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Shane Dooley ,1,* Silvia Pappalardi,2,† and John Goold1,‡

1Department of Physics, Trinity College Dublin, Dublin 2, Ireland
2Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université,

Université de Paris, F-75005 Paris, France

(Received 15 August 2022; revised 7 December 2022; accepted 8 January 2023; published 17 January 2023)

Although entanglement is a key resource for quantum-enhanced metrology, not all entanglement is useful. For
example, in the process of many-body thermalization, bipartite entanglement grows rapidly, naturally saturating
to a volume law. This type of entanglement generation is ubiquitous in nature but has no known application in
most quantum technologies. The generation, stabilization, and exploitation of genuine multipartite entanglement,
on the other hand, is far more elusive yet highly desirable for metrological applications. Recently, it has been
shown that quantum many-body scars can have extensive multipartite entanglement. However, the accessibility
of this structure for real application has been so far unclear. In this work, we show how systems containing
quantum many-body scars can be used to dynamically generate stable multipartite entanglement and describe
how to exploit this structure for phase estimation with a precision that beats the standard quantum limit. Key to
this is a physically motivated modification of a Hamiltonian that generates a variety of multipartite entangled
states through the dynamics in the scar subspace.
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I. INTRODUCTION

When a simple initial condition is evolved with a generic
locally interacting many-body Hamiltonian, local observables
are expected to thermalize [1,2]. As a consequence of the
evolution, entanglement entropy grows rapidly, saturating at a
volume law [3–5] consistent with the thermal stationary value.
This type of entanglement scaling, despite being ubiquitous
[6], is known not to be useful in many quantum technologies
[7]. On the other hand, multipartite entanglement—witnessed
by the quantum Fisher information (QFI) [8–10]—is well
known to be a crucial resource for quantum-enhanced metrol-
ogy [11–15]. In fact, the use of highly multipartite entangled
states allows one to overcome classical limitations in quan-
tum phase-estimation protocols [12,16]. However, generally
speaking, the fundamental challenge in creating and main-
taining such states is that the dynamics of locally interacting
many-body systems are thermalizing, which leads to states
that are “too entangled to be useful” [7].

The usual approach to solving the problem of thermal-
ization is to isolate every particle as much as possible,
suppressing all unwanted interactions with other particles and
with the wider environment. This approach has drawbacks:
It can be difficult for large systems and often requires the
particles to be spatially well separated, limiting the overall
size of the multipartite entangled state. Recent experimen-
tal [17–20] and theoretical [21–23] work has uncovered a
new mechanism—weak ergodicity breaking—that can pre-
vent thermalization in nonintegrable many-body systems. At
the heart of this mechanism are quantum many-body scars
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(QMBS)—rare, nonthermal eigenstates in a spectrum of oth-
erwise thermal eigenstates. The theoretical properties of these
eigenstates are currently an active area of research [21–29].
For instance, although they display subvolume bipartite en-
tanglement, it was recently shown that QMBS can have a
nontrivial multipartite entanglement structure, embodied by
an extensive scaling of the quantum Fisher information den-
sity [30]. This raises the tantalizing possibility of exploiting
QMBS to dynamically generate multipartite entangled states,
even in strongly interacting many-body systems. It is not
practical to prepare a high-energy eigenstate of a strongly in-
teracting many-body system in the laboratory so at first glance
it would seem difficult to try to exploit this entanglement
structure for quantum-enhanced metrology. However, one can
aim to generate multipartite entangled states in the subspace
spanned by the QMBS. Indeed, QMBS have been discussed in
connection to spin squeezing in Refs. [32,33], but no protocol
has been devised which directly exploits the robustness of
multipartite entanglement in the QMBS subspace.

The main result of this work is to offer a prescription
for robust multipartite entanglement generation through time
evolution, even in the presence of local interactions that
would usually be expected to lead to thermalization. Further-
more, we demonstrate how this structure can be exploited
for quantum-enhanced metrology, building on previous work
showing robust quantum sensing with separable states [31].
The key is QMBS, which enable us to overcome the notorious
fragility of multipartite entanglement to local interactions.
Another key component is a Hamiltonian modification that
dynamically generates multipartite entanglement in the scar
subspace. Illustrating the idea with an example, we show that
much larger multipartite entangled states can be generated in
models with QMBS, in comparison to similar models without
QMBS. To show the potential for quantum technologies, we
propose a metrological scheme for phase estimation. Again,
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we see significantly better estimation precision in a model
with QMBS, compared to a similar model without QMBS.

II. EXACT MANY-BODY SCARS AND MULTIPARTITE
ENTANGLEMENT

Mark et al. [34] proposed a general framework for models
with QMBS, called the spectrum-generating algebra (SGA)
framework [35,36]. The main ingredients are a linear subspace
S ⊂ H of the Hilbert space and an operator Q̂+ that obeys
the following properties: (i) Q̂+ preserves the subspace S,
i.e., (Î − P̂S)Q̂+P̂S = P̂SQ̂+(Î − P̂S) = 0, where P̂S is the
projector into S, and (ii) Q̂+ is a raising operator in S, i.e.,

P̂S
(
[Ĥ, Q̂+] − ωQ̂+)

P̂S = 0. (1)

If the subspace S contains a Hamiltonian eigenstate
|S0〉 ∈ S, with Ĥ |S0〉 = E0 |S0〉, then the states |S j〉 =
N j (Q̂+) j |S0〉 ∈ S (where N j is a normalization factor)
are also Hamiltonian eigenstates, Ĥ |S j〉 = (E0 + jω) |S j〉.
When the Hamiltonian Ĥ is found to be nonintegrable (e.g.,
through analysis of the energy level spacing statistics [21]),
these states |S j〉 are regarded as quantum many-body scars.
We note that the SGA condition in Eq. (1) is closely related to
the condition for a dynamical symmetry that was introduced
in Refs. [37,38].

It was recently shown that the scars have extensive mul-
tipartite entanglement, in contrast to the thermal eigenstates
that make up the remainder of the spectrum of Ĥ . The degree
of multipartite entanglement of a quantum state ρ̂ can be
probed with the quantum Fisher information (QFI) [39–41]:

F (Ô, ρ̂ ) = 2
∑
n,m

(pn − pm)2

pn + pm
|〈n|Ô|m〉|2 � 4Varρ̂Ô, (2)

with respect to an appropriately chosen observable Ô. Here,
pn, |n〉 are the eigenvalues and eigenstates of ρ̂ and the upper
bound Varρ̂Ô = Tr(Ô2ρ̂) − [Tr(Ôρ̂ )]2 is achieved for pure
states ρ̂ = |ψ〉 〈ψ |. For an N-particle system and a collective
observable Ô = 1

2

∑N
n=1 ôn (sum of local ones ôn), a QFI

density satisfying

f (Ô, ρ̂ ) ≡ F (Ô, ρ̂ )

N
> m (3)

indicates that at least m + 1 particles of the system are entan-
gled [8–10]. Importantly, the QFI is also a key quantifier of
the usefulness of the state ρ̂ in quantum metrology [11,14,15]:
The precision in estimating a parameter ε, encoded in the state
ρ̂ε = e−iεÔρ̂eiεÔ, is bounded by the Cramér-Rao inequality
δε � 1/

√
νF , where ν is the number of independent repeti-

tions of the measurement. Hence, while phase sensitivity with
a separable state is bounded by the standard quantum limit
δε � δεSQL = 1/

√
νN , the presence of multipartite entangle-

ment results in an enhancement up to δε � δεHL = 1/
√

νN ,
known as the Heisenberg limit [12,16]. Recently, the QFI has
been studied theoretically and experimentally in many-body
systems due to its relation to thermal susceptibilities [42–47].
However, in the case of locally interacting Hamiltonians, it
is generally very challenging to generate quantum states with
the Heisenberg scaling.

Reference [30] showed that any QMBS with nonzero en-
ergy density has a QFI density with exactly this property:
Extensive f ∼ N , while for thermal eigenstates f ∼ 1. De-
spite the extensive multipartite entanglement of the QMBS,
dynamics through the scar subspace are often through
states with low entanglement. This is because, typically,
the system is initialized in an easily prepared separable
(or low-entanglement) state, and dynamics through the scar
subspace does not significantly change the entanglement
structure. In order to see this, we note that Eq. (1) above
implies that the Heisenberg equation of motion for the
operator Q̂+

S ≡ P̂SQ̂+P̂S is linear inside the scarred sub-
space, d

dt Q̂+
S (t ) = iωQ̂+

S (t ) ⇒ Q̂+
S (t ) = Q̂+

S (0)eiωt . Assume
that the initial state is a generalized coherent state |θ, φ〉 ≡
D̂(θ, φ) |S0〉, where D̂(θ, φ) = exp{ θ

2 (Q̂+e−iφ − Q̂−eiφ )} is
the unitary “displacement” operator and Q̂− = (Q̂+)†. Such
a state is a superposition of QMBS, without any overlap with
the other thermal eigenstates. Then, due to the linearity of the
equation of motion for Q̂+

S , the time-evolved state is

|ψ (t )〉 = e−it Ĥ |θ, φ〉 = e−itE0 |θ, φ − ωt〉 , (4)

i.e., the time-evolved state is always a generalized coherent
state in the QMBS subspace. If the coherent state displace-
ment operator D̂(θ, φ) can be expressed as a product of local
unitaries (as is often the case), then every coherent state
|θ, φ〉 = D̂(θ, φ) |S0〉 has the same entanglement structure as
|S0〉. In particular, if |S0〉 has low entanglement, then the
time-evolving state |ψ (t )〉 will too. We also note that the
evolving state undergoes periodic revivals to the initial state
with a period T = 2π/ω, which is characteristic of most
examples of dynamics in scarred many-body systems up to
now.

In order to generate multipartite entangled states in the
scarred subspace S, we consider adding a term

Ĥnl = χ

N
Q̂+Q̂− (5)

to a Hamiltonian that possesses a scarred subspace. Here, N
is the number of particles. This additional term preserves the
QMBS subspace, yet if [Q̂+Q̂−, Q̂+] 
∝ c+Q̂+ + c−Q̂− (for
complex coefficients c±), then it also generates nonlinear evo-
lution. In the Appendix, we show that a Hamiltonian term of
the form Ĥnl can emerge naturally in the scar subspace through
a linear coupling of the system to a highly detuned ancillary
system. However, there are many other schemes for the dy-
namical generation of multipartite entanglement [33,48–53].

To illustrate these ideas, we now provide a concrete exam-
ple of a Hamiltonian with QMBS within the SGA framework.

III. MODEL

Consider a system of spin-1 particles on a d-dimensional
cubic lattice with the Hamiltonian Ĥ (η) = Ĥ0 + Ĥint(η),
where

Ĥ0 = ω

2

∑
�n

Ŝz
�n, (6)

Ĥint(η) =
∑
�n>�n′

λ�n,�n′ (eiηŜ+
�n Ŝ−

�n′ + e−iηŜ−
�n Ŝ+

�n′ ). (7)

035123-2



ENTANGLEMENT ENHANCED METROLOGY WITH QUANTUM … PHYSICAL REVIEW B 107, 035123 (2023)

FIG. 1. The QFI density for the eigenstates |E〉 of the Hamilto-
nian Ĥ in Eqs. (6) and (7) (in its zero-momentum symmetry sector)
and for the local observable Q̂y = i

2 (Q̂− − Q̂+). The QMBS have
much larger QFI density than the thermal eigenstates. For χ = 0
(blue), the QMBS are equally spaced in energy, but χ 
= 0 (red)
breaks the harmonic energy spacing. Parameters: N = 11, ω = 2,
λ = 1, γ = 2, η = π/2, L = 10, d = 1. For clarity in the plot-
ted data, a small Hamiltonian perturbation Ĥpert = 10−5Q̂x is also
included here to break some degeneracies due to magnetization sym-
metry of Ĥ .

Here, Ŝ±
�n are the spin-1 raising and lowering operators for

the particle at the lattice site labeled �n ∈ Zd , and [Ŝ+
�n , Ŝ−

�n′ ] =
δ�n,�n′ Ŝz

�n. For convenience, we assume that this interaction term
has a power-law decay λ�n,�n′ = λ/(a|�n − �n′|)γ , where a|�n − �n′|
is the distance between the particles at sites �n and �n′ on
the lattice, a is the lattice spacing, and γ is the range of
the power-law decay [54]. If we assume that the lattice is
contained in a fixed volume V = Ld , then the total number of

particles, N = (L/a + 1)d L�a≈ V/ad , can only be increased by
decreasing the lattice spacing a which, however, also results in
an increased interaction strength λ�n,�n′ . An analysis of the en-
ergy level spacing statistics in a symmetry-resolved subspace
of Ĥ (η) shows that the Hamiltonian is quantum chaotic for
all values of the phase η [31]. However, for η = ±π/2, the
term Ĥint is a Dzyaloshinskii-Moriya interaction (DMI) and
the total Hamiltonian has a set of N + 1 quantum many-body
scars |S j〉 = N j (Q̂+) j |S0〉, with

Q̂+ =
∑

�n
(Ŝ+

�n )2, |S0〉 =
⊗

�n

∣∣Sz
�n = −1

〉
. (8)

In this case, Ĥ (η = ±π/2) fits within the SGA framework
described above [cf. Eq. (1)] and the QMBS at nonzero
energy density have an extensive multipartite entanglement
(see blue markers in Fig. 1). We note that the scarred
Hamiltonian Ĥ (η = ±π/2) is closely related to another spin-
1 model that is known to host QMBS: The spin-1 XY
magnet [55,56].

It is straightforward to show that the operator Q̂+ given in
Eq. (8), along with Q̂− and Q̂z = 1

2 [Q̂+, Q̂−] = 1
2

∑
�n Ŝz

�n, form
an SU(2) algebra. The corresponding SU(2) spin-coherent
states |θ, φ〉 = ⊗

�n[cos θ
2 |−1�n〉 + e−iφ sin θ

2 |+1�n〉] are sep-
arable product states of the spins. Preparing such a state
initially and allowing it to evolve by Ĥ (η = ±π/2) leads to
periodic revivals and the system remains in a product state

FIG. 2. The evolution of the QFI density by the Hamilto-
nian Ĥ , with the initial product state |ψ (0)〉 = |θ = π

2 , φ = 0〉 =⊗
�n[(|+1�n〉 + |−1�n〉)/

√
2]. Without QMBS (η = 0), the dynamics

never generates states with large f . For the Hamiltonian with QMBS
(η = π/2), the QFI density remains small for χ = 0, but χ 
= 0 gen-
erates a variety of highly multipartite entangled states. The dashed
black line indicates the Heisenberg limit, f = N . Above and be-
low the plot are Husimi distributions (in the Dicke subspace) for
states at various times in the dynamics (above for η = π/2, be-
low for η = 0). Parameters: N = 12, ω = 0, λ = 1, γ = 2, L = 10,
d = 1.

throughout the dynamics. This is reflected by the small, con-
stant value of the QFI density as a function of time (see Fig. 2,
solid blue line). So, despite the extensive multipartite entan-
glement of the QMBS, the dynamics involves only product
states. For comparison, we also show the dynamics of the
QFI density for evolution by the Hamiltonian Ĥ (η = 0), i.e.,
for a similar model without QMBS. In that case, the system
approaches a thermalized state with f ∼ 1 (Fig. 2, dashed
blue line).

IV. DYNAMICAL GENERATION OF ENTANGLEMENT

We now consider the addition of the nonlinear term given
by Eq. (5) to our model H (η). The total Hamiltonian thus
reads

Ĥtot(η) = Ĥ (η) + Ĥnl = Ĥ (η) + χ

N
Q̂+Q̂−, (9)

where Q̂+ is the raising operator in the QMBS subspace de-
fined in Eq. (8). Figure 1 (red markers) shows the QFI density
of the eigenstates of the scarred Hamiltonian Ĥtot(η = ±π/2).
We see that the addition of the nonlinear term preserves
the existence of the QMBS, and their high QFI density, but
destroys the harmonic spacing between them. Thus, upon
dynamics from a spin-coherent state, it will generate a variety
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of multipartite entangled states. Using the SU(2) commutation
relations, Ĥnl can be rewritten as Ĥnl = χ

N [Q̂2 − (Q̂z )2 + Q̂z],
where Q̂2 = 1

2 {Q̂+, Q̂−} + (Q̂z )2. The one-axis twisting term
∼(Q̂z )2 is well known to dynamically generate multipartite
entanglement in collective spin systems [57–61]. Here, we
show how this also holds in a many-body system with local
interactions, provided that its Hamiltonian has QMBS. We
initialize in a coherent state

|ψ0〉 =
∣∣∣∣θ = π

2
, φ = 0

〉
=

⊗
�n

|+1�n〉 + |−1�n〉√
2

(10)

and consider its evolution with the total Hamiltonian Ĥtot(η).
Figure 2 (red line) shows that the addition of the new term
Ĥnl = χ

N Q̂+Q̂− dynamically generates highly multipartite en-
tangled states. After an initial transient, the QFI of |ψ (t )〉
becomes compatible with that of a Dicke state whose QFI is
superextensive with N , in particular, f = N/2. We also notice
that at large times t∗ ∼ N/χ , quantum interference effects
lead to the generation of macroscopic cat states, also known
as the Greenberger-Horne-Zeilinger (GHZ) state, for which
the Heisenberg limit f (t∗) = N is reached [15,58,60,61]. For
comparison, we also show the dynamics of the QFI density for
the corresponding model without QMBS at η = 0 (dashed red
line). In this case, the QFI density is f ∼ 1, indicating that the
QMBS are crucial for generating multipartite entanglement in
this model, starting from the same spin-coherent state.

This dynamical protocol is the key insight of the paper
and it can be visualized on the generalized Bloch sphere
identified by the SU(2) algebra. States that overlap with the
scars can be represented by the Husimi distribution Q(θ, φ) =
| 〈ψ | θ, φ〉|2, where |θ, φ〉 is a coherent state on the sphere.
The Q is characterized by the property that its integral,

I = N

4π

∫
dθdφ sin θ Q(θ, φ), (11)

is normalized (I = 1) for states that live only on the Bloch
sphere, while, in general, 0 � I � 1. Hence, I quantifies the
localization of the state on the scarred subspace. In the ab-
sence of QMBS (bottom panel of Fig. 2), the initial coherent
state spreads over all the Hilbert space and leaves the Bloch
sphere, as shown by I (t ) < 1. On the other hand, when the
state is evolved with Ĥtot(η = π/2) (upper panel of Fig. 2),
the Q displays evolution with I (t ) = 1: It initially undergoes
squeezing (green marker), then spreads on the equator (pur-
ple marker), and eventually exhibits a GHZ state at t∗ (red
marker).

Another advantage of the generation of highly multipartite
states using QMBS is shown by considering finite volume
effects in realistic protocols. In our model Hamiltonian, we
have assumed that the spins are on a square lattice with a
fixed volume V . To increase the number of particles in the
fixed volume therefore means increasing their density, which
results in stronger interactions. Typically, this limits the size
of the multipartite entangled state that can be generated in the
dynamics. This is shown in Fig. 3. We see that for small N
(corresponding to a low density of particles), the QFI density
that can be achieved actually approaches the Heisenberg limit
f = N for any value of η. However, in the absence of QMBS,
larger values of N (corresponding to an increased particle

FIG. 3. The largest QFI density maxt f (t ) = maxt f (Q̂y, |ψ (t )〉)
that can be generated dynamically in a system of N spins constrained
to a fixed volume V = Ld . Since the volume is fixed, increasing the
system size N leads to higher density and stronger interactions, and
inhibits the growth of the QFI density in the absence of QMBS. The
dashed black line shows the Heisenberg limit f = N . Parameters:
ω = 1, χ = 2, λ = 1, γ = 2, d = 1, θ = π/2, φ = 0.

density) result in stronger interactions between the particles
that inhibit the size of the multipartite entangled state. On the
contrary, for a Hamiltonian with perfect QMBS (φ = ±η/2),
the size of the multipartite entangled state can grow with the
Heisenberg scaling f ∼ N despite the stronger interactions.

V. ENTANGLEMENT-ENHANCED QUANTUM
METROLOGY

The quantum Fisher information gives a bound to the
estimation error that is only achievable for an optimal
measurement. However, such optimal measurements are of-
ten impractical, particularly for large multipartite entangled
states. Following Ref. [62], we propose that the multipar-
tite entanglement generated in our model can be exploited
for quantum metrology by a feasible “echo” measurement
[63–67]. We focus on our spin-1 model and—to slightly
simplify our scheme—we choose ω = −χ/N (since this
gives cancellation between the terms proportional to Q̂z =
1
2

∑
�n Ŝz

�n that appear in Ĥ0 and Ĥnl = χ

N Q̂+Q̂− = χ

N [Q̂2 −
(Q̂z )2 + Q̂z]). The scheme is as follows. (i) State preparation:
Starting from the spin-coherent state |θ = π

2 , φ = 0〉, evolve
for a time t by the total Hamiltonian, corresponding to the
unitary Û (ω, χ ) = e−it[Ĥ0(ω)+Ĥint+Ĥnl (χ )]. Note that this is a
quantum chaotic Hamiltonian whose dynamics, in the absence
of QMBS, is expected to lead to thermalization. (ii) Parameter
encoding: Implement a unitary rotation via Ûε = eiεQ̂y , where
ε ≈ 0 is the small parameter to be estimated. (iii) Echo mea-
surement step: Evolve for another time period t by the total
Hamiltonian, but with the signs of ω and χ reversed, i.e., by
the unitary Û (−ω,−χ ). Note that the interaction term Ĥint,
which is responsible for potentially damaging interactions be-
tween the spins, is not reversed. (iv) Readout: Finally, measure
the observable Q̂y.

The final state after the evolution in steps (i)–(iii) is
|ψ (2t )〉 = Û (−ω,−χ )eiεQ̂yÛ (ω, χ ) |ξ 〉. For the observable
measured in step (iv), the mean-squared error in the estimate
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FIG. 4. The estimation error δε using a state prepared in our
system of spin-1 particles constrained to a fixed volume V = Ld .
Left: The error fails to reach even the the standard quantum limit
(dotted black line, SQL = N−1/2) when η ≈ 0, due to thermalization
of the spin-1 system. However, entanglement-enhanced estimation is
possible when the model has QMBS (η ≈ π/2) (plotted for N = 10
spins). Right: Due to the volume constraint, strong interactions be-
tween the spins typically inhibit the achievable error as the system
size increases. However, for perfect QMBS, the error decreases
uninhibited with the Heisenberg scaling ∼N−1 (dashed black line).
Parameters: L = 10, ω = −χ/N , χ = 2, λ = 1, γ = 2, d = 1.

of the parameter is

δε =

∣∣∣∣∣∣∣

√
Var|ψ (2t )〉Q̂y

∂ε〈Q̂y〉

∣∣∣∣∣∣∣
ε=0

. (12)

Figure 4(a) shows this error as a function of the state prepara-
tion time t for different values of the phase η appearing in Ĥint.
When η ≈ 0, the precision fails to reach even the standard
quantum limit (dotted black line) due to thermalization of the
system during the state preparation and echo stages. How-
ever, we see significantly entanglement-enhanced estimation
(i.e., beating the standard quantum limit) when the model
has perfect QMBS at η ≈ ±π/2. Similarly, Fig. 4(b) shows
that due to the constraint that the spin system is confined to
a fixed volume V , the precision is inhibited by interactions
between the particles as the particle number N (and hence the
density N/V ) is increased. On the other hand, the precision
is enhanced with the Heisenberg scaling δε ∼ 1/N when the
model has perfect QMBS.

VI. ROBUSTNESS

Although our metrological scheme is robust to interactions
of the form given in Eq. (7) with η = π/2, it is important
to examine the robustness of our scheme to deviations from
this perfect scar point. For example, Fig. 4(b) shows that
to obtain a given level of estimation error, the fine tuning
of η needs to be more and more precise as the system size
N increases. To quantify this, we numerically calculate the
detuning δηSQL = π

2 − ηSQL that is needed to give sensing
at the standard quantum limit, where ηSQL is defined by
mint δε(t, ηSQL) = N−1/2 = SQL. In other words, η should
be fine tuned within δηSQL of η = π/2 to beat the SQL.
The results are plotted in Fig. 5 for a given set of system
parameters.

FIG. 5. The deviation from the perfectly fine-tuned scar point
η = π/2 that is required to achieve sensing at the standard quantum
limit (SQL) in a system of spin-1 particles confined to a volume
V = Ld . Parameters: ω = −χ/N , χ = 2, γ = 2, d = 1.

Unfortunately, our exact numerical simulations are re-
stricted to relatively small system sizes (due to the expo-
nentially increasing dimension of the state space). However,
Fig. 5, for N � 10, suggests a scaling δηSQL ∼ N−2, with a
fine tuning better than δηSQL ∼ 0.1 needed to beat the SQL
for N ∼ 10 (for our particular choice of system parameters).
If this scaling can be extrapolated to larger system sizes, then
with N ∼ 30, a fine tuning better than δηSQL ∼ 0.01 is needed,
and with N ∼ 100, a fine tuning better than δηSQL ∼ 0.001
is required. This shows that the level of fine tuning may be
feasible for intermediate size systems, but eventually becomes
infeasible for large systems. However, we note that large-N
entanglement-enhanced metrology in the presence of generic
local interactions is a difficult and longstanding problem and,
to the best of our knowledge, there are no existing alterna-
tive protocols that can solve this problem without fine tuning
or some similarly demanding engineering requirement. Our
scheme is a different approach to the problem that we believe
can complement existing methods, such as dynamical decou-
pling [31,68].

VII. DISCUSSION

In this work, we have presented a scheme to generate
highly multipartite entangled states, even in the presence of
strong local interactions, by exploiting quantum many-body
scars. Scars are currently the focus of great attention; however,
apart from examples that do not exploit entanglement [31],
potential applications are still mostly lacking. Here, we have
proposed a metrological scheme which relies on the existence
of the scars for entanglement-enhanced phase estimation.

Our scheme is applicable to any model with QMBS in the
SGA framework, provided that a multipartite entanglement
generating term can be implemented (e.g., as outlined in the
Appendix). In terms of practical implementation, most exper-
iments showing evidence of QMBS so far have emulated the
PXP model [17,19], which does not straightforwardly fit into
the SGA framework discussed here. However, the QMBS sub-
space in the PXP model has an approximate SU(2) structure
[69] and our scheme should also be applicable there, given
an appropriate term to generate multipartite entanglement in
the QMBS subspace. Alternatively, evolution with the bare
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PXP Hamiltonian can generate multipartite entangled states at
intermediate times [30] and, using the prescription outlined in
this work, it can be stabilized and used for quantum-enhanced
metrology.

Finally, we note that several recent works have shown
that some types of local interactions can actually generate
multipartite entanglement [33,51–53]. In our work, we take a
different perspective: We consider local interactions that tend
to destroy multipartite entanglement. The main role of QMBS
is then to provide robustness to these local interactions that, on
first glance, might be expected to rapidly thermalize the sys-
tem. We believe that the framework outlined in our work will
inspire future works in quantum engineering of nonergodic
subspaces for applications in quantum technologies.
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APPENDIX: DERIVATION OF THE NONLINEAR
HAMILTONIAN TERM

As discussed in the main text, the SGA framework of
QMBS consists of a subspace S ⊂ H of the Hilbert space,
and an operator Q̂+ that preserves the subspace and obeys the
quasiparticle creation property

P̂S([Ĥ, Q̂+] − ωQ̂+)P̂S = 0. (A1)

Here we show that within the general SGA framework,
the nonlinear entanglement generation term Ĥnl = χ

N Q̂+Q̂−
can emerge naturally in the scar subspace through a linear
coupling to a highly detuned ancillary system [71,72].

To see this, consider a linear interaction with a bosonic
mode of the form

Ĥ ′ = Ĥ + ωaâ†â + J (Q̂+â + Q̂−â†), (A2)

where â†, â are the bosonic creation and annihilation operators
and ωa is the frequency of the mode. Following Ref. [73],
we consider the rotated Hamiltonian eR̂Ĥ ′e−R̂, where R̂ =

J
ω−ωa

(Q̂+â − Q̂−â†). For a small rotation with J � N |ω −
ωa|, we can expand to second order in the small parameter,

eR̂Ĥ ′e−R̂ ≈ Ĥ ′ + [R̂, Ĥ ′] + 1
2 [R̂, [R̂, Ĥ ′]] + · · · .

Restricting to the scar subspace and using Eq. (A1) then
allows us to derive an effective Hamiltonian,

P̂S(eR̂Ĥ ′e−R̂)P̂S ≈ P̂S
[

Ĥ + ωaâ†â + J2

ωa − ω
Q̂+Q̂−

+ J2

ωa − ω
[Q̂+, Q̂−]â†â

]
P̂S. (A3)

If we also assume that the ancillary mode is in its vacuum state
â†â = 0, then we finally have

Ĥeff = P̂S
[

Ĥ + J2

ωa − ω
Q̂+Q̂−

]
P̂S (A4)

in the scar subspace. Note that the strength of the nonlinear
term is J2/(ωa − ω) ∼ O(1/N ) due to the approximation con-
dition NJ � |ω − ωa|. Defining χ = NJ2/(ωa − ω) makes
this dependence on N explicit and gives the desired nonlinear
term Ĥnl = χ

N Q̂+Q̂−.
There are various imperfections that can arise in a realistic

system that cause deviations from the effective Hamiltonian
given by (A4), for example, higher-order terms in the ex-
pansion given by Eq. (A3), spatial inhomogeneity in the
spin frequencies ω, or spatial inhomogeneity in the couplings
J . Several of these imperfections are discussed in detail in
Ref. [72] where, for instance, it is shown that the effect of
higher-order terms can be suppressed by dissipation in the
ancillary system.
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Žlabys, G. Juzeliūnas, and E. Witkowska, Phys. Rev. Lett. 129,
090403 (2022).

[51] M. A. Perlin, C. Qu, and A. M. Rey, Phys. Rev. Lett. 125,
223401 (2020).

[52] T. Comparin, F. Mezzacapo, M. Robert-de-Saint-Vincent, and
T. Roscilde, Phys. Rev. Lett. 129, 113201 (2022).

[53] J. T. Young, S. R. Muleady, M. A. Perlin, A. M. Kaufman, and
A. M. Rey, Enhancing spin squeezing using soft-core interac-
tions (unpublished).

[54] The double sum in Eq. (7) is over a restricted set of lattice sites,
denoted �n > �n′, to avoid a redundant repetition of terms in the
sum.

[55] M. Schecter and T. Iadecola, Phys. Rev. Lett. 123, 147201
(2019).

[56] The two models are related by a unitary transformation if the
graph with edges given by nonzero interactions λ�n,�n is bipar-
tite [70].

[57] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[58] G. S. Agarwal, R. R. Puri, and R. P. Singh, Phys. Rev. A 56,

2249 (1997).
[59] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835

(1999).
[60] S. M. Chumakov, A. Frank, and K. B. Wolf, Phys. Rev. A 60,

1817 (1999).
[61] S. Dooley and T. P. Spiller, Phys. Rev. A 90, 012320 (2014).
[62] E. Davis, G. Bentsen, and M. Schleier-Smith, Phys. Rev. Lett.

116, 053601 (2016).
[63] T. Macrì, A. Smerzi, and L. Pezzè, Phys. Rev. A 94, 010102(R)

(2016).
[64] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A.

Kasevich, Science 352, 1552 (2016).
[65] D. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J. Lewis-

Swan, K. V. Kheruntsyan, and M. K. Oberthaler, Phys. Rev.
Lett. 117, 013001 (2016).

[66] S. P. Nolan, S. S. Szigeti, and S. A. Haine, Phys. Rev. Lett. 119,
193601 (2017).

[67] A. J. Hayes, S. Dooley, W. J. Munro, K. Nemoto, and J.
Dunningham, Quantum Sci. Technol. 3, 035007 (2018).

[68] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417
(1999).

[69] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis,
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