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Screened extended Koopmans’ theorem: Photoemission at weak and strong correlation
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By introducing electron screening in the extended Koopmans’ theorem we correctly describe the band-gap
opening in weakly as well as strongly correlated systems. We show this by applying our method to bulk LiH,
Si, and paramagnetic as well as antiferromagnetic NiO. Although incorrect features remain in the full photoe-
mission spectra, this is a remarkable result for an ab-initio electronic structure method and it opens the way to a
unified description of photoemission spectra at weak and strong correlation.
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I. INTRODUCTION

Photoemission spectroscopy is an essential experimental
tool to characterize the electronic structure of a system. In
particular, it can be used to trace phase transitions, which are
especially important in strongly correlated systems. Indeed,
one of the most fascinating phenomena characterizing the
physics of these systems is undoubtedly the Mott-Hubbard
metal-to-insulator transition (MIT) [1]. Here, the appearance
of an insulating state is a direct consequence of the strong
Coulomb repulsion, rather than of the underlying electronic
band structure. Systems at the edge of a metal-to-insulator
transition exhibit a wealth of exotic properties owing to their
high sensitivity to external parameters (carrier concentra-
tion, temperature, external magnetic field), which makes them
easy to manipulate. Therefore, in addition to the interesting
fundamental physics, possible technological applications are
plentiful. Nowadays very accurate and detailed photoemission
spectra can be measured.

On the other hand, theory is crucial for the analysis of the
experiments as well as the prediction of material properties. In
particular, so-called first-principles methods, such as density
functional theory (DFT) [2] and many-body perturbation the-
ory (MBPT) based on Green’s functions [3], have the potential
to be predictive, since no empirical or adjustable parameters
are involved. However, standard implementations of these
methods are known to work reasonably well for weakly to
moderately correlated materials, such as metals and stan-
dard semiconductors (e.g., Si or GaAs) [4], but fail for most
strongly correlated systems [5]. A paradigmatic example of
this kind of materials is paramagnetic NiO, which is predicted
to be a metal by standard approximations. This of course sets
limits on the description and prediction of metal-to-insulator
phase transitions. Going beyond existing approximations is a
challenge both from a fundamental [6,7] and a practical point
of view [8–10].
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We have recently investigated the extended Koopmans’
theorem (EKT) [11,12] as a promising method to describe
photoemission in solids and, in particular, in strongly cor-
related systems [5,13–17]. The EKT can be used with any
theory that yields the one- and two-body reduced density
matrices (1-RDM and 2-RDM, respectively), which are the
essential ingredients of this approach [18–21]. For example,
the EKT can be used within quantum Monte Carlo (QMC)
[18]. However, strongly correlated materials are described by
multideterminant wave functions which are difficult to treat
in QMC. It is thus desirable to use the EKT together with
an approach such as reduced density matrix functional the-
ory (RDMFT) [22–24] that can describe strong correlations.
Moreover, within RDMFT the EKT approach is based on
a simple matrix diagonalization. However, even with exact
density matrices, the EKT tends to overestimate band gaps,
with the deviation from experiment increasing with increas-
ing electron correlation. This error is amplified by the use
of approximate density matrices [16]. Improvements can be
obtained by designing better density matrix approximations,
or by going beyond the “quasiparticle ansatz” at the core of the
EKT equations, or both. In general, designing new approxi-
mate density matrices for solids is a difficult task because most
of the available approximations are designed for molecules
and their extension to solids is not straightforward.

We have recently proposed to introduce electron screening
in standard density matrix approximations available for solids
since it is crucially important to describe many-electron sys-
tems. For example, in the context of many-body perturbation
theory (MBPT) based on Green’s functions, the improvement
of the GW approximation over Hartree-Fock (HF) is precisely
owing to the screening of the Coulomb interaction. However,
although the inclusion of screening in standard density matrix
approximations reduces the gap, its effect is too large, which
results in a zero gap in semiconductors and insulators [17] (as
an example, the photoemission spectrum (PES) of bulk Si is
reported in the Supplemental Material [25]).

Instead, in this paper, we focus on the improvement of the
EKT itself by directly including electron screening in the EKT
equations. We will show that this approach leads to much
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improved photoemission spectra for both weakly and strongly
correlated materials.

II. THEORY

Using the EKT within the basis of natural orbitals (NO),
i.e., the orbitals which diagonalize the one-body density ma-
trix, the spectral function, which is related to photoemission
spectra, can be written as A(ω) = ∑

i[niδ(ω − εR
i ) + (1 −

ni )δ(ω − εA
i )], with ni the occupation number of state i [16].

The removal and addition energies εR
i and εA

i , respectively, are
given by [26]

εR
i = hii +

∑
j

Vi ji jn j + 1

ni

∑
jkl

Vi jkl�
(2)
xc,kl ji, (1)

εA
i = hii +

∑
j

Vi ji jn j

− 1

1 − ni

[ ∑
j

Vi j jin j −
∑
jkl

Vi jkl�
(2)
xc,kl ji

]
, (2)

where hi j = ∫
drφ∗

i (r)h(r)φ j (r) and Vi jkl =∫
drdr′φ∗

i (r)φ∗
j (r′)V (r − r′)φk (r)φl (r′) are the matrix

elements of the single-particle Hamiltonian h(r) =
−∇2

r /2 + Vext(r), with Vext(r) the external potential
created by atomic nuclei, and the Coulomb interaction
V (r) = 1/|r|, respectively. The 2-RDM is defined as �

(2)
kl ji =

〈�0|c†
i c†

j cl ck|�0〉, where ci (c†
i ) is the annihilation (creation)

operator of an electron in orbital i and |�0〉 is the ground-state
many-body wave function. The exchange-correlation part
of the 2-RDM reads �

(2)
xc,kl ji = �

(2)
kl ji − nin jδikδ jl and has to

be approximated in practice. In this paper we use the power
functional (PF) �

(2)
xc,kl ji = −nα

i nα
j δilδ jk , where 0.5 � α � 1.

This functional provides an interpolation between the
so-called Müller functional [27] (α = 0.5), which has a
tendency to overcorrelate, and Hartree-Fock (α = 1), which
neglects correlation. The values suggested in the literature
usually vary between 0.55 and 0.7 [28,29]. In most of the
works in the literature a value of α = 0.65 is used for real
solids. Equations (1) and (2), within the PF approximation to
�xc, give the qualitatively correct picture in correlated solids,
but the fundamental band gap is very much overestimated
[5,15].

We note that a photoemission experiment could be seen
as (at least) a three-particle process, i.e., the photoparticle
(electron or hole added to the system), which gives rise to a
quasiparticle peak, and the electron-hole pair that it generates
by exciting the system, which gives rise to a satellite peak.
The EKT is designed to capture quasiparticle peaks in the
photoemission spectra but not satellites because it only explic-
itly considers one-hole and one-electron excitations. However,
the EKT can be generalized to two electrons–one hole and
two holes–one electron excitations (EKT-3) to also describe
satellites. The explicit inclusion of electron-hole excitations
can also improve the quasiparticle energies as these exci-
tations capture part of the screening of the added hole or
electron [19]. The EKT-3 is similar in spirit to the use of
the three-particle Green’s function (instead of the one-particle
Green’s function) to describe photoemission, since it treats on
equal footing quasiparticles and satellites [30]. However, an

important drawback of the EKT-3 approach is that it yields
equations that depend also on the three- and four-body density
matrices (3-RDM and 4-RDM, respectively), which makes
EKT-3 computationally very expensive. Moreover, it requires
practical approximations to the 3-RDM and 4-RDM, which
are not available for solids. In this paper we include the effect
of the electron-hole pairs in the EKT equations in an effective
way through the screening. Here, we achieve this in a similar
way as one can obtain the GW approximation from the HF
approximation, i.e., we replace the bare Coulomb potential
in the exchange-correlation part of the EKT equations by
the (statically) screened Coulomb potential. This leads to the
screened extended Koopmans’ theorem (SEKT). The SEKT
equations are thus given by

εR
i = hii +

∑
j

Vi ji jn j + 1

ni

∑
jkl

Wi jkl�
(2)
xc,kl ji, (3)

εA
i = hii +

∑
j

Vi ji jn j

− 1

1 − ni

[ ∑
j

Wi j jin j −
∑
jkl

Wi jkl�
(2)
xc,kl ji

]
, (4)

where W = ε−1V is the statically screened Coulomb inter-
action, with ε the dielectric function. The SEKT is further
motivated by the following two arguments: (i) A general
screening of the form Wi jkl = βiVi jkl (0 < βi < 1) can re-
produce some of the effects of higher-order RDMs [5]; (ii)
Eqs. (3) and (4) reduce to the screened exchange (SEX)
equations of MBPT for single Slater determinants. In this
case, indeed, the exchange-correlation part of the 2-RDM
can be factorized as �

(2)
xc,kl ji = −nin jδilδ jk with the natural

occupation numbers ni being zero or one, and this results
in εR

i = εA
i = hii + ∑

j Vi ji jn j − ∑
jkl Wi j jin j , which corre-

spond to the poles of the one-body Green’s function obtained
using the (static) screened exchange self-energy. It therefore
becomes clear that, with the power functional approximation
to the 2-RDM, Eqs. (3) and (4) tend to the SEX energy
equations for weakly correlated systems, which are charac-
terized by occupation numbers close to zero or one. We will
now show that the SEKT, besides describing correctly the
PES of weakly correlated systems, can reproduce reasonably
good PES (although some important deviations remain) for
strongly correlated systems, which are characterized by highly
fractional natural occupation numbers.

III. RESULTS

We have implemented the EKT and SEKT equations in a
modified version of the full-potential linearized augmented
plane-wave code ELK [28,31]. In order to build the screened
Coulomb exchange matrix elements Wi j ji we first calculate the
static screening matrix in reciprocal space using the random-
phase approximation (RPA); the matrix elements in the NO
basis are then obtained as

Wi j ji = 1

�Nq

∑
qGG′

WGG′ (q)〈 j|e−i(q+G)·r|i〉∗

× 〈 j|e−i(q+G′ )·r|i〉δq,ki−k j , (5)
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where i = (ĩ, ki ) is a generalized index that comprises the
band index ĩ and the wave vector ki, � and Nq are the unit cell
volume and the number of points in the Brillouin zone sam-
pling, G is a reciprocal lattice vector, q is a vector that belongs
to the first Brillouin zone, WG,G′ (q) is the Fourier transform of
the statically screened Coulomb interaction W (r, r′), and the
oscillator strengths are

〈i|e−i(q+G)·r| j〉 =
∫

drφ∗
i (r)e−i(q+G)·rφ j (r).

The plane-wave cutoff Gmax is chosen by requiring rGmax =
10 a.u., where r is the muffin-tin radius. More details about the
protocol used for the calculations can be found in Ref. [16].

We apply our method to two classes of systems: bulk
LiH and Si as examples of weakly correlated systems, and
paramagnetic (PM) and antiferromagnetic (AFM) NiO as
examples of strongly correlated systems. We note that the
paramagnetic phase is modeled as nonmagnetic (NM), there-
fore in the following, paramagnetic NiO will be referred to as
NM NiO.

In principle one could use a self-consistent procedure to
calculate the RPA screening, as it is done in, for example,
eigenvalue self-consistent GW . However, this can be com-
putationally expensive. Therefore, in this work we adopt a
strategy similar to one-shot GW , in which the self-energy is
calculated only once with the best G and best W available.
For the simple semiconductors, LiH and Si, we use the local-
density approximation (LDA) energies and wave functions to
calculate the random-phase approximation (RPA) screening.
For AFM NiO the LDA band gap is too small. The Heyd-
Scuseria-Ernzerhof (HSE03) [32] functional has been proven
to be more suitable for this system [33]. Since HSE03 and
LDA+U band structures are very similar for AFM NiO, we
employ LDA+U and a scissors correction that gives a rea-
sonable band gap compared to experiment. We use the around
mean field double-counting correction [34] and a U parameter
of 5 eV for the Ni d electrons. The scissors correction is 2 eV.
In the case of the NM NiO we cannot construct a good RPA
screening using LDA+U , since this approach does not open
a gap in the partially filled eg bands. Therefore we use the
screening of the AFM phase also for the NM phase, such that
all the calculations on NM NiO are performed in the AFM unit
cell. This is a reasonable approximation since the magnetic
order has little effect on the photoemission spectrum of NiO
[35–37]. The lattice parameters used in this work are 4.07 Å
for LiH, 5.43 Å for Si, and 8.34 Å for NiO.

In Fig. 1 we report the spectral functions of bulk LiH, Si,
NM NiO, and AFM NiO. We observe that the EKT gives a
large overestimation of the band gap for all these systems,
but the valence part of the spectrum is well reproduced.
The inclusion of screening in our SEKT equations dramat-
ically improves the results. With the SEKT we obtained
the following values for the fundamental band gap: 5.25
(4.99) eV for LiH, 1.63 (1.12) eV for Si, 1.90 (4.3) eV
for NiO NM, and 2.45 (4.3) eV for NiO AFM, with
the corresponding experimental gap given in parentheses
[38,40]; with the EKT, instead, we obtain: 11.80 eV for LiH,
6.77 eV for Si, 17.03 eV for NiO NM, and 16.19 eV for
NiO AFM.

−10 −5 0 5 10 15 20

−10 −5 0 5 10 15 20

−15 −10 −5 0 5 10

−5 0 5 10 15

E − EF

FIG. 1. Spectral function of bulk LiH, Si, NM NiO ad AFM NiO:
comparison of the EKT@PF and SEKT@PF. We used α = 0.65 in
the PF. Note that the SEKT@PF result for AFM NiO is plotted only
up to ≈15 eV since we used few empty bands for computational
reasons. The experimental band gap of LiH [38] is indicated with
a dashed vertical line. The experimental spectra are taken from
Refs. [39,40].

We observe that the introduction of the screening has no
significant effect on the valence band width of LiH, while
for Si we have a reduction of the bandwidth which gives a
better agreement with experiments. For NiO the situation is
quite different: The screening produces a stretching of the
valence bands. Moreover, we observe a separation of O 2p
and Ni d bands in the valence, as shown in Fig. 2, where the
projected spectral functions of LiH, Si, NM NiO, and AFM
NiO are reported. The band gap is underestimated, since Ni s
states are “lowered” in energy while Ni eg states remain too
high in energy. It is interesting to analyze these two different
trends: While in LiH and Si the screening introduces a kind
of rigid shift of all the bands, which have predominantly s/p
character, in the case of NiO it acts differently on the various
bands in the band-gap region, which is a mixture of Ni s,
p, d orbitals and O 2p orbitals. This can be explained by
analyzing the two main contributions to the SEKT equations,
namely, the contribution from the occupation numbers and the
contribution from the Coulomb matrix elements. Fractional
occupation numbers can make the second (negative) term
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FIG. 2. Projected spectral function of bulk LiH, Si, NM NiO, and AFM NiO for the SEKT@PF and EKT@PF results. The spectral function
is projected onto s, p, and d states for LiH and Si. For NiO d states are resolved into t2g and eg states.

in Eq. (3) large, which, upon application of the screening,
induces a larger shift than in the case of occupation numbers
close to 1. Large Coulomb matrix elements have a similar
effect (one can reasonably assume that matrix elements are
larger for localized states); indeed, the relative position of
contributions from bands with similar occupation numbers
but a different nature (e.g., localized or delocalized) change
by applying the screening, which indicates the importance of
Coulomb matrix elements. A similar analysis can be done for
the addition energies. This suggests to improve the screening
in strongly correlated materials by going beyond RPA or to
introduce corrections to the SEKT based on the nature of
the bands. For example, one could separate the bands into
strongly occupied (occupancies larger than 0.5) and weakly
occupied (occupancies smaller than 0.5) in the same spirit
of the corrections proposed by Gritsenko et al. to remedy to
the overcorrelation of the Müller functional [41] and use a
different screening for these two classes of orbitals (RPA for
weakly occupied and beyond RPA for strongly occupied [42]).
This work is currently in progress.

As a final remark we notice that SEKT opens an unphysical
band gap in the homogeneous electron gas (HEG), as shown

in the Supplemental Material [25] (See also Refs. [43,44]
therein), which we expect to be closed using more advanced
approximate density matrices. This also suggests to look for
better approximations to the 1- and 2-RDM.

IV. CONCLUSIONS

In conclusion, we presented an approach which can de-
scribe the band-gap opening in weakly as well as strongly
correlated gapped materials. Although improvements are still
needed, this is a remarkable results for an ab-initio method
and it opens the way to a unified description of photoemission
spectra in weakly as well as strongly correlated systems.
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