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Polarization jumps by breaking symmetries of two-dimensional Weyl semimetals
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The electric polarization as a bulk quantity is described by the modern theory of polarization in insulating
systems and cannot be defined in conducting systems. Upon a gradual change of a parameter in the system,
the polarization always varies smoothly as long as the gap remains open. In this paper, we focus on the two-
dimensional Weyl semimetal, which hosts Weyl nodes protected by symmetries, and study the behavior of the
polarization when a symmetry-breaking term M is introduced and a gap opens. We show that there can be a
jump between M → 0+ and 0− limits. We find that the jump is universally described by the “Weyl dipole”
representing how the Weyl nodes with monopole charges are displaced in the reciprocal space. Our result is
applicable to general two-dimensional Weyl semimetals.
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I. INTRODUCTION

The electric polarization is a fundamental quantity when
we deal with ferroelectric materials. Despite its importance,
the definition of the electric polarization in periodic systems
remained elusive for a long time and caused a lot of debates
because the expectation value of the position of an electron is
ill defined in periodic systems. The problem was solved by the
modern theory of polarization, which tells us that the change
of polarization is a well-defined quantity and the polarization
itself is multivalued [1–3]. Namely, the polarization vector P
is defined modulo the “quantum of polarization” e

�
a, where a

is the lattice vector, −e is an electron charge (e > 0), and � is
the volume of the unit cell. The basic understanding is given
by this modern theory of polarization and now it is commonly
used to numerically calculate electric polarizations of various
insulating systems.

On the other hand, topological states of matter have
attracted much interest recently, and theoretical and exper-
imental investigations of topological insulators [4–8] and
semimetals [9–15] have been active. In particular, a class of
materials called Weyl semimetal has been studied intensively
because of its unique topological surface states [9], magne-
toelectric responses [16,17], and transport properties [18]. In
three-dimensional Weyl semimetals, there exist gap-closing
points called Weyl nodes in the reciprocal space, which carry
monopole charges of ±Q (Q: integer). These points cannot be
gapped unless Weyl nodes with opposite monopole charges
meet and are annihilated. This leads to the stability of Weyl
semimetals.

In this paper, we study two-dimensional Weyl semimetals
whose Weyl nodes are protected by symmetries such as PT
symmetry (P , inversion; T , time reversal). We introduce a real
symmetry-breaking term M and we assume that the system
becomes gapped when M �= 0. Then, the modern theory of
polarization can be applied after breaking the symmetries, i.e.,
when M �= 0. We show that in the limit where the symmetries

are restored and the system becomes conducting, there can be
a difference in the value of the electric polarization between
M → 0+ and 0−, which leads to a jump of polarization. Fur-
thermore, we show that this jump of polarization is closely
related with monopole charges of Weyl nodes and can be
universally described by the Weyl dipole, which we introduce
in this paper.

We note that our focus is not on the behavior of the electric
polarization in conducting systems as discussed in several
studies [19,20]. Although we investigate the conducting limit,
our interest is still in the insulating systems, where the modern
theory of polarization can be applied. Also, we note that the
polarization jump we discuss here occurs in a single material
unlike the one at the interface of two insulators [21].

This paper is organized as follows. In Sec. II, we introduce
a two-dimensional two-band tight-binding model of a hexag-
onal lattice with anisotropic hoppings. We numerically see the
existence of the polarization jump across a PT -symmetric
Weyl semimetal phase as a typical example. The analysis is
extended to general multiband systems in Sec. III. We see that
the jump of electric polarization can be described in an amaz-
ingly simple form by the Weyl dipole, which represents how
the Weyl nodes of opposite monopole charges are displaced in
k space. We conclude this paper in Sec. IV. Throughout this
paper, we study noninteracting electronic systems.

II. EXAMPLE: TWO-DIMENSIONAL TIGHT-BINDING
MODEL ON THE HEXAGONAL LATTICE

A. Model

We first introduce a two-dimensional tight-binding model
on the hexagonal lattice as in Fig. 1(a). In the figure, red
and blue circles represent sites in A and B sublattices with
on-site potentials +M and −M, respectively. Among the three
hopping amplitudes to the nearest-neighbor sites, let t2 and
t1 denote the amplitude in the y direction and those in other
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FIG. 1. Two-dimensional tight-binding model having Weyl
nodes in the PT -symmetric limit. (a) The model on the hexagonal
lattice with anisotropic hoppings and on-site potentials +M and −M
for A (red) and B (blue) sublattices, respectively. We take the origin
O to be at the midpoint of a nearest-neighbor bond and the unit
cell as a gray parallelogram. (b–d) The corresponding unit cell of
the reciprocal space in the shape of the parallelogram. The Weyl
nodes (W1 and W2) for M = 0 are shown for (b) −2 < t2/t1 < 0 and
(d) 0 < t2/t1 < 2. The 2π jump in arg[ f ∗(k)] restricted within −π <

arg( f ∗) � π is also shown in (b) and (d) by blue lines connecting
the Weyl nodes. When (c) t2 = 0, the gap closes along kx = π√

3a
indicated by the black line. (e) Energy bands corresponding to M = 0
and −2 < t2/t1 < 0 in the vicinity of the Fermi energy.

directions, respectively, where t1(> 0) and t2 are real. Here,
a1 = (

√
3a, 0) and a2 = (−

√
3a
2 , 3a

2 ) are the primitive lattice
vectors, where a is the lattice constant. Then, the spinless
tight-binding Hamiltonian of this system is

Ĥ =
∑
〈i, j〉

ti j ĉ
†
i ĉ j +

∑
i

miĉ
†
i ĉi, (1)

where ĉi (ĉ†
i ) annihilates (creates) an electron at site i, and

〈i, j〉 denotes a pair of nearest-neighbor sites. Here, the first
term represents nearest-neighbor hoppings with ti j = t2 for
the y direction and ti j = t1 otherwise, and the second term

represents an on-site potential mi = +M and −M for A and B
sublattices, respectively. When M = 0, the system is PT sym-
metric. A nonzero value of M breaks the inversion symmetry
and preserves the time-reversal symmetry. Within the basis of
sublattices A and B, the k-dependent Bloch Hamiltonian is
given by

H (k) =
(

M f ∗(k)
f (k) −M

)
. (2)

To write down the Hamiltonian, we impose a gauge condition
ur,n(k) = eib·rur,n(k + b) for eigenfunctions of the Hamil-
tonian, or equivalently e−ib·kH (k)eib·k = H (k + b) for the
reciprocal vector b. This condition is needed to calculate the
electric polarization as we mention later. Under this gauge
condition, the expression of f (k) is given as

f (k) := 2t1 cos

(√
3a

2
kx

)
ei a

2 ky + t2e−iaky . (3)

We take the unit cell of the reciprocal space of this system
to be a parallelogram spanned by reciprocal lattice vectors
b1 = ( 2π√

3a
, 2π

3a ) and b2 = (0, 4π
3a ) as shown in Figs. 1(b), 1(c)

and 1(d). Since we focus on the y component of the electric
polarization later, this choice of the unit cell of the reciprocal
space makes the calculation of the electric polarization easier.
Energies of this system are given by E± = ±

√
M2 + | f |2. We

set the system to be half filled and the Fermi energy at EF = 0.
This system becomes conducting if and only if M = 0 and

f (k) = 0 at some k points. In this case, the band structure has
two Weyl nodes located at

W1 :

(
2√
3a

cos−1

(
t2
2t1

)
,

2π

3a

)
, (4)

W2 :

(
2√
3a

cos−1

(
− t2

2t1

)
,

4π

3a

)
, (5)

which are related by the mirror symmetry with respect to the y
axis. The energies in the vicinity of the Fermi energy and Weyl
nodes are shown in Fig. 1(e) for M = 0 and −2 < t2/t1 < 0 as
an example. These Weyl nodes exist if |t2/t1| � 2 and, hence,
the electric polarization of this system is not defined when
parameters are in the region M = 0 and |t2/t1| � 2. These
Weyl nodes move parallel to the kx axis when we change t2/t1.
When t2/t1 is negative, the kx components of the Weyl nodes
satisfy W2,x < W1,x as in Fig. 1(b) and when t2/t1 is positive
they satisfy W2,x > W1,x as in Fig. 1(d). The case with M = 0
and t2 = 0 is an exception, where the band gap closes along
the line kx = π√

3a
[Fig. 1(c)].

We next calculate the electric polarization of this system.
According to the modern theory of polarization, the electronic
contribution to the electric polarization is expressed in terms
of the Berry phase of Bloch states. For two-dimensional sys-
tems, the contribution of electrons to the electric polarization
Pe in the α direction is given by

Pe
α = −ie

(2π )2

∫
BZ

d2k
occ∑
n

〈
un(k)

∣∣∣∣ ∂

∂kα

∣∣∣∣un(k)

〉
, (6)

where the integral is over the Brillouin zone, the sum is taken
over all the occupied bands, and |un(k)〉 is the cell periodic
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part of the Bloch state of the nth energy level. This expres-
sion is valid under the wave-vector periodic gauge [2]. Under
this gauge, energy eigenfunctions ur,n(k) satisfy the condition
ur,n(k) = eib·rur,n(k + b), where b is the reciprocal lattice
vector. This gauge condition depends on the choice of the ori-
gin. For convenience, we take the origin O of the model to be
at the midpoint between the A and B sites constituting the unit
cell [Fig. 1(a)], so that the model at M = 0 preserves inversion
symmetry with respect to the origin. To make the electric
polarization vector P well defined, we need to incorporate the
ionic contributions Pion and make the system charge neutral.
The ionic polarization is the sum of products of charges and
positions of all the ions in the unit cell. For convenience, we
assume that the ions are distributed in an inversion-symmetric
manner, which leads to Pion = 0. Then, Eq. (6) gives the
electric polarization of the system. Since we have set EF = 0,
we need one energy eigenstate corresponding to the lower en-
ergy E− = −

√
M2 + | f |2. The choice of the origin affects the

choice of the gauge via the relation ur,n(k) = eib·rur,n(k + b).
Here, the gauge choice of the energy eigenstates needs special
attention since it is not possible to take a gauge which is
analytical in the entire parameter space. Depending on the
sign of the parameter M, we take

|u+(k)〉 = c+

(− f ∗

M+
√

M2+| f |2
1

)
e−i a

2 ky (7)

for M > 0 and

|u−(k)〉 = c−

( 1
f

M−
√

M2+| f |2

)
ei a

2 ky (8)

for M < 0, where the coefficients c+ and c− are the normal-
ization factors. We chose the different wave functions for M >

0 and <0 in order to avoid divergence in their components. By
choosing gauges in such a manner, the Berry connection can
be written as

i

〈
u±

∣∣∣∣ ∂

∂kα

∣∣∣∣u±
〉

= ∓| f |2
| f |2 + (M ±

√
M2 + | f |2)2

∂

∂kα

arg( f ∗)

± a

2
δα,y, (9)

where the upper and lower signs correspond to the cases with
M > 0 and <0, respectively. By integrating these quantities
over the Brillouin zone, we get the α component of the electric
polarization vector P.

B. Polarization and edge charge density

Next, we numerically calculate the electric polarization P
of this system by using Eqs. (6) and (9). From the mirror sym-
metry of the system with respect to the y axis, Px is trivially
zero as a function of M/t1 and t2/t1, as is confirmed directly
from Eq. (9). Hence, we only focus on the y component of the
polarization. By calculating Py for various parameter values of
M/t1 and t2/t1, the electric polarization in the parameter space
is plotted in Figs. 2(a) and 2(b). In this system, the polarization
is defined in terms of modulo the quantum of polarization
e
�

a1,2, where � = 3
√

3a2

2 is the area of the unit cell. We see
that the polarization changes smoothly and continuously in
regions where the system is insulating. Meanwhile, the system
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FIG. 2. The y component of the total polarization vector P.
(a) Three-dimensional plot and (b) two-dimensional color plot of Py

in the parameter space. We put P0 = ae
�

, where � is the area of the
unit cell. (c, d) Py at (c) M/t1 = −0.001 and at (d) M/t1 = 0.001.
Results of numerical calculations using Eq. (9) are plotted by mark-
ers and the black lines show plots of Eq. (12). There exists the
polarization jump across M = 0 when −2 < t2/t1 < 2, where the
system is a Weyl semimetal. When |t2/t1| > 2, the polarization is
zero at M = 0 because of the inversion symmetry.

is a Weyl semimetal when |t2/t1| < 2 and M = 0, and the
polarization is not defined. When |t2/t1| < 2, the limit value
of Py taking M to zero from the positive side, limM→0+ Py, and
that from the negative side, limM→0− Py, give different values.

To study the behavior of the polarization in the limits M →
0±, we note that the y component of the Berry connection can
be simplified in the limit M → 0± as

lim
M→0±

i

〈
u±

∣∣∣∣ ∂

∂ky

∣∣∣∣u±
〉

= ∓1

2

∂

∂ky
arg( f ∗) ± a

2
. (10)

This means that the polarization in the y direction of the
system can be written as a change of arg( f ∗) across the
Brillouin zone. We then notice that f ∗ vanishes at the Weyl
nodes W1 and W2, and that arg( f ∗) winds around these Weyl
nodes. Hence, there has to be a jump of arg( f ∗) across a
curve in reciprocal space connecting two Weyl nodes if we
set −π < arg( f ∗) � π . Examples of the position of the jump
are shown by the blue lines in Figs. 1(b) and 1(d) for negative
and positive values of t2/t1, respectively. By crossing these
lines, arg( f ∗) changes by 2π , and hence, the region between
Weyl nodes projected to the kx axis needs special care when
we integrate over kx. For the limit M → 0±, we can find that∫ k0

y + 4π
3a

k0
y

dky lim
M→0±

i

〈
u±

∣∣∣∣ ∂

∂ky

∣∣∣∣u±
〉

=
{

0 (kx ∈ W )

±π (otherwise),
(11)

where W is an open interval (W2,x,W1,x ) for t2/t1 < 0 and
(W1,x,W2,x ) for t2/t1 > 0, respectively, and k0

y := 1√
3
kx. Then,

using positions of two Weyl nodes Eqs. (4) and (5), the y
components of the polarization in the M → 0± limits for
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FIG. 3. Edge charge densities of the model. (a, b) The edge of
the system with (a) |t2/t1| < 1 and (b) |t2/t1| > 1. Electrons tend to
move in the directions of blue arrows when M/t1 is increased. (c, d)
Accumulated edge charge density as a function of M/t1 with t2/t1 =
0.1 and 1.5, respectively, corresponding to the cases of (a) and (b).
σ0 := e√

3a
is the unit of the line charge density.

|t2/t1| < 2 are given by

P±
y = −e

(2π )2

(
2π√

3a
− |W2,x − W1,x|

)
× (±π )

= ∓
[

3

4
− 3

4π

∣∣∣∣cos−1

(
− t2

2t1

)
− cos−1

(
t2
2t1

)∣∣∣∣
]

P0,

(12)

where P0 := ae
�

. On the other hand, for |t2/t1| > 2, P±
y = 0

holds, as expected from the inversion symmetry at M = 0. We
plot these analytical results in Figs. 2(c) and 2(d) at M → 0∓,
respectively. The results of numerical integration of Eq. (9)
over the Brillouin zone at M/t1 = ∓0.001 are also plotted. We
can see that although the numerical calculation in the small M
region is difficult due to the small band-gap size, numerical
and analytical results agree with each other.

In the Weyl semimetal phase (M = 0, |t2/t1| < 2), the
bands have two Weyl nodes protected by the nontrivial π

Berry phase around each Weyl node, and these Weyl nodes
are distant from each other in k space [see Figs. 1(b) and
1(d)]. Nonetheless, the case with M = 0 and t2 = 0 is an ex-
ception. At M = 0 and t2 = 0, the system is one dimensional
and the band structure is independent of ky; it makes the
two gap closing points extend along the ky direction, and
allows them to meet. In the resulting band structure, the
gap closes along kx = π√

3a
[see Fig. 1(c)], and the system is

equivalent to the one-dimensional chain with nearest-neighbor
hopping t1. Therefore, the M term gives a staggered poten-
tial to the one-dimensional chain, and the polarizations for
M = 0+ and 0− are different by �P = e

2�
a1 = (

√
3

2 P0, 0) ≡
(0,− 3

2 P0) (mod e
�

a1,2), in agreement with our result showing
P±

y = ∓ 3
4 P0.

When we make an edge by cutting the system as in
Figs. 3(a) and 3(b), the edge charge density can be obtained
from the polarization calculated above as σ = P · n, where
n = (0, 1) is the unit vector normal to the edge. We plot σ

as a function of M/t1 at t2/t1 = 0.1 and 1.5 in Figs. 3(c)

and 3(d), respectively. We can see that the rate of change
of the edge charge density by increasing M/t1 has opposite
signs between the cases with |t2/t1| < 1 and |t2/t1| > 1. This
can be qualitatively understood by considering the motion of
electrons by increasing the value of M/t1. When |t2/t1| < 1,
electrons at the A sublattice are transferred to the B sublattice
by hoppings t1 and electrons tend to move in the directions
of blue arrows in Fig. 3(a), leading to an increase in the edge
charge density. On the other hand, when |t2/t1| > 1, electrons
tend to move in the directions of blue arrows in Fig. 3(b) and
it leads to the decrease in the edge charge density.

III. POLARIZATION JUMP IN GENERAL SYSTEMS
ACROSS A WEYL SEMIMETAL PHASE

The jump of the electric polarization in the previous sec-
tion is essentially caused by the 2π phase winding of f (k)
around the Weyl nodes. Although details of the jump are
dependent on the form of f (k) for the system under consid-
eration, the mechanism is the same for all two-band models
described by the Hamiltonian in Eq. (2). In this section, we
consider a general two-dimensional N-band spinless system
in a Weyl semimetal phase. We then introduce a parameter M
which breaks the symmetry protecting the Weyl nodes and
opens a gap. Then, we show that the jump of the electric
polarization across M = 0 is described similarly to that in the
previous section.

A. General theory

Consider a general two-dimensional N-band model. We
assume that the system is in the Weyl semimetal phase where
the band gap closes at two Weyl nodes protected by some
symmetries. Next, as the example showed in the previous
section, we introduce a symmetry-breaking real parameter M
to this Hamiltonian. Let us further suppose that the system is
insulating when M �= 0, because a gap opens at Weyl nodes
by broken symmetries. Let H (M )(k) be the Hamiltonian at the
parameter value M. Then, the jump of the polarization vector
�P across M = 0 along one of the reciprocal vectors bβ is

�Pβ := P+
β − P−

β = −ie

(2π )2

∫
BZ

d2k

×
occ∑
n

(
lim

M→0+

〈
u(M )

n

∣∣∣∣ ∂

∂kβ

∣∣∣∣u(M )
n

〉

− lim
M→0−

〈
u(M )

n

∣∣∣∣ ∂

∂kβ

∣∣∣∣u(M )
n

〉 )
, (13)

where |u(M )
n 〉 is the eigenstate of the nth band of the M-

dependent Hamiltonian H (M )(k). Here, the choice of the
origin is fixed regardless of the parameter values. Then the
ionic polarization does not have a jump at M = 0 and has no
contribution to Eq. (13). The polarization jump across M = 0
is now proportional to the difference of the Berry phases.

Except for the k points where the gap closes at M = 0, the
subspace spanned by the occupied states at a fixed value of
k changes analytically across M = 0, and there is no singu-
larity. Then, Eq. (13) can be rewritten in terms of the single
eigenstate of the top of the valence band near the k points
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where the gap closes at M = 0. At this point, the expression
of the polarization jump is simplified and the Berry phase of
only the single band is needed. Therefore, as we explain in the
following, we can reduce the problem into a 2 × 2 effective
Hamiltonian, which is easier to handle analytically.

Let |un(k)〉 (n = 1, 2, . . . , N ) be eigenstates at M = 0
arranged in an increasing order of the energy, E1 � E2 �
. . . � EN , and let N ′ denote the number of occupied bands
when M �= 0. Then, in order to calculate the polarization jump
across M = 0, we only need to consider the effective 2 × 2
Hamiltonian

H (M )
eff (k) := (〈uN ′+1|H (M )(k)|uN ′+1〉〈uN ′+1|H (M )(k)|uN ′ 〉

× 〈uN ′ | H (M )(k) |uN ′+1〉 〈uN ′ |H (M )(k)|uN ′ 〉)

(14)

for the two bands n = N ′, N ′ + 1, which constitute the Weyl
nodes at M = 0, and focus on the k points where the gap
closes at M = 0. This effective Hamiltonian describes the
Weyl semimetal phase at M = 0, inheriting the symmetry of
the original Hamiltonian. Since we got a 2 × 2 matrix, calcu-
lations of the Berry connection and the jump of polarization
are parallel to those in the previous section. We can write
the jump of polarization in the β direction across the Weyl
semimetal phase as

�Pβ = −e

(2π )2

∫ bα

0
dkα �φβ (kα ) sin θ, (15)

where we take {bα, bβ} to be the set of primitive lattice vec-
tors, kα is the wave-vector component along the bα direction,
θ is an angle between bα and bβ , and bα = |bα|. Here,

�φβ (kα ) := φ+
β (kα ) − φ−

β (kα ) (16)

is the difference of Berry phases in the β direction:

φ±
β (kα ) := lim

M→0±
i
∫ bβ

0
dkβ

〈
u(M )

0

∣∣∣∣ ∂

∂kβ

∣∣∣∣u(M )
0

〉
, (17)

where |u(M )
0 〉 is the eigenstate corresponding to the lower

energy of the effective Hamiltonian, kβ is the component of k
along bβ , and bβ = |bβ |. This Berry phase difference �φβ (kα )
can jump as we change kα across the Weyl nodes.

A key step of our calculation is to regard this effective
Hamiltonian H (M )

eff (k) as a Hamiltonian defined in the three-
dimensional (kx, ky, M ) space. Then the two-dimensional
Weyl nodes (Wj,x,Wj,y) ( j = 1, 2, . . .) can be considered
as three-dimensional Weyl nodes (Wj,x,Wj,y, M = 0), having
monopole charges ±1. By using this topological nature of
Weyl nodes, general understandings of the jump of the po-
larization can be given. To calculate this jump, let us consider
the case in Fig. 4, where a Weyl node with a monopole charge
Q lies between kα = k(1)

α and k(2)
α in the (k, M ) space (here,

this Weyl node can be of higher order with |Q| � 2). Then
the difference of �φβ (kα ) between these two values of kα can
be evaluated as

�φβ (k(2)
α ) − �φβ (k(1)

α )

= [φ+
β (k(2)

α ) − φ+
β (k(1)

α )] − [φ−
β (k(2)

α ) − φ−
β (k(1)

α )]

=
∫∫

S+
dS · B(k, M ) −

∫∫
S−

dS · B(k, M ) = 2πQ, (18)

k�
O

k�

Q

M

k(1)
� k(2)

�

��

	�

S+

S-

FIG. 4. A (higher-order) Weyl node with monopole charge Q in
three-dimensional (kα, kβ, M ) space. Two planes S± indicate the area
of integration in Eq. (18).

in the limit δ → 0, where the surface integrals are evaluated
over surfaces S± : M = ±δ, k(1)

α � kα � k(2)
α (yellow and

blue planes in Fig. 4) and B(k, M ) is the three-dimensional
Berry curvature of |u(M )

0 〉 in the (k, M ) space. In this calcu-
lation, we used the fact that along M = +δ (−δ) the band
structure is gapped and we can take a gauge continuous for
the whole surface S+ (S−).

We also note

�φβ (kα ) ≡ 0(mod 2π ) (19)

as long as the system is gapped on the line kα = const, because
the occupied states are continuous and analytic across M =
0, guaranteed by the gap. Here, the Berry phase is defined
modulo 2π due to the gauge degree of freedom. Thus, we can
write

�φβ (kα ) = 2πn(kα ), (20)

where n(kα ) is an integer dependent on kα . Here, because
the gap is open at M = +δ and −δ, we take the gauge to
be continuous in the entire two-dimensional Brillouin zone at
M = +δ and −δ.

While the integer n in Eq. (20) can be chosen arbitrarily
by gauge transformations, once we fix the gauge at a certain
value of kα , the value of �φβ (kα ) is fixed for other values of kα

by Eq. (18). In Fig. 5(a), we illustrate this case with a pair of
(higher-order) Weyl nodes with monopole charges ±Q, and
Fig. 5(c) shows the change of �φβ (kα ). One can study the
difference of Berry phases in the other direction �φα (kβ ) in a
similar way, and it is shown in Fig. 5(b).

Then, by integrating Berry phases, jumps of electric polar-
ization in each direction are

�Pα =
(

− e

2π
Qdw

β − me

2π
bβ

)
sin θ, (21)

�Pβ =
(

e

2π
Qdw

α − ne

2π
bα

)
sin θ, (22)

where m, n ∈ Z and dw = dw
α eα + dw

β eβ (ei := bi/|bi|, i =
α, β ) represents the displacement vector pointing from the
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O

k�
(b)(a)

k�O

k�

k�

b�

b�

O

2
n

2
(n-Q)

2
m
2
(m+Q)(c)

+Q

-Q

FIG. 5. Schematic illustrations of (higher-order) Weyl nodes
with monopole charges ±Q. (a) Two Weyl nodes in a Brillouin zone.
The black arrow indicates the displacement vector. (b, c) The jumps
of the differences of Berry phases in the β(α) direction plotted as a
function of kα (kβ ), respectively, across M = 0. They jump by ±2πQ
at the projections of the Weyl nodes to each axis.

Weyl node with a negative monopole charge to that with a
positive monopole charge in the reciprocal space.

Now we can introduce a “Weyl dipole” similarly to an
electric dipole as

pw := Qdw. (23)

Then the polarization jump �P can be written as

�P = e

2π
ẑ × pw + e

�
a, (24)

where ẑ = (0, 0, 1)T and a (:= −maα − naβ ) is a lattice vec-
tor. Since P+ and P− are determined in terms of modulo the
quantum of polarization e

�
a j ( j = α, β ), �P is also defined

in terms of modulo e
�

a j and the second term in Eq. (24)
represents this degree of freedom.

Therefore, we can write the jump of electric polarization as

�P ≡ e

2π
ẑ × pw

(
mod

e

�
a j

)
. (25)

This is the main result of this paper. So far, we considered
the simplest case with only one pair of Weyl nodes in the
Brillouin zone; meanwhile, this formula (25) holds in general
cases where more than two Weyl nodes or higher-order Weyl
nodes (with |Q| � 2) exist in the Brillouin zone. Still in such
cases, one can define a total Weyl dipole pw since the sum of
monopole charges in the Brillouin zone must be zero. Then,
the jump of the electric polarization is given by Eq. (25). We
note that the Weyl dipole pw is defined in terms of modulo
bi due to Brillouin zone periodicity; this does not affect the
result (25) because it reduces to “modulo- e

�
a j” ambiguity in

Eq. (25).
So far we discussed the case where the Weyl point is at

the Fermi energy. Here we discuss the case where the Fermi
energy is slightly above or below the Weyl point. In such
cases, the system become conducting for a finite range of
M ∈ [−δm1, δm2], where δm1,2 > 0. By continuity, there will
still be a jump in polarization across this conducting region,
but the size of the jump deviates from the value given by
Eq. (25) because our argument leading to Eq. (25) relies on
the property that δ is infinitesimal.

Thus, we have shown that the jump of the polarization
across M = 0 (conducting limit) is given in a simple formula
(25) in general. If we consider Weyl points protected by
the inversion symmetry and assume that inversion-symmetry-
breaking M changes its sign under space inversion, we have
P+ ≡ −P− (mod e

�
a j ) and

P+ ≡ e

4π
ẑ × pw

(
mod

e

2�
a j

)
, (26)

P− ≡ − e

4π
ẑ × pw

(
mod

e

2�
a j

)
(27)

holds in general multiband systems.
Finally, we confirm our general result by the exam-

ple shown in the previous section. The monopole charges
of the system are Q = +1 for the Weyl node W1 and
Q = −1 for W2 when −2 < t2/t1 < 0 [Fig. 1(b)] and
Q = +1 for W2 and Q = −1 for W1 when 0 < t2/t1 <

2 [Fig. 1(d)]. By using the positions of Weyl nodes
Eqs. (4) and (5), the Weyl dipole is expressed as pw =
( 2√

3a
|cos−1( −t2

2t1
) − cos−1( t2

2t1
)|, sgn( t2

t1
) 2π

3a , 0)T . Therefore, the
jump of polarization is

�P ≡
(

− sgn

(
t2
t1

)√
3

2

3

2π

∣∣∣∣ cos−1

(
− t2

2t1

)
− cos−1

(
t2
2t1

)∣∣∣∣0
)

P0

≡
(

0 − 3

2
+ 3

2π

∣∣∣∣ cos−1

(
− t2

2t1

)
− cos−1

(
t2
2t1

)∣∣∣∣0
)

P0

(
mod

e

�
a1,2

)
. (28)

This agrees with Eq. (12).

B. Candidate materials

In this subsection, we discuss candidate materials of two-
dimensional Weyl semimetals protected by some symmetry.
To confirm the theory of this paper, here we also discuss
external perturbations that break the symmetry and gap the
Weyl nodes.

One option is to use PT -symmetric Weyl semimetals such
as graphene, AB-stacked bilayer graphene, graphynes [22,23],
and Mg2C monolayers [24]. Among them, in graphene, gra-
phynes, and Mg2C monolayers, the Weyl nodes are protected
both by PT and C2zT symmetries. To open a gap at the
Weyl nodes of these materials, we need to break both PT
and C2zT symmetries. Therefore, if we use an electric field E
for the symmetry-breaking term M, it should be in plane, but

035122-6



POLARIZATION JUMPS BY BREAKING SYMMETRIES OF … PHYSICAL REVIEW B 107, 035122 (2023)

in reality, the in-plane electric field simply induces a current,
instead of opening a gap. Thus, we need to adopt other types
of symmetry-breaking terms, such as a staggered potential as
discussed in Sec. II, as the symmetry-breaking term M.

On the other hand, AB-stacked bilayer graphene is known
to host Weyl nodes with Berry phase 2π at K and K ′ points
which can be gapped by applying an interlayer bias voltage
M [25]. Then, it has Weyl nodes in the three-dimensional
space (kx, ky, M ) with monopole charges Q = ±2 and the
situation is similar to that of Sec. II. However, polarization
in a two-dimensional sheet is prohibited by its threefold rota-
tional symmetry. Therefore, we need to displace Weyl nodes
from K and K ′ points by breaking the rotational symmetry,
for example by imposing a uniaxial strain to get a nonzero
polarization. Then, our theory predicts a polarization jump
by changing the interlayer bias voltage across zero. This idea
of generating a polarization by interlayer bias voltage under
the broken rotational symmetry in the bilayer graphene is
similar to the one discussed in the context of nanoribbons of
AB-stacked bilayer graphene [26].

Other candidates can be Weyl semimetals without the in-
version symmetry such as a strained Na2O sheet, which hosts
Weyl nodes on the kx axis protected both by a mirror symme-
try My and a twofold rotational symmetry C2x [27], where the
sheet lies in the xy plane. For such systems, in order to open a
gap only by an external electric field, one needs to break both
of these symmetries. Only the electric field along the y direc-
tion satisfies these conditions but it cannot be used since it just
induces a current within the film. Instead, adding further in-
plane strains in other directions is expected to solve this prob-
lem and make it possible to observe the polarization jump.

IV. CONCLUSION

In summary, we have studied the behavior of the electric
polarization in the limit where the two-dimensional sys-
tem hosts symmetry protected Weyl nodes. We presented an
example of a PT -symmetric Weyl semimetal by a model
on the hexagonal lattice with anisotropic hoppings and
inversion-symmetry-breaking on-site potentials. Calculating
the polarization using the modern theory of polarization, we
found that in the inversion symmetric limit the polarization
approaches zero if the system is insulating, but if the system
becomes a Weyl semimetal in this limit the polarization has
a nonzero limit value. Furthermore, this limit value depends
on whether the on-site potential approaches zero from the
positive side or the negative side, and hence, there is a finite
jump in polarization in the conducting limit. This jump of the
polarization is expressed as a function of the distance between
two Weyl nodes.

The analysis is extended to general two-dimensional sys-
tems with a symmetry-breaking parameter M, such that it is

gapless at Weyl nodes at M = 0 and insulating when M �= 0.
Even if there are many bands below the Fermi energy, the
jump of the polarization is determined by the states near the
Weyl nodes, and it is universally written in terms of the Weyl
dipole, which we introduced in this paper. The results indicate
that the size of the jump does not depend on other details
of the band structure. We discussed candidate materials for
experimental observations of our proposal.

A similar phenomenon is reported in Ref. [28], where
a jump in the piezoelectric tensor (PET) across a topo-
logical phase transition at the gap closing is predicted in
two-dimensional spinful systems. This proposal is distinct
from that in the present paper. In our theory, the jump in the
polarization is solely determined by the Weyl dipole, while
the PET jump depends on several system parameters such
as electron-strain coupling and Dirac velocities. Furthermore,
the polarization jump can be seen both in spinless and spinful
systems, and it is not necessarily accompanied by topological
phase transition.

We note that a polarization jump across gap closing is dis-
cussed in the context of one-dimensional systems in Ref. [29].
However, we emphasize that our results are not an extension
of the jumps of electric polarization in one-dimensional sys-
tems, as reported in Ref. [29]. To explain this, we take our
model as an example, where Py jumps across the gap closing.
If we are to understand this result in terms of the previous
theory on one-dimensional systems in Ref. [29], our model at
kx = const is regarded as a one-dimensional system. However,
as we change M, the gap of the one-dimensional system (at
constant kx) closes only at the two kx values corresponding
to the Weyl points W1 and W2. At other values of kx, the
gap never closes. From this observation, our result of the
jump of Py given in terms of the Weyl dipole does not follow
from the argument based on the previous work. Likewise,
in the class of general two-dimensional systems studied in
this paper, our results do not follow from the theory of po-
larization jumps in one-dimensional systems in Ref. [29]. In
addition, our main result, Eq. (25), was obtained using quanti-
zation of the monopole charge, a topological property unique
to Weyl points in three-dimensional space. This discussion
works since the Weyl points of two-dimensional systems
can be regarded as Weyl points in the three-dimensional
space (kx, ky, M ). On the other hand, for Weyl points in one-
dimensional systems, monopole charges cannot be introduced
in (k, M ) space and the theory for the jump of polarization is
completely different.
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