as shown in Fig. 9(b). The big drop in the beginning can be
explained by the charge sector gapping out. This is supported
by looking at the entanglement entropy (not shown here)
which becomes asymptotically constant instead of following
the logarithmic law of critical systems [50]. This behavior
is expected since adding the pair potential terms allows for
coupling of states with all possible particle numbers.

The existence of such an adiabatic connection, preserving
the time-reversal symmetry and a (Z2)+ × (Z2)− subgroup of
the full symmetry group U(1)+ × (Z2)− of our model, is in-
strumental to understand and categorize the topological phase.
Breaking the U(1) symmetry leads to a fourfold degeneracy,
differently from the case of preserving the U(1) symmetry.
This can be understood by recognizing that the four ground
states split into two ground states for each parity of the total
particle number. By conserving the total particle number, and
therefore fixing the parity, we restrict the model to one of the
two subspaces having either an even parity (Ntot mod 2 = 0)
or an odd parity. This results in an effective two-fold ground-
state degeneracy as observed in the DMRG simulations (see
Fig. 5).
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Since the model we are dealing in this work is of an inter-
acting nature and the interaction is crucial to obtain the desired
Majorana-like phase, it should be noted that the general Z
classification of noninteracting fermionic systems in spatial
dimension one breaks down to a Z8 classification presence
of interactions and time-reversal symmetry, as was shown
in Ref. [51]. As long as we only couple two chains by the
effective Hamiltonian (8) such a distinction is not relevant.

APPENDIX D: ENTANGLEMENT SPECTRUM ANALYSIS

In this Appendix we briefly discuss the form of the entan-
glement spectrum within the topological phase, as depicted
in Fig. 4(a). From the bosonization analysis of our model
we learned that the symmetric and antisymmetric sectors of
the Hilbert space decouple. A similar decoupling is therefore
also expected for the entanglement spectrum and the states
corresponding to the Schmidt decomposition:

εδN,P, j = −2 log(λδN,P, j )
!= εδN, j . (D1)

Here, λδN,P, j denotes the Schmidt values labeled by two
quantum numbers associated to the symmetric (δN) and anti-
symmetric sector (P), namely, the excess charge with respect
to average filling and the parity of one of the dressed chains.
Since the symmetric sector is gapless and the antisymmetric
one is in a gapped topological phase, we expect that the
spectrum will show distinctive features of both.

The gapless charge sector is indeed displaying the universal
behavior with entanglement levels arranged in parabolas as
a function of the quantum number δN , whose details are
determined by the underlying conformal field theory [37,38].

This special form of the entanglement spectrum is also
useful for extracting the Luttinger parameter K+, which was
also used in the main text [39]:

〈(N+,l − 〈N+,l〉)2〉 = K+
2π

log

(
2L

π
sin(π/Ll )

)
.

Moreover, the curvature of the parabolas is also mainly deter-
mined by the Luttinger parameter K+ by [38]

− log(λ(δN+)2) ∼ K+
2

(δN+)2.

However, the exact numerical values of the entanglement
spectrum and all correct degeneracies are hard to extract, since
they are subject of strong finite bond dimension effects [37]
and using the formula connecting the total number fluctuation
to the Luttinger parameter is more stable.

The topological character of the gapped antisymmetric
sector is dictating the presence of two copies of each level,
transforming differently under the parity. This is in perfect
agreement with the results of Ref. [28], and the degeneracy
represents the fractionalization of the fermionic parity oper-
ator at the end of a finite subsystem, as is more generally
known for symmetry-protected topological phases [52]. Com-
paring the results for the system in the topological phase,
Fig. 4(a), with results from the system being in the trivial
phase, Fig. 4(b), we indeed find that the parabolas originating
from the gapless charge sector are still present; however, the
nontrivial double degeneracy between the two different parity
sectors is gone.

APPENDIX E: THE FULL MODEL IN THE
PERTURBATIVE REGIME

In this Appendix we report the results found for the full
model deep inside the perturbative regime. The Schrieffer-
Wolff transformation used for deriving the effective Hamil-
tonian (9) is valid in the limit of μ (the chemical potential
on the c and d states) being the dominant energy scale. To-
gether with requiring the resulting parameters of the effective
model defined by relation (9) being in the topological regime
gives some additional constrains on the parameters of the full
model.

For example, targeting the effective parameters Unn ≈ 0,
W ≈ t/1.4, and Uα = −0.5t while fixing

μ/J = 5, V1/J = −1, V2/J = 1.25, t = 0.01,

leads to W/J ≈ 0.007 and Uα/J ≈ −0.005. Thus, the in-
trawire interaction Uα is several orders of magnitude smaller
than the interactions on the c and d states (V1 and V2), which
are not constrained to be small since they act exclusively on
the c and d subspace. Further, we used t‖ = 0.05 together
with t⊥ = 0. This should lead to a slight detuning W1 > W2

favoring the topological phase as expected from Appendix A.
The results for a simulation of a system with 60 sites and a
filling of ne = 40 (ν = 1/3 in the effective model) are shown
in Fig. 10. First looking at the density profiles in Fig. 10(b),
one sees a slight decrease of the population on the a and
b sites compared to the effective model. However, this is
expected due to the additional c and d states. Now looking
at the end-to-end correlation function in Fig. 10(a), one sees
the same characteristic behavior as in the effective model,
i.e., an exponential decay towards the middle of the system
together with an exponential revival showing a relative sign
between the two parity sectors. Remarkably, the energy gap
(correlation length) of the full four-flavor model seems to
be larger (smaller) than in the effective model. This can be
explained by the additional terms in Hamiltonian (8) which
are discarded in the numerical simulations of the effective
model, as discussed below Eq. (10).

APPENDIX F: DEVIATION FROM PERFECT π FLUX

In this Appendix we shortly address the effects of having a
small deviation from a perfect π flux � = π − ε through the
rhombi building the chain, Fig. 1(a). This change amounts to
adding a perturbation term to H♦ according to

H♦(ε) = H♦ + δH (ε),

δH (ε) = J
∑

j

iε d†
j a j + H.c. (F1)

Perfect cancellation of single-particle processes between the
(dressed) a and b wires only occurs at perfect π flux. δH (ε)
therefore explicitly breaks the exact Z2 symmetry represent-
ing the fermionic parity in each (dressed) wire, and with it
also the protection of the Majorana edge modes. Intuitively,
we would expect the two parity ground states to hybridize and
to form a ground-excited doublet, split by an energy amount
proportional to the deviation from π flux.
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FIG. 10. Comparison of the results for the full model with cou-
plings described in the text versus the effective model for an L = 60
system: (a) single-particle correlations, (b) local density of a single
species. Results obtained for the sites b are analogous.

By performing the Schrieffer-Wolff transformation similar
to Appendix A it is possible to find the induced perturbation
on the effective model (8) to lowest order,

δHeff(ε) = iεJ2

μ3

∑
j

(a†
j b j − b†

ja j ), (F2)

which makes evident its Z2-breaking character. This leads to
a direct coupling between the two parity sectors

〈
+|δHeff(ε)|
−〉 ∝ ε (F3)

and thus to a mixing of these states to form the true ground
and first-excited states, with an energy splitting proportional
to ε.

While the above concerns a homogeneous violation of the
π -flux condition, another interesting question revolves around
a single flux impurity at site j:

Ô j = gpa†
j b j + H.c.

Cheng et al. [19] showed using bosonization that Ô j becomes
irrelevant as long as j is deep inside the bulk. However,
approaching the boundaries j = 0 or j = L the operator Ô j

essentially becomes the Majorana-mode operator of the left
or right site of the system resulting exactly in the above-
mentioned coupling between the two ground states [Eq. (F3)].

We therefore expect that the larger is the window around
the edges for which the π -flux condition can be exactly im-
plemented, the smaller will be the splitting and thus the larger
the lifetime of the Majorana bound states.

Verifying these statements numerically is technically very
tedious. As mentioned in Sec. IV, even in the ideal case
of � = π , the DMRG calculations would tend to select an
equal-weighted superposition of the two sectors if the par-
ity conservation is not imposed at the tensor level. As a
consequence, the edge-to-edge revival of correlations gets
shadowed, as in Fig. 3; also features in the entanglement
spectrum get lost, which are the main effects expected from a
π -flux violation. Furthermore, the symmetry-breaking energy
split proportional to ε gets masked by the overall gapless
nature of the model, which dictates a finite-size closing of the
gap as L−1. This limits quite severely the accessible system
sizes and/or the maximal value of the π -flux violation accord-
ing to ε � L−1.

A more reasonable way to study the fate of the Majorana
modes in the presence of a π -flux violation would be to look
at dynamical observables, like the autocorrelation function of
an operator having a finite overlap with the Majorana edge
modes [53]. This approach would be independent of imposing
symmetries to the tensors and would give a direct access to
the lifetime of the Majorana edge modes. However, studying
dynamical quantities goes beyond the scope of this paper and
is left for future studies.
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