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Non-Gaussian variational wave functions for interacting bosons on a lattice
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A variational method for studying the ground state of strongly interacting quantum many-body bosonic
systems is presented. Our approach constructs a class of extensive variational non-Gaussian wave functions
which extend Gaussian states by means of nonlinear canonical transformations (NLCTs) on the fields of the
theory under consideration. We illustrate this method with the one-dimensional Bose-Hubbard model for which
the proposal presented here provides a family of approximate ground states at arbitrarily large values of the
interaction strength. We find that, for different values of the interaction, the non-Gaussian NLCT-trial states
sensibly improve the ground-state energy estimation when the system is in the Mott phase.
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I. INTRODUCTION

One of the major problems in many-body physics is un-
derstanding the phenomena associated to strongly coupled
systems. This includes a huge variety of effects ranging from
quark confinement to strongly correlated electron systems in
condensed matter physics. To do so, nonperturbative methods
are required. Many useful techniques such as path integral
approaches, large N expansions, or numerical methods (such
as density matrix renormalization group or tensor networks)
have been developed to address these problems. While these
methods have successfully been applied to a broad range of
problems, the complexity of the theoretical proposals have
obscured the understanding of the physical phenomena. In
this sense, it is acknowledged that the use of variational
methods allows us to tackle these problems to some extent
in a relatively simple way by means of variational wave
functions. When it comes to nonperturbative aspects, there
are situations in which the use of wave functionals exhibits
clear advantages. For example, path integral methods are es-
pecially suited to compute quantities that have no perturbative
contributions and can be addressed through a saddle-point
approximation. Nevertheless, in case the observables of in-
terest can receive both perturbative and nonperturbative
contributions, the path integral approach becomes more
difficult [1].

Choosing appropriate variational wave functions for a
strongly interacting many body system is a challenging is-
sue [2]. First, one has the problem of the generality of the
trial state; namely, the trial state should be general enough
to capture the most salient physical features of the phe-
nomena. Due to the enormous size of the Hilbert space
in a many-body system, it is very difficult to identify by
mere intuition the relevant features that have to be grasped
by the ansatz. Thus, a systematic method to build them
would be desirable. Second, one must face the problem

of calculability. Even possessing a reasonable and flexi-
ble ansatz for the wave functional, one wants to evaluate
expectation values of operators/observables of interest in
this state which, in general, will be challenging. Given the
very limited ability to evaluate expectation values with non-
Gaussian wave functionals, the calculability requirement on
the trial wave functional has constrained the form of the
trial wave functionals to Gaussian states.

Gaussian states are given by the exponentials of quadratic
functionals of creation and annihilation operators of the
fundamental fields of the theory under consideration. The
expectation values of physical observables can be efficiently
computed for these states [3], which obey Wick’s theorem,
thus allowing us to express expectation values of arbitrary
products of mode operators in terms of products of pairs [4].
Gaussian approximations as the Hartree-Fock-Bogoliubov
one are used to approximate the dynamics of interacting
bosons [5,6]. While Gaussian states represent the exact
ground state in noninteracting systems, they have some impor-
tant limitations in capturing phenomena related to interacting
systems. Therefore, it is interesting to extend those ansatze to
non-Gaussian generalizations. Given, however, the very lim-
ited ability to evaluate expectation values with non-Gaussian
wave functionals, the calculability requirement on the trial
wave functional is typically restricted to the form of the trial
wave functionals to Gaussian states.

Finally, one must address the problem of the ultraviolet
modes. The main objective of a variational calculation in a
strongly interacting system is to obtain the correct configura-
tion for the low-momentum modes of the field in the vacuum
wave functional. Due to the interaction between the high-
and low-momentum modes in an interacting system, it is thus
desirable to have a method that yields variational parameters
that optimally integrate out the effects of high-energy modes
into the low-energy physics.

2469-9950/2023/107(3)/035121(9) 035121-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6247-8961
https://orcid.org/0000-0002-6800-9242
https://orcid.org/0000-0003-4478-1948
https://orcid.org/0000-0002-9333-0062
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.035121&domain=pdf&date_stamp=2023-01-17
https://doi.org/10.1103/PhysRevB.107.035121


T. QIAN et al. PHYSICAL REVIEW B 107, 035121 (2023)

In this paper, following the pioneering works [7–9], we
develop a class of variational non-Gaussian wave functions
which extend Gaussian states by means of nonlinear canonical
transformations (NLCTs) on the fields of the theory under
consideration. The presented scheme is self-consistent and
requires no other assumptions than the choice of a NLCT-
variational manifold. These variational wave functions have
been shown to possess strong entanglement between the mi-
croscopic degrees of freedom [10] while retaining most of
the calculability of Gaussian wave functions. There exist sev-
eral related methods, like the cluster expansion [11,12], the
t expansion [13], and the δ expansion [14], which, even go-
ing (slightly) beyond the Gaussian ansatz, yield expectation
values that cannot be exactly calculated and have to be ap-
proximated by additional series expansions.

We illustrate the NLCT method with the Bose-Hubbard
(BH) model in one dimension. Our approach provides a family
of approximate ground states at arbitrarily large values of
the interaction strength. Quantum interacting bosons in 1D
provide an exciting area where condensed matter, low temper-
ature, and ultracold atomic converge. The BH model describes
a system of interacting spinless bosons on the lattice. This
model provides a theoretical description of interacting cold
atoms in optical lattices [15,16]. In addition, some numerical
solutions exist for the BH model that allow us to benchmark
our non-Gaussian ansatze [15].

In line with our approach, in Ref. [17], the authors built
non-Gaussian wave functions for many-body systems in the
lattice using a set of unitary transformations on Gaussian
states. The nature of the transformation depends on the theory
under consideration. Its general form was inspired by canon-
ical transformations in condensed matter physics, such as
the polaron transformations in electron-phonon systems and
flux attachment in fractional quantum hall effect. While the
construction in Ref. [17] may work for mixed boson-fermion
systems, it offers a very limited class on purely non-Gaussian
bosonic states. This is due to the challenge posed by what we
call the truncation problem for bosons that will be discussed
later in this paper.

In the context of high-energy physics, NLCT wave func-
tions have been recently used to build a nonperturbative
version of continuous entanglement renormalization tensor
networks to explore connections between tensor networks and
the Anti de Sitter/Conformal Field Theory (AdS/CFT) holo-
graphic correspondence [18–20]. The tensor network circuit
there implements a series of scale-dependent NLCTs. It was
shown that the leading contribution to the entanglement en-
tropy comes from the Gaussian part of the ansatz and is always
related to the leading area term in the holographic calculation.
On the other hand, the subleading contributions are given
by the non-Gaussian part of the ansatz and are related with
quantum corrections to the holographic entanglement entropy.

The paper is structured as follows: A description of the
NLCT transformation method and some technical aspects, as
the calculation of expectation values, are presented in Sec. II.
In Sec. III, we introduce the 1D BH model and briefly review
the variational approach to its ground state using Gaussian
states [Gaussian variational approach (GVA)]. In Sec. IV,
we detail the calculation of the energy expectation value for
the BH Hamiltonian in a concrete NLCT non-Gaussian state.

We discuss the suitability of this choice of NLCT state for
the problem at hand and provide expressions for the energy
functional that will be subsequently optimized. Section V
details the optimization of the ground-state energy functional
and the results, where our approximation to the ground state of
the 1D BH model for arbitrarily large values of the interaction
strength shows a sensible improvement on the estimation of
the ground-state energy with respect to the Gaussian case,
especially when the system is in the Mott phase. We finish
with a discussion on the results and an outlook in Sec. VI.

II. NON-GAUSSIAN VARIATIONAL ANSATZ

In a bosonic QFT on a lattice, let us consider a normalized
Gaussian variational wave functional

�G(λ) ≡ N exp

⎛
⎝−1

2

∑
k,l

b†
k �k lbl

⎞
⎠, (1)

where the creation and annihilation operators for the bosonic
modes are denoted by b†

k and bk , respectively, such that
[bk, b†

k′ ] = δk,k′ , and �kl is a matrix depending on the varia-
tional parameters λ. Then, extensive non-Gaussian trial wave
functions can be nonperturbatively built as

|�(λ, h)〉NG = U(h) |�(λ)〉G = exp(B(h)) |�(λ)〉G, (2)

with U(h) = exp(B(h)), and B(h)† = −B(h) an anti-
Hermitian nonquadratic operator (in terms of b†

k and bk ) that
nonperturbatively adds new variational parameters labeled by
h to those λ defining |�(λ)〉G.

The exponential nature of U ensures the correct extensive
volume dependence of observables and, specifically, the total
energy of the system. As U is unitary, the normalization of the
state is not affected. It is straightforward to see that the ex-
pectation value of any operator O with |�(λ, h)〉NG ≡ |�〉NG

amounts to the calculation of a Gaussian expectation value for
the transformed operator Õ = U† OU:

〈�|O|�〉NG ≡ 〈�|Õ|�〉G. (3)

In principle, for bosonic systems, both in finite and infinite
lattices, any nonquadratic choice for B(h), while leading to
a non-Gaussian trial state, induces an infinite commutator
expansion via the Hadamard’s lemma:

Õ = eadB O =
∞∑

n=0

(−1)n

n!
[B,O]n, (4)

[B,O]n ≡ [B [B, · · ·O]]︸ ︷︷ ︸
n times

. (5)

This spoils any possibility on having an ansatz with finite
calculability properties as any computation of an expecta-
tion value amounts to the evaluation of an infinite series of
Gaussian expectation values. This is what we call the trun-
cation problem. In fermionic systems in finite lattices, this
basic problem is alleviated by the anticonmuting nature of
its operator algebra, namely, for a nonquadratic fermionic
operator F(h),

exp[F(h)], (6)
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has only a finite number of terms in its formal power expan-
sion series or, equivalently, [F,O]n = 0 at least for n � N ,
with N the number of sites in the lattice. This, of course,
does not ensure that any further structure is needed to
find fermionic ansatze with nice calculability properties (see
Refs. [19,21,22] for examples in fermionic systems), but it
is worth mentioning that the truncation problem is especially
ill-posed in bosonic systems.

Remarkably, the method presented here provides an ansatz
for bosonic systems that automatically implements a control-
lable truncation in Eq. (5). This reduces the calculation of
expectation values of operators to a finite number of Gaussian
expectation values. The operator B consists of a product of
bosonic operators π ’s and φ’s, which is given by

B = −s
∫

p,{qi}
hpq1···qm πp φq1 . . . φqm δp,−∑

qi
, (7)

with φk = 1√
2
(bk + b†

−k ), πk = 1√
2 i

(b−k − b†
−k ) in such a way

that [φk, πk′ ] = iδk,−k′ and m ∈ N. We will denote these oper-
ators from here in advance symbolically as B ≡ π φm. Here,
s is a variational parameter that tracks the deviation of any
observable from the Gaussian case. hp,q1,...,qm is a variational
function that must be optimized upon energy minimization.
It is symmetric with respect to exchange of qi’s and is con-
strained to satisfy

hp,q1,...,qm = 0, p = qi,

hp,q1,...,qm × hqi,k1,...,km = 0. (8)

These conditions ensure that the commutator series Eq. (5)
terminates after the first nontrivial term, namely, the con-
straints in Eq. (9) are responsible for this truncation when
the Hadamard’s lemma is applied. The action of U on the
canonical field operators φk and πk is given by

φ̃k ≡ U† φk U = φk + s �k,

π̃k ≡ U† πk U = πk − s 	k, (9)

where �k, 	k are defined as the nonlinear field functions:

�k ≡
∫

qi

hk,q1,...,qm φq1 · · ·φqmδp,
∑

qi
,

	k ≡ m
∫

qi

hq1,k,...,qm πq1 φq2φqmδp,
∑

qi
.

(10)

Being U unitary, the canonical commutation relations still
hold under the nonlinear transformation of the fields, giving
[φ̃p, π̃q] = iδp,−q. For this reason, the above transformations
are known as NCLTs.

Regarding observables, it is of particular interest to con-
sider n-point correlation functions 〈φk1 · · · φkn〉NG. To evaluate
this, we use Eqs. (9) and (10) to obtain

〈φk1 · · · φkn〉NG = 〈φk1 · · ·φkn〉 + s[〈�k1φk2 · · · φkn〉 + · · ·
+ 〈φk1 · · · φkn−1�kn〉]
+ s2[〈�k1�k2φk3 · · · φkn〉 + · · ·
+ 〈φk1 · · · �kn−1�kn〉] · · · + sn〈�k1 · · ·�kn〉,

(11)

where 〈· · · 〉 refers to a an expectation value taken with re-
spect to the Gaussian state. That is to say, the calculability
of the ansatz allows us to compute the expectation value
of observables such as correlation functions in terms of a
finite number of Gaussian expectation values. In particular,
the terms proportional to s j in the non-Gaussian n-point corre-
lation function correspond to [n + m( j − 1)]-point Gaussian
correlators, where j = 0, . . . , n and m is the power associated
to the operator B = πφm.

III. GAUSSIAN VARIATIONAL APPROACH
TO THE BH MODEL

The BH model describes a system of interacting spinless
bosons on the lattice. It is a theoretical description in a wide
variety of contexts such as interacting ultracold atoms in opti-
cal lattices, 4He in various confined geometries, and granular
superconductors [23]. Its Hamiltonian in 1D is given by

HBH= − t
∑
〈i, j〉

(b†
i b j + bib

†
j )+

U

2

∑
t

[ni(ni − 1)] − μ
∑

i

ni.

(12)

Here, 〈i, j〉 denotes nearest neighbors, [bi, b†
j] = δi j , and ni =

b†
i bi is the number operator. In the first term, the kinetic

energy, t , is the hopping amplitude. The second term stands
for the on-site interaction with repulsion strength U (> 0).
For convenience, we include the chemical potential, μ.

The dynamics of the BH model is given by the interplay
between boson tunneling (with amplitude t ) and the repulsion
between two bosons on the same site (of energy U ). At fixed
density, for small U/t , the bosons can be considered as nearly
free, so at low temperatures T they condense into a superfluid
with macroscopic occupation of the zero momentum single-
particle state. In the opposite limit of large U/t , the repulsion
between the bosons localizes them into a Mott insulator. The
Mott insulator is a state adiabatically connected to the product
state with one boson in each potential minimum of the lattice.
Interestingly, there is a second-order quantum phase transition
between these states which occurs at a critical value of U/t .
This transition is driven by phase fluctuations and belongs to
the XY universality class. In addition, there is another univer-
sality class for the Mott transition—a transition that occurs by
changing the chemical potential (density), which is driven by
density fluctuations and belongs to the mean-field universality
class [15,24].

Here we discuss the Gaussian Variational approach (GVA)
for the BH model in D = 1. For that, it is convenient to write
the Hamiltonian in momentum space,

H =
∑

k

εkb†
kbk + U

2N

∑
k,p,q

b†
k+qb†

p−qbkbp , (13)

where bk = 1√
N

∑
i e−ik jb j , with [bk, b†

k′ ] = δk,k′ , and

εk = −2t cos
2πk

N
− μ (14)

refers to the (noninteracting) dispersion relation with N the
number of lattice sites. The generalization to D > 1 is trivial.
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The GVA is based on building a Gaussian variational trial
state given by

|�(λ; β0)〉G = UG|�〉 , (15)

with |�〉 being the trivial vacuum bk|�〉 = 0 and

UG = D(β0) S(λ) . (16)

Here S a squeezed operator and D a displacement operator
(which accounts for boson condensation in the broken sym-
metry phase) given by

S(λ) ≡ exp

(
1

2

∑
k

λk (b†
−kb†

k − b−kbk )

)
,

D(β0) ≡ exp(β0(b†
0 − b0)). (17)

We note that S(λ) is particular case of Eq. (1), where �k l is
diagonal in the mode basis with �k l ≡ λk δk+l, 0. The unitary
transformation in Eq. (15) yields a canonical linear trans-
formation (Bogoliubov transformation) on the field operators
given by

U †
G b†

k UG = uk b†
k − vk b−k + δk0β0, (18)

where uk ≡ cosh(λk ) and vk ≡ sinh(λk ) The GVA amounts to
finding the optimal variational parameters that minimize the
ground-state energy, that is,

EG = min
β0,λk

{EG(β0, λ) = 〈�|U †
G H UG|�〉}, (19)

with

EG(β0, λ) = ε0β
2
0 +

∑
k

εkv
2
k

+ U

2N

⎡
⎣(∑

k

ukvk

)2

+ 2

(∑
k

v2
k

)2

+4β2
0

∑
k

v2
k − 2β2

0

∑
k

ukvk + β4
0

⎤
⎦, (20)

upon which a numerical minimization must be carried out. It
is, however, instructive to consider some previous analysis. By
setting λk = 0, we obtain a coherent state ansantz (S(λ) = 1).
In this case, the energy is minimized for |β0| equal to

βc
0 :=

√
−ε0N/U , (21)

leading to the expectation value

E|βc
0〉 = 〈

βc
0

∣∣H ∣∣βc
0

〉 = ε0

∣∣βc
0

∣∣2 + U

2N

∣∣βc
0

∣∣4 = −ε2
0 N

2U
. (22)

While the Gaussian ansatz Eq. (15) nicely captures some
features of the BH ground state in the superfluid phase. the
Eq. (15) wave function fails to capture the essential features
of the Mott insulating phase. At zero order in t/U , in the
Gutzwiller approximation [25], the Mott-phase wave function
is given by

|�Mott〉(0) ≡
N∏

k=1

1√
n0!

(b†
k )n0 |�〉, (23)

which is obviously a non-Gaussian state (n0 is the number of
bosons on each site).

IV. NLCT-WAVE FUNCTIONS FOR THE
BOSE-HUBBARD MODEL

Given the discussion above, here we apply the NLCT de-
noted by B = π φ2 to the BH model. Before entering into
many details, we discuss on the suitability of this choice for
the problem at hand.

The low-energy physics in the vicinity of the critical point
between the superfluid and Mott insulator driven by the ratio
t/U is described by a quantum field theory with an emergent
Lorentz invariant structure [26]. In this low-energy effective
theory, the speed of light, c, is given by the speed of sound in
the superfluid phase. In terms of the long-wavelength boson
annihilation operator ψ , the Euclidean time action for the field
theory is given by the quartic self-interacting scalar theory

S =
∫

dτdx(c2|∂xψ |2 + |∂τψ |2 + w|ψ |2 + u|ψ |4), (24)

where u is the coupling which tunes the system across the
quantum phase transition at some u = uc. For u > uc, which
corresponds to the Mott insulator, the field theory has a mass
gap and no symmetry is broken. The gapped particle and
antiparticle states associated with the field operator ψ corre-
spond to the particle and hole excitations of the Mott insulator.
These can be used as a starting point for a quasiparticle theory
of the dynamics of the Mott insulator. The other phase with
u < uc corresponds to the superfluid where the global U(1)
symmetry of S is broken and a quasiclassical Gaussian theory
of the superfluid phase is possible.

This phase transition in the ψ4 theory has been investigated
through NLCT. More concretely, the B = π φ2 has been used
in Refs. [7–9], and lately in the context of continuous tensor
networks [18,19] and holography [20]. It is thus sensible to
apply this transformation to our problem by remarking that
the choice for different transformations must include a jus-
tification for the regimes of the theory one is interested in
studying. Furthermore, let us elaborate on the effect of the
NLCT transformation on wave functionals. In Refs. [8,19], it
is shown that U generates a translation of the argument in the
configuration space of the theory that symbolically reads

�[φ]NG = �G[φ − s �] = �G[φ − s �], (25)

with � = h φ2. In compact notation, writing �G[φ] =
exp[− 1

4 (φ · G−1 · φ)], with G−1 the Gaussian kernel defin-
ing the correlation matrix of Gaussian states, the above
identity can be cast as

�NG[φ] = exp
[− 1

4 (φ − s �) · G−1 · (φ − s �)
]

= exp
[− 1

4 (φ · G−1 · φ) − 2 s (φ · G−1 · �)

+ s2 (� · G−1 · �)
]
, (26)

from which one immediately infers that the new wave func-
tional has been enhanced with variational skewness and
kurtosis terms (the terms proportional to s and s2, respec-
tively) that cannot be captured by a Gaussian ansatz. For
example, in Ref. [27], these terms have been characterized
under different regimes of the BH model.

035121-4



NON-GAUSSIAN VARIATIONAL WAVE FUNCTIONS FOR … PHYSICAL REVIEW B 107, 035121 (2023)

The bosonic field transformation Eqs. (9) is explicitly
given by

�k = hkp1 p2 φp1φp2 × δ′
k,p1+p2

,

	k = −2hp1kp2 πp1φp2 × δk,p1+p2 , (27)

where a summation index convention is assumed. To proceed,
it is convenient to provide an ansatz for the variational param-
eters hp,q1,q2 that fulfill the truncation constraints in Eq. (9).
This can be easily achieved by taking the decomposition

hp,q1,q2 = η(p) · ζ (q1) · ζ (q2), (28)

where it is imposed that η(p) · ζ (p) = 0, i.e., the domains of
momenta, where η and ζ are different from zero have to be
disjoint up to sets of measure zero. A suitable ansatz for η and
ζ is given by

η(p) = �((p/�1)2),

ζ (qi ) = [�((�1/qi )
2) − �((�2/qi )

2)], (29)

where �1 and �2, are variationally optimized, coupling de-
pendent momentum cutoffs and �(x) = �(1 − |x|), with �

the Heaviside step function.
With this, our objective is to compute

ENG = min
β0,λ,h

{ENG(β0, λ, h) = 〈�|U† H U|�〉NG}. (30)

To facilitate the task, we describe, below, the calculation of
the energy with the non-Gaussian ansatz on a term-by-term
basis.

A. Kinetic term

For the kinetic term, we obtain

Ekin
NG =

∑
k

εk (〈b†
kbk〉 + s2〈B†

kBk〉) = Ekin
G + s2

∑
k

εk〈B†
kBk〉,

(31)

where Ekin
G = ε0β

2
0 + ∑

k εkv
2
k and

Bk ≡ 1√
2

(�k + i	k ), B†
k ≡ 1√

2
(�−k − i	−k ). (32)

After a lengthy albeit straightforward calculation the result
for the kinetic term can be written as

Ekin
NG = Ekin

G + s2(2χ2 + ε0χ
2
1

)
= ε0

(
β2

0 + s2 χ2
1

) +
∑

k

εkv
2
k + 2 s2χ2, (33)

where, defining Gk = 1
2 exp(−2λk ), χi are given by

χ1 =
∑

p

h0,p,p Gp, (34)

χ2 =
∑
p,q

εp+q

(
h2

p+q,p,q Gp Gq + 1

8
h2

p,p+q,q

Gq

Gp

)
. (35)

B. Interaction term

For the interaction term, we obtain

〈b†
k+rb†

l−rbkbl〉NG = 〈b†
k+rb†

l−rbkbl〉
+ s2[〈B†

k+rB†
l−rbkbl〉 + 〈B†

k+rb†
l−rBkbl〉

+ 〈B†
k+rb†

l−rbkBl〉 + 〈b†
k+rB†

l−rBkbl〉
+ 〈b†

k+rB†
l−rbkBl〉 + 〈b†

k+rb†
l−rBkBl〉]

+ s4〈B†
k+rB†

l−rBkBl〉. (36)

As will be justified below, our calculations will be carried
out in such a way that s2 	 s4, notwithstanding that a large
value of the interaction strength U can be taken. Due to this,
the Eint

NG will take the form

Eint
NG = Eint

G + s2 U

2N
�int, (37)

where

Eint
G = U

2N

⎡
⎣(∑

k

ukvk

)2

+ 2

(∑
k

v2
k

)2

+4β2
0

∑
k

v2
k − 2β2

0

∑
k

ukvk + β4
0

⎤
⎦ (38)

and

�int = �0 + χ1 �1 + χ2
1 �2. (39)

The explicit expressions for the �’s in terms of the variational
parameters are rather lengthy, so we refer the reader to the
Appendix to find them.

C. Final expression

At this point, and following Ref. [8], it is convenient to
write the non-Gaussian energy density in terms of a different
set of variables. To this end, we note that after the transforma-
tion π φ2, 〈bk〉NG = β0 + s χ1 depends on several parameters
of the ansatz. We define a new parameter ψc ≡ sχ1 and, thus,
one of the original variables can be eliminated. The resulting
energy density is, in general, different from the Gaussian case
and can be written as

ENG = EG + 2s2χ2 + ψ2
c ε0 + U

2N

[
s2�0 + sψc�1 + ψ2

c �2
]
.

(40)

From this last expression, it is straightforward to find an opti-
mal s for a fixed value of ψc and optimized values of �1 and
�2 by

∂

∂s
ENG|ψc = 4sχ2 + 2

U

2N
s�0 + U

2N
ψc�1 = 0,

s̄ = − (U/2N )�1

(2χ2 + (U/2N )�0)
ψc. (41)

Analogously, it is possible to find a set of equations for finding
the optimal values of the variational parameters �1 and �2 by

∂

∂hk+q,k,q
ENG|ψc = 0. (42)

In the case of the λφ4 theory, these are a kind of Fredholm
integral equations [9] that can be solved numerically. In our
case, the equations are rather involved so we use an alternative
numerical procedure to find the optimal values. This will be
described in the next section.

035121-5



T. QIAN et al. PHYSICAL REVIEW B 107, 035121 (2023)

V. RESULTS

We carry out the optimization of the ground=state en-
ergy functional in Eq. (40) following the lines exposed in
Refs. [7,8,19]. This consists of obtaining the variational pa-
rameters of the ansatz in two consecutive steps. First, we
optimize the Gaussian ansatz to obtain the optimal β̄0, λ̄ pa-
rameters. Once these parameters are obtained, they are fixed
to carry out the optimization of the non-Gaussian parameters
in a separate fashion, that is,

ENG(λ, h) → ENG(λ̄; h) = EG(λ̄) + δE(λ̄; h), (43)

where δE(λ̄; h) ≡ δE(λ̄; χ,�) ≡ δE(λ̄; �1, �2). To further
simplify the process, we fix �2 to its maximum allowed value
of 2π (N − 1)/N , leaving the parameter �1 [which can take
values from 0 to 2π (N − 1)/N] as the only one parameter
needed to determine the ground-state energy.

After carrying out the optimization procedure described
above, we note that the χ ’s and �’s in Eq. (40) directly depend
on the total number M of nonlinearly modified modes φk . In-
tuitively, this means that hk,p,q weighs how much a low-energy
mode φk (with k � �1) is modified by high-energy modes φp

and φq (with �1 � p, q � �2). According to our ansatz, a
given value, for instance, the optimal value of the variational
parameter �1 defines the total amount of the nonlinearly mod-
ified modes as M = (�1/2π ) N < N .

Following Ref. [28], such dependence can be written as

χ2 = a2 M α2 , �0 = c0 M γ0 ,

�1 = c1 M γ1 , �2 = c2 M γ2 , (44)

where a2, c0, c1, and c2 are slowly varying functions of t,U
and μ. Given the definition of the independent parameter ψc,
that is, a non-Gaussian correction to the Gaussian condensate,
in terms of χ1, it is sensible to assume that ψc = b M1/2.
That is to say, assuming that b is an O(1) constant, the non-
Gaussian correction to the condensate value is proportional to
M1/2 in such a way that its correction to the energy density is
∝ ψ2

c ∼ M. Consequently, we obtain

ENG = εGN + 2s2 a2 Mα2 + b2 Mε0

+ U

2N
[c0 s2 M γ0 + b c1 s M γ1+1/2 + b2 c2 M γ2+1],

(45)

where εG is the energy density of the Gaussian ansatz. To
get further insights, we use that, after optimizing the energy
functional Eq. (40), a numerical analysis yields α2 = γ1 = 0,
γ0 = γ2 = 1, a2, c1, c2 < 0, and c0 > 0, which leaves

ENG = εGN + 2s2 a2 + b2 Mε0

+ U

2N
[c0 s2 M + b c1 s M 1/2 + b2 c2 M2], (46)

s̄ = − U b c1

(8N a2 + 2U c0 M )
M1/2. (47)

Thus, defining z = �1/2π , in the limit where z 
 1. i.e.,
for M 
 N , the optimal s can be written as

s̄ = − U

2N

(
b c1

4a2

)√
M = − α

N

√
M. (48)

FIG. 1. Ground-state energies with respect to μ. For N = 32 and
t = 1, we compare the performance of our approach with a Coherent
state and the Gaussian state for weak and strong interaction strengths
U = 1 and U = 20, respectively. DMRG results were taken from
Ref. [29], where authors computed the energy density for finite
systems with open boundary conditions and then extrapolated to the
thermodynamic limit.

This result implies that our truncated estimate of the ground-
state energy at order s2 is justified and can be written as

ENG

N
= εG + 2α2 a2

(
M

N3

)
+ b2

(
M

N

)
ε0

+ U

2

[
c0 α2

(
M

N2

)2

− b c1 α

(
M

N2

)
+ b2 c2

(
M

N

)2]
.

(49)

More explicitly, for μ > 0, the leading contributions to the
variation of the energy density estimation with respect to the
Gaussian case reads

δ E

N
= b2 z

[
ε0 + U

2
c2 z

]
< 0, (50)

δ E

N
= −b2 z U

[(
2

(
t

U

)
+
(μ

U

))
+ |c2|

2
z

]
. (51)

The last expression allows us to make some specific quan-
titative predictions for the behavior of the ansatz at different
points of the phase diagram. For instance, for a fixed t/U 

1, one might expect that

δ E

N
∼ −b2 z

[
μ + U

|c2|
2

z

]
. (52)

With Eq. (40), we compute the predictions of our ansatz
for the ground-state energy density. The performance of
our method is tested by comparing this quantity with the
ones obtained through a Coherent state, a Gaussian state
and DMRG [29] (see Fig. 1). Both the energy densi-
ties obtained through a coherent and a Gaussian state are
higher than the DMRG one, especially as one deepens
into the Mott insulator (MI) phase. While the Gaussian
variational family provides a consistent class to approx-
imate the ground state of the BH model in the super-
fluid phase, our non-Gaussian approach is capable of both
(i) providing a consistent nonperturbative (U independent)
truncation of the bosonic operator growth under a non-
Gaussian transformation and (ii) predicting a much better
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FIG. 2. Ground-state energy with respect to t/U . For N =
32,U = 20, μ = 2, we compare the energy density predictions for
the Bose-Hubbard model for fixed μ as a function of t/U .

approximation to the ground-state energy than previous meth-
ods. This is quite manifest in the MI phase, where the energy
estimation improvement over the Gaussian ansatz is qualita-
tively explained by Eq. (52). Remarkably, the non-Gaussian
ansatz performance on the superfluid phase equals the one
obtained by the Gaussian ansatz, as far as the fraction of
nonlinearly modified modes z ∼ 0 in this phase.

We also show in Fig. 2 the energy density computed
through the NLCT ansatz for varying t/U with μ fixed. The
numerical results show agreement with the qualitative predic-
tions yielded by Eq. (51) and with results in Ref. [27], where
the authors employed a high-order perturbative expansion to
characterize the ground state of the Mott phase of the 1D BH
model.

Results in Figs. 1 and 2 are shown for a total lattice sites
N = 32. We have numerically checked that the results are sim-
ilar for larger values of N (N = 128, N = 512). This might
be expected in terms of Eq. (51). There, the improvement over
the Gaussian prediction is given in terms of the ratio z = M/N .
This is uniquely determined by a variational parameter �1

which only depends on the point of the phase diagram under
consideration. In our simulations, in the Mott phase, �1 has
been established to have an average value of 2π/5 which
implies that M ∼ N/5. This fixes ψc = b

√
N/5|N=32 ∼ 3.0,

ψc = b
√

N/5|N=128 ∼ 6.0 and ψc = b
√

N/5|N=512 ∼ 12.0.
Here, we have used that b ∼ O(1) parameter. Thus, numerical
results based on a construction of the wave-function ansatz
that is fully nonperturbative strongly suggests that our method
accurately approximates ground-state energy per lattice site
across the critical point.

VI. DISCUSSION AND OUTLOOK

In this paper, we have used a class of variational non-
Gaussian wave functions which extend Gaussian states by
means of NLCT. This technique was proposed as a varia-
tional nonperturbative method to study phase transitions in
QFT [7–9,28] and has been recently developed for building
controlled settings to study the AdS/CFT holographic duality
through tensor networks [10,18–20]. Here, the NLCT wave-
function method has been applied to the 1D BH model. We
obtain a family of approximate ground states for arbitrarily
large values of the interaction strength. Our results show that
a particular class of these states is able to sensibly improve the
ground-state energy estimation when the system is in the Mott
phase [29].

We have used the ground-state energy as a test bed to
benchmark the validity of the NLCT approach. It has been

left as a future problem to address to what extent the full
nonperturbative structure of the ground state of the BH model
is being captured by our concrete ansatz. This connects with
the question of choosing the most appropriate non-Gaussian
operator B = πφn. The study of connected correlation func-
tions, which can be systematically addressed through Eq. (11)
(see Refs. [19,20]) might shed light on this. This amounts to
quantifying the skewness and kurtosis [27] of the system in
different regimes and comparing them with our ansatz. An
additional benchmark to test the NLCT ansatz is the pre-
diction of the critical point (t/U )|crit for the superfluid-Mott
insulator transition. For this, it is necessary to perform the
explicit evaluation of the s4 term in the ground-state energy
functional, Eq. (40). This procedure has been used in the λ φ4

theory [8] (see Ref. [30] for a comparison with other methods
including tensor networks). For the BH model in particular, a
comparison with Refs. [31,32] might further help to elucidate
to what extent our ansatz covers the nonperturbative structure
of the BH ground state.

Another interesting possibility offered by our method is
given by the translational effect on the wave-functional ar-
gument exhibited in Eq. (25) and which has been partially
explored in Refs. [10,20,33]. Given the calculability bonanza
shown by the variational ansatze used in this paper, it is
possible to compute the entanglement entropy of arbitrary
regions in the BH ground state by using the prescription
for the ground state of free theories. In free theories, the
entanglement entropy is fully determined by the two-point
correlation functions. For the interacting case, it is shown that
non-Gaussian contributions to the entanglement entropy can
be obtained through a Gaussian prescription by replacing the
Gaussian two-point functions by their non-Gaussian counter-
parts obtained by the NLCT method [10].

Finally, it is worth mentioning possible extensions of
the NLCT formalism to study out-of-equilibrium interacting
bosons. Specifically, it would be interesting to understand
how those systems respond to quenches. Extending the NLCT
procedure would allow us to study the spreading of correla-
tions and entanglement in the strongly interacting regime of
the BH model [34,35]. As the GVA possesses a well-defined
time-dependent extension, we expect that the structure of
wave functions built from NLCT could help to establish a
well-defined extension of the non-Gaussian ansatze treated
here to address these problems in the future.

ACKNOWLEDGMENTS

T.Q. is thankful for the financial support from China
Scholarship Council and the guidance on the computa-
tions from Dr. Junjie Zeng. He also is thankful for the
hospitality at Instituto de Nanociencia y Materiales de
Aragon during the initial stages of the project. J.J.F.-M. and
J.M.-V. are thankful for the financial support of Spanish
Ministerio de Ciencia e Innovación PID2021-125700NA-
C22. D.Z. acknowledges the financial support of Spanish
Ministerio de Ciencia e Innovación No. PID2020-115221GB-
C41/AEI/10.13039/501100011033, the Gobierno de Araǵón
(Grant No. E09-17R Q-MAD), and the Consejo Superior
Investigaciones Científicas (CSIC) Quantum Technologies
Platform PTI-001.

035121-7



T. QIAN et al. PHYSICAL REVIEW B 107, 035121 (2023)

APPENDIX: EXPLICIT FORM OF � TERMS

For notational convenience, we denote ũk = v2
k + u2

k and
the index summation

∑
k,p,q is assumed. With this, af-

ter a cumbersome albeit straightforward calculation, we
have

2 �0 = �pq(2(ũk − 1) − ukvk − ṽk ) + �q
p(ṽk + (ũk − 1))

+ �
p
(kq)(7vkvq + (ukvq + uqvk )) − �(kq)

p uqvk

+ �
p(k)
(q) (9vkvq + (ukvq − uqvk ) + ukuq)

+ �
p(q)
(k) (3vkvq − ukvq + ukuq + vkuq)

+ �p(kq)(13vkvq + ukuq − uqvk ), (A1)

�1 = − ϒ
p(k)
(q) ukvq + 3ϒ

p(q)
(k) vkvq + ϒ p(kq)

× (10vkvq + vqvk − 8vkuq − 6ukvq), (A2)

4 �2 = (4(ũk − 1) − 4ukvk ), (A3)

where we have introduced the shorthand notation

ϒ
r(l )
(m) = hl,l+m,mC

r(l )
(m) , ϒ r(lm) = hl+m,l,mC

r(lm), (A4)

�lm = Almh2
l+m,l,m, �m

l = Am
l h2

l,l+m,m,

�(lm)
r = hr,l+m,l hr,r+m,mC

(lm)
r , �r

(lm)=hl+r,r,l hm,r+m,rC
r
(lm),

�
r(l )
(m) = hk+l,r,l hm,r+m,rC

r(l )
(m) , �r(lm)=hl+r,r,l hr+m,r,mC

r(lm),

(A5)

and

Alm = GlGm, Am
l = Gl

Gm
, (A6)

C(lm)
r =

√
GlGm

Gr
, Cr

(lm) = Gr√
GlGm

,

Cr(l )
(m) = Gr

√
Gl√
Gm

, Cr(lm) = Gr
√

GlGm.
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