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Nonlinear response of interacting bosons in a quasiperiodic potential
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We theoretically study the electric pulse-driven nonlinear response of interacting bosons loaded in an optical
lattice in the presence of an incommensurate superlattice potential. In the noninteracting limit (U = 0), the
response of the localized phase differs significantly than the response of the delocalized phases. In particular, we
show that the particle current contains only odd harmonics in the delocalized phase in contrast to the localized
phase where both even and odd harmonics exist. The relative magnitudes of these even and odd harmonics
and the contrast of the peaks can be tuned by varying frequency and the number of cycles of the applied
pulse, respectively. In the presence of repulsive interactions, the amplitudes of the even and odd harmonics
further depend on the relative strengths of the interaction U and the disorder potential V0. We illustrate that the
disorder and interaction-induced phases can be distinguished through the particle current. Finally, we discuss the
dynamics of field-induced excitation responsible for exhibiting higher harmonics in the current spectrum.
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I. INTRODUCTION

The unprecedented controllability of ultracold gases offers
a unique test bed for verifying several condensed matter phe-
nomena ranging from the physics of noninteracting electrons
to the physics of highly correlated electrons. For example, the
celebrated single-particle Anderson localization [1] of nonin-
teracting electrons can be realized [2–6] in ultracold settings,
whereas this phenomenon is difficult to observe in real ma-
terials due to suppression of disorder effect by a number of
quantum phenomena [7]. The state-of-the-art ultracold atom
experiments allow one to tune the atom-atom interactions
to negligible value and to observe the single-atom behavior
under the influence of disordered potential. This has motivated
a great volume of works on ultracold bosons in the pres-
ence of disorder and weak nonlinear atom-atom interactions
[8–13], revealing a plethora of intriguing collective local-
ization phenomena [7,14–17]. Moreover, the experimental
feasibility to generate quasiperiodic optical potentials presents
an ideal platform to investigate another paradigmatic local-
ization, namely Aubry-Andre localization [18] which shows
localization-delocalization transition as the strength of the
quasiperiodic potential is varied. Delocalization due to ex-
ternal driving within the Aubry-Andre model has also been
studied in Refs. [19,20].

Since the atom-atom interaction can easily be tuned to
strong-coupling limit using an optical lattice potential, the
study of the interplay between interaction and random or
quasiperiodic disorder has received much attention in recent
times [21]. It has been shown that the interplay between
disorder (random or quasiperiodic) and interaction leads
to many-body localized (MBL) states in the highly-excited

spectrum [22–26]. These many-body localized states fail
to thermalize and cannot be described by the conventional
statistical mechanics. It is now not a mere theoretical con-
cept, rather a reality following an experimental evidence of
the many-body localized state in a fermionic cold atomic
setting [27]. Furthermore, it has been shown that the inter-
acting bosons in the presence of both 1D and 2D random
or quasiperiodic disorder exhibit a compressible insulating
phase, namely Bose glass phase [28–32]. In addition, very
recently the experimentally realizable quasiperiodic bosonic
model has been shown to exhibit MBL-ergodic phase tran-
sition [33]. Despite several studies, the interplay between
disorder and interacting bosons or fermions remains an ac-
tive area of research towards investigating unconventional
phases such as appearance of singular-continuous spectra,
small interaction driven instabilities, anomalous transport, etc.
[21,34–36].

While there are extensive studies on revealing atypical lo-
calized phases in an interacting system with quasiperiodicity
at equilibrium, the response of this system to an external field
has not received much attention particularly in the nonlin-
ear regime. It is yet to be understood how different phases
respond to the application of an external strong field. The
reason for focusing on this particular dynamical aspect is at-
tributed to the recent advancement of nonlinear spectroscopy
stemming from the light-matter interaction which can decode
the microscopic properties of interacting systems. Although
this is a decades-old field and widely studied in gaseous
medium [37–43], recent experimental realization of light-
matter interaction in solid state systems [44,45] has renewed
interest to study such effects in various quantum systems due
to potential application in attosecond science. Such systems
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include noninteracting Bloch solids [46–48], Mott insulators
[49–52], Dirac insulators [53,54], twisted bilayer graphene
[55], graphene [56], quantum spin liquids [57], quantum spin
systems [58], etc. In addition, two of the authors of the present
article have recently shown that the particle current in an in-
teracting bosonic system can contain multiple odd harmonics
of the applied field [59]; an effect evident in real materials.

Partly enticed by the generation of higher harmonics in
our previous study on interacting bosons under synthetic elec-
tric field, and the availability of experimentally realizable
quasiperiodic potential in optical lattice settings, we address
here how the nonlinear response of interacting bosons to an
electric pulse gets affected once we introduce quasiperiodic-
ity. We note that recently the field driven nonlinear response
has been studied in an noninteracting fermionic model in
the presence of weak lattice potential involving disorder [60]
and quasiperiodic potential [61]. However, the strong-field
driven nonlinear response of an interacting bosonic model
in the presence of a quasiperiodic disorder is yet to be ad-
dressed. We show that quasiperiodicity has dramatic effects on
the nonlinear response of the different equilibrium phases of
the interacting bosonic model. In the noninteracting limit, the
delocalized phase exhibits only odd harmonics in contrast to
the localized phase where both even and odd harmonics are
illustrated. For stronger localization, the magnitude of max-
imum harmonic orders (i.e., cutoff) reduces for a fixed pulse
frequency due to the presence of large minigaps in the system.
Remarkably, we find that in the localized phase even harmon-
ics can be further tuned by varying frequency. However, these
features are absent in the delocalized phase. In the presence of
interaction, the response of the field turns out to differ in the
localized phase driven by interaction (Mott localization) from
that of the localization due to quasiperiodicity (Aubry-Andre
localization). Thus the nonlinear response may be a good
probe to distinguish these two types of localization of different
origins. Further, we investigate the dynamics of excitations
responsible for the emergence of multiple harmonics in the
system.

II. MODEL HAMILTONIAN

The time-independent Hamiltonian describing a system
of one-dimensional interacting bosons loaded in optical lat-
tices in the presence of a quasiperiodic potential is given by
[20,23,29,33]

Ĥ = − |J|
∑

j

(c†
j c j+1 + H.c.) + U

2

∑
j

n j (n j − 1)

+ V0

∑
j

cos (2πα j)c†
j c j, (1)

with |J| as the hopping parameter, U > 0 being the on-site
repulsive interaction strength between the atoms, V0 as the
strength of the onsite potential, and α = (

√
5 − 1)/2 being an

irrational number. The bosonic creation (annihilation) opera-
tor are given by c†

j (c j ) and n j = c†
j c j is the number operator.

To study the nonlinear response, we use a n-cycle sin2 time
varying potential of the form A(t ) = A0 sin2 (ωt/2 n) sin (ω t )
with ω being the frequency of oscillation (ω = 2πn0), and
E (t ) = −∂t A(t ). The A(t ) minimally couples the system via

the hopping term as J (t ) = |J|ei�(t ) [49,50] with �(t ) =
q∗A(t )a/h̄, where a is the lattice constant and q∗ is the effec-
tive charge of the boson [62]. We note that the particular form
of the coupling is called velocity gauge and equivalent to a
scalar potential term (length gauge) E (t )

∑
j jc†

j c j . In fact, it
is easy to show that the velocity gauge and length gauge are
related by a gauge transformation [63]. With this, the effective
time-dependent Hamiltonian in the velocity gauge reads as

Ĥ (t ) = − J (t )
∑

j

(c†
j c j+1 + H.c.) + U

2

∑
j

n j (n j − 1)

+ V0

∑
j

cos (2πα j)n j . (2)

Note that the strength of the vector potential A0 sin2 (ωt/2 n)
smoothly varies with t and the maximum value is attained at
the half-cycle of the pulse. For rest of the work, we measure A0

in dimensionless units and n0 in THz. It is worth mentioning
here that the dynamics of harmonic generation indeed depends
on the shape of the pulse as discussed in Ref. [64].

III. PARTICLE CURRENT

The response of the external time-dependent electric field
is computed by employing the current operator given by

Ĵ (t ) = −i
aq∗|J|

h̄

∑
j

(ei�(t )c†
j c j+1 − H.c.). (3)

We then calculate the expectation of Ĵ (t ) with respect to
the time evolved ground state |�0(t )〉 of the Hamiltonian,
i.e., 〈Ĵ (t )〉 = 〈�0(t )|Ĵ (t )|�0(t )〉. To find |�0(t )〉, we nu-
merically solve the time-dependent Schrödinger equation
Ĥ (t ) |�0〉 = ih̄∂t |�0〉. For noninteracting Hamiltonian (U =
0), we use single-particle basis | j〉 to construct the Hamilto-
nian for system size L = 200 and subsequently diagonalize
it to find ground state at t = 0. The ground state can then
be written as |�0〉 = ∑

j a j | j〉, where a j’s are the coeffi-
cients of expansion. Note that a js are the components of
the eigenvector corresponding to the lowest eigenvalue of the
system obtained through exact diagonalization (ED) [65,66].
Furthermore, | j〉 here represents the single-particle basis or
the possible configurations to have 1 particle in L lattice
sites. As representative examples, | j = 1〉 would mean hav-
ing 1 particle in the 1st lattice site and the rest are zero.
Which would translate to |1000 · · · 0 (Lth lattice site)〉. Simi-
larly, | j = 2〉 would mean having 1 particle in the 2nd lattice
site and the rest are zero. Which would be represented as
|0100 · · · 0 (Lth lattice site)〉 and so on. In contrast, for U �= 0,
the Hamiltonian is expressed in many-particle basis, and for
the current work is restricted to lattice sites of length L = 7
and total number of atoms N = 7. The dimension of the
Hilbert space increases exponentially with the increase in the
system size in the bosonic model, and thus computing the
dynamics becomes computationally expensive. After having
obtained the ground state of the interacting Hamiltonian (U �=
0) at t = 0 employing ED, we then use fourth order Runge-
Kutta algorithm with an optimum temporal step size which
renders the dynamics convergent to evolve |�0(0)〉 under the
effect of time-dependent Hamiltonian Ĥ (t ) to find |�0(t )〉.
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FIG. 1. Variation of IPR with scaled onsite-potential (V0/|J|)
diagram for noninteracting case (U = 0). (Inset) A schematic fig-
ure of the quasiperiodic potential with lattice site number j has been
provided in inset for V0 = 1eV .

With these considerations, the modulus square of the Fourier
transform of 〈 ˙̂J (t )〉 [the rate of change of 〈Ĵ (t )〉 with time]
provides information about the intensities and frequencies ν of
nonlinear excitations developed in this dynamical process. We
next move on to demonstrate the effects of the time-dependent
electric pulse on the noninteracting as well as the interacting
Aubry-Andre model.

IV. RESULTS

A. Noninteracting case (U = 0)

In the noninteracting limit (U = 0), the model described
in Eq. (1) admits delocalized (localized) phase when V0/|J| <

2(V0/|J| > 2), which is evident from Fig. 1 showing the vari-
ation of inverse participation ratio (IPR = ∑

j |a j |4) with the
relative strength of the disordered potential.

1. Intensity spectra and underlying physical process

In the presence of sin2 pulse, the delocalized phase is
identified by the appearance of only odd harmonics in the
intensity spectrum of the response [see Fig. 2(a)] although
the inversion symmetry of underlying Hamiltonian is broken.
Notice that the order of harmonics increases with the increase
in the applied field strength. The appearance of the intensity
spectra with higher multiplicity of the incident frequency in
the delocalized phase with V0 < 2|J| can be understood from
the single-band physics with V0 = 0. The intraband current
for a single-band is given by Jintra = nd qvg, where vg is the
group velocity of the particle and nd is the particle density.
The vg is computed as vg = ∂ε(k)/∂k = 2|J|a sin (ka), where
ε(k) = −2|J| cos (ka) is the single-particle energy dispersion
of Eq. (1) with U = 0 and V0 = 0. It is to be noted in the ve-
locity gauge, due to driving, the crystal momentum k becomes
time-dependent and gets modified to k0 + qA(t ). Together
with A(t ) and k, we obtain

vg(t ) = 2a|J|
[

sin (k0a) cos

{
qaA0 sin2

(
ωt

2n

)
sin (ωt )

}

+ cos (k0a) sin

{
qaA0 sin2

(
ωt

2n

)
sin (ωt )

}]
. (4)

Figures 3(a) and 3(b) illustrate Jintra (t ) for different strength
A0 of the applied field computed using Eq. (4). Clearly, the
intensity spectra |J̇intra (ν)|2 contains higher harmonics of ap-
plied frequency and the harmonic order increases with the
field A0 [see Figs. 3(c) and 3(d)]. We note that the analytic
results are in excellent agreement with the numerical ones (red
dotted line) obtained from Eq. (4) in the limit U = 0,V0 = 0.

For V0 �= 0, the notion of crystal momentum is no longer
valid due to the broken translation symmetry. Thus the in-
tensity spectrum is expected to contain both even and odd
harmonics. Interestingly, for V0 � 2|J|, the intensity spec-
tra is found to contain only odd harmonics as evident from
Figs. 2(a), 2(b) and 2(e), 2(f), similar to the V0 = 0 case.
This feature can be explained analytically. For which we find

FIG. 2. Plots showing intensity spectra (the modulus square of Fourier transform of 〈 ˙̂J (t )〉) with the multiplicity of incident frequency, for
number of particle (N ) = 1 and number of lattice sites (L) = 200 with strength of disordered potential V0/|J| and the number of cycles n as
parameter.

035120-3



DEBAMALYA DUTTA, ARKO ROY, AND KUSH SAHA PHYSICAL REVIEW B 107, 035120 (2023)

FIG. 3. (a) and (b) represent variation of Ĵ (t ) with time for
noninteracting Bose-Hubbard model for A0 = 1 and 5, respectively.
(c) and (d) represent intensity spectra same as Fig. (2). The blue solid
line (red dots) shows the numerical (analytical) results.

an approximate band dispersion relation in the presence of
finite but small V0. We treat the irrational number α as α =
q0 + h, where q0 is a sufficiently high-order commensurate
approximation (say, q0 = p/q, where p and q are integers and
coprime numbers) to α, and h is a small constant. Writing the
eigenstate |�〉 in the single particle basis |�〉 = ∑

j f jc
†
j |0〉 as

discussed in Sec. III, the eigenvalue equation H |�〉 = E |�〉
leads to the standard Harper equation [67]

−J ( f j+1 + f j−1) + V0 cos (2πα j) f j = E f j, (5)

where f j is the wave-function amplitude at site j and E is
the eigenenergy. For h = 0, the potential becomes periodic
with a period 1/q0 and the wave functions take the stan-
dard Bloch form, satisfying the periodic boundary condition
f j+q = eikq f j , where |k| � π/q. Substituting f j = eik ju j in
Eq. (5) and using u j+q = u j , the Harper equation gives rise
to an eigenvalues equation of the form A� = E�, where
� = (u1, u2, . . . , uq )T and A is a q × q matrix. Solving this
eigenvalue equation, we obtain the characteristic polynomial∏q

l=1(E − El (k)) = 0, where l = 1, 2, . . . , q. Thus for the
commensurate potential, the extended nature of the band re-
tains and consequently, we expect to have only odd harmonics
(as shown in Appendix A).

For h �= 0, h j is a slowly varying function. For simplicity,
we assume it to be a small constant Q. Following the discus-
sion in Appendix A, we obtain an eigenvalue equation as

−2Jul cos(k + 2π lq0) + V0(ul+1eiQ + ul−1e−iQ) = Eul ,

(6)

Like earlier, this equation reduces to solving an eigen-
value equation of the form A(Q)|�|〉 = E |�〉, where A
now explicitly depends on Q. With a few additional steps,
(detailed calculations are shown in Appendix A) we find
an approximate eigenvalue equation

∏q
l=1{E − El (k)} +

(−1)q−1( V0
2J )q+1[cos {(q − 2)Q} − 1] = 0. We note that a sim-

ilar calculation for constant Q and a WKB calculation for
varying Q can also be found in Refs. [68–70]. For q to be a

FIG. 4. Band structure of the noninteracting Hamiltonian for dif-
ferent strengths of disordered potential.

large number, the term O(V0/2J )q becomes negligibly small.
Therefore the notion of Bloch band still holds even for finite
but small V0. The band structure obtained numerically as
shown in Fig. 4 for a system size of L = 200 corroborates this
as the cosine feature of the band retains except small minigaps
of decreasing magnitudes. Thus the current or corresponding
intensity spectrum exhibits dominant odd harmonics while the
even harmonics are subdominant or negligible.

In contrast, the localized phase with V0 > 2|J| is identified
by the presence of both even and odd harmonics due to strong
breaking of inversion symmetry. The magnitudes of even har-
monics are in general subdominant, however can be enhanced
by increasing the strength of the field (A0), frequency (ω) and
the number of cycles (n) of the applied pulse. Figure 2(c)
shows that the even harmonics become more amplified as
we increase A0 for a fixed ω and n. However, this feature is
limited to the field strength A0 � V0/|J| + 2 [see Fig. 2(d)].
Moreover, we find that for a fixed ω and A0, both the even and
odd harmonics become much conspicuous on increasing the
number of cycles n from 10 to 20 as evident from Figs. 2(e)–
2(g). The origin of this feature lies in the computation of the
transition matrix elements between the evolved ground state
|�0(t )〉 at (t �= 0) with the excited states | f 〉 at the initial time
t = 0. This particularly involves computing 〈 f |Ĥ int|�0(t )〉,
where Ĥ int is the perturbing Hamiltonian due to the applied
pulse. This turns out to be proportional to a Lorentzian in the
frequency domain for a finite pulse length, that is, finite n. For
n → ∞, the overlap between the ground state at t �= 0 with
the high-lying states tends to a Dirac delta function peaking at
νω, where ν is an integer. For a detailed calculation, we urge
the reader to refer to Appendix B. Additionally, for a fixed
A0 and n, the magnitudes of even harmonics can be tuned
by varying ω as shown in Fig. 5. If the pulse energy (h̄ω)
is small compared to the all energy scales in the problem,
the magnitudes of even harmonics are found to be negligible.
As we increase ω (equivalently n0), the magnitudes of even
harmonics enhance. The reason for such behavior is due to
the interband transitions involving minigaps. For small ω,
the probability of interband transition is negligible. As we
increase ω, the probability of interband transitions increases,
and consequently, the even harmonics become much more
prominent.
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FIG. 5. Frequency dependent harmonic order for n = 20 cycles
illustrating the enhancement in the sharpness of the even numbered
peaks with the increase in frequency n0 of the applied pulse. The y
axis is in arbitrary units. The horizontal lines are the 100 level of
respective frequency.

We complement our numerical findings of the inten-
sity spectrum in the localized phase (V0 
 2|J|) with a
perturbative calculation. At |J| = 0, the Hamiltonian Ĥ0 =
V0

∑
j cos(2πα j)c†

j c j is diagonal, and the unperturbed wave
functions are localized at every site with eigenenergy E =
V0 cos(α j), where j is the site index. At V0 
 2|J|, we
take Ĥ ′(t ) = |J|ei�(t ) ∑

j (c
†
j c j+1 + H.c.) as time-dependent

perturbation to the system. Using the standard interaction
picture, the evolved ground state is obtained to be |�0(t )〉I =
ÛI (t, 0)|�0(0)〉I , where I refers to the “interaction pic-
ture,” and ÛI (t, 0) can be obtained from ih̄ ∂t ÛI (t, t0) =
Ĥ ′

I (t )ÛI (t, t0), where Ĥ ′
I (t ) = ei Ĥ0t

h̄ Ĥ ′(t )e−i Ĥ0t
h̄ . For V0 


2|J|, ÛI (t, 0) can be approximated as ÛI (t, 0) � I −
i
h̄

∫ t
t0

Ĥ ′
I (t ′)dt ′. Then the current in the interaction picture can

be expressed as

〈Ĵ (t )〉 = I〈ψ0(t0)|Û†
I (t, 0)ĴI (t )ÛI (t, 0)|ψ0(t0)〉I . (7)

Using Eq. (7), we compute current in the regime V0 
 |J|,
and the corresponding plot is shown in Fig. 6. We further
compare the result with the result obtained numerically using
matrix diagonalization. Evidently, there is an excellent match
between these two approaches.

2. Field dependent cutoff

We next compute field dependent cutoff frequency as
demonstrated in Fig. 7. The maximum value of ν/n0 till which
the harmonic peaks appear is called the cutoff. In the present
scenario, we find the cutoff to have a linear relationship with
the strength of the vector potential A0 as evident from Fig. 7.
With the increase in A0, the coefficients of Fourier expansion
Aν of A(t ) = ∑

ν Aνeiνωt are enhanced. Additionally, with
higher ν, the magnitude of the matrix elements denoting tran-
sitions between the evolved ground states with the excited
states decreases, occupying the tails of the Lorentzian and get-
ting deviated away from the central peak value. The interplay
of the product of Aν with the magnitude of the matrix elements
following the Lorentzian governs the increase of the cutoff
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FIG. 6. Comparison between current computed using the time-
dependent perturbation theory [Eq. (7)] and the exact particle current
[Eq. (3)]. In the latter procedure, |�0(t )〉 has been obtained by
solving the time-dependent Schrodinger equation using fourth-order
Runge-Kutta method in the regime of V0 
 2|J|. For both cases,
numerical exact diagonalization techniques have been employed to
compute |�0(0)〉.

with A0. That is to say, with higher A0, higher order Fourier
coefficient Aν begins to contribute towards the appearance of
higher order peaks defining the cutoff. The detailed analytical
calculation is provided in Appendix B. The introduction of
the disordered onsite potential retains the linear dependence
of the cutoff on the applied field as shown in Fig. 7.

B. Interacting case (U �= 0)

To understand the nonlinear response of interacting
bosons in the presence of quasiperiodic potential and the
underlying mechanism for the generation of harmonic
order, we first chart out different phases based on the

FIG. 7. Dependence of the cutoff with applied field strength in
the noninteracting region.
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FIG. 8. False color-coded image representing the variation of
IPR as a function of interaction (U/|J|) and onsite potential (V0/|J|).
The three points mark the three different cases considered in this
present work.

localization properties. In doing so, we find many body
ground state of the interacting Hamiltonian in Eq. (1) using
exact diagonalization for system size L = 7 and particle
number N = 7. This in turn leads to the computation of IPR
for different parameters U and V0 for fixed |J|. Figure 8
demonstrates the IPR phase diagram in the V0/|J| − U/|J|
plane. We note that the phase diagram obtained from ED for
system size with L = 7, N = 7 matches qualitatively well
with that obtained from DMRG study with bigger system
size (say, L = 35) as shown in Ref. [29]. Along the V0 = 0
line, the standard Mott insulator-superfluid transition occurs
at U/|J| = 4 as the IPR is around 0.25. Along the U = 0 line
disorder driven localization-delocalization transition occurs
near V0/|J| = 2, corroborating the phases obtained in the
noninteracting case discussed in the preceding section. For
finite V0 and U , we obtain re-entrant localized and delocalized
phases depending on the values of V0/|J| and U/|J| as
evident from Fig. 8. The localization due to interaction
turns out to differ from the disorder-induced localization
as the configuration of particle distribution differs. At
t = 0, the particle distribution is obtained using the square
modulus of the coefficient (|cnα1 nα2 ...nαp ...(0)|2) of individual
many-particle basis states of the ground state wave function
|�0(t )〉 = ∑

nα1 nα2 ...nαp ... cnα1 nα2 ...nαp ...(t )|nα1 nα2 . . . nαp . . . 〉,
where |nα1 nα2 . . . nαp . . . 〉 denotes normalized state with nα1

particles in state |α1〉, nα2 particles in state |α2〉, . . . and
{|αi〉} is an orthonormal basis. The IPR is thus defined
to be

∑
nα1 nα2 ...nαp ... |cnα1 nα2 ...nαp ...|4. For high values of

V0/|J| 
 U/|J|, the particles tend to accumulate in a
particular site. In contrast, for V0/|J| � U/|J|, the particles
tend to be distributed equally in each site with equal density,
leading to the typical Mott localization. In Table I, we provide

TABLE I. Most probable particle configuration in different val-
ues of V0/|J| and U/|J|.

V0/|J| U/|J| most probable configuration

10 0.1 [0 0 0 7 0 0 0]
5 5 [2 1 0 2 0 1 1]
0.1 10 [1 1 1 1 1 1 1]

the most probable particle distributions in lattice sites for
different values of U/|J| and V0/|J|.

1. Intensity spectra and underlying physical process

Having discussed the possible phases, we now focus on the
response of both interaction-driven localization and disorder-
driven localization to the pulse field. Figure 9 represents the
intensity spectra for the three representative regimes based
on the probable particle configurations in Table I. Let us first
focus on the U/|J| 
 V0/|J| limit (see Fig. 8), where particles
are distributed equally in each lattice site. For a fixed ω and n,
the interaction-driven localized phase contains only odd har-
monics [Fig. 9(a)] similar to the case of delocalized phase of
noninteracting Hamiltonian [Fig. 2(a)]. Interestingly, the even
harmonics may emerge in this interacting regime if we vary
ω and n. Figure 10 demonstrates this feature. The increase
in ω indeed facilitates the substantial interband transitions for
even orders within the Mott gap and quasiperiodicity-induced
minigaps. The interaction however alone cannot produce even
harmonics irrespective of the variation in n and ω because of
the presence of inversion symmetry. This is one of the key
findings of the present paper.

With U/|J| � V0/|J| fixing U/|J| = 0.1, the localization
is mainly governed by the quasiperiodicity as measured
through IPR given in Fig. 8, where all the particles are local-
ized in a single site. In this case, we do not see any additional
feature in the intensity pattern when compared to the com-
pletely noninteracting (U = 0) localized phase [see Figs. 9(c)
and 10(c)]. For U/|J| ∼ V0/|J| < 10, the system is in delo-
calized phase as evident from Fig. 8. The delocalized phase in
the presence of interactions seems to respond differently than
the limiting cases discussed in the preceding paragraphs. In
this case, even for n = 10-cycle pulse, we obtain comparable
even and odd harmonics as evident from Fig. 9(b). As we
increase the field strength, the harmonic order is enhanced.
Moreover, both even and odd peaks become more prominent if
we increase number of pulse cycle to n = 20 as clearly shown
in Fig. 10(b). Thus the delocalized phase with approximately
equal interaction and disorder strengths presents a completely
new feature in the harmonic spectra when contrasted with
the other scenario. This is another important and interesting
result obtained in the present model. Additionally, we have
also checked that the qualitative nature of the intensity spectra
is independent of the finite size of the system. Hence the
physical mechanism behind the generation of such harmonic
orders would remain unaltered. This is shown in Appendix D.
In the following paragraph, we investigate the role of the
excited states that are responsible for giving rise to harmonic
orders in different parameter regimes.

To understand the presence of harmonic orders in the
current spectrum, we identify the evolved excited states
that are primarily responsible for the current to contain
multiple frequencies of the applied field. For U/|J| 

V0/|J|, the dynamics is governed by the Mott ground state
(e.g., |11111111〉) accompanied by the contribution from
all the possible excited single dipole states [71] where a
quasiparticle-quasihole pair resides on nearest-neighbor sites
such as |1021111〉 [see Figs. 11(a) and 11(d)]. When U/|J| =
V0/|J| = 5, that is in the interacting delocalized phase, the
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FIG. 9. Plots showing intensity spectra with the multiplicity of incident frequency, for number of particles (N ) = 7 and number of lattice
sites (L) = 7 for three representative points marked in the phase diagram Fig. 8. (a) V0/|J| = 0.1 and U/|J| = 10, where the IPR ≈0.6.
(b) V0/|J| = 5 and U/|J| = 5, where the IPR ≈0.2. (c) V0/|J| = 10 and U/|J| = 0.1, where the IPR ≈0.8 with number of cycles n = 10; (d),
(e) and (f) show the intensity spectra for the aforementioned three points with the number of cycles n = 20 in the applied pulse.

contribution to current is mainly governed by the formation
of single and two dipole states (e.g., |1020211〉); while the
contribution from all other possible states is suppressed [see
Figs. 11(b) and 11(e)]. On the other hand, in the deep localized
phase with V0/|J| 
 U/|J| and single site occupancy, the
site-localized state (nonresonant state) gives rise to higher
harmonics as shown in Figs. 11(c) and 11(f).

Finally, we show in Fig. 12 the field dependent cutoff
for all the parameter regimes discussed above. It turns out
that the interaction does not affect the linear dependence as
obtained earlier for the noninteracting case. Additionally, we
find that the gradient of the cutoff decreases with increasing
the strength of the disordered onsite potential V0. This is at-
tributed to the reduced particle current flow in the system with

increasing V0 when the particles tend to get more localized. In
other words, as the minigaps increase with V0, the probability
for the interband transition reduces, leading to decrease in the
cutoff frequency.

C. Model realization and experimental scope

The external electric field E (t ) couples to the electrons in
gases and solids via a time-varying vector potential A(t ). On
the contrary, the analogous coupling in neutral bosonic atoms
happens in a synthetic manner. In particular, by modifying
the mechanical momentum of the particles. Which, in exper-
iments, can be brought about by regulating A(t ) through two
detuned Raman lasers. The internal states of the bare atom get

0.0 5.0 10.0 15.0 20.0 0.0 5.0 10.0 15.0 20.0 0.0 5.0 10.0 15.0 20.0

odd
even

(a) (b) (c)

FIG. 10. Frequency dependent harmonic order for n = 20 cycles. Similar to Fig. 5, the plots are shifted by arbitrary y values for visual aid.
The horizontal lines denote 100 value for their respective colors. (a) V0/|J| = 0.1, U/|J| = 10, (b) V0/|J| = 5, U/|J| = 5, and (c) V0/|J| = 10,
U/|J| = 0.1.
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FIG. 11. Contribution of particular state j ∈ {Mott or 1 − or 2 −
or 3 − dipole or site localized} states in the ensuing dynamics to-
wards the generation of higher harmonics. (a), (b), and (c) illustrate
the dynamics for (V0/|J| = 0.1, U/|J| = 10), (V0/|J| = 5, U/|J| =
5) and (V0/|J| = 10, U/|J| = 0.1) respectively with A0 = 5. (d), (e),
and (f) show the dynamics with similar parameters for A0 = 10. Here
t is measured in picoseconds.

dressed and behave like charged particles with an effective
charge q∗ and momentum [62]. This in turn imparts force on
the dressed atoms and constitutes the underlying Hamiltonian
discussed in Eq. (2) and effective particle current in Sec. 3.

We next discuss the scope and feasibility of experimental
realization of higher harmonics using ultracold atoms loaded
in optical lattices. Since experiments are conducted at finite
temperatures, the first and foremost challenge is to achieve
stable and distinct phases predicted from the zero-temperature
theory as discussed in the current work. Recently, a novel
and efficient way to reduce the thermal entropy of the atoms
on a lattice to observe quantum phases has been devised in
Ref. [72]. The particle-hole excitations can then be created in
the system by a potential gradient leading to the tilting of the
lattice potential [73]. The subsequent field-induced dynamics
is expected to be measured in the time-of-flight experiments
as illustrated in Refs. [62,74]. The dynamics of the interacting
ultracold atomic rubidium sample due to the application of the
femtosecond laser pulse has also been experimentally studied

FIG. 12. Dependence of the cutoff with applied field strength in
the interacting region.

recently in Ref. [75]. Thus we believe that, on one hand the
possibility to experimentally observe a near ideal quantum
phase and on the other, the study of strong field ionization
of ultracold atoms would set the platform to study analogous
generation of higher harmonics by bosons and its variants
related to strong field physics in the near future.

V. CONCLUSIONS

We investigate the nonlinear response of interacting
bosonic model to an electric pulse in the presence of an
incommensurate potential. We find that the quasiperiodicity
driven localized-delocalized phases respond differently to the
electric pulse in the presence and absence of interaction. The
main findings are the following: (a) in the noninteracting
limit (U = 0,V0 �= 0), the delocalized phase exhibits only odd
harmonics while the localized phase can contain both the even
and odd harmonics and their amplitudes can be enhanced
or reduced by varying the frequency of the applied field.
Moreover, the cycles of the pulse can be used to sharpen
the peaks of harmonic orders. (b) In the interacting case
(U �= 0,V0 �= 0), the richer physics is obtained as we tune
frequency, cycles, and amplitudes of the pulse. Depending on
the relative strengths of U/V0, we can have different scenarios.
i) For reasonably large interaction strength compared to the
disorder potential (U 
 V0), due to Mott localization, the
localized Mott phase can exhibit both even and odd harmonics
depending on the frequency, field strength and number of
pulse cycles. This is in contrast to the disorder free interacting
Mott phase discussed in Ref. [59]. (ii) Further, for comparable
disorder and interaction strength (U � V0), the delocalized
phase remarkably shows even and odd harmonics with equal
magnitudes. This fact can be used as a key to distinguish it
from the noninteracting delocalized (V0 �= 0,U = 0) phase.
(iii) For V0 
 U , when the system is localized primarily due
to disorder(Aubry-Andre localization), the even and odd har-
monics can be obtained similar to the noninteracting localized
phases (U = 0,V0 
 2|J|). However, the presence of a finite
but weak interaction can give rise to comparable even and
odd harmonics with increasing frequency. Valid in the ther-
modynamic limit, our results show that in the presence of
interactions, the nonlinear response can be used to distinguish
Mott localization (localization driven purely by interaction)
from Aubry-Andre localization (localization driven by disor-
der). Apart from studying the equilibrium properties, we have
thus identified a possible scheme of experimental relevance
concerning nonequilibrium dynamics to probe the different
phases rendered by the interacting bosons in the presence
of quasiperiodic disorder. The approach, based on nonlinear
response of the neutral system of bosons to synthetic electric
pulse provides a route towards studying high-harmonic spec-
troscopy and other nonlinear optical effects [76] in many-body
cold-atomic systems.
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APPENDIX A: APPROXIMATE ENERGY SPECTRUM FOR
V0 � 2J AND U = 0

The objective of this section is to derive an approximate
energy spectrum discussed in Sec. IV A of the main text. In
doing so, we substitute Eq. (5) by f j = eik ju j and obtain

−J (eiku j+1 + e−iku j−1) + V0 cos (2πα j)u j = Euj . (A1)

We now express the irrational number α as α = q0 + h, where
q0(= p/q) is the rational part, and h is a small correction.
In our case, α =

√
5−1
2 , which can be written in continued

fraction expansion as
√

5 − 1

2
= 1

1 + 1

1 + 1

1 + 1

1 + 1

1 + 1

1 + 1

1 + 1

1 + · · ·

. (A2)

As the series continues to grow, the rational part q0 becomes
very close to α with p and q having very large values.
For example, Eq. (A2) can be written in standard nota-
tion as

√
5−1
2 = [0; 1, 1, 1, 1, 1, 1, 1 . . . ] = 0.618033988 . . . ,

where the first term 0 refers to the integer part of α.
Only a few terms in the continued fraction such as√

5−1
2 = [0; 1, 1, 1, 1, 1, 1, 1, 2] leads to rational fraction q0 =

34/55 = 0.618181818. Taking a few more terms in the expan-
sion

√
5−1
2 = [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2] gives

q0 = 987/1597 = 0.618033813. Thus the irrational number α

can be approximated by a high order commensurate number
q0 with a tiny correction term (h) as mentioned before.

For commensurate α = p/q (h = 0), Vj = V0 cos(2πα j)
is a periodic function with periodicity R = 1/q0. For finite
but tiny h, 2πh j is a very slowly varying number. Thus for
simplicity, we treat it as a constant and denote it as Q. We note
that the condition for h → 0 implies q0 is approaching to the
nearest rational number of α, i.e., q → ∞. Under this assump-
tion, we express Vj in Fourier expansion as Vj = ∑

l Vlei 2π l j
R

and similarly u j = ∑
l ul ei 2π l j

R .
Using the above relations, the Eq. (A1) can further be

expressed as

−J

(
eik

∑
l

ul e
i 2π l ( j+1)

R + e−ik
∑

l ′
ul ′e

i 2π l′ ( j−1)
R

)

+
∑

l

Vle
i 2π l j

R

∑
l ′

ul ′e
i 2π l′ j

R = E
∑

l

ule
i 2π l ja

R , (A3)

where Vl can be explicitly computed from the relation Vl =
1
R

∑
j e−i 2π l j

R V0 cos (2πq0 j + Q). Multiplying Eq. (A3) by

e−i 2π l1 j
R on both sides and using the orthogonality property, we

obtain

−J

(
eik

∑
l

δll1 ule
i 2π l

R + e−ik
∑

l ′
δl ′l1 ul ′e

−i 2π l′
R

)

+
∑

ll ′
Vlul ′δl+l ′,l1 = E

∑
ll ′

ulδll ′ . (A4)

It is clear from the expression of Vl , that it has only two com-
ponents. For l = 1,V1 = V0

2 eiQ and for l = −1,V−1 = V0
2 e−iQ.

Using this, Eq. (A4) can further be simplified as

−J

(
eikul e

i 2π l
R + e−ikule

−i 2π l
R

)

+
∑

l ′

V0

2
ul ′ (δ1+l ′,l1 eiQ + δl ′−1,l1 e−iQ) = Eul

⇒ −2Jul cos (k + 2π lq0) + V0

2
(ul+1eiQ + ul−1e−iQ)

= Eul . (A5)

Equation (A5) reduces to solving the eigenvalue equation of
the form (using periodic boundary condition)⎛
⎜⎜⎜⎜⎜⎜⎝

a′
1 b 0 0 · · · b

c a′
2 b 0 · · · 0

0 c a′
3 b · · · 0

0 0 c a′
4 · · · 0

...
...

...
...

. . .
...

c 0 0 · · · a′
q

⎞
⎟⎟⎟⎟⎟⎟⎠

q×q

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

u4
...

uq

⎞
⎟⎟⎟⎟⎟⎟⎠

q×1

= E

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

u4
...

uq

⎞
⎟⎟⎟⎟⎟⎟⎠

q×1

,

(A6)

where a′
m = −2J cos (k + 2πq0m) with m ∈ Z , b = V0

2 eiQ and
c = V0

2 e−iQ.
To get the energy spectrum, we need to solve the charac-

teristic equation of Eq. (A6).∣∣∣∣∣∣∣∣∣∣∣∣

a1 b 0 0 · · · b
c a2 b 0 · · · 0
0 c a3 b · · · 0
0 0 c a4 · · · 0
...

...
...

...
. . .

...

c 0 0 · · · aq

∣∣∣∣∣∣∣∣∣∣∣∣
q×q

= 0, (A7)

where am = −2J cos (k + 2πq0m) − E . The determinant in
Eq. (A7) can further be written as the polynomial equation of
the form

Eq + Pq−1Eq−1 + Pq−2Eq−2 . . . · · · + P1E + P0 = 0, (A8)

where Ps are the coefficients of the polynomial equation con-
taining all the parameters of Eq. (A5). However, note that the
parameter Q enters in Eq. (A8) only through P0 as P0 = P1

0 +
f (Q), where f (Q) = (−1)q−1(λ)q+1 cos {(q − 2)Q} with P1

0
being another parameter independent of Q and λ = V0/2J . For
Q = 0, Eq. (A8) reduces to

q∏
l=1

{E − El (k)} = 0, (A9)

where El (k) is the energy spectrum for the tight-binding
Hamiltonian with commensurate onsite potential. For Q �= 0,
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Eq. (A8) transforms to

q∏
l=1

{E − El (k)} + (−1)q−1(λ)q+1[cos {(q − 2)Q} − 1] = 0.

(A10)

APPENDIX B: TWO LEVEL MODEL AND PULSE-DRIVEN
TRANSITIONS

In this section, we provide an approximate analytic expres-
sion for transition amplitudes between two states of a generic
Hamiltonian in the presence of an external electromagnetic
field. This will allow us to understand the presence of har-
monic orders in the current discussed in the main text. We
start with the Hamiltonian

Ĥ0 =
∑

i

�p2
i

2m
+

∑
i

V (ri ). (B1)

In the presence of an external electromagnetic field,
Eq. (B1) can be written as

Ĥ =
∑

i

( �pi − q �A(�r, t ))2

2m
+

∑
i

V (�ri ) + qφ(�ri, t ) (B2)

where the vector potential �A and scalar potential φ(�r, t ) can be

obtained via �E = − ∂ �A(�r,t )
∂t and �E = −�∇φ(�r, t ), respectively.

In velocity gauge, the Hamiltonian can be rewritten as

Ĥv =
∑

i

( �pi − q �A(�ri, t ))2

2m
+

∑
i

V (�ri ) = Ĥ0 + Ĥ int
v , (B3)

where

H int
v = 1

2m

∑
i

(
qA(ri, t ).pi + qpi.A(ri, t ) + q2A2(ri, t )

)
.

(B4)

Using Coulomb gauge ∇ · �A = 0 and keeping only the linear
order of field strength, we find

H int
v = 2q

2m

∑
i

A(r j, t ).pi = −i
q

h̄

∑
j

A(r j, t )[r j, H0]. (B5)

With this, we compute transition amplitude in the inter-
action picture using 〈 f |UI (t, t0)|i〉, where UI (t, t0) = I +∑

j U ( j)
I (t, t0) and

U (1)
I (t, t0) = − i

h̄

∫ t

t0

VI (t ′)dt ′, (B6)

U (2)
I (t, t0) = − i

h̄

∫ t

t0

VI (t1)dt1

∫ t1

t0

VI (t2)dt2, (B7)

where

VI (t ) = eiH0t/h̄H int
v e−iH0t/h̄. (B8)

For A(r, t ) = A(t ) = ∑
ν Aνe−iνωt , we obtain

〈 f |U (1)
I (t, t0)|i〉 = − i

h̄

∫ t

t0

〈 f |VI (t ′)|i〉dt ′ = − q

h̄2

∫ t

t0

∑
ν

Aνe−νωt ′
ei(ω f −ωi )t ′

〈
f

∣∣∣∣
∑

i

[ri, H0]

∣∣∣∣i
〉
dt ′

= − q

h̄2

∫ t

t0

∑
i,ν

Aνe−νωt ′
ei(ω f −ωi )t ′ 〈 f |(ri.H0 − H0.ri )|i〉dt ′

= −1

h̄

∫ t

t0

∑
ν

Aνe−iνωt ′
ei(ω f −ωi )t ′

(ω f − ωi )

〈
f

∣∣∣∣
∑

i

qri

∣∣∣∣i
〉
dt ′

= −1

h̄

∫ t

t0

∑
ν

Aνe−iνωt ′
ei(ω f −ωi )t ′

(ω f − ωi )〈 f |D|i〉dt ′. (B9)

If we consider that the system was in state |i〉 in deep past, i.e., t0 → −∞ and we switch off the perturbation in far future, i.e.,
t → ∞ compared to the dynamics of the system, the equation (B9) can be recasted as

〈 f |U (1)
I (t, t0)|i〉 = −1

h̄

∑
ν

Aνδ(ω f − ωi − νω)(ω f − ωi )〈 f |D|i〉. (B10)

Similarly,

〈 f |U (2)
I (t, t0)|i〉 =

(
− i

h̄

)2〈
f

∣∣∣∣
∫ t

t0

eiH0t1/h̄H int
v (t1)ve−iH0t1/h̄dt1

∫ t1

t0

eiH0t2/h̄H int
v (t2)e−iH0t2/h̄

∣∣∣∣i
〉
dt2

=
(

− i

h̄

)2 ∑
j

∫ t

t0

eiω f t1
∑

ν

Aνe−iνωt1〈 f |D| j〉e−iω j t1 dt1(ω f − ω j )(ω j − ωi )
∫ t1

t0

eiω j t2

×
∑
ν ′

Aν ′e−iν ′ωt2〈 j|D|i〉e−ωit2 dt2 =
(

− i

h̄

)2 ∑
j

∑
ν

∫ t

t0

Aνeiω f t1−iνωt1−iω j t1〈 f |D| j〉dt1(ω f − ω j )(ω j − ωi )

×
∑
ν ′

∫ t1

t0

Aν ′eiω j t2−iωit2−iν ′ωt2 × 〈 j|D|i〉dt2
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=
(

− i

h̄

)2 ∑
j

∑
ν

∫ t

t0

Aνeiω f t1−iνωt1−iω j t1〈 f |D| j〉dt1(ω f − ω j )(ω j − ωi )
∑
ν ′

Aν ′
eıω j t2−iωit2−iν ′ωt2

iω j − iωi − iν ′ω

∣∣∣∣
t1

t0

〈 j|D|i〉

=
(

− i

h̄

)2 ∑
j,ν,ν ′

∫ t

t0

AνAν ′
eiω f t1−iωit1−iνωt1−iν ′ωt1

iω j − iωi − iν ′ω
dt1(ω f − ω j )(ω j − ωi )〈 f |D| j〉〈 j|D|i〉

=
(

− i

h̄

)2 ∑
j,ν,ν ′

∫ t

t0

AνAν ′
eiω f t1−iωit1−iνωt1−iν ′ωt1

iω j − iωi − iν ′ω
dt1(ω f − ω j )(ω j − ωi )〈 f |D| j〉〈 j|D|i〉

=
(

− i

h̄

)2 ∑
j,ν,ν ′

AνAν ′
δ(ω f − ωi − (ν + ν ′)ω)

iω j − iωi − iν ′ω
(ω f − ω j )(ω j − ωi )〈 f |D| j〉〈 j|D|i〉. (B11)

In a similar way, it is easy to find 〈 f |U (3)
I (t, t0)|i〉 contains

δ(ω f − ωi − (ν + ν ′ + ν ′′)ω) and higher orders as well. If the
external field contain only one Fourier component, e.g., ν =
1, then the transition amplitude is nonzero only when ω f −
ωi = ω, ω f − ωi = 2ω, ω f − ωi = 3ω, and so on.

Thus for the incident light with lower frequency than
the energy difference between the two eigenstates, the tran-
sition amplitude, P = |〈 f |UI (t, t0)|i〉|2 can contain multiple
frequencies of the incident light, provided that the process
should be adiabatic or slow enough compared to the dynamics
of the system. The process is typically called the multiphoton
process.

APPENDIX C: PERTURBATIVE CURRENT EXPRESSION
FOR V0 � 2J

In this section, we derive perturbative expressions for the
current discussed in section IV of the main text. We treat H0 =
V0

∑
j cos (2πα j)c†

j c j as the nonperturbative Hamiltonian

and Ĥ ′(t ) = |J|ei�(t ) ∑
j c†

j+1c j + h.c as the perturbation. To
use time-dependent perturbation in the interaction picture, we
define

|ψ (t )〉I = ei H0t
h̄ |ψ (t )〉S, (C1)

where I and S denote the interaction and Schrodinger picture,
respectively. Equation (C1), leads to the equation

ih̄
∂|ψ (t )〉I

∂t
= Ĥ ′

I (t )|ψ (t )〉I , (C2)

where H ′
I (t ) = e−i Ĥ0t

h̄ H ′(t )ei Ĥ0t
h̄ . Then the time evolution of

state vector is can be written as

|ψ (t )〉I = ÛI (t, t0)|ψ (t0)〉I , (C3)

which follows the differential equation ih̄ ∂ÛI (t,t0 )
∂t =

Ĥ ′
I (t )ÛI (t, t0), where t0 is the initial time of the perturbation.

Keeping only the first term in the expansion of ÛI (t, t0), the
evolved state reads as

|ψ (t )〉I =
(
I − i

h̄

∫ t

t0

Ĥ ′
I (t ′)dt ′

)
|ψ (t0)〉I . (C4)

With this, the expectation of the current operator can be ex-
pressed as

〈Ĵ (t )〉 = S〈ψ0(t )|ĴS (t )|ψ0(t )〉S

= S〈ψ0(t )|e−i Ĥ0t
h̄ ei Ĥ0t

h̄ ĴS (t )e−i Ĥ0t
h̄ ei Ĥ0t

h̄ |ψ0(t )〉S

= I〈ψ0(t )|ĴI (t )|ψ0(t )〉I

= I〈ψ0(t0)|
(
I + i

h̄

∫ t

t0
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FIG. 13. Plots showing a comparison of intensity spectra with the multiplicity of incident frequency, for the number of particles (N ) = 7
and the number of lattice sites (L) = 7, with the number of particles (N ) = 9 and the number of lattice sites (L) = 9 in three representative
points marked in the phase diagram Fig 8. (a) V0/|J| = 0.1 and U/|J| = 10, where the IPR ≈0.6. (b) V0/|J| = 5 and U/|J| = 5, where the IPR
≈0.2. (c) V0/|J| = 10 and U/|J| = 0.1, where the IPR ≈0.8 with the number of cycles n = 20 and A0 = 10.
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where |ψ0(t0)〉S can be obtained by diagonalizing the full
Ĥ (t0).

APPENDIX D: DEPENDENCE ON SYSTEM SIZE

Here, we present additional results to justify that our cal-
culations are devoid of any finite size effects. In Fig. 13, we
compare intensity spectra between two different system sizes:
(i) 7 particles and 7 sites and (ii) 9 particles and 9 sites, for all
three distinct phases discussed in the main text. Interestingly,
the results of (i) match reasonably well with the results of (ii).
We note that going beyond the configuration with 9 particles

and 9 sites for exact diagonalization (ED) is computationally
expensive. We further point out that the generation of intensity
spectra in the interacting case is not mean-field in nature;
therefore, to describe it, one requires a full diagonalization
of the system. This restricts the system sizes that we could
access due to the exponential growth of the Hilbert space. We
would also like to point out that there exist further works us-
ing exact diagonalization [66,77] (and complementing it with
the density matrix renormalization group (DMRG) Ref. [78])
in the bosonic model, where also convergence seems to be
achieved within similar system sizes revealing qualitatively
identical physics. Thus we strongly believe that our results
will be valid in the thermodynamic limit.
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