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Lindblad master equation approach to the topological phase transition
in the disordered Su-Schrieffer-Heeger model
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We use the Lindblad equation method to investigate the onset of a mobility edge and the topological
phase transition in the disordered SSH chain connected to two external baths in the large bias limit. From
the scaling properties of the nonequilibrium stationary current flowing across the system, we recover the
localization/delocalization in the disordered chain. To probe the topological phase transition in the presence
of disorder, we use the even-odd differential occupancy as a means to discriminate topologically trivial from
topologically nontrival phases in the out-of-equilibrium system. Eventually, we argue how to generalize our
method to other systems undergoing a topological phase transition in the presence of disorder.
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I. INTRODUCTION

A common way to discriminate between different phases
of matter is by looking at their symmetries. Ordered phases
are typically characterized by a lower level of symmetry than
disordered ones. In many cases, this allows for introducing an
order parameter as the average value of a local observable,
which is different from (equal to) zero in an ordered (disor-
dered) phase. Such an approach does not apply to topological
phase transitions.

The concept of a topological phase has been originally
introduced within the theoretical investigation of the quantum
Hall effect [1], as a phase not characterized by any symmetry-
breaking mechanism but rather by fundamental topological
properties that are insensitive to smooth changes in the quan-
tum state of the system [2–4].

Topological phases are also of remarkable interest for prac-
tical applications, as all of them are characterized by nontrivial
edge or surface states, which, being protected by the topol-
ogy of the phase itself, have potential applications ranging
from spintronics to topological quantum computation [5]. It
is, therefore, of the utmost importance to have a criterion to
distinguish topologically nontrivial phases from topologically
trivial ones. Despite that, it is, in general, not simple to select
a physical quantity playing the role of an order parameter at a
topological phase transition.

For lattice models that are translationally invariant by fi-
nite, lattice step translations, the key quantity sensible to
topology is the Chern number, defined as the integral of the
Berry curvature over the Brillouin zone of the system [6,7].
By definition, the Chern number is a collective property of
the state of the system that must be an integer: It is naturally
quantized and cannot be altered by a smooth deformation of
the state which does not alter its global topological properties.
It is either zero, or different from zero, depending on whether

the system is topologically trivial or not. In one-dimensional
systems, the Chern number is proportional to the charge
polarization, which measures the end charge of the system,
Qend [7–10]. Qend is different from zero provided the system
hosts a nontrivial edge state and, therefore, it is sensible to
whether the system is in a topologically trivial or nontrivial
state [7].

When computed in a one-dimensional system, it corre-
sponds to the Zak phase [8], that is, to the integral of the Berry
connection over a closed path transversing the whole Brillouin
zone. Importantly enough, nowadays technology already al-
lows for a direct measurement of the Zak phase in cold atoms
on optical lattices [11], with a good perspective of soon being
able to perform similar measurements in solid-state devices.

In real systems, one has to face the unavoidable presence
of the disorder due to impurities and/or defects. In particular,
in one dimension, uncorrelated disorder typically leads to
full localization of the electronic wave functions and to the
corresponding suppression of the current transport [12,13].
In the specific context of topological materials, disorder can
lead to reentrant topological phases [14–16], with the cor-
responding onset of disorder-induced topological Anderson
insulators [17]. Moreover, in the presence of correlated dis-
order, such as the random bond [18] or the random dimer
disorder [19], the interplay of disorder and topology can
give rise to phases with remarkable properties, which are
presently the subject of an intense research activity, on the
theoretical [16,20–22], as well as on the experimental side, in
solid-state systems, as well as in cold atom systems [23–25].

Over all, the largest part of the theoretical, as well as
of the experimental research, has been focused onto the Su-
Schrieffer-Heeger (SSH) model for polyacetilene [26]. This is
motivated on one hand by the fact that, despite its apparent
simplicity, the theoretical model of SSH is able to catch the
relevant physics arising from the interplay between topology
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and disorder, and on the other hand by the relative ease to
experimentally realize the model in setups like, e.g., GaAs-
AlGaAs superlattices [27], 1D waveguide array fabricated in
fused silica [28], or one-dimensional two-component ultra-
cold atomic mixtures in an optical lattice [25].

Investigating the phase diagram of the disordered SSH
model presents two relevant kinds of difficulties. First, even
in the absence of disorder, the SSH model is insulating.
This implies that, when investigating the disorder-induced
delocalization-localization phase transition, one cannot rely
on the suppression of linear electric conductance as a function
of the system size, since charge transport is already sup-
pressed by the gap, even in the clean limit. Moreover, disorder
breaks the lattice translational invariance, which invalidates
the calculation of most of the quantities usually employed to
distinguish the topologically nontrivial phase from the topo-
logically trivial one.

In this paper, we apply the Lindblad master equa-
tion (LE) formalism [29] to investigate both the localization-
delocalization transition and the topological transition in a
disordered open SSH chain connected to two external reser-
voirs (the baths) in the large bias limit between the baths. The
LE approach allows us to model, on very general grounds,
the Markovian dynamics of an open quantum system con-
nected to one or several baths. In trecent years, it has
played a crucial role in different contexts, such as ultracold
atoms [30,31], condensed matter systems [32–36], quantum
biology, and quantum chemistry [37–40], with the possibility
to implement quantum algorithms and experimentally realize
Markovian dynamics [41–44]. Furthermore, the Lindblad ap-
proach has recently been used to induce topological phase
transitions, in one- and two-dimensional systems, leading to
another universality class of Anderson transitions [45–48].
In the context of quasi-one-dimensional systems, the LE has
been used to investigate both relaxation dynamics toward a
thermal state, in terms of localized, or extended, bulk Lind-
blad operators [49–53], as well as the nonequilibrium steady
states (NESSs) that emerge when a system is placed in con-
tact with two reservoirs at different temperatures or voltage
bias/chemical potentials [54–61].

In our specific case, the baths connected to the SSH chain
play the role of particle source and sink reservoirs and are
modeled as Lindblad local operators. Holding the baths at
the large bias limit drives the system toward a NESS that is
characterized by a steady-state value of the charge current,
INESS. As we rigorously prove analytically and evidence nu-
merically, INESS is finite in the absence of disorder, despite
the system being gapped. Roughly speaking, this is due to
the fact that INESS is determined by states at all the ener-
gies, including, in particular, the conducting ones above the
gap. Disorder-induced localization of the states determines a
suppression of INESS as a consequence of the corresponding
localization of single-particle wave functions. This eventu-
ally makes INESS → 0 the chain length L → ∞ whenever all
the single-particle states are localized. Following this obser-
vation, we identify the localized/delocalized phases of our
system according to whether INESS is suppressed/keeps finite
as L → ∞.

We therefore evidence how once, in the large bias limit,
the chain is taken to a specific NESS, the even-odd differential

occupancy (EOD) can be efficiently used to probe the nontriv-
ial topological properties of the NESS itself. Specifically, by
combining analytical and numerical methods, we show how
a value of the EOD of about ±1 is directly related to the
existence of the in-gap states that characterize the topological
phase, both in the clean limit and in the presence of (bond or
dimer) disorder. We therefore conclude that our LE approach
to the disordered, open SSH chain allows us to encompass at
the same time both the localization/delocalization transition,
as well as the topological properties of the system, which
eventually allows us to map out the corresponding phase
diagram with respect to both physical properties. Eventually,
after proving the effectiveness of our method, we argue how
it can be potentially extended to disordered physical systems
with nontrivial topological properties other than the SSH
chain.

The paper is organized as follows:
(1) In Sec. II, we introduce the model Hamiltonian for the

SSH chain in the clean limit and analyze the two different
types of disorder we consider here. Moreover, we present the
LE approach and how we apply it to our system.

(2) In Sec. III, we derive the INESS both in the clean limit
and in the presence of disorder. In particular, we show how to
map out the localization/delocalization phase transition from
the behavior of INESS as L gets large.

(3) In Sec. IV, we introduce the EOD as a collec-
tive property of the NESS and show how to use it to
probe the topologically nontrivial/trivial nature of the out-of-
equilibrium state.

(4) In Sec. V, we summarize our results and provide pos-
sible further developments of our paper.

(5) In Appendix A, we outline the derivation of the
Eq. (14) of the main text, while in Appendix B we review
the solution of the SSH model over a finite chain with open
boundary conditions in the absence of disorder, as well as the
calculation of the scattering amplitudes in the presence of an
impurity in the chain.

II. MODEL AND METHODS

In the following, we introduce the Hamiltonian for the
one-dimensional SSH model [26] and present the Lindblad
equation approach, which we employ to drive the system
toward a NESS and to measure the physical quantities we use
to characterize the phase diagram of the model, in the clean
limit as well as in the presence of disorder.

A. Model Hamiltonian

Over a one-dimensional, L-site lattice, the Hamiltonian of
the SSH model is given by [26]

HSSH = −
L−1∑
j=1

Jj, j+1{c†
j c j+1 + c†

j+1c j} −
L∑

j=1

μ jc
†
j c j . (1)

In Eq. (1), we, respectively, denote with c j, c†
j the annihi-

lation and the creation operator for a single spinless fermion
at site j of the lattice, obeying the standard anticommutation
algebra {c j, c†

j′ } = δ j, j′ . With Jj, j+1 and μ j we, respectively,
denote the single-fermion hopping amplitude between site j
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and site j + 1 and the chemical potential at site j. In the
absence of impurities, we set μ j = 0 throughout the whole
lattice, while for the Jj, j+1, consistently with the onset of
dimerization in real polyacetilene in the presence of Peierls
instability [26], we set

Jj, j+1 =
{

Jo , for j odd
Je , for j even.

(2)

Assuming periodic boundary conditions and for μ j =
0 ∀ j, the SSH model undergoes a topological phase transition
as a function of Jo/Je. This corresponds to the (quantized)
Berry phase associated to the occupied Bloch wave functions
to switch from 0 to a finite value (= π mod 2π ) [8,9].

The physical consequences of the topological phase transi-
tion are evidenced through the properties of the single-particle
spectrum in the chain with open boundary conditions—HSSH

in Eq. (1)—as a function of L. Specifically, due to the Lieb
theorem for dimerized systems [62,63], if L is odd the system
has at least a zero-energy state at any values of Jo/Je. In this
case, HSSH is symmetric under Jo ↔ Je and no topological
transition appears at any value of Jo/Je. At variance, for L
even, two splitted in-gap states emerge in the single-particle
spectrum for Jo < Je with opposite values of the energy. These
two states correspond to a polarization charge ±e/2 at the
boundary of the chain [26]: They become strictly degenerate
only in the thermodynamic limit, L → ∞, in which case it
is possible to linearly combine the corresponding wave func-
tions into two orthogonal ones localized in real space near by
either boundary of the chain. Due to this, from now on we
shall assume L even throughout our paper.

In the following, we investigate the effects of two different
kinds of disorder: The bond and the dimer disorder. To induce
bond disorder, we assign to the odd bond coupling strength Jo

a value randomly selected between Jo = 1 and Jo = 1 − W ,
with a binary probability distribution Pb[Jo] given by

Pb[Jo] = σδ(Jo − 1) + (1 − σ )δ(Jo − 1 + W ), (3)

so, at each odd bond of the chain, we may have single electron
hopping Jo either equal to 1 or to 1 − W , with probability,
respectively, given by σ and 1 − σ . Clearly, the W = 0 limit
corresponds to the clean case. To induce the dimer disorder,
we randomly assign to the chemical potential at both sites of
each elementary cell (that is, two consecutive odd and even
sites) either one of two selected values, of which one is set at
0 [16,64]. The corresponding probability distribution Pd[μ] is
given by

Pd[μ j] =
{
σδ(μ − 0) + (1 − σ )δ(μ − W ) j odd
μ j−1 j even,

(4)
so μ can be zero or W with probability σ and 1 − σ , respec-
tively. The W = 0 limit corresponds again to the clean case.

The two realizations of the disorder in Eqs. (3) and (4) have
completely different physical consequences on the SSH chain
due to the different behavior of the corresponding potential
under the action of the chiral operator � defined as

� =
L
2∑

j=1

{c†
2 j−1c2 j−1 − c†

2 jc2 j}. (5)

In the clean limit, one has {�, HSSH} = 0, provided that the
chemical potential is set to 0, which leaves the spectrum of
HSSH invariant. When disorder is added to the SSH chain,
thus breaking lattice translational invariance, it is no more
possible to define the Berry phase as the integral over the
Brillouin zone of the Berry connection. However, if the dis-
ordered Hamiltonian, at any given realization of the disorder
potential, still anticommutes with �, it is possible to introduce
a disorder-averaged real space winding number (DAWN), δν ,
which can be used to label topological phases in the presence
of disorder.

Specifically, in a one-dimensional system of length L, δν is
computed by ensemble averaging over a large enough number
N of independent realizations of the disorder, according to the
formula [21,65]

δν = 1

N

N∑
s=1

1

L
Tr{�Qs[Qs, X ]}. (6)

In Eq. (6) s labels a single realization of the disorder,
Qs = ∑

n{|ψn.s〉〈ψn.s| − �|ψn,s〉〈ψn.s|�, with {|ψn.s〉} being a
complete set of eigenfunctions of the Hamiltonian at the real-
ization of the disorder labeled with s, and X being the unit-cell
coordinate operator, X = diag(1, 1, 2, 2, . . . , L

2 , L
2 ).

Due to the missing anticommutativity with �, the DAWN
cannot be defined in the presence of dimer disorder. This
requires introducing alternative means to investigate the com-
bined effects of topology and disorder [16,64]. To bypass this
limitation, in the following we define and employ the EOD.
We show that our method allows us to witness the onset of
topological phases in the presence of disorder regardless of
whether the Hamiltonian anticommutes with � or not. More-
over, in the large bias limit, we show how our method can
be equally well applied to equilibrium, as well as to out-of-
equilibrium, open systems.

To analyze the disorder-induced localization effects on the
electronic states of the system, we study the stationary charge
transport properties of the open chain connected to two exter-
nal baths taken at large chemical potential bias. Within the LE
approach, we derive the stationary density matrix ρ describing
the NESS that asymptotically sets in the system. Computing
the corresponding stationary current INESS flowing through the
chain, we will be able to spell out disorder-induced effects
in the system through their effects in INESS. Motivated by
this observation, we now present the main features of the LE
approach to the SSH model.

B. Lindblad equation

The LE master equations consists of a first-order differ-
ential equation for the time evolution of the system density
matrix ρ(t ), given by

ρ̇(t ) = −i[H, ρ(t )] +
∑

k

(
Lkρ(t )L†

k − 1

2
{L†

k Lk, ρ(t )}
)

. (7)

The first term on the right-hand side of Eq. (7), called
the Liouvillian, describes the unitary evolution determined by
the system Hamiltonian H , while the second term, the Lind-
bladian, includes dissipation and decoherence on the system
dynamics, with the jump operators Lk that are determined by
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the coupling between the system and the baths. Throughout
the following derivation, we assume H = ∑L

i, j=1 c†
i Hi, j (t )c j ,

with c j, c†
j being the single-fermion creation and annihila-

tion operators at site j and the Hamiltonian matrix elements
Hi, j (t ) which, in general, can depend on time t , as well.

In the following, we consider baths that locally inject (or
extract) fermions to (from) the boundary sites of the chain, at
given and fixed rates. We describe the injecting and extracting
baths at site j = {1, L} in terms of the Lindblad operators Lin, j

and Lout, j , given by

Lin, j = √
� jc

†
j , Lout, j = √

γ jc j, (8)

with � j and γ j being the coupling strengths, respectively,
determining the creation and the annihilation of a fermion at
site j.

We have a total of four, in principle, independent, coupling
strengths, �1, γ1, �L, and γL, that describe the coupling be-
tween the chain and the baths. When recovering the above
couplings from the microscopic theory, we see that they can
be expressed in terms of the Fermi distribution function at
the chemical potential of the reservoir, f , and of the reservoir
spectral density at the chemical potential of the reservoir, g.
Specifically, we obtain [66,67]

� j = g j f j, γ j = g j (1 − f j ), (9)

with (labeling each reservoir with the index of the site it is
connected to) j = {1, L}.

In this paper, we focus on the large bias regime, which
corresponds to setting f1 = 1 and fL = 0. In this limit, the
reservoir coupled to site 1 acts as an electron source by only
injecting electrons in the chain, and the reservoir coupled to
site L acts as an electron drain by only absorbing electrons
from the system. As a result, a steady-state current is induced
due to electrons that enter the chain at site 1 and travel all
the way down to site L, where they exit the chain. To derive
the current in the large bias limit, we first determine ρ(t )
by solving Eq. (7). Then, we compute the (time-dependent)
expectation value of any observable O, O(t ) using

O(t ) = Tr[Oρ(t )]. (10)

Taking into account Eq. (10) we employ Eq. (7) to write
the LE directly for O(t ), obtaining

d

dt
O(t ) = Tr(Oρ̇(t ))

= iTr[[H, O]ρ(t )] +
∑

k

(
Tr[L†

k OLkρ(t )]

− 1

2
Tr[{L†

k Lk, O}ρ(t )]

)
. (11)

In the following, we focus on the average value of the
occupation number at a generic site i of the system, nj (t ) =
Tr[njρ(t )], as well as of the currents flowing from the reser-
voirs into site j = {1, L}, Iin, j (t ) or from site j = {1, L} to the
reservoir, Iout, j (t ). These are given by

Iin, j (t ) = � j (1 − n j (t )), Iout, j (t ) = γ jn j (t ), (12)

so the net current exchanged at time t between the reservoirs
and site j is given by I j (t ) = Iin, j (t ) − Iout, j (t ). In addition, we
also need to derive the average value of the current flowing

between two connected sites of the chain, say, j and j ± 1,
I j, j±1. This is given by

I j, j±1(t ) = −iJj, j±1I j, j±1(t ) + c.c., (13)

with I j, j±1(t ) = Tr[c†
j c j±1ρ(t )] and with c.c. denoting the

complex conjugate.
The full set of LEs for nj (t ), Iin, j (t ), Iout, j (t ), and I j, j±1(t )

allows us to recover the current across the chain when it is
connected to external reservoirs. For a quadratic Hamiltonian,
it is possible to write a closed set of equations for the bilinear
operators only that can be written in matrix form as

Ċ(t ) = i[H
(t ), C(t )] + G − 1
2 {(G + R), C(t )}, (14)

with the bilinear expectation matrix elements [C(t )]i, j =
Tr[c†

i c jρ(t )] and the system-bath coupling matrix ele-
ments [G]i, j = δi, j (δ j,1�1 + δ j,L�L ) and [R]i, j = δi, j (δ j,1γ1 +
δ j,LγL ). The system evolves in time, asymptotically flowing
to the NESS, which is determined from the condition Ċ(t ) =
0 (details about the derivation of Eq. (14) are provided in
Appendix A).

In the following, we use Eq. (14) to describe the SSH
model with different kinds of correlated disorder.

III. CURRENT AND STATE LOCALIZATION
IN THE NONEQUILIBRIUM STEADY STATE

The most effective way of probing the disorder-induced
localization in one-dimensional systems is through dc current
transport measurements [68]. However, due to the presence of
the dimerization gap, the SSH chain is insulating even in the
absence of disorder. In this case, as an alternative (to transport
properties) means to study the localization transition, it has
been proposed to look at the normal- and inverse-participation
ratios. These two quantities can directly be computed from
the wave functions for the single-electron states in the system.
By averaging over N-independent realizations of the disorder,
they are, respectively, defined as [21]

NPR = 1

N

N∑
s=1

1

L

∑
n

⎛
⎝L

L∑
j=1

|〈 j|ψn,s〉|4
⎞
⎠

−1

,

IPR = 1

N

N∑
s=1

1

L

∑
n

L∑
j=1

|〈 j|ψn,s〉|4. (15)

As L → ∞, either NPR = 0, corresponding to localization
of all the states, or IPR = 0, corresponding to all the states
being delocalized.

As we show in the following, driving the chain to the
large-bias limit allows for using charge transport to probe the
localization transition even for the insulating system. Indeed,
in the linear response regime the current is proportional to
the zero-energy transmission coefficient T across the chain
and is therefore exponentially suppressed with L as e− L

ξ , with
ξ = 1/ tanh−1[ |Je−Jo|

Je+Jo
]. Instead, once the system is driven to-

ward the NESS corresponding to the optimal working point by
tuning the chain-bath coupling strength [59,60], INESS keeps
finite as L → ∞ even if the system is gapped.

On turning on the disorder, INESS is suppressed due
to the strong localization effect of random disorder in
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one-dimensional systems [12,13], thus signaling the onset
of the delocalization/localization transition in the electronic
states in the chain. Moreover, as we show below, INESS is
also sensible to the onset of the mobility edge that has
been predicted to arise, under suitable conditions, in one-
dimensional disordered systems in the presence of correlated
disorder and/or of structured impurities [19,64,69,70] (see
also Ref. [71] for an extension to a two-leg ladder and
Ref. [72] for a proposal of a practical implementation within
an N-leg ladder realized with an optical lattice): the mobility
edge is indeed naturally revealed by INESS maintaining a finite
value, even on increasing L toward the scaling limit. Thus,
we conclude that measuring INESS is enough to determine
the localization/delocalization transition in our system. At
variance, to discriminate between the topologically trivial and
the topologically nontrivial phase, below we introduce the
EOD as a suitable tool to infer the topological properties of
the NESS.

To effectively ascertain the physical behavior of our system
and how it is affected, in the following we employ analyti-
cal and numerical methods, by complementing one another,
whenever possible.

A. INESS in the clean limit

In the absence of disorder, we compute INESS by employing
the approach of Ref. [54]. The basic idea is to think of a three-
region system: regions A and C, respectively, connected to the
left- and to right-hand baths, and the central region B, whose
sites are not directly connected to a bath and to eventually
assume that A and C are weakly coupled to B. Defining g to
be the small parameter controlling the coupling strength, so
0 < g � 1, we compute the current to leading order in g.

The constraint over g does not affect the reliability of the
final result (at least qualitatively). This is due to the absence of
a bulk interaction in the SSH model, which makes the intersite
hopping between neighboring a marginal boundary operator.
Therefore, tuning its strength by continuously varying g to-
ward the g → 1 limit (which corresponds to our specific case)
does not qualitatively alter the results we obtain in the small-g
limit (note that this does not typically happen in the case in
which g is the interaction strength in front of a relevant, or
of a marginally relevant, boundary interaction, such as, for
instance, in the presence of Majorana modes at the endpoints
of the chain [73–75] or in the two-impurity Kondo model in a
spin chain [76]).

In the following, we realize the single-site A and C regions
by weakening the first and last bond of HSSH in Eq. (1),
according to

J1,2 = Jo → gJo, JL−1,L = Jo → gJo. (16)

In Fig. 1, we provide a schematic drawing of our system,
with the red arrow evidencing the particle injection from the
source to the chain (with coupling �1) and the green arrow
corresponding to the particle injection from the chain into the
drain (with coupling γL) when the system is taken to the large
bias regime. The corresponding Hamiltonian Ĥ is determined
by the sum of the Hamiltonian of the two sites connected with
the external baths, ĤA, ĤC , plus the terms coupling A and C
sites to the middle chain, V̂A,B and V̂B,C , plus the Hamiltonian

L

eJJo

Γ1
gJo

B CA γ

FIG. 1. Sketch of the SSH chain connected to one-site Lind-
blad baths (drawn as full, purple dots) with weakened bonds J1,2 =
JL−1,L = gJo (drawn in green). In the figure, we evidence the three
regions of length A, B, and C (see main text for details). The red
arrow evidences the particle injection from the source to the chain
(with coupling �1) and the green arrow corresponds to the particle
injection from the chain into the drain (with coupling γL) when the
system is taken to the large bias regime.

for the middle region ĤB, that is,

Ĥ = ĤA + ĤC + ĤB + V̂A,B + V̂B,C . (17)

Using the notation α, α† and β, β† to, respectively, denote
the single fermion annihilation and creation operators over,
respectively, the first and last sites of the chain, we have

ĤA = εαα†α, ĤC = εββ†β,

ĤB = −
L−3∑
j=1

Jj, j+1{c†
j c j+1 + c†

j+1c j},

V̂A,B = −gJo{α†c1 + c†
1α}, V̂B,C = −gJo{β†cL + c†

Lβ},
(18)

with εα, εβ eventually sent to 0, consistently with Ref. [54]
and with J1,2 = Je, J2,3 = Jo, etc. Let us note that ĤB corre-
sponds to the Hamiltonian of an SSH chain of L̂ ≡ L − 2 sites
where Je and Jo are exchanged with each other.

From Eqs. (18), we find that INESS is given by

INESS = − igJo

2
{〈α†c1 − c†

1α〉 − 〈β†cL̂ − c†
L̂
β〉}, (19)

with 〈. . .〉 denoting the average of the operator on the NESS.
To implement the perturbative expansion in g, we now intro-
duce the eigenmodes of ĤB with energy λεk (λ = ±), �α,λ,
which are given by

�k,λ =
L̂∑

j=1

(ψ j,k,λ)∗c j, �0,λ =
L̂∑

j=1

(ψ j,0,λ)∗c j, (20)

with the wave functions ψ j,k,±, ψ j,0,±, respectively, provided
in Eqs. (B13) and (B17). The in-gap eigenmodes �0,λ are
present, or not, depending on whether the chain is in the
topological or the trivial, phase. Inverting Eqs. (20), we obtain

c j =
∑

k

∑
λ

ψ j,k,λ�k,λ. (21)

Equation (21) allows us to express the right-hand side of
Eq. (19) in terms of the matrix elements of the covariance
matrix θ [54], according to

〈α†c1〉 =
∑
k,λ

ψ1,k,λ〈α†�k,λ〉 =
∑

k

∑
λ

ψ1,k,λθα;(k,λ),

〈β†cL̂〉 =
∑

k

∑
λ

ψL,k,λ〈β†�k,λ〉 =
∑
k,λ

ψL,k,λθβ;(k,λ). (22)
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The leading nonzero contribution to the right-hand side of
Eqs. (22) arises to first order in g and is given by

θα;(k,λ) = igψ1,k,λ( f̄α − f̄k,λ)

γ − iλεk
,

θβ;(k,λ) = igψL,k,λ( f̄β − f̄k,λ)

γ − iλεk
, (23)

with f̄α and f̄β denoting the Fermi distribution functions
describing, respectively, the left- and right-hand bath-level oc-
cupancies within the NESS. To recover the large bias regime
in the zero-temperature limit, we have to assume a negative
(positive) chemical potential μα (μβ) for the left-hand (right-
hand) bath, respectively. This eventually implies f̄α = 1, f̄β =
0. With f̄k,λ, we denote the distribution function of the modes
of the chain within the NESS. Due to the symmetry of HSSH

under the replacement j ↔ L + 1 − j, we obtain [ψ1,k,λ]2 =
[ψL̂,k,λ]2, ∀k, λ. In this case, our analogs of Eqs. (53) and (54)
of Ref. [54] are trivially solved by f̄ SSH

k,λ = 1
2 { f̄α + f̄β} = 1

2 ,
independent of k and λ. Finally, the particle-hole symmetry of
the SSH chain at half filling implies [ψ1,k,+]2 = [ψ1,k,−]2 and
εk,+ = −εk,−. Collecting the above results all together, and
noting that when the full system is in the topological phase
the subsystem ĤB is in the trivial one, the steady-state current
in the NESS in the topological phase is given by

INESS =
∑

0<k� π
2

γ g2J2
o [ψ1,k,−]2

γ 2 + ε2
k

, (24)

with the sum taken over the values of k that satisfy Eq. (B12)
with Je ↔ Jo and no contribution to the current arising from
the localized, subgap modes. To access the trivial phase, we
simply use again Eq. (24), with just Je and Jo exchanged with
each other, thus getting

INESS =
∑

0<k� π
2

γ g2J2
e [ψ1,k,−]2

γ 2 + ε2
k

, (25)

with the sum over k now computed over the solutions of the
secular equation corresponding to propagating states (real k),
as well as over the localized mode solution, corresponding to
k = π

2 − iq, with q real and positive.
In Fig. 2, we plot INESS computed in an SSH chain with

L = 20 sites with the analytical formulas in Eqs. (24) and (25)
(red curve), as well as numerically calculated directly within
the LE approach (blue curve) by keeping Jo fixed at 1 (ref-
erence energy value) and γ /Jo = 1.5 and by varying Je, for
0 � Je/Jo � 2. In general, INESS shows a maximum IM , as
a function of Je/Jo, at the topological phase transition, cor-
responding to the closure of the bulk gap of the chain at
Je/Jo = 1. To get rid of the arbitrary parameter g in Eqs. (24)
and (25), in drawing both curves we normalize INESS at the
corresponding value of IM . We note the excellent agreement
with each other, which evidences the due consistency between
the analytical and the fully numerical approach. We also note
that INESS keeps finite at any finite value of Je/Jo.

To rule out the possibility that (as it happens when consid-
ering equilibrium dc transport throughout the SSH chain) this
might be some finite-size effect, below we provide a general

0

0.5

21
0.0

1.0

J

I
NESS

/eJ o

FIG. 2. INESS in an SSH chain with L = 20 as a function of
Je/Jo at fixed Jo = 1 and γ /Jo = 1.5, computed using the analytical
expression in Eqs. (24) and (25) (red curve) and by direct implemen-
tation of the Lindblad equation approach (blue curve). In both cases,
INESS has been normalized so it is equal to 1 for Je/Jo = 1 (see main
text for the corresponding discussion).

argument proving that, at any finite values of Je and Jo and in
the absence of disorder, INESS keeps finite as L → ∞.

To do so, we show that Eqs. (24) and (25) are bounded from
below and from above by two quantities that remain finite in
the thermodynamic limit. Indeed, we note that, as L → ∞,
Eqs. (24) and (25) yield

INESS ≈ L

4π

∫ π

−π

dk

{
γ g2J 2

γ 2 + ε2
k

[1 − cos(2kL)]

L − sin(kL) cos[k(L+2)]
sin(2k)

}
, (26)

with J = min{Jo, Je}. From Eq. (26), we readily find that

3

(3π + 1)
IL � INESS � IL, (27)

with

IL = γ g2J 2

2π

∫ π

−π

dk

{
[1 − cos(2kL)]

γ 2 + ε2
k

}

= γ g2J 2

⎧⎪⎨
⎪⎩

1 − zL
∗

2
√(

J2
e + J2

o + γ 2
)2 − 4J2

e J2
o

⎫⎪⎬
⎪⎭, (28)

with

z∗ = −J2
e + J2

o + γ 2

2JeJo
+

√√√√(
J2

e + J2
o + γ 2

)2 − 4J2
e J2

o

4J2
e J2

o

. (29)

Eventually, Eqs. (28) and (29) imply that, as L → ∞, we
get

IL→∞ =

⎧⎪⎨
⎪⎩

γ g2J 2

2
√(

J2
e + J2

o + γ 2
)2 − 4J2

e J2
o

⎫⎪⎬
⎪⎭, (30)

which is always finite at any finite values of Je and Jo. Due
to disorder-induced localization, the situation fully changes
as disorder is turned on, though, as we discuss next, strongly
depending on the nature of the disorder.
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B. INESS and disorder-induced localization
in the presence of bond disorder

In a one-dimensional conductor, any amount of disorder
would lead to complete localization of single electron states
and to the corresponding suppression of long-distance charge
transport in the scaling limit [12,13]. At variance, disorder
induced by correlated impurities with a nontrivial internal
structure can give rise to a mobility edge that marks a metal-
to-insulator transition, even in one-dimensional disordered
conductors [19,64,69]. This is due to the fact that, differently
from what happens with a structureless impurity located at
a lattice site, an impurity with an internal structure, such as
a correlated dimer, allows, under pertinent conditions on the
values of the various system parameters, for a single-particle
tunneling through, with zero reflection amplitude and just a
total phase shift in the wave function [19].

That being stated, following standard arguments [77], one
concludes that a chain of length L hosts a number of localized
states Nloc ∼ √

L. These states support conduction, though, in
the thermodynamic limit, they determine a zero-measure set.
The disappearance of these states marks the metal-to-insulator
phase transition. As we argue here and in the following sec-
tion, the current INESS provides an effective way to detect the
mobility edge in the disordered SSH chain [78].

To check where, and under what conditions, the mobil-
ity edge should arise in our system, we follow the main
argument of Ref. [19], for both bond- and dimer-correlated
disorder. Specifically, we derive the explicit expression for the
reflection coefficient in the presence of the impurity, rk , as a
function of the momentum k and verify if, and under what
conditions, rk = 0, which marks the onset of the mobility
edge [19]. In Appendix B, we derive rk in the SSH chain in
the presence of a bond and of a dimer impurity. In the case of
a bond impurity, we find that rk is given by

rk = e4ik+iϕkW (2 − W )

−1 + e2i(k+ϕk )(1 − W )2
. (31)

Equation (31) implies that, regardless of k, we can recover
the condition rk = 0 only if either W = 0 (which corresponds
to the trivial case of absence of disorder, or W = 2. In the
scaling limit, we therefore expect that bond disorder induces
full localization of the electronic states, except along the lines
in parameter space corresponding to W = 0 and W = 2 (note
that rk is symmetric under W ↔ 2W , so we do expect a
corresponding symmetry for the phase diagram).

To evidence how this reflects in the behavior of INESS, we
have used the LE approach to compute it in the presence of
bond disorder, as a function of W/Jo and of the ratio Je/Jo

(using Jo as unit of energy and accordingly setting it to 1) for
increasing values of L. To account for the disorder, at each set
of values of Je/Jo,W and L, we ensemble averaged the results
for INESS over N = 50 realizations of the bond disorder, with
probability of having a single altered bond set at 1 − σ = 0.5.
To optimize our procedure by letting the system operate at the
optimal working point by maximizing INESS, we repeated the
procedure of Ref. [60] and eventually chose γ = 2.

In Fig. 3, we draw our result for INESS as a function of W/Jo

and of Je/Jo, for 0 � W � 2.5 and for 0 � Je/Jo � 2, in a
chain at increasing values of L = 20, 40, 80 connected to two

(c)

o/W

JoJe /

Jo/W

JoJe /

Jo/W

JoJe /

(a)

(b)

J

FIG. 3. (a) INESS in an L = 20 SSH chain with bond disorder
in the hopping terms with σ = 0.5 [see Eq. (3)], as a function of
W/Jo and of Je/Jo, for 0 � W/Jo � 2.5 and for 0 � Je/Jo � 2 (Jo has
been used as a reference energy and it has therefore been set to 1).
The figure has been generated by averaging over N = 50 different
realizations of the bond disorder. The couplings to the Lindblad
baths have been set so �1 = γL = γ = 2. The color code highlights
the value of INESS (normalized at its maximum) as evidenced in the
figure. (b) Same as in (a) but with L = 40. (c) Same as in (a) but with
L = 80.

Lindblad baths in the large-bias regime, with couplings to the
bath �1 = γL ≡ γ . From the color code for the value of INESS

we see that, on one hand, the current is maximal over regions
centered on the lines W/Jo = 0, 2, which is consistent with
the criterion of Ref. [19] and with the result of Eq. (B25).
Moving across Figs. 3(a)–3(c), we also see that, as expected,
the largerthe L, the more the region in parameter space over
which INESS is appreciably �= 0 shrinks over the lines W/Jo =
0, 2. Anywhere else, the system is insulating as L → ∞.

As an independent cross-check of our conclusions, in Fig. 4
we plot INESS computed with the same parameters we used
to draw Fig. 3, but at a single realization of the disorder,
as a function of L for 20 � L � 160, with Je/Jo = 1.5 and
for W/Jo = 0, 0.1, 0.25. We clearly see that, while there is
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FIG. 4. INESS as a function of L for 20 � L � 160 computed in
a SSH chain with Je/Jo = 1.5, with couplings to the Lindblad baths
set so �1 = γL = γ = 2 at a given realization of bond disorder, with
W = 0.0 (blue line), W = 0.1 (green line), and W = 0.25 (red line).

apparently no scaling at all (as it must be) for W/Jo = 0,
in both the other cases INESS appears to scale toward 0 on
increasing L. We therefore conclude that, as L → ∞, the bond
disorder suppresses INESS everywhere in parameter space, ex-
cept along the vertical lines W = 0 and W = 2.

C. INESS and disorder-induced localization
in the presence of dimer disorder

As we show in Appendix B, the reflection amplitude rk

across a dimer impurity is given by

rk = − e4ik+iϕkW (W + 2Jo cos(k + ϕk ))

J2
o + 2ei(k+ϕk )JoW + e2i(k+ϕk )

( − J2
o + W 2

) . (32)

From Eq. (32), we now see that rk = 0 if either W = 0
(which, again, corresponds to the trivial limit of absence of
disorder) or W + 2Jo cos(k + ϕk ) = 0. This latter condition
corresponds to the result of Ref. [19] for a dimer impurity,
once one, respectively, identifies εa and V of that paper with
our W and Jo, and once one notes that, in our case, we have
set εb of Ref. [19] at 0 and have an additional contribution ϕk

in the argument of the cosine that disappears, once one sets
Je = Jo, as in Ref. [19].

The equation W + 2Jo cos(k + ϕk ) = 0 takes a solution k∗
for 0 � k � π only provided that |W/2Jo| � 1. If this is the
case, over an L-site chain,

√
L electronic states (out of the total

of L states) centered around k∗ are not localized by the disor-
der and, though, as L → ∞, they contribute the total number
of states by a zero measure set, they are nevertheless enough
to support a conducting phase in the chain, thus determining
the onset of a mobility edge [19,69].

To evidence how this affects INESS, we have generalized
Eqs. (24) and (25) to the case in which a single impurity is
present in the chain. In this case, due to the lack of symmetry
of the system under the site-order inversion, j ↔ L − j + 1,
Eqs. (24) and (25) are substituted by

INESS =
∑

0�k� π
2

{
2γ g2J 2[ψ1,k,−]2[ψL,k,−]2(

γ 2 + ε2
k

)
([ψ1,k,−]2 + [ψL,k,−]2)

}
, (33)

with J = min{Je, Jo}. At a value of k corresponding to a
localized state, at large enough system length L, either ψ2

L,k,−
is exponentially suppressed compared to ψ2

1,k,− or vice versa,
thus resulting in an overall suppression of the correspond-
ing contribution to INESS. At variance, within the window of

delocalized states we obtain [ψ1,k,−]2[ψL,k,−]2/([ψ1,k,−]2 +
[ψL,k,−]2) ≈ (2L)−1. Neglecting also the dependence of the
group velocity vk = ∂kεk on k (which is appropriate far
enough from the band edge), we eventually obtain

INESS ≈ 2g2J 2

π
arctan

[
α
√

L

γ

]
, (34)

with α being a constant. The right-hand side of Eq. (34) takes
a finite limit as L → ∞. Clearly, an expression like Eq. (34)
is strictly related to the presence of a mobility edge within the
allowed band of states, without which one would again obtain
a complete, localization induced, exponential suppression of
INESS as a function of L.

Along the derivation we performed in the case of bond
disorder, we again employed LE approach to compute INESS

in the large-bias limit in the presence of dimer disorder of
strength W [see Eq. (4)], as a function of W/J and of �, for
increasing values of L and with � = δJ

J where J = Je+Jo
2 and

δJ = Je−Jo
2 . Again, to account for the effects of the disorder,

at each value of W/J and � we ensemble averaged INESS over
N = 50 realizations of the dimer disorder, with probability of
having a single altered dimer set at 1 − σ = 0.5. As in Fig. 3,
we have chosen �1 = γL ≡ γ = 2. Aside from the trivial line
W = 0, we can clearly identify the light-green/light-blue re-
gions at finite W/J with the set of delocalized states around
the mobility edge. Taking into account that, in Fig. 5 we are
choosing our energy units so Je = 1 + � and Jo = 1 − �, we
see that the light-colored region is stuck at the line W/J =
2Jo/J = (2 − 2�)/J . As expected, on increasing L there is a
mild sharpening of the light-colored regions, simply related
to the corresponding reduction of the width of the region of
extended states. Yet, the peak value of INESS is not suppressed
as L gets large, thus fully confirming the persistence of the
mobility edge in that limit.

As a cross-check of our conclusions, in Fig. 6 we show a
sample of the scaling of INESS with L at a specific point of the
diagram in Fig. 5. Specifically, we draw INESS as a function
of L for 20 � L � 160 for � = −0.4 and for W/J = 0.1
(blue curve), W/J = 0.2 (green curve), and W/J = 2.6 (red
curve), by taking the system to the large bias limit, with the
couplings between the chain and the bath chosen as in Fig. 5.
At both points at W/J = 0.1 and W/J = 2.6 (that is, close to
the mobility edge), we see practically no scaling of the current
with the system size, which is consistent with the conclusion,
evidenced by Fig. 5, that at both points the chain is in the
conducting phase. At variance, as soon as we move off the
mobility edge, we see a suppression of INESS as L increases,
which is evident already at W/J = 0.2.

To conclude, we have shown how, connecting the disor-
dered SSH chain to two baths in the large bias limit and
probing the steady-state current in the NESS that sets in,
provides an effective mean to map out the insulating and the
conducting phases of the system, as well as the localization-
delocalization phase transitions between them. In particular,
we have evidenced how the value of INESS is strongly sen-
sitive to the evolution of the system through the mobility
edge that arises in the presence of correlated dimer disorder.
To complement the results of this section, in the following
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J

FIG. 5. (a) INESS in an L = 20 SSH chain with dimer disorder
i with σ = 0.5 [see Eq. (4)], as a function of W/J and of �, with
J = Je+Jo

2 and � = Je−Jo
Je+Jo

and for 0 � W/J � 4 and for −1 � � � 1.
The figure has been generated by averaging over N = 50 different
realizations of the dimer disorder. The couplings to the Lindblad
baths have been set so �1 = γL = γ = 2. The color code highlights
the value of INESS (normalized at its maximum) as evidenced in the
figure. (b) Same as in (a) but with L = 40. (c) Same as in (a) but with
L = 80.

we introduce the EOD occupation as a mean to map out the
disorder-induced topological phase transitions in the system.

IV. THE EVEN-ODD DIFFERENTIAL OCCUPATION

We now introduce the EOD ν̄ as a collective property of
the NESS of the chain and show how it can be used to detect
the topological/trivial nature of the NESS.

When the system is at equilibrium, the onset of the topo-
logical phase corresponds to a nonzero value of the winding
number w [79]. Alternative physical quantities sensible to the
onset of nontrivial topology have been proposed, such as the
charge polarization [7,79], and the dielectric polarization [80].

140

0.2

0.4

0
10020 60

L

I

W/J=0.1
W/J=0.2
W/J=2.6

NESS

FIG. 6. INESS as a function of L for 20 � L � 160 computed in a
SSH chain with Je = 1 + �, Jo = 1 − �, � = −0.4, with couplings
to the Lindblad baths set so that �1 = γL = γ = 2, at a given realiza-
tion of dimer disorder, with W/J = 0.1 (blue line), W/J = 0.2 (green
line), +99 and W/J = 2.6 (red line).

Finally, the DAWN in Eq. (6) has been proposed in the pres-
ence of disorder described by a potential that anticommutes
with � [21].

In the general case of a topological system in the presence
of disorder, an effective mean to define the topological phase
is by first ensemble-averaging over the disorder a quantity ν

that is 0 in the trivial phase and �= 0 (and quantized) in the
topological phase and then by defining a threshold value of ν

above which the system is assumed to be in the topological
phase [15].

To introduce the EOD and to illustrate its meaning, let us
focus, for the time being, on an L-site (with L even) SSH
chain at equilibrium, in the extreme limits. These are defined
by, respectively, sending Je → 0 while keeping Jo finite (the
trivial extreme state) and by sending Jo → 0 by keeping Je

finite (the topological extreme state). Denoting with Hext,Tr

and with Hext,To the Hamiltonian of the system, respectively,
describing the trivial and the topological extreme state, we
obtain

Hext,Tr = −Jo

L
2∑

r=1

{c†
2r−1c2r + c†

2rc2r−1},

Hext,To = −Je

L
2 −1∑
r=1

{c†
2rc2r+1 + c†

2r+1c2r}. (35)

To diagonalize the Hamiltonians in Eqs. (35), we rewrite
them as

Hext,Tr = Jo

L
2∑

r=1

{d†
r,udr,u − d†

r,gdr,g},

Hext,To = Je

L
2 −1∑
r=1

{ f †
r,u fr,u − f †

r,g fr,g}, (36)

with, respectively,

dr,g = c2r−1 + c2r√
2

, dr,u = c2r−1 − c2r√
2

,

fr,g = c2r + c2r+1√
2

, fr,u = c2r − c2r+1√
2

. (37)

Defining the empty state |0〉 so c j |0〉 = 0, ∀ j = 1, . . . , L,
from Eqs. (36) and (37) we readily see that, in the trivial
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extreme limit, the ground state |Tr〉 is uniquely given by

|Tr〉 =
L
2∏

r=1

d†
r,g|0〉. (38)

At variance, in the topological extreme limit, the ground
state is twofold degenerate: In this case, two orthogonal
ground states |L, To〉 and |R, To〉 are given by

|L, To〉 = c†
1

L
2 −1∏
r=1

f †
r,g|0〉, |R, To〉 = c†

L

L
2 −1∏
r=1

f †
r,g|0〉. (39)

The two states in Eq. (39) correspond to the zero-energy
Dirac fermion localized at either endpoint of the chain [23,81].
It is worth stressing that this is drastically different from what
happens with the superconducting Kitaev chain, where a zero-
energy Dirac fermion can only be built as a superposition of
the two Majorana modes at the endpoints of the chain (and is,
therefore, nonlocal in real space).

To discriminate between the states in Eqs. (38) and (39), we
define the EOD ν̄ as the average of the operator � in Eq. (5),
that is, ν̄ = Tr[�ρ]. Basically, ν̄ measures the net average
occupancy of the odd sites minus the one of the even sites
of the chain.

At equilibrium, when T = 0, ν̄ reduces to the ground-
state average of �. In the extreme limits discussed above,
|Tr〉, |L, To〉, and |R, To〉 are all eigenstates of � with eigen-
values respectively equal to 0, 1, and −1. In general, when
computing a thermodynamical average using the density ma-
trix, we expect that, being degenerate in energy, |L, To〉 and
|R, To〉 equally weight for the final result, thus eventually
implying ν̄ = 0. Therefore, to have a nonzero ν̄, we have
to favor one of the two states with respect to the other. As
we are going to argue in the following, connecting the chain
to two Lindblad baths in the large-bias limit does perfectly
accomplish this task.

To motivate our choice, in Fig. 7, we draw the real
space density nj over an L = 20 SSH chain connected to
Lindblad baths, computed, respectively, for Je = 1.5, Jo = 1
[Fig. 7(a), corresponding to the topological phase], for Je =
Jo = 1 [Fig. 7(b), corresponding to the topological phase tran-
sition], and for Je = 0.5, Jo = 1 [Fig. 7(c), corresponding to
the topologically trivial phase]. In all three cases, we have
considered the chain without disorder and in the large bias
limit, with �1 = γL = 2 (in units of Jo). Figure 7(b) is a
particular case of the density distribution in a one-dimensional
conducting chain at half filling connected to two Lindblad
baths in the large bias limit [60]. The density is uniform and
constantly equal to 1/2 everywhere, except at the two end
sites of the chain, where, due to the coupling to the baths,
the density is shifted upward or downward from the otherwise
uniform value. n j as a function of j shows a similar trend in
Figs. 7(a) and 7(c), except that now there is a staggering that
modulates the decay from the boundary values to the uniform
bulk value 1/2. In the topological case [Fig. 7(a)], the first and
second oscillations, starting from either endpoint and moving
toward the bulk of the chain, are large and in opposite direc-
tions: this makes n1 − n2 and nL−1 − nL provide by large the
leading contribution to ν̄. In addition, n2 − n3 (nL−2 − nL−1)
have opposite signs with respect to n1 − n2 (nL−1 − nL): All
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FIG. 7. (a) nj as a function of j in an L = 20 SSH chain with
Je = 1.5 and Jo = 1, connected to two baths in the large bias limit,
with �1 = γL = 2. (b) nj as a function of j in an L = 20 SSH
chain with Je = 1 and Jo = 1, connected to two baths in the large
bias limit, with �1 = γL = 2. (c) nj as a function of j in an L = 20
SSH chain with Je = 0.5 and Jo = 1, connected to two baths in the
large bias limit, with �1 = γL = 2.

this is expected to make the EOD large and pretty close to
either +1 or −1, depending on the sign of the bias between the
baths. At variance, in the trivial case [Fig. 7(c)] n1 − n2 and
n2 − n3, as well as nL−2 − nL−1 and nL−1 − nL, are apparently
smaller than in the topological case and, more importantly,
they have the same sign, being comparable in size, as well.
This is now expected to make the EOD small, and close to 0.

To double check our conclusion, we now connect an SSH
chain with L = 20 sites to two baths by its endpoints and
set the parameters in Eqs. (9) so �1 = γL = g

2 (1 − f ), γ1 =
�L = g

2 (1 + f ), with g = 2 and −1 � f � 1 (so the large-
bias limits correspond to either f = 0 or to f = 1). In Fig. 8,
we plot a sample of our results: In particular, in both panels
of the figure we draw the critical sweep, done by computing
ν̄ at Je = Jo = 1.0 and by varying f , as well as a sweep real-
ized in the topological region [Je = 1.2, Jo = 1.0 in Fig. 8(a),
Je = 1.5, Jo = 1.0 in Fig. 8(b)] and another one realized in the
trivial region [Je = 0.8, Jo = 1.0 in Fig. 8(a), Je = 0.5, Jo =
1.0 in Fig. 8(b)]. Apparently, moving from the trivial to the
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Je=1.2,Jo=1.0

Je=0.8,Jo=1.0

Je=1.5,Jo=1.0

ν

FIG. 8. (a) ν̄ as a function of f in an SSH chain with L = 20 sites
connected to two Lindblad baths characterized by �1 = γL = g

2 (1 −
f ), γ1 = �L = g

2 (1 + f ) [see Eq. (9) and the corresponding discus-
sion for details] with g = 2 and −1 � f � 1, with Je = 1.2, Jo = 1.0
(blue line), Je = Jo = 1.0 (green line), Je = 0.8Jo = 1.0 (red line).
(b) Same as in (a), but with Je = 1.5, Jo = 1.0 (blue line), Je = Jo =
1.0 (green line), Je = 0.5, Jo = 1.0 (red line).

topological region determines an increase in ν̄ by at least two
orders of magnitude. In addition, in the large-bias limit and in
the topological region, ν̄ converges to the universal value ±1,
depending on the sign of the bias.

As a complementary analysis, we have also computed ν̄ in
the large bias limit across the topological phase transition for
different values of the system length L. In Fig. 9, we plot our
results for ν̄ as a function of Je/Jo, with Jo held fixed at 1, �1 =
γL = g = 2, γ1 = �L = 0, and −0.5 � Je � 1.5, for L = 20
(red curve), L = 40 (green curve), and L = 80 (blue curve).
We evidence the apparent switch of ν̄ from the value ∼0 that
it takes within the trivial region to the value ∼1 that it takes in
the large bias limit within the topological region. In addition,

0.5 1.0 1.5

1.0

0.5

0.0

L=80

_

JoJe /

L=20
L=40

ν

FIG. 9. ν̄ as a function of f in an SSH chain connected to two
Lindblad baths in the large bias limit (�1 = γL = g = 2, γ1 = �L =
0) as a function of Je/Jo for 0.5 � Je/Jo � 1.5, with the length of the
chain L = 20 (red curve), L = 40 (green curve), and L = 80 (blue
curve).

we appreciate how, the larger L is, the sharper the crossover
region between the two limiting values, thus suggesting that,
for large enough L, ν̄ just switches between 0 and 1 (or vice
versa) at the topological phase transition.

Of course, all our results of this section apply to the clean
limit. We now discuss how they are affected by the presence
of disorder.

A. The even-odd differential occupation
at nonzero bond disorder

By construction, any realization of the bond disorder
potential anticommutes with �. This implies that all the
nondegenerate states of the disordered Hamiltonian at fixed
disorder are grouped in pairs with opposite energies, with
states in a pair connected to each other by �. Thus, we expect
that when pushing the chain to the large bias limit and probing
ν̄ at a given realization of the disorder, either the system is
in the topologically trivial phase and ν̄ = 0 or it is in the
nontrivial phase and, in the large-bias limit, we obtain ν̄ = ±1
(depending on the sign of the applied bias): The relative prob-
ability of the two results is a function of only the disorder
strength. Counting how many times, over several realizations
of the disorder, |ν̄| = 1, evidences whether the disorder itself
is strong enough to destroy the topological phase or not.

Here we first verify that, at a single realization of the
disorder with variable disorder strength W , ν̄ is either ±1,
or 0, depending on whether the model with the effective Jo

renormalized by the disorder lies within the topological or the
trivial phase. We consider an L = 40 site chain connected to
two external baths in the large bias limit, with �1 = γL = 2
and γ1 = �L = 0. The disorder is described by the distribution
in Eq. (3), with varying W . In Fig. 10(a), we show a color plot
of the measured EOD as a function of both W/Jo and Je/Jo,
with Jo, normalized to 1, used as the reference energy scale.
The red area corresponds to ν̄ = 1, the deep purple area to
ν̄ = 0. In Figs. 10(b) and 10(c), we show a scatter plot of the
energy levels of the chain as a function of W/Jo at Je/Jo fixed
and equal to 1.5 and to 0.5, so, in the clean limit, the chain lies
within, respectively, the topological, and the trivial phases. We
evidence with a red arrow the emerging in-gap states in both
cases, which are the fingerprint of a topologically nontrivial
system. We clearly see that the red (deep purple) region of
Fig. 10(a) corresponds to regions with a pair of in-gap states
(no in-gap states) in the level diagram of the system, thus
supporting the effectiveness of using the EOD as a tool to
monitor the onset of the topological phase.

To check the sharpening of the transition on increasing the
chain length L, we have computed ν̄ in a disordered chain
in the large bias limit with �1 = γL = 2 and γ1 = �L = 0,
by ensemble averaging over N = 50 realizations of the bond
disorder extracted using Pb[Jo] in Eq. (3) at increasing L, for
L = 20, L = 40, and L = 80. We present the corresponding
result in Fig. 11 by using the same style as in Fig. 10(a) but, of
course, by now reporting the ensemble-averaged results. The
sharpening of the (light colored) transition region is apparent,
which enforces our interpretation of the nature of the phase
transition.

Having shown the effectiveness of the EOD in monitoring
the onset of the topological phase in the disordered system
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FIG. 10. (a) ν̄ computed in an SSH chain with L = 40 in the large
bias limit with �1 = γL = 2 and γ1 = �L = 0, at a single configura-
tion of bond disorder as a function of W/Jo and of Je/Jo, with Jo (in
the clean limit) used as the reference energy scale for the system.
Red regions correspond to ν̄ = ±1, deep purple regions to ν̄ = 0.
(b) Energy levels of the chain as a function of W/Jo at Je/Jo = 1.5
(the in-gap states are evidenced by the red arrow). (c) Same as in
(b) but with Je/Jo = 0.5.

taken at large bias with bond disorder, we now repeat the same
analysis in the case in which the disorder is realized with a
random distribution of dimer impurities.

B. The even-odd differential occupation
at nonzero dimer disorder

Differently from alternative means, such as the DAWN,
which does not work if the disorder does not anticommute
with � [21,65], as we show next, the EOD also works with the
(nonchiral) dimer disorder.

First, let us note that since the disorder potential no longer
anticommutes with �, we no longer expect (in the large-L
limit) a sharp borderline between the region with ν̄ = ±1
and the region with ν̄ = 0. This is apparent in Fig. 12(a),
where we plot ν̄ computed in an SSH chain with L = 40
at a single realization of the dimer disorder, as a function
of the disorder strength normalized to the average hopping
W/J , with J = Je+Jo

2 , and of � = δJ
J with δJ = (Je−Jo)

2 . From
Fig. 12(a), we see that, on increasing W at fixed �(> 0) (that
is, starting from the topological phase, in the clean limit), the
EOD smoothly evolves from the red region at small disorder

(c)

o/W

JoJe /

Jo/W

JoJe /

(b)

Jo/W

JoJe /

(a)

J

FIG. 11. (a) ν̄ computed in an SSH chain with L = 20 in the large
bias limit �1 = γL = 2 and γ1 = �L = 0, and with chiral disorder by
averaging over 50 realizations of the disorder by varying W/Jo and
Je/Jo. (b) Same as in (a) but with L = 40. (c) Same as in (a) but with
L = 80.

(with ν̄ = ±1) to a yellow, then green, then light blue region,
corresponding to progressively (and continuously) decreasing
values of |ν̄|. To relate this behavior to a possible suppression
of the topological phase, we again consider the energy levels
at the same realization of the disorder as a function of W/J . An
important point here is that, since, differently from the bond
disorder, introducing dimer impurities does alter the overall
chemical potential, to have a common energy reference at any
value of W/J we systematically subtract from the computed
energy eigenvalues the extra overall chemical potential de-
termined by the added impurity (impurities). Doing so, we
obtain the plots in Figs. 12(b)–12(e), where we draw the
energy levels as a function of W/J at a single realization of the
disorder and for, respectively, �J = −0.25, 0.25, 0.50, 0.95.
In Figs. 12(c)–12(e), we highlight with a red arrow the pair of
in-gap states that are the fingerprint of the topological phase,
to which the system goes back as W → 0. Of course, we see
no in-gap states in Fig. 12(b), as, in this case, the system goes
to the trivial phase as W → 0. It is worth stressing that, due
to the peculiar nature of dimer disorder, increasing W moves
the in-gap states toward either the upper or the lower gap
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FIG. 12. (a) ν̄ computed in an SSH chain with L = 40 in the
large bias limit with �1 = γL = 2 and γ1 = �L = 0 at a single con-
figuration of dimer disorder as a function of W/J and of � = Je−Jo

Je+Jo
.

Red regions correspond to ν̄ = ±1. The dashed black line marks the
points at which ν̄ = ν̄∗ = 0.90.(b) Energy levels of the chain as a
function of W/J at � = −0.25. (c) Same as in (b) but with � = 0.25
(now the in-gap states are evidenced by a red arrow). (d) Same as in
(c) but with � = 0.50. (e) Same as in (c) but with � = 0.95.

edge (depending on the sign of W ). Over a finite-L disordered
chain, it is therefore natural to assume that the in-gap states
merge with the other states when their energy, measured with
respect to the closer gap edge, equates the average spacing
between the other states. Using this criterion, we see that,

on increasing W , the in-gap doublet merges with the other
states at a value of the disorder strength which, by looking
at the color plot in Fig. 12(a), we realize corresponds to a
color crossover from red to yellow-green. On the numerical
side, this means that ν̄ become <1 at the point in which the
in-gap states merge with the other states and the topological
phase is lost. Accordingly, we can use ν̄ to define a border
for the topological phase as the line at which the EOD takes
a conventional value, which we choose to be ν̄∗ = 0.90 (other
choices such as, for instance, ν̄∗ = 0.85 do not substantially
affect the shape of the borderline). In Fig. 12(a), we draw as a
dashed black line the borderline of the topological phase that
we define in this way.

To infer if, and to what extent, increasing the system size
L affects the global behavior of the EOD as a function of
W/J and of � (and, therefore, the shape and the position
of the borderline of the topological phase), we have com-
puted ν̄ by ensemble averaging over N = 50 realizations of
the dimer disorder in an SSH chain taken to the large bias
limit with �1 = γL = 2 and γ1 = �L = 0, by varying both
W/J and � and for L = 20, 40, and 80. We draw the cor-
responding diagrams in Fig. 13: By comparing the plots in
Figs. 13(a)–13(c) (corresponding to L = 20, 40, 80) with each
other, we see no appreciable difference in the behavior of ν̄ in
the topological region. Thus, on one hand we conclude that
the dimer disorder tends to suppress the topological phase of
the SSH chain, except for a region originating from the line
W = 0, 0 < � and extending toward the right. On the other
hand, the border of such a region, which we conventionally
attributed to ν = ν∗ = 0.90, is not substantially affected by
increasing L: Contrary to what happens with bond disorder,
with dimer disorder there is no sharpening of the transition on
increasing L.

To conclude, we evidence how, despite the apparent diffi-
culty of even defining the borderline of the topological region
in the presence of dimer disorder, taking the (open) chain in
the large bias limit and going through a synoptic comparison
of the variation of the EOD ν̄ as a function of the system
parameters and of the evolution of the system levels as a
function of the disorder strength at fixed � allows us to mark
the border of the topological region even in this case.

Combining the results of the EOD and of INESS for both
kinds of disorder we have discussed above allows for mapping
out the complete phase diagram of the SSH chain connected to
two Lindblad reservoirs in the large bias limit as a function of
the chain parameters as well as of the strength of the disorder.

V. CONCLUSIONS

We have applied the LE method to derive the phase dia-
gram of an open SSH chain connected to two external baths
in the large bias limit, in the presence of bond and of dimer
disorder. Biasing the external baths has allowed us to stabilize
a NESS, characterized by a steady current INESS. Whether
INESS flows to 0, or to a finite value, in the limit of large
chain length L, tells us whether the system is fully localized
by disorder or not.

Our approach just needs a simple transport measurement,
combined with an appropriate scaling analysis, to map out the
localization/delocalization transition in the disordered chain.
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FIG. 13. (a) ν̄ computed in an SSH chain with L = 20 in the
large bias limit with �1 = γL = 2 and γ1 = �L = 0, in the presence
of dimer disorder by averaging over 50 realizations of the disorder
by varying W/J and �. As in Fig. 12, the dashed black line marks
the points at which ν̄ = 0.90. (b) Same as in (a) but with L = 40.
(c) Same as in (a) but with L = 80.

In particular, our method has proven to be effective in evidenc-
ing the expected onset of the mobility edge which, in the case
of dimer disorder, marks the opening of the window of delo-
calized states in the otherwise fully localized band [19,64,69].

We have used the (ensemble averaged) EOD occupancy
to distinguish between topologically trivial and nontrivial
phases. From the presence of in-gap states, in the spectrum of
the SSH chain at a given realization of disorder, we have been
able to relate a nontrivial topological phase to an average EOD
ν̄ = ±1 (depending on the sign of the applied bias). Com-
puting the EOD poses no constraints on the symmetries of
the disorder potential: as we show, we can compute the EOD
regardless of whether the disorder anticommutes with � or
not. Thus, using the EOD, we can circumvent the limitations
of alternative quantity, such as the DAWN [21,65].

Of course, a meaningful definition and implementation
of the EOD requires that the system is taken to the out-of-
equilibrium regime into an appropriate NESS. We therefore
conclude that, by driving the disordered SSH chain toward the

large bias regime and by performing the appropriate measure-
ments on the NESS that sets in, it is possible to map out the
complete phase diagram of the system, both for what concerns
the localization/delocalization phase transition, as well as the
topological phase transition, in the presence of disorder.

While, to define and illustrate the application of our
method, in this paper we limited ourselves to a well-known
and widely discussed physical system, such as the disordered
SSH chain, there are no particular limitations in extending our
technique to more complex and/or less investigated models.
In this direction, an intriguing perspective we intend to pursue
is applying our method to a disordered SSH chain with long-
range single-electron hopping and/or interaction. In this case,
a derivation of INESS as a function of the system parameters
should allow for probing the emergence of mobility edge(s) in
the system, as a consequence of the long-range nature of the
correlations [82]. Moreover, monitoring ν̄ should provide us
with detailed information about the onset of unconventional
topological phases, which are in general expected to emerge
in systems with long-range correlations [83,84].

Other possible applications should concern, for in-
stance, topological Kondo systems at junctions of quantum
wires [85–92]. Finally, as an additional possible development
of our work, we believe it is worth mentioning the use of
a multisite Lindblad bath to attempt to smoothly interpolate
between the linear response, Landauer-Büttiker like regime,
and the large bias limit to connect the behavior of INESS to the
current response of the system in the linear regime.
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APPENDIX A: DERIVATION OF EQ. (14)

In this Appendix, we illustrate the derivation of Eq. (14)
of the main text for the matrix C(t ) by focusing, as a specific
example, on the equation for the matrix element C1,1(t ).

The starting point is the canonical anticommutation rela-
tions between the lattice single-fermion operators

{c†
i , c j} = δi, j, {c†

i , c†
j } = {ci, c j} = 0 . (A1)

By writing the system Hamiltonian H as H =∑L
i, j=1 c†

i Hi, jc j and by employing Eqs. (A1), we obtain
(term by term)

(1)

〈[H, c†
1c1]〉 =

〈[
L∑

i, j=1

c†
i Hi, jc j, c†

1c1

]〉

=
∑
j �=1

H1, j〈[c†
1c j, c†

1c1]〉 +
∑
i �=1

Hi,1〈[c†
i c1, c†

1c1]〉

=
∑
j �=1

H1, j〈−c†
1c j〉 +

∑
i �=1

Hi,1〈c†
i c1〉

= −
∑

j

[H1, jC1, j − H j,1C j,1] = [H
, C]1,1,

(A2)
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(2)

�1〈c1c†
1c1c†

1〉 = �1〈c1(1 − c1c†
1)c†

1〉 = �1〈c1c†
1〉

= �1 − �1〈c†
1c1〉 , (A3)

(3)

−�1

2
〈{c1c†

1, c†
1c1}〉 = −�1

2
〈c1c†

1c†
1c1 + c†

1c1c1c†
1〉 = 0 ,

(A4)

(4)

�L 〈cLc†
1c1c†

L〉 − �L

2
〈{cLc†

L, c†
1c1}〉

= �L〈c†
1c1cLc†

L〉 − �L

2
〈c†

1c1cLc†
L + c†

1c1cLc†
L〉

= 0 , (A5)

(5)

γ1〈c†
1c†

1c1c1〉 = 0 , (A6)

(6)

−γ1

2
〈{c†

1c1, c†
1c1}〉 = −γ1

2
〈c†

1c1c†
1c1 + c†

1c1c†
1c1〉

= −γ1〈c†
1c1〉 , (A7)

(7)

γL〈c†
Lc†

1c1cL〉 − γL

2
〈{c†

LcL, c†
1c1}〉

= γL〈c†
LcLc†

1c1〉 − γL

2
〈c†

LcLc†
1c1 + c†

LcLc†
1c1〉

= 0 .

Adding the terms listed above all together, we obtain
Eq. (14) of our paper for C1,1(t ). A straightforward generaliza-
tion of the above procedure yields the equations for a generic
matrix element Ci, j (t ).

APPENDIX B: SOLUTION OF THE SSH MODEL
IN THE CLEAN LIMIT

In this Appendix, we review the derivation of the single-
particle wave functions for the SSH chain in the absence of
disorder. In particular, we first solve the time-independent
Schrödinger equation over an L-site open chain and derive the
corresponding wave functions, which we used in Sec. III to
analytically compute INESS. Then, we compute the scattering
amplitudes across a single impurity, both in the case of a bond
impurity and of a dimer impurity. The corresponding result
for the reflection coefficient is what we used in Secs. III B
and III C to analyze the impurity-induced localization in the
NESS.

1. SSH chain with open boundary conditions

We now review the derivation of the eigenvalues and of the
eigenfunctions of an L-site SSH chain with open boundary
conditions. This is described by the Hamiltonian H0, given by

H0 = −
L−1∑
j=1

Jj, j+1{c†
j c j+1 + c†

j+1c j}, (B1)

with

Jj, j+1 =
{

Jo ( j odd)
Je ( j even), (B2)

supplemented with open boundary conditions at both the end-
points of the chain. Taking into account the staggering due to
the term ∝ δJ , we consider energy eigenmodes in the form

�ε =
L∑

j=1

{u j + (−1) jv j}c j ≡
L∑

j=1

ψ jc j, (B3)

with the open boundary conditions u j=0 + v j=0 = u j=L+1 −
v j=L+1 = 0 (note that, as in the main text, here we are assum-
ing that L is even). On imposing [�ε, H0] = ε�ε , we obtain
the lattice, time-independent Schrödinger equation for the
wave functions u j, v j in the form

εu j = −Je + Jo

2
{u j+1 + u j−1} + Je − Jo

2
{v j+1 − v j−1},

εv j = −Je − Jo

2
{u j+1 − u j−1} + Je + Jo

2
{v j+1 + v j−1},

(B4)

with 1 < j < L. Assuming a solution of the form[
u j

v j

]
=
[

uk

vk

]
eik j, (B5)

with −π
2 � k � π

2 , we eventually trade Eq. (B4) for the anal-
ogous one in momentum space, given by

εuk = −(Je + Jo) cos(k)uk + i(Je − Jo) sin(k)vk,

εvk = −i(Je − Jo) sin(k)uk + (Je + Jo) cos(k)vk . (B6)

The allowed values of ε are, therefore,

±εk = ±
√

(Je + Jo)2 cos2(k) + (Je − Jo)2 sin2(k), (B7)

with the corresponding wave functions given by

ψ j,k,+ = c(−1) je(−1) j iϕk
2 eik j, ψ j,k,− = ce(−1) j iϕk

2 eik j . (B8)

In Eq. (B9) c is a normalization constant and

cos(ϕk )
(Je + Jo) cos(k)

εk
, sin(ϕk ) = (Je − Jo) sin(k)

εk
,

(B9)

with −π
2 � k � π

2 . Due to the apparent degeneracy of the en-
ergy eigenvalues under k → −k, we may combine degenerate
solutions with opposite values of k to construct wave functions
satisfying the open boundary conditions. These are given by

ψ j,k,+ = (−1) j
{
αk,+e(−1) j iϕk

2 eik j + βk,+e−(−1) j iϕk
2 e−ik j

}
,

ψ j,k,− = {
αk,−e(−1) j iϕk

2 eik j + βk,−e−(−1) j iϕk
2 e−ik j

}
, (B10)

with αk,±, βk,± constants to be determined by imposing open
boundary conditions, that is,

ψ j=0,k,± = ψ j=L+1,k,±. (B11)

Equations (B10) and (B11) imply the secular equation for
k given by

sin[k(L + 1) − ϕk] = 0. (B12)
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Once k satisfies Eq. (B12), the solutions in Eq. (B10) take
the form

ψ j,k,+ = c(−1) j
{
e[(−1) j−1]

iϕk
2 eik j − e−[(−1) j−1]

iϕk
2 e−ik j

}
,

ψ j,k,− = c
{
e[(−1) j−1]

iϕk
2 eik j − e−[(−1) j−1]

iϕk
2 e−ik j

}
, (B13)

with c being an overall normalization constant. In addition to
the solutions discussed above, it is also possible to recover
solutions with energy |ε| < 2|Je − Jo|. To derive them, we set
k = π

2 − iq. Accordingly, we obtain for the dispersion relation

ε2
q = (Je − Jo)2 cosh2(q) − (Je + Jo)2 sinh2(q). (B14)

Equations (B6) now become

εuq = −i(Je + Jo) sinh(q)uq + i(Je − Jo) cosh(q)vq,

εvq = −i(Je − Jo) cosh(q)uq + i(Je + Jo) sinh(q)uq. (B15)

Setting

e−iϕξ =
{(

Je + Jo

Je − Jo

)
tanh(q) − iεq

(Je − Jo) cosh(q)

}
, (B16)

we eventually find the real-space wave functions in the form

ψ j,0,+ = {
α+,0

[
i je

iϕξ

2 + i− je
−iϕξ

2
]
eq j

+β+,0
[
i je− iϕξ

2 − i− je
iϕξ

2
]
e−q j

}
,

ψ j,0,− = {
α−,0

[
i je− iϕξ

2 + i− je
iϕξ

2
]
eq j

+β−,0
[ − i je

iϕξ

2 + i− je− iϕξ

2
]
e−q j

}
. (B17)

The allowed value of q is determined again by the secular
equation, which is now given by

tanh[q(L + 1)] − cos(ϕξ ) = 0. (B18)

Equation (B18) takes a real solution for q only if Je − Jo >

0, which is the necessary condition to recover the topological
phase. The wave functions for the in-gap modes obeying open
boundary conditions are given by

ψ j,0,+ = c
{

sin
(ϕξ

2

)[
i je

iϕξ

2 + i− je− iϕξ

2
]
eq j

+ i cos
(ϕξ

2

)[
i je− iϕξ

2 − i− je
iϕξ

2
]
e−q j

}
,

ψ j,0,− = c
{

sin
(ϕξ

2

)[
i je− iϕξ

2 + i− je
iϕξ

2
]
eq j

+ i cos
(ϕξ

2

)[ − i je
iϕξ

2 + i− je− iϕξ

2
]
e−q j

}
. (B19)

The results presented in this Appendix are what we have
used in the main paper to compute quantities concerning the
SSH chain at equilibrium.

2. Scattering amplitudes in the presence of an impurity

We now derive the scattering amplitudes in a nonuniform
chain, in the presence of either a bond or dimer impurity.
Let us begin by considering a single bond impurity: this is
defined by modifying the strength of a single odd bond from
Jo → Jo + δJ . Focusing, for the time being, on the solution
ψ j,k,+ and without considering specific boundary conditions,
we construct a scattering solution with momentum k incoming

from the left-hand side in the presence of a bond impurity.
Assuming that the impurity is located across sites j = 1 and
j = 2 and, correspondingly, alleging for a possible disconti-
nuity of ψ j,k,+ across the impurity, we set

ψ j,k,+ =
{

ψ<
j,k,+ , (for j � 1)

ψ>
j,k,+ , (for j � 2),, (B20)

with ψ
<(>)
j,k,+ = c{u<(>)

j,k,+ + (−1) jv
<(>)
j,k,+}, c being a normaliza-

tion constant, and

u<
j,k,+ = (−1) j i sin

(ϕk

2

)
{eik j − rke−ik j},

u>
j,k,+ = (−1) j i sin

(ϕk

2

)
tkeik j,

v<
j,k,+ = (−1) j cos

(ϕk

2

)
{eik j + rke−ik j},

v>
j,k,+ = (−1) j cos

(ϕk

2

)
tkeik j, (B21)

with rk, tk being the scattering amplitudes. The interface con-
ditions across the impurities are given by

−(Jo + δJ )ψ>
2,k,+ + Joψ

<
2,k,+ = 0,

Joψ
>
1,k,+ − (Jo + δJ )ψ<

1,k,+ = 0. (B22)

Inserting Eqs. (B21) into Eqs. (B22), we recover the system
for the scattering amplitudes in the form

−(Jo + δJ )e2ik+ iϕk
2 tk + Jo

{
e2ik+ iϕk

2 + rke−2ik− iϕk
2
} = 0,

Joeik− iϕk
2 tk − (Jo + δJ )

{
eik− iϕk

2 + rke−ik+ iϕk
2
} = 0. (B23)

Finally, from Eq. (B23) we obtain

rk = − e4ik+iϕk δJ (2Jo + δJ )

−J2
o + e2i(k+ϕk )(Jo + δJ )2

. (B24)

In terms of the parameter W introduced in Eq. (3) and
setting Jo = 1, we reexpress Eq. (B24) as

rk = e4ik+iϕkW (2 − W )

−1 + e2i(k+ϕk )(1 − W )2
. (B25)

Equation (B25) is what we used in Sec. III B to discuss
the impurity-induced localization in the presence of bond
disorder.

In the case in which there is a dimer-impurity at sites j = 1
and j = 2 into an otherwise uniform SSH chain, we see that
the interface conditions in Eq. (B22) are substituted by the
conditions

−W ψ<
1,k,+ + Jo(ψ>

2,k,+ − ψ<
2,k,+) = 0,

Jo(ψ<
k,1,+ − ψ>

k,1,+) − W ψ>
2,k,+ = 0. (B26)

with W denoting the corresponding potential strength,
Choosing a positive-energy solution as in Eqs. (B20)

and (B21), from Eqs. (B26) we obtain the system of
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equations for rk and tk in the form

− W
{
eik− iϕk

2 + rke−ik+ iϕk
2
}

+ Jo
{
e2ik+ iϕk

2 tk − e2ik+ iϕk
2 − rke−2ik− iϕk

2
} = 0,

Jo
{
eik− iϕk

2 + rke−ik+ iϕk
2 − eik− iϕk

2 tk
}

− We2ik+ iϕk
2 tk = 0. (B27)

Solving for rk , we now obtain

rk = − e4ik+iϕkW (W + 2Jo cos(k + ϕk ))

J2
o + 2ei(k+ϕk )JoW + e2i(k+ϕk )

( − J2
o + W 2

) . (B28)

Equation (B28) is what we have used in Sec. III C to
discuss the localization effects of dimer disorder in the SSH
chain and, in particular, to infer under which conditions we
recover the emergence of a mobility edge in the disordered
system.
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