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Thermodynamic and electron transport properties of Ca3Ru2O7 from first-principles phonon
calculations and Boltzmann transport theory
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This work demonstrates a first-principles-based approach to obtaining finite temperature thermal and elec-
tronic transport properties which can be employed to model and understand mesoscale structural evolution
during electronic, magnetic, and structural phase transitions. A computationally tractable model was introduced
to estimate electron relaxation time and its temperature dependence. The model is applied to Ca3Ru2O7 with a
focus on understanding its electrical resistivity across the electronic phase transition at 48 K. A quasiharmonic
phonon approach to the lattice vibrations was employed to account for thermal expansion while the Boltzmann
transport theory including spin-orbit coupling was used to calculate the electron-transport properties, including
the temperature dependence of electrical conductivity.
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I. INTRODUCTION

Due to their unconventional magnetic and elec-
tronic properties, Ruddlesden-Popper (RP) ruthenates
(Sr, Ca)n+1RunO3n+1 are attracting increasing interest
in the field of solid-state physics and materials science
[1]. Notably, Ca3Ru2O7 is one of the few known polar
metals (which are able to retain a spontaneous electric
polarization in the metallic state) [2]. In its Bb21m
crystalline form [3], Ca3Ru2O7 exhibits a rich variety of
physical phenomena, including temperature-dependent band
dispersion [4–6], pressure-induced magnetic phase transition
[3], colossal magnetoresistance [7], strong correlation, and
pronounced spin-orbit coupling, making it a prototypical
system to study the effects of temperature on the electronic,
magnetic, and transport properties of polar metals. Cooled
down below its Néel temperature of 56 K, Ca3Ru2O7

becomes antiferromagnetic with spins aligned along its
a axis (AFM-a). When further cooled down to 48 K,
it undergoes a second magnetic phase transition, where
spins reorient along the b axis (AFM-b); this transition
is accompanied by an isostructural phase transformation
(corresponding to a contraction of the unit cell along its c
axis) and by a sudden change in resistivity of semimetallic
character (often interpreted as arising from the opening of
a pseudogap) [5,6,8]. Below 30 K, Ca3Ru2O7 undergoes
another phase transition whereby it recovers its metallic
temperature-dependent resistivity.

While first-principles calculations based on density func-
tional theory (DFT) [9,10] have demonstrated their accuracy
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in predicting lattice vibrations, electron excitations, and con-
figuration effects [11–14], it is still an ongoing challenge
to evaluate the transport properties of materials. For in-
stance, the calculations of electrical conductivities typically
rely on the Boltzmann transport theory [15,16] which fur-
ther needs the electron relaxation times whose values are
generally on the order of 10−14 s [24]. While the relaxation
times can in principle be predicted based on electron-
electron scattering [5,17–19], or using the Bardeen-Shockley
deformation-potential theory [20,21] under the effective mass
approximation together with phenomenological parameters
[22,23], the majority of DFT-based calculations [15,19,24]
treat them as the scaling parameters.

This work reports the thermal and electrical properties of
Ca3Ru2O7 from first-principles calculations based on density-
functional theory. In this work, first-principles quasiharmonic
phonon calculations are carried out to understand the thermo-
dynamic and electrical properties of Ca3Ru2O7. A tractable
model is proposed to estimate the temperature dependence of
the electron relaxation time by correlating electron-relaxation
times to the specific heat per mobile charge, as initially sug-
gested by the previous work [25,26].

II. BOLTZMANN TRANSPORT THEORY

The electrical conductivity in the Boltzmann transport the-
ory is written as

σ = e2

V kBT

∫ ∞

−∞
f (1 − f ) �(ε)dε, (1)

where e is the elementary charge, V is the volume, T is the
temperature, ε is the one-electron energy, and �(ε) is the so-
called the transport function [15,16]. �(ε) is a tensor with
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components

�αβ (ε) = ∫
∑

i

τi,kv
α
i (k)vβ

i (k)δ[ε − εi(k)]
dk

8π3
, (2)

where α and β are the indices labeling the Cartesian axis, i
is the one-electron band index, τi,k is electron relaxation time,
and the electron group velocity vα

i is the gradient of electron
band energy with respect to k, namely

vα
i (k) = 1

h̄

∂εi(k)

∂kα
(3)

III. A MODEL TO ESTIMATE THE ELECTRON
RELAXATION TIME BASED ON HEISENBERG

UNCERTAINTY PRINCIPLE

In this section, an attempt is made to propose a tenta-
tive model for estimating the electron relaxation time and
its temperature dependence based on the outputs from DFT
calculations. The initial schematic idea stems from (a) the
Heisenberg uncertainty principle as given in Eq. (4) below,
and (b) the common belief that the thermal energy per mobile
charge carrier is on the scale of kBT . One may then guess that
the electron relaxation time might be roughly on the scale of
h̄/(2kBT ). Following this thought, at 300 K, one can obtain a
relaxation time of 1.27 × 10−14 s which is very close to the
commonly assumed value of 1.0 × 10−14 s for the electron
relaxation time in the literature [15,16,24].

Next, we will formulate a procedure to calculate the elec-
tron relaxation time. We will follow the constant electron
relaxation time approximation, i.e., treat τi,k = τ in Eq. (2).
The inspiration is from the Heisenberg uncertainty principle
which imposes the lower limit for the product between the
measurable uncertainty of energy and the measurable uncer-
tainty of time by

〈
ε〉〈
t〉 � h̄

2
. (4)

We propose that the electron relaxation time can be thought
of as a kind of time fluctuation for an electron transition from
one state to another state. We therefore assume the electron
relaxation time is proportional to the measurable uncertainty
of time, i.e., τ ∝ x〈
t〉, so that we have

〈
ε〉τ = x
h̄

2
, (5)

where x can be treated as a material constant, and we found
that x = 0.5 is a good choice for the present example of
Ca3Ru2O7 and the FeNbSb half-Heusler (R. Wan, personal
communication on using the open source code [27] which
was developed based on the present work and forked from
BoltzTrap2 [28]).

Continually, we will formulate a procedure to calculate the
energy uncertainty 〈
ε〉. For the electron system, we assume
that the energy uncertainty 〈
ε〉 is related to the energy fluc-
tuations 〈
ε〉2 as heat is randomly exchanged between the
system and heat bath, i.e.,

〈
ε〉2 = 〈(ε − 〈ε〉)2〉. (6)

Furthermore, one knows that 〈
ε〉2 is related to the heat
capacity of a particle c by

c = 〈(ε − 〈ε〉)2〉
kBT 2

∼= 〈
ε〉2

kBT 2
. (7)

For the present case, c will be the heat capacity per mobile
charge carriers as rationalized in the previous work [25,26,29],

c = cel

n
= 〈(ε − 〈ε〉)2〉

kBT 2
∼= 〈
ε〉2

kBT 2
, (8)

where cel is the electronic contribution to the specific heat, and

n =
∫ ∞

−∞
(1 − f ) f D(ε)dε, (9)

where f is the familiar Fermi distribution [30–32] and D(ε) is
the electronic density of states given by

D(ε) = ∫
∑

i

δ[ε − εi(k)]
dk

8π3
. (10)

n in Eq. (9) can be considered as the number of the mobile
charge carriers, or the number of active electronic thermal
carriers. Equation (9) shows that the electronic states near
the Fermi level [μ(T )] [33,34] contributes the most to the
electric or thermal conduction as it is dictated by the factor
of (1− f ) f which mimics an interaction between electron and
hole states through f and (1− f ), respectively. In other words,
the electron system can be viewed as a system made up of
mobile charge carriers which makes the main contributions to
the electronic heat conductivity, electronic heat capacity, and
electric conductivity.

〈ε〉 in Eq. (7) is the average band energy per mobile charge
carrier defined as

〈ε〉 = 1

n

∫ ∞

−∞
ε(1 − f ) f D(ε)dε. (11)

cel in Eq. (7) can be calculated by

cel = 1

kBT 2

∫ ∞

−∞
(ε − 〈ε〉)2(1 − f ) f D(ε)dε. (12)

Finally, substituting Eq. (7) into Eq. (5), one gets

τ = x
h̄

2T

√
n

kBcel
. (13)

Note that n and cel can be calculated using Eqs. (9) and
(12), respectively.

IV. COMPUTATIONAL DETAILS

A. Electronic-structure calculations

DFT calculations are performed using the Vienna Ab-initio
Simulation Package (VASP) with considering spin-orbit inter-
actions. The projected augmented wave method [35,36] LDA
[37] (local density approximation) functional is utilized to
assess the electron and phonon properties. To account for the
strong correlation among the d electrons in Ru, the on-site
Coulomb repulsion of 1.2 eV is applied on the 4d orbitals
using Dudarev’s approach [38]. The initial lattice parameters
are taken from experimental measurements [1] at 8 and 50 K,
respectively, which correspond to the AFM-b and AFM-a
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FIG. 1. Computerization of workflow.

magnetic ordering. The optimization of the atomic positions
is carried out with a plane-wave cutoff of 650 eV, and the
Brillouin zone is sampled using Gaussian smearing with a 20-
meV width on a 5 × 5 × 3 �-centered k mesh. The energy and
forces are converged to be within 10–8 eV and 0.1 meV/Å.
After the self-consistent calculations, non-self-consistent cal-
culations are performed using denser k mesh of 10 × 10 × 6
for more accurate electronic energy eigenvalues to calculate
the transport properties of electrons based on the Boltzmann
transport theory [15,16].

B. Computational implementation

The workflow for the computerization is given in Fig. 1. To
implement the formulism, we modified the BoltzTrap2 code
[28] by adding the functions to calculate the electron heat
capacity and effective charge carrier density as described in
Eqs. (7) and (9). To make sure of the computational accuracy
at the low temperature region, the mesh for the one-electron
energy was modified from uniformly sampling to a self-
adapted sampling with denser mesh (1000 times) near the
Fermi energy by Gaussian distribution. The procedure for
calculating the chemical potential of the electron was also
revised by implementing Brent’s method [39] to improve
computational efficiency.

The thermodynamic calculations are performed using the
DFFTK package [40] which has been released to the public
under the MIT software license. In addition to the routine
calculations of thermodynamic properties via the quasihar-
monic approach (QHA) [11,41], it has been implemented in
DFFTK that any properties, as long as they depend on volume
or stain, can be calculated under a quasistatic approach via the
predicted property-volume/strain relationship from the QHA
[41,42]. Therefore, the effects of thermal expansion have been
considered for calculating both the electron relaxation time
and the electrical conductivity.

V. RESULTS AND DISCUSSION

A. Heat capacity and Debye temperature

The calculated heat capacities for the AFM-a and AFM-
b phases of Ca3Ru2O7 are compared with a collection of
experimental data [1,43,44] in Fig. 2. They show excellent
agreement between the calculations and experiments except
for the experimental spike around 48 K. A heat capacity
spike in the vicinity of a phase transition temperature is
typical for structural phase transitions. The thermal elec-
tronic contribution in Eq. (12) is separated from the lattice

contribution as

Cp,lat+el = cel + Cp,lat. (14)

Figure 2 shows that the electronic contributions are small.
Next, we investigate the behaviors of the heat capacity at

the low temperature region as routinely performed [1,44] via
the form of C/T vs T 2, namely,

Cp,lat+el/T = γ + βT 2, (15)

where γ is the so-called electronic heat capacity coefficient
[45], and based on the value of β one can calculate the Debye
temperature or vice versa the value of β can be determined
once the Debye temperature is known.

Approaching the 0-K limit, we get the Debye temperatures
of 492.4 and 476.4 K, for the AFM-b and AFM-a phases,
respectively. In comparison, the reported Debye temperature
by McCall et al. [44] was 480 K based on fitting their mea-
surements. Away from the low temperature region, one can
get the Debye temperature by fitting the calculated constant
heat capacity from the phonon approach utilizing the Debye
formula for the heat capacity [12,46]. Figure 2 shows that the
Debye temperatures are moderately temperature dependent.

At the low temperature limit, the calculated γ ’s by the
present work are 0.23 mJ/mol atom and 0.90 mJ/mol atom,
for the AFM-b and the AFM-a phases, respectively. In par-
ticular, the value of 0.23 mJ/mol atom for the AFM-b phase
agrees excellently with the calorimetric result reported by Ke
et al. [43] and is close to the value of 0.28 mJ/mol atom
reported by Yoshida et al. [1], whereas it is one magnitude
smaller than the value of 3.7 mJ/mol atom as reported by
McCall et al. [44] and the value of 3.1 mJ/mol atom by Gao
et al. [47].

B. Calculated physical quantities from the
electron density of states

Major thermal properties of electrons can be calculated
from the electron density of states [12]. The electron density
of states (DOS) calculated for the AFM-b and AFM-a phases
are illustrated in Fig. 3(a). At the Fermi energy, the DOS for
the AFM-b is roughly half of that of the AFM-a phase. This
ratio is quite similar to the measured ratio of the electrical
conductivity [5] of the AFM-b to the AFM-a phases. We
observed opposite behaviors [5] on the locations of Fermi
energies for the two phases, i.e., a dip structure for the AFM-b
phase vs a peak structure for the AFM-a phase at the Fermi
energy. This observation could correspond to the experimental
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FIG. 2. Heat capacities, electronic heat capacity coefficients, and Debye temperatures for the AFM-b [(a), (b), and (c)] and AFM-a [(d),
(e), and (f)] phases of Ca3Ru2O7, respectively. The dots are experimental data [1,43,44]. The dashed lines in the heat capacity plots are for the
calculated values without considering the thermal electronic contributions. C/T vs T 2 plot represents the analysis of the heat capacity at low
temperature.

suggestion of the appearance of an insulatinglike pseudogap
[5].

We hereby want to reiterate the importance of the concept
of “mobile charge carriers” as given in Eq. (9) which was
introduced in a previous work [25]. On one hand, it showed
that only the electronic states with energies around the Fermi

level can contribute to the thermal properties, by a factor
of f (1− f ) to the electron density of states as seen from
Eqs. (9), (11), and (12). As a matter of fact, f (1− f ) be-
haves quite like a Dirac delta function except a normalization
factor when approaching low temperature. For the two AFM
phases of Ca3Ru2O7, the calculated mobile charge carriers are
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FIG. 3. Calculated electronic properties based on the electron density of states for the AFM-b and AFM-a phases of Ca3Ru2O7. (a) Electron
density of states; (b) density of the active electronic thermal carriers; (c) the electronic heat capacity per active electronic thermal carriers; (d)
the relaxation time estimated using Eq. (13) based on cel/n in Eq. (7).

illustrated in Fig. 3(b) which shows that the calculated densi-
ties of mobile charge carriers for the two phases are nearly
linear temperature dependent, typical for metallic materials.

The most important quantity that came into the expression
for electron relaxation time in Eq. (13) is the electronic heat
capacity per effective mobile charge carriers, namely cel/n in
Eq. (7). The calculated cel/n’s for the two phases of Ca3Ru2O7

are plotted in Fig. 3(c). It shows that the values of cel/n’s
are roughly constants. This can be understood in terms of
the Lorenz number which is a factor of kB/e2 to cel/n as we
proved in a separate work [26]. Last, plotted in Fig. 3(d) is
the estimated electron relaxation time based on Eq. (13) using
x = 0.5 which is found to be a good fit to match the electrical
resistivity measured by Yuan et al. [5].

Theoretically, the electron relaxation time was mostly an-
alyzed in terms of the rates of impurity, acoustic phonon, and
polar phonon scattering [48,49] as well as electron-electron
scattering [5,17–19]. The resulting electron relaxation time
(τ ) in Eq. (13) could be considered as an effective es-
timate incorporating all these scatterings in an average
way.

In a separate work [26], we proved that cel/n in Eq. (7) is
related to the Lorenz number [50,51] by a factor of kB/e2.
Considering the fact that the Lorenz number was weakly
temperature dependent which was especially true for metallic
materials [52–55], it was observed from Eq. (13) that the
relaxation time by the present work was virtually inversely
proportional to the temperature. This temperature proportion-
ality is the same with the recent works, such as Refs. [22,56],
which report τ = Cn−1/3/T where n is the doping level, and C
is a fitting parameter. The present temperature proportionality

is also the same with Wilson and Block’s result for metals
[57,58], that obtained from the Umklapp process reported in
Ref. [59], and Ziman’s results [60,61].

C. Calculated physical quantities from the transport electron
density of states

The transport electron density of states is a fundamen-
tal quantity to calculate almost all key kinetic properties of
electrons [15,16] once the electron relaxation time is known.
According to the BoltzTrap2 code [28], the transport electron
density of states is defined as

(ε) = 1

3
tr

[∫ ∑
i

vα
i (k)vβ

i (k)δ[ε − εi(k)]
dk

8π3

]
, (16)

where the mathematical operator tr means to find the trace of
a tensor. The calculated transport electron density of states
for the two phases of Ca3Ru2O7 is illustrated in Fig. 4(a).
Compared with the plot of the DOS’s given in Fig. 3(a), the
pseudogap behavior [5,8] is more evident in the plot of trans-
port electron density of states, i.e., a deep dip structure for the
AFM-b phase vs a shallow structure for the AFM-a phase at
the Fermi energy, attributed to the significant differences of
the electron group velocities between the two phases.

With the transport electron density of states and the
electron relaxation time in hand, we can now investigate
the electrical conductive properties and understand the T -
dependent gapping [5]. According to the Cutler-Mott theory
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FIG. 4. The calculated conductive properties for the AFM-b (solid lines) and AFM-a (dashed lines) phases of Ca3Ru2O7. (a) Transport
density of states of electron as defined in Eq. (16); (b)–(e) Mott energy-dependent differential electrical conductivity at 10, 50, 90, and 300 K,
respectively; (f) electrical resistivity. The diamonds in (f) are the experimental dc electrical resistivities reported by Lee et al. [8].

[62], the electrical conductivity is formulated as

σ =
∫ ∞

−∞
σ ′(ε)dε, (17)

where σ ′(ε) is a kinetic coefficient called the energy-
dependent differential electrical conductivity which is related
to the transport density of states in Eq. (16) by

σ
′(ε) = e2

kBTV
f (1 − f )(ε)τ. (18)

Again, it is observed that only the electronic states with
energies around the Fermi level can contribute the electrical
conductive properties dictated by the factor of f (1− f ). In
Figs. 4(b)–4(e), we choose T = 10, 50, 90, and 300 K to
demonstrate the evolutions of the calculated σ ′(ε) for the two
phases of Ca3Ru2O7.

Finally, the calculated electrical resistivities [the inverse of
the conductivity given in Eq. (17)] of the AFM-b and AFM-a
phases for Ca3Ru2O7 are compared with experiment [8] in
Fig. 4(f). Note that a fair comparison with experiment should
be only made up to the Néel temperature of 56 K. By experi-
ment [8,43], above 56 K Ca3Ru2O7 is paramagnetic which is
not handled in the present work.

VI. SUMMARY

First-principles calculations based on density functional
theory are carried out for the AFM-b and AFM-a phases of
Ca3Ru2O7. For the thermodynamic properties at finite tem-
perature, the lattice vibration was handled by the phonon
approach, and the thermal electron excitation was treated by
Mermin’s finite temperature DFT approach. For the electron
transport properties, the Boltzmann transport equation was
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solved using the BoltzTraP2 code. The calculated heat capac-
ities agree well with experimental data. Furthermore, a model
for estimating the electron relaxation time was proposed so
that one can estimate the temperature dependence of the elec-
trical conductivity. The approach has been implemented in the
BoltzTraP2 code. Application of the model to the AFM-b and
AFM-a phases of Ca3Ru2O7 gives rise to promising results
when compared with experiment for the temperature depen-
dencies of the electrical conductivity.
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