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Nonlinear optical responses, such as shift current and second-harmonic generation (SHG), of topological
semimetals have been subjects of great interest because the momentum-space topological structures near Weyl or
Dirac points lead to unusually large responses. This is especially important for technological applications as the
shift current and SHG are often used for solar cell and frequency-changing applications for lasers, respectively.
We demonstrate that nodal line semimetals can offer even larger responses at low frequencies. For example, we
show that a large SHG response arises at finite doping when an external dc electric field is applied to break
the inversion symmetry of an otherwise inversion-symmetric model of a nodal line semimetal. Furthermore,
we introduce a model with intrinsically broken inversion symmetry, where both the shift current and SHG are
singular in a range of parameters.
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I. INTRODUCTION

Nonlinear optical responses of quantum materials offer a
deeper understanding of many-body excitation spectra [1],
which may help us build more useful optical devices [2].
Recent studies show that the bulk photovoltaic effect or the
shift current, which is a nonlinear optical response producing
a net photocurrent in noncentrosymmetric materials [3–7], is a
promising substitute for conventional solar cells with pn junc-
tions [8]. Furthermore, second-harmonic generation (SHG) is
another second-order nonlinear optical response, where the
material absorbs a light with frequency ω and produces a light
with doubled frequency 2ω [9–13]. The symmetry structure
of the SHG tensor provides important information about the
subtle broken symmetries in materials [14,15], which may
not be obvious in linear response probes. Although the basic
principles of these nonlinear responses are well understood
[9,16,17], it is highly valuable to investigate materials that
may provide strong nonlinear optical responses.

Recently, it has been shown that topological semimetals
such as Weyl semimetals [18], where the valence and con-
duction bands cross each other in momentum space at a
discrete set of points, can produce strong nonlinear optical
responses [19–25]. These responses are intimately related to
the topology of the wave function near the band-crossing
points, known as Weyl points [26–29]. For example, a strong
nonlinear optical response was observed in a Weyl semimetal
with broken inversion symmetry, TaAs [2,21,30,31].

In this paper, we investigate nonlinear optical responses
in a class of topological nodal line semimetals (NLSMs)
[32–34]. The crossing points between conduction and valence
bands form a closed loop in the momentum space, and upon
doping, a Fermi surface with the topology of a torus arises
as shown in Fig. 1. There exist a number of materials that
show NLSM behavior such as HgCr2Se4 [35], Cu3PdN [36],
Cu3ZnN [37], Ca3P2 [38], ZrSiS [39], and SrIO3 [40]. The

NLSM exhibits various exotic properties due to the nontrivial
structure of the Fermi surface [41,42], which includes a parity
anomaly [43] and a giant nonlinear response in the presence
of magnetic fields [44].

The most important quantities that can affect nonlinear
optical conductivity are energy dispersion and the topology of
the Bloch wave function. In this paper, we consider a class
of NLSM models with different dispersions and study the
behaviors of the shift current and SHG. Since these nonlinear
responses arise when the inversion symmetry is broken, we
consider the systems where the inversion symmetry is broken
either intrinsically or via an external electric field. We first
consider the NLSM where the inversion symmetry is broken
by an external electric field. It is found that SHG in the NLSM
can have a more singular response in comparison to the Weyl
semimetal, i.e., σ NLSM

SHG ∼ σ
Weyl
SHG ( vk0

μ
) in the low-doping limit

μ → 0 (vk0 is an energy scale associated with the NLSM).
Furthermore, considering the NLSM systems with intrinsi-
cally broken inversion symmetry, we show that a certain class
of NLSMs can have stronger shift current (and similarly SHG)
responses, σ zzz

shift,NLSM(0; ω,−ω) ∝ (e3/h̄2)ω−3/2, in compar-
ison to the case of Weyl semimetals σ zzz

shift,Weyl(0; ω,−ω) ∝
(e3/h̄2)ω−1 in the low-frequency limit. We explain below how
these singular behaviors arise from the peculiar structure of
the Fermi surface and the Berry curvature of the wave function
in NLSMs.

The rest of this paper is organized as follows. In Sec. II,
we discuss the nonlinear optical response functions in dif-
ferent gauge choices. In particular, the relations between the
expressions of shift current and SHG with different gauge
choices are discussed. In Sec. III, we consider a NLSM where
the inversion is broken by an external dc electric field. We
show the behavior of SHG in this system. In Sec. IV, we
introduce two classes of NLSM systems with intrinsically
broken inversion symmetry. We study both the shift current
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FIG. 1. The Fermi surface of a NLSM. The radius of the torus is
considered to be k0, and k0 > μ, where μ is the chemical potential.

and SHG and present their behaviors. In Sec. V, we discuss
the implications of our results.

II. NONLINEAR OPTICAL RESPONSES IN LENGTH
AND VELOCITY GAUGES

A. Length and velocity gauges

We first discuss two gauge choices that are commonly used
to calculate nonlinear responses. These two gauges are known
as the velocity gauge and the length gauge. The advantage
of making these two gauge choices in nonlinear response
calculations is that the structure of the resulting Hamiltonian
is linear in the gauge field and it simplifies the calculation
of response functions. In the rest of the paper, we use the
length gauge to calculate the shift current, and we use both
the velocity gauge and the length gauge to calculate SHG.

To introduce these two gauges, let us consider a gen-
eral dispersion H0 = ε(p) and a Hamiltonian H (p, r) = H0 +
Vint (r). In the presence of an external gauge field, one can use
the minimal substitution p → p − eA. Then the Hamiltonian
up to the second order in the gauge field can be written in the
following form:

H = ε(p) − e∇pε(p) · A + e2

2
∇2

pε(p)(A · A) + O(A3) − eφ,

(1)
where A and φ are vector and scalar potentials of the electro-
magnetic field. In the absence of any static source, we can
assume that φ(r, t ) = 0, and also in the dipole approxima-
tion, we can take the vector potential to be independent of
position A(r, t ) = A(t ). In finding the second-order response,
the quadratic term in the gauge field can make the calculation
much more difficult. As a result, it would be more efficient to
cancel this term by fixing a gauge. The first gauge that can be
used is the length gauge. The freedom of gauge transformation
can be written as follows:

A → A′ = A + ∇�,

φ → φ′ = φ − ∂t�, (2)

ψ → ψ ′ = e−ie�/h̄ψ,

where ψ is the matter field or wave function.
By choosing � = −A(t ) · r, which is the length gauge

choice, we get A′ = 0 and φ′ = ∂t A(t ) · r = −E(t ) · r. By
making the vector potential vanish, the only term contributing
to the Hamiltonian is the scalar potential. Thus the Hamilto-
nian in the presence of an external electric field in the length

gauge can be written in the following form:

HL(p, r) = ε(p) + eE(t ) · r, (3)

where the subscript L denotes that the Hamiltonian is written
in the length gauge. E(t ) is the electric field, and the eE(t ) · r
term can be interpreted as an interaction between the electric
field and the polarization P̂tot = −er̂.

In systems with multiband structure, there exist two kinds
of polarizations due to the interband and intraband interac-
tions, which we denote as Pe and Pi, respectively. The second
quantized forms of the polarizations can be written as follows:

P̂e = e
∫

[dk]
∑
nm

rnma†
n(k)am(k), (4)

P̂i = e
∫

[dk]
∑

n

(a†
n(k)∂kan(k) − iξnna†

n(k)an(k)), (5)

where [dk] = d3k
(2π )3 . Here, a† and a are fermionic creation and

annihilation operators. ξnn is the Berry connection of the nth
band, and rnm is the expectation value of the position operator
between n and m states, 〈n|r|m〉, which can be written in the
following form:

ξnm = iun(k)∗∂kum(k),
(6)

rnm = ξnm when n 
= m,

where un(k) is the periodic part of the Bloch wave function.
On the other hand, for the velocity gauge, we can choose

� = −∇2
pε(p) e

2m

∫ t
−∞ A(t ′) · A(t ′)dt ′. Thus we find A′ =

A(t ) and φ′ = ∇2
pε(p) e

2m A(t ) · A(t ). Then, in this gauge, the
scalar potential cancels the nonlinear gauge field term, and the
Hamiltonian turns out to be

HV = ε(p) + eA(t ) · ∇pε(p), (7)

where the subscript V denotes that the Hamiltonian is written
in the velocity gauge. Note that the Hamiltonians in both
gauge choices are linear in the external gauge field, making
the calculation easier.

We note that, at first glance, the calculation of the nonlin-
ear response seems simpler in the velocity gauge compared
with the length gauge since there is no spatial dependence in
the Hamiltonian. This means that one can find the system’s
response for each lattice momentum individually. However, it
was shown that the velocity gauge can give rise to unphysical
divergences at low frequencies [45]. This problem was ad-
dressed by Aversa and Sipe [6]; they calculated the diverging
coefficients and expressed them in terms of sum rules. They
have further shown that, in a full band calculation when all the
sum rules are satisfied, the diverging coefficients sum to zero
and the result is gauge invariant. However, these sum rules
can be easily violated by truncating bands, which can give
rise to nonphysical divergences in the velocity gauge. On the
other hand, determining the nonlinear responses in the length
gauge seems more reliable in the finite-band approximation
since there is no evidence of these divergences in the length
gauge calculation of nonlinear responses. This means that
the divergence of a quantity computed in the velocity gauge
may be physical or unphysical depending on the situation. To
distinguish these two cases, the calculation must also be done
in the length gauge, which does not suffer from unphysical
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divergences. Such a situation may apply to our calculation of
SHG in the velocity gauge in Sec. III. Thus, in Appendix E,
we discuss the calculation of SHG in the length gauge mainly
to demonstrate that the low-frequency singularity responsible
for the large SHG is the same in the velocity gauge and in the
length gauge.

B. Shift current and second-harmonic generation

In the presence of an electric field E, the response of the
system can be written in terms of an expansion of the current,
J, as a function of the electric field,

Ja(ω) = σ ab(ω)Eb(ω) + σ abc(ω; ω1, ω2)Eb(ω1)Ec(ω2) + · · ·,
(8)

where a, b, c ∈ {x, y, z}, ω = ω1 + ω2, and E (ω1) is the
Fourier component of the time-dependent electric field. In
this manner, σ ab(ω) is the linear response and σ abc(ω; ω1, ω2)
is the second-order nonlinear response to the incident light.
There are a number of nonlinear optical processes that can
occur in the presence of an electric field, which include SHG,
sum and difference frequency generation, and shift current,
which are also known as bulk photovoltaic effects (BPVEs).
These second-order responses can be observed in systems
with broken inversion symmetry. In this paper, we only focus
on the SHG and shift current.

1. Shift current

In systems with broken inversion symmetry, the separation
of centers of charge in valence and conduction bands can
produce the net dc current, known as the shift current [16].
In the length gauge formulation, if the light is polarized in the
b direction, the shift current can be written in the following
form [5,6,9]:

σ abb
shift (0; ω,−ω)

= πe3

h̄2

∑
nm

∫
BZ

[dk]
∣∣rb

nm(k)
∣∣2

Ra
nmb(k) fnmδ(ωnm − ω), (9)

where the sum is over the band index and BZ refers to
the Brillouin zone. Here, a, b ∈ (x, y, z) are spatial coordi-
nates, and fnm = f (εn) − f (εm), where f (ε) is the Fermi
distribution function. Note that εn = h̄ωn is the eigenvalue of
the Bloch Hamiltonian H (k) and ωnm = ωn − ωm. Moreover,
fnm|rb

nm(k)|2 is related to the transition intensity, and Ra
nmb(k)

denotes the separation of centers of charge (in the valence and
conduction bands) in the real space, which is known as the
shift vector

Ra
nmb(k) = −∂φb

nm

∂ka
+ ξ a

nn − ξ a
mm. (10)

Here, φb
nm = Im[ln(rb

nm)] is the phase of the matrix element of
the position operator.

2. Second-harmonic generation

In the SHG process, systems with broken inversion sym-
metry can absorb a light with frequency ω and produce a light
with doubled frequency 2ω. The corresponding nonlinear cur-
rent can be written as Ja(2ω) = σ abc(2ω; ω,ω)Eb(ω)Ec(ω).
Here, the SHG response tensor in the velocity gauge can be

defined as follows [10,30]:

σ abc
SHG(ω) = σ abc

2p,I(ω) + σ abc
2p,II(ω) + σ abc

1p,I(ω) + σ abc
1p,II(ω),

(11)
where

σ abc
2p,I(ω) =

∑
nm

e3

2h̄2ω2

∫
[dk]va

mnw
bc
nm fmnRγ (2ω − ωnm),

(12)

σ abc
2p,II(ω) =

∑
nmp

e3

2h̄2ω2

∫
[dk]

2va
mn

[
vb

npv
c
pm

]
+

ωmp + ωnp

× fmnRγ (2ω − ωnm), (13)

σ abc
1p,I(ω) =

∑
nm

e3

2h̄2ω2

∫
[dk]

(
wab

mnv
c
nm + wac

mnv
b
nm

)
× fmnRγ (ω − ωnm), (14)

σ abc
1p,II(ω) =

∑
nmp

e3

2h̄2ω2

∫
[dk]

va
mn

[
vb

npv
c
pm

]
+

ωpm + ωpn

× ( fmpRγ (ω − ωpm) − fnpRγ (ω − ωnp)). (15)

Here, wab = (1/h̄)∂ka∂kbH , [vb
npv

c
pm]+ = vb

npv
c
pm + vc

npv
b
pm,

and Rγ (x) = 1/(x − iγ ), where γ is related to the decay rate.
SHG consists of four different processes, Eqs. (12)–(15). The
first two equations, Eqs. (12) and (13), which are denoted by
index 2p, show the contributions of two-photon resonance.
On the other hand, Eqs. (14) and (15), denoted by 1p, show
the contributions of one-photon resonance.

III. NODAL LINE SEMIMETAL WITH
INVERSION-BREAKING EXTERNAL ELECTRIC FIELD

In this section, we start with an inversion-symmetric model
for nodal line semimetals. Then, in order to find a finite SHG
response, we break the inversion symmetry by applying an
external electric field. We find the analytic expression for SHG
in this case.

Let us consider the following Hamiltonian [46]:

H (k) = v
(√

k2
x + k2

y − k0
)
τx + vkzτz, (16)

where τA are the Pauli matrices acting on the orbital space,
where A ∈ {x, y, z}. Here, k0 is the radius of the nodal line
in the momentum space. The location of the zero-energy

nodal line spectrum is given by
√

k2
x + k2

y = k0 and kz =
0. This Hamiltonian preserves both time-reversal and in-
version symmetry as it commutes with the parity operator
P = τx ⊗ (k → −k) and the time-reversal operator T = K ⊗
(k → −k), where K is the complex-conjugate operator.

Now we introduce an external electric field to break the
inversion symmetry. In systems with inversion symmetry, the
second-order nonlinear response would vanish, and only odd
responses would contribute to the current density. However,
in the presence of an external dc electric field, the distribution
function of electrons breaks the inversion symmetry, and this
gives rise to a second-order nonlinear response such as SHG.

In the presence of an external dc electric field, we can
find the distribution function using the Boltzmann equation by
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introducing a relaxation time τ ,

− e

h̄
E · ∂k f = −δ f

τ
. (17)

By solving the Boltzmann equation, one can obtain the distri-
bution function for the nth band

fn = f (0)
n + eτ

h̄
E · ∂k f (0)

n + eτ

h̄
EaEb∂ka f (0)

n ∂kb f (0)
n , (18)

where f 0
n is the equilibrium distribution function. The impor-

tant contribution is the linear term in the electric field, which
breaks the inversion and gives rise to the SHG.

Let us consider a dc electric field in the z direction. In
our model, in the low-frequency limit, σ abc

2p,I and σ abc
1p,I vanish.

Note that these two contributions also vanish in semimetals
with a linear dispersion, such as Weyl semimetals [16]. The
reason why these contributions vanish in Weyl semimetals is
that the second derivative of the Hamiltonian, which enters in
σ abc

2p,I and σ abc
1p,I, is zero. However, in our model, these terms

do not vanish explicitly, but the integral over the Fermi sur-
face vanishes because they are odd functions of momentum.
The only important remaining terms are σ abc

2p,II and σ abc
1p,II in

Eqs. (13) and (15), respectively. Both of these terms scale
similarly with respect to frequency, which is explained in the
analytic expression of SHG in Appendix C.

In the case of μ < vk0, where μ is the chemical potential,
we have the following form for SHG:

σ abc
SHG(2ω; ω,ω) = σ abc

2p,II(2ω; ω,ω) + σ abc
1p,II(2ω; ω,ω), (19)

where

σ abc
2p,II(2ω; ω,ω) = e4v2Ezk0τ

h3μ2
Rγ (2ω − 2μ)Cabc

2pII, (20)

σ abc
1p,II(2ω; ω,ω) = e4v2Ezk0τ

h3μ2
Rγ (ω − 2μ)Cabc

1pII. (21)

Here, Cabc
1pII and Cabc

2pII are numerical coefficients shown in

Table III in Appendix C, and Rγ (ω − 2μ) = 1
h̄ω−2μ−iγ . We

assume that γ is sufficiently small so that the resonant factor
Rγ (x) behaves like δ(x). Thus we used the approximations
ω ∼ 2μ and ω ∼ μ for the one-photon and two-photon reso-
nances, respectively.

In the limit μ � vk0, the SHG is singular as

σ nod
SHG ∼ k0/μ

2, (22)

which is more divergent in comparison to the case of a Weyl
semimetal, σ

Weyl
SHG ∼ 1/μ. On the other hand, in the opposite

limit, vk0 � μ, we obtain

σ nod
SHG ∼ 1/μ + k0/μ

2 + O((k0/μ)2). (23)

Note that in the limit k0 → 0, this result reduces to the same
behavior as in a Weyl semimetal.

IV. NODAL LINE SEMIMETAL WITH INTRINSICALLY
BROKEN INVERSION SYMMETRY

In this section, we introduce two sets of Hamiltonians
(models 1 and 2) for a NLSM with intrinsically broken in-
version symmetry. We also consider tunable dispersions in
these models, which lead to different behaviors in the density

of states. For each model, we compute the shift current and
SHG for different dispersion relations, and we show that some
choice of dispersion can enhance the shift current response.

A. Two models

Let us first consider the following 2 × 2 Hamiltonian,
which we call model 1.

H (k) = tx
(√

k2
x + k2

y − k0
)a

τx + vykzτy + tzk
b
z τz, (24)

where τA are Pauli matrices acting on the orbital space, where
A ∈ {x, y, z}. k0 is the radius of the nodal line in momentum
space. The location of the zero-energy nodal line is given by√

k2
x + k2

y = k0 and kz = 0.

There is another class of Hamiltonian that can capture the
features of nodal line semimetals but with different scaling
with respect to x, y, and z directions [43,44,47–49]. This
effective Hamiltonian, which we call model 2, can be written
in the following form:

H̃ = t̃x
(
k2

x + k2
y − k2

0

)a
τx + vykzτy + tzk

b
z τz. (25)

In both models, the Hamiltonian can break inversion sym-
metry or time-reversal symmetry depending on the exponent
b. This can be determined by considering the commutation
relation between the Hamiltonian and the parity operator
P = τx ⊗ (k → −k) and between the Hamiltonian and the
time-reversal operator T = K ⊗ (k → −k), where K is the
complex-conjugate operator. In this model, the τz term breaks
the inversion when b is an even integer (but preserves time-
reversal symmetry). Note that, as long as b > 1, the τz term
can be regarded as a small perturbation in the low-frequency
limit. We investigate the behavior of the shift current depend-
ing on the choice of a and b.

B. Shift conductivity

One of the important factors determining the scaling be-
havior of the shift current is the joint density of states, ρ(ε).
This, as well as the shift vector and transition intensity, de-
termine the scaling behavior of the shift conductivity in the
low-frequency limit. In the following, we examine the con-
tribution of each of these three quantities to the shift current
in models 1 and 2, respectively. The joint density of states
for these two models can be written as follows. The quantity
represented by the variables with the tilde sign is for model 2.

ρ(ω) = 1

V

∫
[dk]δ(ω − ωcv (k))

= 2π
4k0

√
π

vy

(
ω

tx

) 1
a �

(
1 + 1

2a

)
�

(
1+a
2a

) , (26)

ρ̃(ω) = 1

V

∫
[dk]δ(ω − ω̃cv (k))

= 2π

√
π

avy

(
ω

t̃x

) 1
a �

(
1

2a

)
�

(
1+a
2a

) . (27)

Here, h̄ωcv = εc − εv , h̄ω̃cv = ε̃c − ε̃v and c, v represent the
conduction and valence bands. For both models, the scaling
of the density of states as a function of energy is the same.
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However, in model 1, the presence of a finite radius k0 is
crucial to find a nonzero density of states, which is not the
case for model 2.

Let us first consider model 1. To find the relation between
the joint density of states and shift conductivity in Eq. (9), we
change the integral variable from lattice momentum to ε and
�, which are the energy and the solid angle in momentum
space, respectively. Then we can find the following form for
the shift conductivity:

σ
i j j
shift (ω) =

∫
d� dε I i j j (θ, ε) fcv (ε)δ(ωcv − ω),

where

I i j j (θ, ε) = |det J| ∣∣r j
cv (ε, θ )

∣∣2
Ri

cv, j (ε, θ ). (28)

Here, fcv (ε) = f (εc) − f (εv ), |det J| is the determinant of
the Jacobian matrix, and i, j ∈ {x, y, z}. The exact expres-
sion of the Jacobian determinant is discussed in Appendix B
and shown in Eq. (B5). It can be schematically written as
|det J|(ε, θ ) = k0 ε1/aua(θ ) + ε2/aga(θ ). Here, ua and ga are
functions of θ and a. The contribution of the first term corre-
sponds to the joint density of states for model 1, shown in
Eq. (26). This can be seen from

∫
d� |det J|(ε, θ ) ∝ ρ(ε)

due to
∫

d� ga(θ ) = 0. Thus we can write the determinant
of the Jacobian matrix in terms of the joint density function,
|det J|(ε, θ ) = ρ(ε)ha(θ ) + ε2/aga(θ ). Here, ha(θ ) and ua(θ )
differ only by a multiplicative constant. For the scaling behav-
ior of the shift conductivity, the other two important factors are
the transition intensity, which is proportional to the interband
element of the position operator |r j

nm|2, and the shift vector in
Eq. (10).

To investigate the contribution of each term, we need to
choose a direction. Because of the symmetry of the Hamilto-
nians, the x and y directions behave similarly, so let us only
consider the zzz and zxx directions. Let us first consider the
zzz direction. In our two-band Hamiltonian models, in the
low-frequency limit, we find that the interband element of
the position operator scales as |rz

cv (ε, θ )|2 = ε−2hr,z(θ ). Here,
hr,z(θ ) is an angular part of the |rz

cv (ε, θ )|2 term for model 1.
The shift vector is another factor that has topological in-

formation about the wave function. The Berry connection
explicitly contributes to the shift vector via Eq. (10), which is
a gauge-invariant physical quantity. There are intraband and
interband contributions to the shift vector, coming from ξ z

nn
and ∂kzφ

z
nm, respectively. In our models, in the low-frequency

limit, both of these quantities scale as ε−2+b. Thus we can
write the shift vector as Rz

cv;z = ε−2+bhR,zz
a,b (θ ). Here, hR,zz

a,b (θ )
is an angular part of the shift vector along the z direction in
model 1, which depends on both a and b exponents.

Finally, in the low-frequency limit, the simplified form of
Eq. (28) [as discussed in Appendix B, Eq. (B17)] can be
written as the product of the Jacobian determinant, the transi-
tion intensity, and the shift vector. By multiplying these terms
we find that the integrand of the shift conductivity shown in
Eq. (28) can be written as

Izzz(ε, θ ) = k0

ε4−b− 1
a

F zzz
a,b (θ ) + 1

ε4−b− 2
a

Gzzz
a,b(θ ). (29)

TABLE I. The shift current conductivity for the case of a = 2 and
b = 2 for both model 1 and model 2. For this parameter choice, we
can see divergent behavior in both models along the zzz, zxx, and xzx
directions. The zzz conductivity has more singular behavior than that
of the other directions for both models. Note that in the zzz direction,
in model 2, the shift conductivity is independent of k0. Here, �(x) is
the Euler gamma function, and K (x) is the complete elliptic integral
of the first kind.

Choice of parameters a = 2 and b = 2

Shift conductivity Model 1 Model 2

σ zzz
shift(0; ω, −ω) e3

h̄2

2k0

√
2π
tx

tz�(3/4)2

ω3/2
e3

h̄2

√
2π
t̃x

t z�(3/4)2

ω3/2

σ zxx
shift(0; ω, −ω) e3

h̄2
4πk0

√
2txtzK (1/2)

21v2
y ω1/2

e3

h̄2
8πk2

0

√
2t̃x tzK (1/2)

21v2
y ω1/2

σ xzx
shift(0; ω, −ω) e3

h̄2
5πk0

√
2txtzK (1/2)

21v2
y ω1/2

e3

h̄2
10πk2

0

√
2t̃x tzK (1/2)

21v2
y ω1/2

Here, F zzz
a,b (θ ) = ha(θ )hr,z(θ )hR,zz(θ ) and Gzzz

a,b(θ ) =
ga(θ )hr,z(θ )hR,zz(θ ). The exact expressions of F zzz

a,b (θ ) and
Gzzz

a,b(θ ) can be found in Appendix B, Eqs. (B20) and (B21),
respectively.

In the zxx direction, the shift vector and the density of
states scale similarly to the way they scale in the zzz direc-
tion. However, for the transition intensity, we have |rx

cv|2 =
ε− 2

a hr,x
a (θ ). By multiplying all these three quantities, Izxx(ε, θ )

is found as

Izxx(ε, θ ) = k0

ε2−b+ 1
a

F zxx
a,b (θ ) + 1

ε2−b
Gzxx

a,b(θ ). (30)

Here, F zxx
a,b (θ ) = ha(θ )hr,x

a (θ )hR,zx(θ ) and Gzxx
a,b(θ ) =

ga(θ )hr,x
a (θ )hR,zx(θ ). The exact expressions of F zxx

a,b and
Gzxx

a,b can be found in Appendix B, Eqs. (B14) and (B15),
respectively.

For model 2, the evaluation of the shift conductivity would
be similar to the case of model 1 in the zzz direction. The shift
vector scales as in model 1, Rz

cv,z = ε−2+bh̃R,zz
a,b (θ ), and the

transition intensity scales as |rz
cv|2 = ε−2h̃r,z(θ ). In model 2,

the Jacobian of the variable change would be |det J̃| = ρ̃(ε)h̃a,
which is independent of k0. By multiplying all these three
quantities, we find that the Izzz tensor for model 2 is given
by

Ĩ zzz(θ, ε) = 1

ε4−b− 1
a

F̃ zzz
a,b (θ ). (31)

Here, F̃ zzz
a,b (θ ) = h̃r,z(θ )h̃R,zz

a,b (θ )h̃a [see Appendix B, Eq. (B33),
for details]. Note that there is no contribution from k0 to
the shift conductivity in the zzz direction for model 2, and
the reason is that the joint-density-of-states equation (27) is
independent of k0 in this model.

In the zxx direction, however, the result depends on k2
0

as shown in Table I. The k0 dependence in this direction
comes from the transition intensity |rx

cv|2 = k2
0ε

−2/ahr,x
a (θ ) +

ε−1/agr,x
a (θ ). Here, hr,x

a (θ ) and gr,x
a (θ ) are the angular parts of

the transition intensity. The other two factors, the shift vector
and the joint density of states, remain the same as in the zzz
direction. Finally, by considering these three terms, we find
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that Izxx(θ, ε) can be written as

Ĩ zxx(θ, ε) = k2
0

ε2−b+1/a
F̃ zxx

a,b (θ ) + 1

ε2−b
G̃zxx

a,b(θ ). (32)

Here, F̃ zxx
ab and G̃zxx

ab are angular-dependent functions similar
to F̃ zzz

ab .
Now we are ready to discuss the overall scaling behavior

of the shift conductivity for models 1 and 2. Considering the
frequency dependence of all the factors discussed above, one
can see that it depends strongly on the choice of the a and b
exponents. Let us first investigate the effect of the b coefficient
in the shift conductivity. As can be seen from Eq. (29), in order
to find the most singular behavior for the shift conductivity, it
would be convenient to fix the b exponent as the minimum
integer possible. However, for b = 1, the Hamiltonian does
not break the inversion symmetry, and the shift conductivity
would vanish (one can also see that all the angular functions
would vanish explicitly for the choice of b = 1 as seen in
Appendix B). The next relevant choice is b = 2, which would
break the inversion symmetry of the Hamiltonian, leading to a
finite shift conductivity. Hence we use b = 2 for the following
discussions even though the exponent b is explicitly shown in
all the formulas.

For model 1, when a is an even integer, we find that the
second term of Eq. (29) vanishes after integrating over θ , and
only the first term contributes to the shift conductivity. In this
case, we can see that the shift conductivity scales as

σ zzz
shift (0; ω,−ω) ∼ k0ω

−4+b+ 1
a (a = even). (33)

If a is an odd integer, then the first term in Eq. (29) vanishes,
and only the second term can contribute, leading to

σ zzz
shift (0; ω,−ω) ∼ ω−4+b+ 2

a (a = odd). (34)

Similar power-law behaviors can be found for the zxx and
xzx directions as well. Let us now consider the zxx direction
for simplicity, but one can generalize the following argument
to the case of the xzx direction. Similar to the zzz direction,
when we integrate over θ for an even integer a, only the
first term in Eq. (30) survives and the Gzxx

a,b(θ ) would vanish.
However, when a is odd, the second term survives and the
F zxx

a,b (θ ) vanishes. Thus we find that the scaling behavior of
the shift conductivity in the zxx direction is as follows when a
is even:

σ zxx
shift (0; ω,−ω) ∼ k0ω

−2+b−1/a (a = even). (35)

When a is odd, we have

σ zxx
shift (0; ω,−ω) ∼ ω−2+b (a = odd). (36)

For model 2, the functions F̃ zzz
a,b (θ ) and F̃ zxx

a,b (θ ) vanish after
evaluating the integral over the angular part when a is an odd
integer. Hence, for odd integer a, the shift conductivity for the
zzz direction vanishes, and the shift conductivity is finite only
for even integer a. For the zxx direction, only the G̃zxx

a,b(θ ) part
contributes for odd integer a, while both terms can contribute
in the case of even integer a. Therefore, when a is even, we
can write the scaling of the shift conductivity for model 2 as
follows.

σ̃ zzz
shift (0; ω,−ω) ∼ ω−4+b+ 1

a (a = even), (37)

TABLE II. The shift conductivity for the case of a = 1 and b = 2
for both model 1 and model 2. The conductivities in this case are
constant in both models and independent of k0.

Choice of parameters a = 1 and b = 2

Shift conductivity Model 1 Model 2

σ zzz
shift(0; ω, −ω) e3

h̄2
π2tz

t2
x

0

σ zxx
shift(0; ω, −ω) e3

h̄2
π2tz
16v2

y

e3

h̄2
π2tz
8v2

y

σ xzx
shift(0; ω, −ω) e3

h̄2
3π2tz
32v2

y

e3

h̄2
3π2tz
16v2

y

σ̃ zxx
shift (0; ω,−ω) ∼ k2

0ω
−2+b− 1

a (a = even). (38)

When a is odd, we get

σ̃ zxx
shift (0; ω,−ω) ∼ ω−2+b (a = odd). (39)

As we discussed earlier, we may focus on the choice of b =
2 in these models. Now let us consider both the case of a =
2, b = 2 and the case of a = 1, b = 2. For models 1 and 2
with a = 2, b = 2, in the zzz direction, by using Eqs. (33) and
(37), we obtain σ zzz

shift ∼ k0/ω
3/2 and σ̃ zzz

shift ∼ 1/ω3/2, respec-
tively. In comparison to other systems with singular behavior
in the shift conductivity, such as Weyl semimetals, our models
show even more singular behavior. In type I and type II Weyl
semimetals, σ zzz

Weyl,I ∼ ω0 and σ zzz
Weyl,II ∼ 1/ω [30], respec-

tively. The exact expression of the shift conductivity of models
1 and 2 in the case of a = 2, b = 2 can be found in Table I.
For the second case, a = 1, b = 2, we can see that the shift
conductivity is constant in both models as shown in Table II.

C. Second-harmonic generation

The SHG in these classes of Hamiltonians is the sum of all
four quantities given in Eqs. (12)–(15), which we are going to
investigate in detail. For two-band systems, we can simplify
the expression of the SHG response as follows.

σ
i jm
2p,I(ω) = iπe3

2h̄2ω2

∫
[dk]Mi jm

2pI,cv (k) fvcδ(2ω − ωcv ), (40)

σ
i jm
2p,II(ω) = iπe3

2h̄2ω2

∫
[dk]Mi jm

2pII,cv (k) fvcδ(2ω − ωcv ), (41)

σ
i jm
1p,I(ω) = iπe3

2h̄2ω2

∫
[dk]Mi jm

1pI,cv (k) fvcδ(ω − ωcv ), (42)

σ
i jm
1p,II(ω) = iπe3

2h̄2ω2

∫
[dk]Mi jm

1pII,cv (k) fvcδ(ω − ωcv ), (43)

where

Mi jm
2pI,cv = vi

vcw
jm
cv , (44)

Mi jm
2pII,cv = −4vi

vc

[
v

j
cv, v

m
cc

]
+

ωcv
, (45)

Mi jm
1pI,cv = wi j

vcv
m
cv + wim

vcv
j
cv, (46)

Mi jm
1pII,cv = 2vi

vc

ωcv

[
v j

cc, v
m
cv

]
+ − vi

cc

ωcv

[
v j

cv, v
m
vc

]
+, (47)
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where [vi
nm, v

j
mp]+ = vi

nmv
j
mp + v

j
nmvi

mp and n, m, and p are the
band indices. Note that we used vi

cc = −vi
vv , which holds in

our models. Note that the imaginary part of Mi jm gives rise to
the real part of the SHG.

Let us first consider the zzz direction to investigate the
effect of each term on the real part of the SHG. In the zzz
direction, by using the fact that vi

cv = vi∗
vc, it is easy to see that

Eqs. (45) and (47) are completely real and do not contribute
to the real part of the SHG. In the zzz direction, Mzzz

2p,I =
− 1

2 Mzzz
1p,I, which is proportional to |rz

cv|2Rz
cv,z [see Appendix D,

Eq. (D34)]. Thus, remarkably, we can write the SHG response
in the zzz direction in terms of the shift conductivity in the zzz
direction.

Re
[
σ zzz

SHG(2ω; ω,ω)
]

= σ zzz
shift (0; 2ω,−2ω) − 1

2σ zzz
shift (0; ω,−ω). (48)

Now we investigate the SHG for the zxx direction. In
our choice of Hamiltonians, considering the zxx direction,
Mzxx

1pI vanishes because there are no crossing terms such as
kxkz in the Hamiltonian. Thus the finite contributions come
from Mzxx

2pI , Mzxx
2pII, and Mzxx

1pII. By some calculations (see
Appendix E), we can show that these quantities can be written
in terms of the shift conductivity. As a result, the SHG in the
zxx direction can be written in terms of the shift conductivity
as follows.

Re
[
σ zxx

SHG(2ω; ω,ω)
]

= −3σ zxx
shift (0; 2ω,−2ω) + 2σ xzx

shift (0; 2ω,−2ω)

+ 1
2σ zxx

shift (0; ω,−ω). (49)

Recall that the shift conductivity is related to the shift vector,
which is a quantum geometric quantity in momentum space
and has topological information about the wave function.
Hence, interestingly, the real part of the SHG in both models
(models 1 and 2) can also be expressed in terms of such
quantum geometric quantities (see Appendix D).

V. SUMMARY AND DISCUSSION

In this paper, we investigated two distinct classes of models
of nodal line semimetals with and without inversion symme-
try. In both cases, we showed that the nodal line semimetals
can produce large nonlinear responses such as SHG and shift
current in the low-frequency limit. In the case of a model with
inversion symmetry, we apply a dc electric field to break the
inversion in the electron distribution, which is necessary to
produce a finite nonlinear response. At this point, the NLSM
in the presence of an external dc electric field exhibits a
large SHG response at finite doping and in the low-frequency
limit. It is given by σSHG(2ω; ω,ω) ∼ k0/μ

2 when vk0 > μ,
which is a more singular response than that of Weyl semimet-
als. On the other hand, in the regime vk0 � μ, we obtain
σSHG(2ω,ω,ω) ∼ k0/μ

2 + 1/μ. Note that in the limit k0 →
0, the result reduces to the case of Weyl semimetals in an
external dc electric field, σSHG(2ω,ω,ω) ∼ 1/μ.

Second, we consider the case without inversion symmetry,
and analyze two NLSM models in this class. We compute the
shift conductivity and SHG of the two models and find that

the shift conductivity in both models strongly depends on the
dispersion relation of the NLSM.

The results are shown in Tables II and I. We also show that
the real part of the SHG is related to the shift current as shown
in Eqs. (49) and (48). To estimate an order of magnitude
of the results in Table I, let us consider the system in the
low-temperature-and-low-frequency limit (terahertz regime).
Using ω ∼ 1 THz, we can see that σW = e3

h̄2ω
∼ 0.01A/V 2,

where σW is the conductivity of the type II Weyl semimetal
[30]. However, if we choose the exponents a = 2 and b = 2
in model 1 for the NLSM and consider tx ∼ tz and vy ∼ tx,

we find that σ zzz
NLSM ∼ σW

√
( txk2

0
h̄ω

). In the low-frequency limit,

if we choose h̄ω � txk2
0 ∼ 100h̄ω, we get σ zzz

NLSM ∼ 0.1A/V 2.
Hence the response of the NLSM can be an order of magni-
tude larger than the response of the type II Weyl semimetal.
Our results provide an exciting route to generate enhanced
nonlinear optical responses in a variety of material platforms
exhibiting NLSM behavior. Some examples are HgCr2Se4

[35], Cu3PdN [36], Cu3ZnN [37], Ca3P2 [38], ZrSiS [39], and
SrIO3 [40]. In particular, when the inversion or time-reversal
symmetry is broken, the so-called Weyl nodal line semimetals
may arise. Recently, noncentrosymmetric 111-type materials,
LaNiSi, LaPtSi, and LaPtGe, have been predicted to be Weyl
nodal line semimetals [50]. These materials break inversion
symmetry and also produce NLSM dispersion, which make
them good realizations of the large nonlinear optical responses
studied in this paper.
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APPENDIX A: SECOND-ORDER RESPONSE

Systems with multiband structure exhibit two kinds of
polarization due to the interband and intraband interactions,
which we will denote as Pe and Pi, respectively.

P̂ = P̂e + P̂i, (A1)

where

P̂e = e
∫

[dk]
∑
nm

rnma†
n(k)am(k), (A2)

P̂i = e
∫

[dk]
∑

n

(a†
n(k)∂kan(k) − iξnna†

n(k)an(k)),

(A3)

and

ξnm = iun(k)∗∂kum(k),

rnm = ξnm when n 
= m. (A4)

Here, rnm is the off-diagonal element of the position operator,
and ξnn can be considered as the Berry connection of the nth
band.
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By applying an optical field to the system we can
find the linear and nonlinear susceptibility 〈P(ω� )〉 = χ0 +
χ1E (ω� ) + χ2(ω�,ω1, ω2)Eω1 Eω2 + · · · , where ω� = ω1 +
ω2. To find the susceptibility, we need to find the generalized
distribution function in the presence of the applied electric
field. We define the generalized distribution function as ρnm =
〈a†

n(k)am(k)〉 which satisfy the following equation:

∂ρnm

∂t
+ iωmnρmn = e

ih̄

∑
lb

Eb
(
ρml r

b
ln − rb

mlρln
) − e

h̄
Ebρmn;b,

(A5)
where the the generalized derivative is defined as ρmn;b =
∂kbρnm − i(ξ b

nn − ξ b
mm)ρnm and ωnm = ωn − ωm.

By solving Eq. (A5) perturbatively on the electric field,
we can find the nonlinear contributions. Let us consider the
following form for the density distribution function:

ρnm = fnδnm + ˜ρ (1) + ρ (2), (A6)

where fn is the Fermi distribution. ˜ρ (1) shows the first-order
contribution, and ρ (2) shows the second-order contribution in
the electric field.

By solving Eq. (A5) to the first order in the electric field
we can find the following solution:

ρ̃ (1)
nm = ρ

(1)
FS + ρ (1), (A7)

ρ
(1)
FS = −δnm

ie

h̄

∑
bβ

1

ωβ

∂ fn

∂kb
Eb

βe−iωβ t , (A8)

ρ (1) = e

h̄

∑
bβ

rb
nm fnm

ωmn − ωβ

Eb
βe−iωβ t . (A9)

ρ
(1)
FS denotes the first-order contribution coming from the

Fermi surface of the system at low temperature (because of the
derivative of the distribution function). Since the contribution
of the Fermi surface is constrained to same-band processes,
it will vanish for interband polarization, and we can ignore
the contribution of ρ

(1)
FS to the interband polarization. For the

second-order perturbation we can find the following solution:

ρ (2) = ie

h̄(ωnm − ω� )

[
ρ (1)

mn;c + i
∑

l

(
ρ

(1)
ml rln − rmlρ

(1)
ln

)]
.

(A10)
Finally, by using Eq. (A10) in Eq. (A2) we can find the

susceptibilities for the interband contribution as follows:

χ (2),abc
e (ω� ; ωβ, ωα )

C

= i
∑
nmk

ra
nm fnm

ωnm − ω�

(
rb

mn

ωmn − ωβ

)
;c

−
∑
nlmk

ra
nm

ωnm − ω�

(
rb

ml r
c
ln flm

ωml − ωβ

− rc
ml r

b
ln fnl

ωln − ωβ

)
. (A11)

Here, C = e3/h̄2V .
To calculate the intraband contribution, it would be conve-

nient to start with the intraband current Ji = J − Je, where J
is the total current and Je is the interband current. We can find

the total current as follows:

J = e

V

∑
nmk

vnma†
n(k)am(k), (A12)

where V is the volume of the system and va
nm = 〈n|∂ka H |m〉 =

ωn;aδnm − iωmnra
nm. For the interband current we have the fol-

lowing expression:

Je = −i

h̄
[Pe, H0] + i

h̄
[Pe, Pi + Pe]. (A13)

The contribution of the first term can be written as follows:

−i

h̄
[Pe, H0] = e

V

∑
nmk

ωmnrnma†
n(k)am(k). (A14)

The contribution of the second term can be written as follows:

[
Pa

e , Pb
i + Pb

e

] = −ie2

V 2

∑
nmk

⎛
⎝ra

nm;b + i
∑

p

(
ra

nprb
pm − rb

npra
pm

)⎞⎠
× a†

n(k)am(k). (A15)

Finally, by using dPi
dt = J − Je we can find the susceptibil-

ity for the intraband contribution

χabc
i (ω� ; ωβ, ωα )

C
= i

ω2
�

∑
nmk

ωnm;arb
nmrc

mn fmn

ωnm − ωβ

+ 1

iω�

∑
nmk

rc
nm;arb

mn fnm

ωmn − ωβ

. (A16)

Shift and injection

By looking at Eqs. (A11) and (A16) we can see that in
the dc limit (ω� → 0) the dominant contribution comes from
χi; so we can neglect the χe contribution in the dc limit. We
can find the shift current and the injection current just by
investigating the divergence behavior of Eq. (A16) (the first
term is the injection current, and the second term is the shift
current); however, it would be more intuitively useful if we
look at the intraband currents in the presence of the electric
field (which is the dominant contribution).

Ja
i = e

V

∑
nmk

[
ωn;aδnm − e

h̄
(E × �n)aδnm − e

h̄
E · rnm;a

]

× a†
n(k)am(k), (A17)

Ja
i = e

V

∑
nmk

[
ωn;aδnm − e

h̄
(E × �n)aδnm − e

h̄
E · rnm;a

]

× (
fnδnm + ρ

(1)
FS + ρ (1)

nm + ρ (2)
nm + ρ

(2)
FS

)
. (A18)

Now for the second-order response we have

Ja
i,I =

∑
nmk

ωn;aδnmρ (2)
nm , (A19)

Ja
i,II = −

∑
nmk

e

h̄
E · rnm;aρ

(1)
nm , (A20)

Ja
i,FSI

=
∑
nmk

ωn;aδnmρ
(2)
FS , (A21)
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Ja
i,FSII

= −
∑
nmk

e

h̄
(E × �n)aδnmρ

(1)
FS . (A22)

In our model, since we have both inversion and time-reversal
symmetry, the Berry curvature will vanish. Since the contri-
bution of the Fermi surface to the shift conductivity in the
NLSM is highly related to the Berry curvature [Eq. (A22)],
this contribution also will vanish. In a system with finite Berry
curvature the contribution of the Fermi surface becomes im-
portant and depends on the topology of the Fermi surface [13].
The real part of Ja

i,I and Ja
i,II is responsible for the injection cur-

rent and shift current, respectively. Two scenarios can lead to
BPVEs. In the first scenario the charge carriers relax momen-
tum asymmetrically into the ±k direction via collisions with
electrons, phonons, or impurities, which makes a net current.
In the second scenario the light-matter interactions give rise
to the BPVEs. In the injection current processes, light pumps
carriers into the conduction band asymmetrically at ±k in the
BZ, and this leads to the net current. To explain the injection
current in the wave packet approximation, we can consider
an electron with velocity va

n , and we can define the current as
Ja = e

V

∑
nk fnv

a
n . By applying an optical field to the system,

current-carrying states are injected into the conduction band.

dJinj

dt
= e

V

∑
nk

dfn

dt
va

n, (A23)

where dfn

dt is given by the Fermi golden rule

dfc

dt
= 2πe2

h̄2

∑
v

|E (ω) · rcv|2δ(ωcv − ω), (A24)

and breaking inversion symmetry d
dt fc(k) 
= d

dt fc(−k) allows
us to have a net current. c and v are indices related to the
conduction and valence bands, respectively. Note that in a sys-
tem with time-reversal symmetry (such as model 1 [Eq. (24)]
and model 2 [Eq. (25)]) the injection current vanishes because
it is an odd function under time-reversal symmetry and will
change sign under transformation ω� → −ω� .

In the shift current process, inversion symmetry breaking
along with the separation of the center of the charge of the
valence and conduction bands gives rise to the net current. The
separation of the center of charge makes the dipole velocity
oscillation, and the inversion breaking makes the net current
be nonzero.

APPENDIX B: SHIFT CURRENT IN MODELS 1 AND 2

For two-band systems, where the induced light is polarized
in the b direction, the shift current in Eq. (A16) can be written
as follows (see Appendix D):

σ abb
sh (0; ω,−ω) = πe3

h̄2

∑
cv

∫
BZ

[dk]Iabb
cv (k) fcvδ(ωcv − ω),

(B1)

where

Iabb
cv (k) = −

∑
i jm

1

4d3

(
dmdi,bd j,ab − dmdi,bd j,a

d,b

d

)
εi jm.

(B2)
Here, di(k) are coefficients of the Pauli matrices in the Hamil-
tonian equation (D1).

In the following sections we are going to calculate the
Iabb tensor for both model 1 and model 2 in the zzz and zxx
directions.

1. Model 1

Let us only look at the Izxx component for simplicity.

Izxx = t3
x tzvya(−1 + b)

k2
x

4
(
k2

x + k2
y

)

×
(√

k2
x + k2

y − k0
)−2+3a

kb
z[

t2
x

(√
k2

x + k2
y − k0

)2a + t2
z k2b

z + v2
y k2

z

]5/2
. (B3)

As we discussed in Sec. IV A the b exponent can break the
symmetry if it has been chosen to be an even integer. Also,
in Eq. (B3), we can see that the integration of the function
over the Brillouin zone is nonvanishing only for the choice
of an even b exponent. To proceed, we are going to use an
approximation in which ε ∼

√
(
√

k2
x + k2

y − k0)2a + v2
y k2

z . As
long as b > 1 we can neglect the tzkb

z term compared with vykz

in the low-frequency limit. By this approximation we can use
the following variable change:

kz = 1

vy
d cos(θ ),

√
k2

x + k2
y = ±

(
1

tx
d sin(θ )

)1/a

+ k0,

θ ∈ (0, π ) for ±, (B4)

where the determinant of the Jacobi matrix would be

det |J±| = csc(θ )
( d sin(θ )

tx

)1/a[
k0 ± ( d sin(θ )

tx

)1/a]
avy

. (B5)

Let us first look at the + sign. Using the variable change
equation (B4) in Eq. (B3) in the low-frequency limit, we can
find

Izxx
+ det |J+| = t3

x tzvya(−1 + b) csc(θ ) cos(φ)2

( d sin(θ )
tx

) −1
a +3( d cos(θ )

vy

)b[
k0 + ( d sin(θ )

tx

)1/a]
d5

. (B6)
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Also we can do the same with the − sign, with which we find the following expression:

Izxx
− det |J−| = t3

x tzvya(−1 + b) csc(θ ) cos(φ)2
(−1)3a

( d sin(θ )
tx

) −1
a +3( d cos(θ )

vy

)b[
k0 − ( d sin(θ )

tx

)1/a]
d5

, (B7)

σ zxx
shift (0; ω,−ω) =

∫ ∞

0

∫ π

0
Izxx
+ det |J+|δ(2d − ω)dθdd +

∫ ∞

0

∫ π

0
Izxx
− det |J−|δ(2d − ω)dθdd. (B8)

Let us look at the structure of I+; after integrating over φ, we find the following expression:

Izxx
+ det |J+| = πt3

x tzvya(−1 + b)d−2+b− 1
a

[
k0 +

(
d sin(θ )

tx

)1/a][
csc(θ ) cos(φ)2

(
sin(θ )

tx

) −1
a +3(cos(θ )

vy

)b]
. (B9)

The term proportional to k0 can produce more singularity in
the shift current (in the case in which it is not zero because of
the integral on θ , for example, it would be zero when a = 1
and b = 2). We can write the integral in the following way,
which makes it easier to see the behavior of the shift current
with respect to the energy d:

Izxx
+ det |J+| = k0

d2−b+ 1
a

f zxx
a,b (θ ) + 1

d2−b
gzxx

a,b(θ ), (B10)

where

f zxx
a,b (θ ) = 3πtzt

1/a
x vya(1 − b)

×
[

csc(θ ) cos(φ)2( sin(θ ))
−1
a +3

(
cos(θ )

vy

)b]
(B11)

and

gzxx
a,b(θ ) = f zxx

a,b (θ )

(
sin(θ )

tx

)1/a

. (B12)

Now by considering Izxx
+ det |J+| + Izxx

− det |J−| we can find
the Izxx(θ, d ) defined in Eq. (28) as follows:

Izxx(θ, d ) = k0

d2−b+ 1
a

F zxx
a,b (θ ) + 1

d2−b
Gzxx

a,b(θ ), (B13)

where

F zxx
a,b (θ ) = f zxx

a,b (θ )(1 + (−1)a), (B14)

Gzxx
a,b(θ ) = gzxx

a,b(θ )(1 − (−1)a). (B15)

Note that F zxx
a,b (θ ) is finite when the a exponent is an even

number and Gzxx
a,b(θ ) is finite only when the a exponent is an

odd number.
We can do the same for the zzz direction.

Izzz = txtzvy

b(1 − b)
(√

k2
x + k2

y − k0
)
k−2+b

z

4
[
t2
x

(√
k2

x + k2
y − k0

)2a + t2
z k2b

z + v2
y k2

z

]3/2
.

(B16)

Using the variable change in Eq. (B4), we find that the Izzz

tensor can be written as follows:

Izzz
+ det |J+| = t−1/a

x tzv2−b
y

4a
b(−1 + b) cos(θ )b−2

× sin(θ )
1
a d−4+b+ 1

a

[
k0 + d1/a

(
sin(θ )

tx

)1/a]
,

(B17)

where by separating the angular part of the function we can
simplify the above equation as

Izzz
+ det |J+| = k0

d4−b− 1
a

f zzz
a,b (θ ) + 1

d4−b− 2
a

gzzz
a,b(θ ). (B18)

By considering Izzz(θ, d ) = Izzz
+ det |J+| + Izzz

− det |J−| we can
find

Izzz(θ, d ) = k0

d4−b− 1
a

F zzz
a,b (θ ) + 1

d4−b− 2
a

Gzzz
a,b(θ ), (B19)

where

F zzz
a,b (θ ) = t−1/a

x tzv2−b
y

4a
b(−1 + b) cos(θ )b−2 sin(θ )1/a

× k0(1 + (−1)a), (B20)

Gzzz
a,b(θ ) = t−2/a

x tzv2−b
y

4a
b(−1 + b) cos(θ )b−2

× sin(θ )2/a(1 − (−1)a). (B21)

2. Model 2

The model 2 Hamiltonian can be written as follows:

H̃ (k) = t̃x
(
k2

x + k2
y − k2

0

)a
τx + vykzτy + tzk

b
z τz, (B22)

where the scalings of τx and τy are different.
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Izxx and Izzz can be written in the following way:

Izxx = a2(1 − b)t̃3
x tzvy

k2
x kb

z

(
k2

x + k2
y − k2

0

)−2+3a

(
t̃2
x

(
k2

x + k2
y − k2

0

)2a + v2
y k2

z + t2
z k2b

z

)5/2 ,

(B23)

Izzz = b(1 − b)t̃xtzvy

k2
x k−2+b

z

(
k2

x + k2
y − k2

0

)a

4
(
t̃2
x

(
k2

x + k2
y − k2

0

)2a + v2
y k2

z + t2
z k2b

z

)3/2 .

(B24)

In model 2 we use the following transformation:

kz = 1

vy
d cos(θ ),

kx =
√

±
(

d

tx
sin(θ )

) 1
a

+ k2
0 cos(φ),

ky =
√

±
(

d

tx
sin(θ )

) 1
a

+ k2
0 cos(φ),

θ ∈ [0, π ) for ±,

φ ∈ [0, 2π ). (B25)

The determinant of the Jacobian matrix for this transformation
is given by the following expression:

det |J±| =
(

d

t̃x

) 1
a sin(θ )

1
a −1

2avy
. (B26)

Using the variable change in Eq. (B23) for the transforma-
tion, we can find that

Izxx
+ det |J+| = a(b − 1)tzt̃1/a

x

2vb
y

d−2+b− 1
a cos(θ )b sin(θ )2−1/a

×
[

k2
0 + d1/a

(
sin(θ )

t̃x

)1/a]
sin(φ)2. (B27)

By considering Ĩ zxx(θ, d ) = Izxx
+ det |J+| + Izxx

− det |J−| we
find

Ĩ zxx(θ, d ) = k2
0

d2−b+ 1
a

˜F zxx
ab + 1

d2−b
G̃zxx

ab , (B28)

where

F̃ zxx
ab = πa(b − 1)tzt̃1/a

x

2vb
y

cos(θ )b sin(θ )2−1/ak2
0 (1 + (−1)a),

(B29)

G̃zxx
ab = πa(b − 1)tz

2vb
y

cos(θ )b sin(θ )2(1 − (−1)a). (B30)

We can do the same for Izzz, for which we find

Izzz
+ det |J+| = b(b − 1)tzt̃−1/a

x

8avb−2
y

d−4+b+ 1
a cos(θ )b−2 sin(θ )1/a,

(B31)
and by considering Ĩ zzz(θ, d ) = Izzz

+ det |J+| + Izzz
− det |J−| we

can find the final form of Izzz(θ, d ) as follows:

Ĩ zzz(θ, d ) = 1

d4−b− 1
a

F̃ zzz
ab , (B32)

TABLE III. The coefficients of Eq. (20) for different directions
(a, b, c ∈ {x, z}). Note that the other four directions (zzx, zxz, xzz,
xxx) that are not included in the table vanish.

Coefficients of the 1pII and 2pII resonances

abc Cabc
1pII Cabc

2pII

zzz −π 2 π2

16

zxx π2

2
−5π2

32

xzx −π2

2
3π2

32

xxz −π2

2
3π2

32

F̃ zzz
a,b (θ ) = b(b − 1)tzt̃−1/a

x

8avb−2
y

cos(θ )b−2 sin(θ )1/a(1 + (−1)a).

(B33)

APPENDIX C: SECOND-HARMONIC GENERATION IN A
NODAL LINE SEMIMETAL

Consider a general Hamiltonian written in the form of
Eq. (D1). The inversion-symmetric Hamiltonian in Eq. (16)

is a particular choice for dx = v(
√

k2
x + k2

y − k0), dy = 0, and

dz = vkz.
Note that in an inversion-symmetric system we need an

external electric field to break the inversion symmetry in order
to find the second-order response in the system. Let us assume
that the external electric field is in the z direction. This ex-
ternal electric field changes the electron distribution function
in the conduction and valence bands, which we can write as
follows up to the first order in the external electric field:

fn = f (0)
n + eτ

h̄
Ez∂kzε

∂ f (0)
n (ε)

∂ε(k)
. (C1)

Here, f (0)
n (ε) is the equilibrium distribution function, n is the

band index, and ε is the conduction band’s energy.
There are four contributions to the SHG in Eqs. (40)–(43)

for two-band systems which we are going to investigate for
Hamiltonian equation (16).

σ
i jm
2p,I(ω) = e3

2h̄2ω2

∫
[dk]Mi jm

2pI,cv (k) fvcRγ (2ω − ωcv ), (C2)

σ
i jm
2p,II(ω) = e3

2h̄2ω2

∫
[dk]Mi jm

2pII,cv (k) fvcRγ (2ω − ωcv ), (C3)

σ
i jm
1p,I(ω) = e3

2h̄2ω2

∫
[dk]Mi jm

1pI,cv (k) fvcRγ (2ω − ωcv ), (C4)

σ
i jm
1p,II(ω) = e3

2h̄2ω2

∫
[dk]Mi jm

1pII,cv (k) fvcRγ (2ω − ωcv ), (C5)

where

Mi jm
2pI,cv = vi

vcw
jm
cv , (C6)

Mi jm
2pII,cv = −4vi

vc

[
v

j
cv, v

m
cc

]
+

ωcv
, (C7)

Mi jm
1pI,cv = wi j

vcv
m
cv + wim

vcv
j
cv, (C8)
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Mi jm
1pII,cv = 2vi

vc

ωcv

[
v j

cc, v
m
cv

]
+ − vi

cc

ωcv

[
v j

cv, v
m
vc

]
+ (C9)

and wab = (1/h̄)∂ka∂kbH , [vb
npv

c
pm]+ = vb

npv
c
pm + vc

npv
b
pm, and

Rγ (x) = 1/(x − iγ ), where γ is related to the decay rate.
Let us consider |1〉 as the conduction band and |0〉 as the

valence band. Using the following identity for Pauli matrices,
τi, we can find the general form of MI and MII for the 2 × 2
Hamiltonians (H = ∑3

α=1 dατα):

〈0|τα|1〉〈1|τβ |0〉 =
(

δi j − dαdβ

d2

)
− iεαβγ

dγ

d
. (C10)

Thus we have

vi
vcv

j
cv = ∂dα

∂ki

∂dβ

∂k j
〈0|τα|1〉〈1|τβ |0〉

= ∂dα

∂ki

∂dβ

∂k j

[(
δαβ − dαdβ

d2

)
− i

dγ

d
εαβγ

]
, (C11)

vi
vcw

jm
cv = ∂dα

∂ki

∂2dβ

∂k j∂km
〈0|τα|1〉〈1|τβ |0〉

= ∂dα

∂ki

∂2dβ

∂k j∂km

[(
δαβ − dαdβ

d2

)
− i

dγ

d
εαβγ

]
.

(C12)

Using Eqs. (C11) and (C12) in Eqs. (C6)–(C9) and separating
the imaginary and real parts of each function, we find

Re
[
Mi jm

2pI

] = ∂dα

∂ki

∂2dβ

∂k j∂km

(
δαβ − dαdβ

d2

)
, (C13)

Im
[
Mi jm

2pI

] = −∂dα

∂ki

∂2dβ

∂k j∂km

dγ

d
εαβγ , (C14)

Re
[
Mi jm

2pII

] = −2

d

∂dα

∂ki

(
∂dβ

∂k j

∂d

∂km
+ ∂dβ

∂km

∂d

∂k j

)(
δαβ − dαdβ

d2

)
,

(C15)

Im
[
Mi jm

2pII

] = 2

d

∂dα

∂ki

(
∂dβ

∂k j

∂d

∂km
+ ∂dβ

∂km

∂d

∂k j

)
dγ

d
εαβγ , (C16)

Re
[
Mi jm

1pI

] =
(

∂dβ

∂km

∂2dα

∂ki∂k j
+ ( j ↔ m)

)(
δαβ − dαdβ

d2

)
,

(C17)

Im
[
Mi jm

1pI

] = −
(

∂dβ

∂km

∂2dα

∂ki∂k j
+ ( j ↔ m)

)
dγ

d
εαβγ , (C18)

Re
[
Mi jm

1pII

] = 1

d

(
∂dα

∂ki

∂dβ

∂km

∂d

∂k j
+ ( j ↔ m)

)(
δαβ − dαdβ

d2

)

− 1

d

∂d

∂ki

∂dβ

∂km

∂dα

∂k j

(
δαβ − dαdβ

d2

)
, (C19)

Im
[
Mi jm

1pII

] = −1

d2

(
∂dα

∂ki

∂dβ

∂km

∂d

∂k j
+ ( j ↔ m)

)
dγ εαβγ . (C20)

Note that there is a sum on repeated indices (α, β, and
γ ). It is easy to see that because dy = 0, all the imaginary
parts vanish in the inversion-symmetric NLSM Hamiltonian
equation (16). At the low-frequency limit the contributions of
Mi jm

2pI and Mi jm
1pI to the SHG vanish and only M2pII and M1pII

have finite contributions. Let us consider the zzz direction.
In this direction, Mzzz

1pI and M2pI vanish explicitly because the
Hamiltonian is linear in kz. For M2pII and M1pII we have the
following expressions:

Re
[
Mzzz

2pII

] =
−4

(√
k2

x + k2
y − k0

)2
kzv

2

((√
k2

x + k2
y − k0

)2 + k2
z

)2
. (C21)

Also it can be seen that Re[Mzzz
1pII] = − 1

4 Re[Mzzz
2pII]. Now let us

use the following variable change:

kx =
(

d sin(θ )

v
+ k0

)
sin(φ),

ky =
(

d sin(θ )

v
+ k0

)
cos(φ),

kz = d cos(θ )

v
, (C22)

where the determinant of the above transformation is given by

det |J| = d (vk0 + d sin(θ ))
v2

, (C23)

where d = v

√
(
√

k2
x + k2

y − k0)2 + k2
z . Using the above vari-

able change, we can simplify Eq. (C21) as follows:

Re
[
Mzzz

2pII

] = −4v3 cos(θ ) sin(θ )2

d
. (C24)

Inserting Eq. (C24) into Eq. (C3), we can find

σ zzz
2p,II = −e4Ezvτ

2h3ω2

∫ ∞

0
dd

∫ 2π

0
dθ

∫ 2π

0
dφ(k0v + d sin(θ ))

× sin(2θ )2Rγ (2ω − 2d )δ(d − μ). (C25)

The only term that has a finite contribution is the term pro-
portional to k0, and the rest vanish due to the angular integral.
Thus we find

σ zzz
2p,II = −e4Ezk0π

2v2τ

h3ω2
Rγ (2ω − 2μ). (C26)

Also by using Re[Mzzz
1pII] = − 1

4 Re[Mzzz
2pII], for σ zzz

1pII we can find
the following expression:

σ zzz
1p,II = e4Ezk0π

2v2τ

4h3ω2
Rγ (ω − 2μ). (C27)

In the zxx direction, Mzxx
1pI vanishes explicitly, but M2pI is

not explicitly zero. However, the angular integral makes this
term vanish. Thus the only contributors come from Mzxx

1pII and
Mzxx

2pII. By changing the variables [Eq. (C22)] we can simply
write the two contributions as follows:

σ zxx
2p,II = e4Ezvτ

2h3ω2

∫ ∞

0
dd

∫ 2π

0
dθ

∫ 2π

0
dφ(k0v + d sin(θ ))

× sin(2θ )2 sin(φ)2Rγ (2ω − 2d )δ(d − μ), (C28)

σ zxx
1p,II = e4Ezvτ

2h3ω2

∫ ∞

0
dd

∫ 2π

0
dθ

∫ 2π

0
dφ(k0v + d sin(θ ))

× cos(θ )2( − 3 + cos(2θ )) sin(φ)2

× Rγ (ω − 2d )δ(d − μ). (C29)
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By evaluating the integrals we find

σ zxx
2p,II = e4Ezτπ2k0v

2

2h3ω2
Rγ (2ω − 2μ), (C30)

σ zxx
1p,II = −5e4Ezτπ2k0v

2

8h3ω2
Rγ (ω − 2μ). (C31)

The same approach can be used to find the SHG in the xxz
and xzx directions, for which we find the following expres-
sions:

σ xxz
2p,II = σ xzx

2p,II = −e4Ezτπ2k0v
2

2h3ω2
Rγ (2ω − 2μ), (C32)

σ zxx
1p,II = σ xzx

1p,II = 3e4Ezτπ2k0v
2

8h3ω2
Rγ (ω − 2μ). (C33)

APPENDIX D: DEFINITIONS AND THE SHG AND SHIFT
CURRENT RELATION

1. Definitions

A Hamiltonian is defined as

H (k) =
3∑

α=1

dα (k)σα, (D1)

where σ1 = σx, σ2 = σy, and σ3 = σz are Pauli matrices.
Shift conductivity is defined as

σ
i jm
shift (0; ω,−ω) = 2πe3

h̄2

∫
[dk]I i jm

10 f01δ(ω − ω10), (D2)

where 1 and 0 denote the conduction band and the valence
band, respectively, and for tensor I i jm

10 we have (we ignore the
index 10 for the I i jm

10 tensor for simplicity)

I i jm = −1

2
Im

[
r j

10rm
01;i + rm

10r j
01;i

]
. (D3)

Here, rm
01;i = ∂ki r

m
01 − i(ξ i

00 − ξ i
11)rm

01 is the generalized deriva-
tive. To see the effect of Berry curvature, we can expand the I
tensor

I i jm = 1
2

∣∣r j
10

∣∣∣∣rm
01

∣∣(∂ki (φ
j + φm) − 2

(
ξ i

00 − ξ i
11

))
cos(φ j − φm)

+ 1

2

∣∣r j
10

∣∣2
∂ki

(∣∣rm
01

∣∣∣∣r j
10

∣∣
)

sin(φ j − φm), (D4)

where φ j = arg(r j
10). We can see when j and m are in the same

direction, then the sine term vanishes, and the first term be-
comes the shift vector definition Ri

10, j = ∂kiφ
j − (ξ i

00 − ξ i
11).

We can define I i jm in terms of the Hamiltonian terms as
follows:

I i jm
10 = −1

8d3

∑
αβγ

[
dγ dα, jdβ,im − dα, jdβ,idγ

d, m

d
+ ( j ↔ m)

]

× εαβγ , (D5)

or equivalently we can write the I i jm tensor as

I i jm = 1

ω2
10

Im

(−vi
10

[
v

j
01v

m
11

]
+

ω10
+ 1

2

(
vm

01w
i j
10 + v

j
01w

im
10

))
.

(D6)

Proof 1. In Proof 1 we show that Eq. (D3) is equal to
Eq. (D6). To find ri

nm, we can start with taking the derivative
of the Hamiltonian

∂ki〈n|H |m〉 = εm〈∂ki n|m〉 + 〈n|∂ki H |m〉 + εn〈n|∂ki m〉 = 0

(for n 
= m). (D7)

By using the fact that 〈∂ki n|m〉 = −〈n|∂ki m〉 and using the
definition that rnm = i〈n|∂ki m〉 and vi

nm = 1
h̄ 〈n|∂ki H |m〉 we can

find

irnm = vnm

ω − ωm
. (D8)

Now we can take the derivative of Eq. (D8), in which we have

ir j
nm;i = v

j
nm;i

ωnm
− v

j
nm

ω2
nm

∂kiωnm. (D9)

We can define the derivative of the element of the velocity
operator as follows:

∂kivnm = ∂ki (〈n|v̂|m〉) = 〈∂ki n|v̂|m〉 + 〈n|∂ki v̂|m〉 + 〈n|v̂|∂ki m〉.
(D10)

By inserting the identity operator we can find

∂kiv
j
nm = wi j

nm + 〈∂ki n|n〉v j
nm +

∑
p
=n

〈∂ki n|p〉v j
pm

+
∑
p
=m

v j
np〈p|∂ki m〉 + v j

nm〈m|∂ki m〉. (D11)

Thus we have

∂kiv
j
nm = wi j

nm + i
(
ξ i

nn − ξ j
mm

)
v j

nm − i
∑
p
=m

v j
npξ

i
pm + i

∑
p
=n

ξ i
npv

j
pm.

(D12)
Using the definition of the generalized derivative, we have

v
j
nm;i = ∂kiv

j
nm − i

(
ξ i

nn − ξ i
mm

)
v j

nm = wi j
nm − i

∑
p
=m

v j
npξ

i
pm + i

∑
p
=n

ξ i
npv

j
pm; (D13)

also, using the fact that iri
nm = vi

nm
ωnm

for n 
= m for a two-band
system, we have

v
j
01;i = w

i j
01 + vi

01

(
v

j
11 − v

j
00

)
ω01

. (D14)

Inserting Eq. (D14) into Eq. (D9) for a two-band system, we
have

iω01r j
01;i = w

i j
01 + v

j
01

(
vi

11 − vi
00

)
ω01

+ vi
01

(
v

j
11 − v

j
00

)
ω01

. (D15)

Finally, by inserting Eq. (D15) into Eq. (D3) we can find
Eq. (D6).

Proof 2. In Proof 2 we show that (D6) is equal to (D5). Let
us consider only the following part:

1

ω2
10

Im

[
−vi

10v
j
01v

m
11

ω10
+ 1

2
v

j
01w

im
10

]
. (D16)

The other terms will be generated by ( j ↔ m). We can
simplify the above expression using the definitions vi

nm =
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1
h̄ 〈n|∂ki H |m〉, v

j
nm = 1

h̄ 〈n|∂ki∂k j H |m〉, and ω10 = 2d/h̄, in
which we find

1

4d2
Im

[−1

2d
∂ki dα∂k j dβ〈1|σα|0〉〈0|σβ |1〉∂km dρ〈1|σρ |1〉

+ 1

2
∂km dα∂ki∂k j dβ〈0|σα|1〉〈1|σβ |0〉

]
. (D17)

Using the following identities, we can simplify the above
equation:

〈1|σα|0〉〈0|σβ |1〉 =
(

δαβ − dαdβ

d2

)
+ iεαβγ

dγ

d
, (D18)

〈1|σα|1〉 = dα

d
. (D19)

Here, εαβγ is the Levi-Civita symbol. Now by considering the
imaginary part of Eq. (D17) we find

1

4d2

[
−∂ki dα∂k j dβ

dldγ

2d2
∂km dl − ∂km∂ki dβ∂dα

dγ

2d

]
εαβγ . (D20)

By changing the α and β indices in the first term and using
the identity dl∂km dl = d∂km d we can find

−1

8d3

∑
αβγ

[
dγ dα, jdβ,im − dα, jdβ,idγ

d, m

d

]
εαβγ , (D21)

which is the first term in Eq. (D21).

2. SHG and shift current relation

Let us look at the general case of σ
i j j
SHG. Because of the

symmetry of the Hamiltonian between x and y in our model,
we consider i and j to be z or x only. For the SHG response in
the i j j direction we have

Mi j j
2pI = vi

01w
j j
10, (D22)

Mi j j
2pII = −8vi

01v
j
10v

j
11

ω10
, (D23)

Mi j j
1pI = 2w

i j
01v

j
10, (D24)

Mi j j
1pII = 4

vi
01v

j
10v

j
11

ω10
− 2vi

11v
j
10v

j
01

ω10
. (D25)

Here, 0 and 1 denote the valence band and the conduction
band, respectively. Now we consider two cases: first, the case
that i 
= j and, second, the case that i = j. For the first case,
in our system, w

i j
01 vanishes because there is no crossing term

such as kxkz in the Hamiltonian. Also the imaginary part of
the second term in Eq. (D24) vanishes because it is fully real.

Now let us look at the shift conductivity in the i j j and ji j
directions.

ω2
10I i j j = Im

[
−2vi

10v
j
01v

j
11

ω10
+ v

j
01w

i j
10

]
, (D26)

ω2
10I ji j = Im

[−v
j
10v

i
01v

j
11

ω10
− v

j
10v

j
01v

i
11

ω10

+ 1

2
v

j
01w

i j
10 + 1

2
vi

01w
j j
10

]
. (D27)

Here, we can see that the second term in Eq. (D27) is
completely real, and the third term vanishes because, in our
system, we do not have crossing terms (i 
= j). Thus we can
see that we can simplify the above equations as follows:

ω2
10I i j j = −1

4
Im

[
Mi j j

2pII

] = 1

2
Im

[
Mi j j

1pII

]

= Im

[
−v

j
10v

i
01v

j
11

ω10

]
, (D28)

Im
[
Mi j j

2pI

] = Im
[
vi

01w
j j
10

] = 2ω2
10I ji j + ω2

10I i j j . (D29)

Now we are able to find the SHG as follows:

σ
i j j
SHG(2ω; ω,ω) = iπe3

2h̄2ω2

∫
[dk]

((
Mi j j

2pII + Mi j j
2pI

)
δ(2ω − ω10) + Mi j j

1pIIδ(ω − ω10)
)

f01. (D30)

Using Eqs. (D28) and (D29), we can find that

Re
[
σ

i j j
SHG(2ω; ω,ω)

] = πe3

2h̄2ω2

∫
[dk]

(
ω2

10(−3I i j j + 2I ji j )δ(2ω − ω10) + 2ω2
10I i j j

)
f01; (D31)

we can simplify the ω2 term in the denominator using the delta function (note that it gives a factor of 4 for the two-photon
resonance processes)

Re
[
σ

i j j
SHG(2ω; ω,ω)

] = πe3

h̄2

∫
[dk]

(
2(−3I i j j + 2I ji j )δ(2ω − ω10) + I i j j

)
f01, (D32)

and thus by the definition of the shift conductivity we have

Re
[
σ

i j j
SHG(2ω; ω,ω)

] = −3σ
i j j
shift (0; 2ω,−2ω) + 2σ

ji j
shift (0; 2ω,−2ω) + 1

2σ
i j j
shift (0; ω,−ω). (D33)

For the case that i = j, Eqs. (D22) and (D25) vanish because both are real. For the remaining terms we have

Im
[
Miii

2pI

] = − 1
2 Im

[
Miii

1pI

] = ω2
10I iii. (D34)

Thus we have

Re
[
σ iii

SHG(2ω; ω,ω)
] = πe3

2h̄2ω2

∫
[dk]

(
ω2

10I iiiδ(2ω − ω10) − 2ω2
10I iiiδ(ω − ω10)

)
f01, (D35)

035114-14



NONLINEAR OPTICAL RESPONSES IN NODAL LINE … PHYSICAL REVIEW B 107, 035114 (2023)

and we can simplify the ω2 term in the denominator using the delta function, in which we find

Re
[
σ iii

SHG(2ω; ω,ω)
] = σ iii

shift (0; 2ω,−2ω) − 1
2σ iii

shift (0; ω,−ω). (D36)

APPENDIX E: SHG IN THE LENGTH GAUGE

It is well known that the calculation of nonlinear responses in the velocity gauge might give rise to unphysical divergences at
zero frequencies using the finite-band approximation. However, there is no evidence of finding these unphysical divergences in
the length gauge calculation. In this Appendix, for the consistency of this paper we are going to compute the singular behavior
of the SHG in the length gauge and compare it with the velocity gauge.

The SHG response in the length gauge can be written as follows [51,52]:

σ abc,inter
SHG (2ω; ω,ω) = 2ωe3

h̄2

∫
[dk]

∑
cvn

ra
vc

[
rb

cnrc
nv

]
+

ωnv − ωcn

(
2 fvc

ωcv − 2ω
+ fnc

ωnc − ω
+ fvn

ωvn − ω

)
, (E1)

σ abc,intra
SHG (2ω; ω,ω) = 2ωe3

h̄2

∫
[dk]

∑
cv

fvc

[
2

ωcv (ωcv − 2ω)
ra
vcrb

cv;c + 1

ωcv (ωcv − ω)
ra
vc;crb

cv

× 1

ω2
cv

(
1

ωcv − ω
− 4

ωcv − 2ω

)
ra
vcrb

cv�
c
cv − 1

2ωcv (ωcv − ω)
rb
vc;arc

cv

]
+ (b ↔ c). (E2)

The two contributions comes from interband and intraband scattering, respectively.
Since the diagonal part of rnn is zero, for two-band systems, the contribution from interband scattering vanishes. We use the

following identity for the generalized derivative:

(
rb

nm

)
;a = ra

nm�b
mn + rb

nm�a
mn

ωnm
+ i

ωnm
�l

(
ωlmra

nl r
b
lm − ωnl r

a
nl r

b
lm

) + wab

iωnm
. (E3)

Since we focus on a two-band system and since the diagonal parts of rnn and ωnn are zero, we can ignore the second term (the
sum over all the other bands) in Eq. (E3).

We can write the two-photon and one-photon contributions individually for the symmetric case of σ abb as follows:

σ abb
1p,SHG = ωe3

h̄2

∫
[dk]

fvc

ω2
cv (ωcv − ω)

(
2rb

cvra
vc�

b
cv − ∣∣rb

cv

∣∣2
�a

cv + iwab
cvrb

vc

)
, (E4)

σ abb
2p,SHG = 2ωe3

h̄2

∫
[dk] fvc

( −8ra
vcrb

cv�
b
cv

ω2
cv (ωcv − 2ω)

− 2iwbb
cvra

vc

ωcv (ωcv − 2ω)

)
. (E5)

Models

In this section we investigate the singular behavior of the SHG in nodal line semimetals in the length gauge. The most singular
behavior has been seen in the zzz direction for SHG; thus we only focus on this direction in this section.

By using the relation iri
nm = vnm

ωnm
we can simplify the conductivity in the following way:

σ abb
1p,SHG = ωe3

h̄2

∫
[dk]

fvc

ω3
cv (ωcv − ω)

( |vz
cv|2�z

cv

ωcv
+ wzz

cvv
z
vc

)
, (E6)

σ abb
2p,SHG = 2ωe3

h̄2

∫
[dk] fvc

(
8vz

vcv
z
cv�

z
cv

ω4
cv (ωcv − 2ω)

+ 2iwzz
cvv

z
vc

ω2
cv (ωcv − 2ω)

)
. (E7)

The structures of Eqs. (E6) and (E7) are closely related to the structures of Eqs. (C6)–(C9).
For a nodal line Hamiltonian [Eq. (16)] we can simplify the above equation as follows:

σ abb
2p,SHG = 2ωe3

h̄2

∫
[dk]

eτ

h̄
Ez∂kzε

∂ f (0)
n (ε)

∂ε(k)

−4
(√

k2
x + k2

y − k0
)2

kzv
2

[(√
k2

x + k2
y − k0

)2 + k2
z

]2

1

ω3
cv

Rγ (ωcv − 2ω). (E8)

By using the variable change in Eq. (B4) we simplify the equation to find the behavior of the SHG

σ abb
2p,SHG ≈ −e4Ezvτ

2h3ω2

∫ ∞

0
dd

∫ 2π

0
dθ

∫ 2π

0
dφ(k0v + d sin(θ )) sin(2θ )2Rγ (2ω − 2d )δ(d − μ), (E9)

in which

σ abb
2p,SHG ≈ e4Ezk0v

2τ

h3ω2
Rγ (2ω − 2μ) (E10)

has the same behavior as SHG in the velocity gauge.
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