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Low-temperature theory of inversion and quantum oscillations in Kondo insulators
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The half-filled Kondo lattice model is studied at low temperatures on a simple cubic lattice using the
self-consistent theory developed by Ram and Kumar [Phys. Rev. B 96, 075115 (2017)]. It is found to have three
distinct insulating phases in the temperature-hopping plane, namely, the strong-coupling Kondo singlet (KS)
phase, the inverted Kondo singlet (iKS) phase distinguished from the KS by inversion, and the antiferromagnetic
(AFM) phase. The quasiparticle density of states across the inversion transition is noted to exhibit a dimensional
reduction, which can differentiate between the KS and iKS insulators in experiments. Magnetic quantum
oscillations obtained in the iKS and AFM phases are found to show a Lifshitz-Kosevich-like behavior with
temperature as well as quantum fluctuations induced by the Kondo interaction.
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I. INTRODUCTION

Kondo insulators are heavy fermion systems commonly
realized in rare-earth compounds [1,2]. They behave as insu-
lators at low temperatures due to the interaction of itinerant
electrons with local moments. Recent observations of quan-
tum oscillations in two well-known Kondo insulators, SmB6

[3–5] and YbB12 [6–8], have led to a surge of interest in the
subject. Quantum oscillations of quantities such as magne-
tization in response to a magnetic field have for long been
considered a characteristic of metals [9]. These observations
challenge that. Different scenarios and theories have been put
forward in recent years to understand this intriguing situation
of Kondo insulators exhibiting quantum oscillations [10–20].

Of particular interest to us in this paper is a theory of
Kondo insulators put forward in Ref. [15]. Notably, it finds
that the dispersion of the gapped charge quasiparticles under-
goes inversion upon decreasing the Kondo coupling, and the
quantum oscillations in the insulating bulk appear only after
the inversion has occurred. This inversion is a genuine many-
body effect resulting from the competition between the Kondo
interaction J and the conduction electron hopping t . For small
t/J , i.e., strong Kondo couplings, the charge gap comes from
the center of the Brillouin zone. But upon increasing t/J
beyond the so-called inversion point, the zone center becomes
a local maximum and the charge gap shifts to a surface around
the zone center. Across this inversion transition, the ground
state remains a Kondo singlet. A further increase in t/J leads
to antiferromagnetic ordering.

This theory elucidates the microscopic basis for the ex-
istence of quantum oscillations in the insulating bulk by
discovering many-body inversion as a key property of the
correlated insulators. It was nicely worked out for two proto-
typical models of Kondo insulators, viz., the half-filled Kondo
lattice model [15] and the symmetric periodic Anderson
model [17] in the ground state, i.e., at absolute zero tem-
perature. What happens to the inversion, and the consequent
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possibility of quantum oscillations, at finite temperatures re-
mains to be understood. It is our goal here to address this
question.

In this paper, we extend the theory enunciated in Ref. [15]
to finite temperatures, and study the behavior of inversion and
quantum oscillations in the half-filled Kondo lattice model
(KLM) on a simple cubic lattice. We present the theory in
Sec. II, and obtain the phase diagram in the temperature-
hopping plane. Notably, we get an inversion transition also
at finite temperatures, with an “inverted” Kondo singlet
phase in an extended region of the phase diagram. We also
identify characteristic changes in the quasiparticle density
of states and specific heat across the inversion transition
that can experimentally differentiate between the Kondo in-
sulators distinguished by inversion. In Sec. III, we study
magnetic quantum oscillations at finite temperatures. We get
these oscillations in the inverted Kondo singlet as well as
antiferromagnetic phases, and find them to follow a Lifshitz-
Kosevich-like behavior with respect to temperature as well as
J2/t . We conclude this paper with a summary in Sec. IV.

II. HALF-FILLED KONDO LATTICE MODEL

The Kondo lattice model (KLM)

H = −t
∑
�r,�δ

∑
s=↑,↓

ĉ†
�r,sĉ�r+�δ,s + J

2

∑
�r

�S�r · �τ�r (1)

of local moments coupled antiferromagnetically (J > 0) to
the electrons of a half-filled conduction band describes Kondo
insulators. On bipartite lattices with nearest-neighbor hopping
t , exact half filling is ensured by zero chemical potential.
Here, we consider a simple cubic lattice formed by L sites
with position vectors {�r}; �δ denotes the nearest neighbors of
every point �r. The local moments are described by the Pauli
operators �τ�r’s while ĉ�r,s (ĉ†

�r,s) and �S�r denote respectively the
annihilation (creation) and spin operators of the conduction
electrons.

In Ref. [15], a self-consistent theory of Kondo insulators
was formulated in the Kumar representation of electrons [21]:
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ĉ†
�r↑ = φ̂a,�r σ+

�r , ĉ†
�r↓ = 1

2 (iψa,�r − φa,�r σ z
�r ) on the A sublattice

and ĉ†
�r,↑ = iψ̂b,�r σ+

�r , ĉ†
�r,↓ = 1

2 (φb,�r − iψb,�r σ z
�r ) on the B sub-

lattice; here, φa(b),�r, ψa(b)�r are the Majorana fermion operators
and σ z

�r , σ±
�r are the Pauli operators. Following Ref. [15], the

half-filled KLM is written as H ≈ Hc + Hs + e0L, where

Hc = Jρ0

4

(∑
�r∈A

â†
�r â�r +

∑
�r∈B

b̂†
�r b̂�r

)

− it

2

∑
�r∈A

∑
�δ

(ψa,�r φb,�r+�δ + ρ1ψb,�r+�δ φa,�r ) (2a)

= Jρ0L

8
+

∑
�k

∑
ν=±

E�k,ν

(
η

†
�k,ν

η�k,ν
− 1

2

)
(2b)

describes the effective “charge” dynamics in terms of the
spinless fermions â�r and b̂�r such that φa,�r = â�r + â†

�r and
ψa,�r = i(â�r − â†

�r ) on the A sublattice, and φb,�r = b̂�r + b̂†
�r and

ψb,�r = i(b̂�r − b̂†
�r ) on the B sublattice; the parameters ρ0 and

ρ1 defined below are to be determined self-consistently. After
doing Fourier and Bogoliubov transformations of the spin-
less fermions, we obtain Eq. (2b) from Eq. (2a), where η�k,ν

are the quasiparticle operators corresponding to the �k points
in the half-Brillouin zone, and E�k,± = E�k± 1

2 t (1 + ρ1)|γ�k| are

the quasiparticle dispersions; here, γ�k = ∑
�δ ei�k·�δ and E�k =√

(Jρ0/4)2 + [t (1 − ρ1)|γ�k|/2]2. The “spin” physics of the
half-filled KLM is described effectively by the following
model,

Hs = Jn̄

4

∑
�r

�σ�r · �τ�r + tζ

4

∑
�r,δ

�σ�r · �σ�r+�δ. (3a)

The four self-consistent parameters of this theory are de-
fined as ρ0 = 1

L

∑
�r〈�σ�r · �τ�r〉, ρ1 = 1

zL

∑
�r,�δ〈�σ�r · �σ�r+�δ〉, ζ =

2i
zL

∑
�r∈A,�δ〈φa,�rψb,�r+�δ〉, n̄ = 1

L 〈∑�r∈A â†
�r â�r + ∑

�r∈B b̂†
�r b̂�r〉. The

constant term is e0 = −(Jn̄ρ0 + ztζρ1)/4. We urge the read-
ers to look at Ref. [15] for more details.

The Hs is a hard problem. At the simplest analytical level,
we treat Hs using bond-operator mean-field theory [22] in
terms of the singlet and triplet eigenstates of the local in-
teraction, J �σ�r · �τ�r . It amounts to writing the Pauli operators
approximately as σ�r,α ≈ s̄(t̂†

�r,α + t̂�r,α ) ≈ −τ�r,α for α = x, y, z;
here, s̄2 is the weight of a Kondo singlet per site, and the
boson operators t̂�r,α describe the triplet excitations. By doing
Fourier and Bogoliubov transformations of these bosons, we
obtain the following diagonalized form of Hs with triplon
dispersion, ε�k = √

λ(λ + tζ s̄2γ�k ), for the �k points in the full
Brillouin zone; here, λ is the Lagrange multiplier that enforces
on average the physical constraint, s̄2 + ∑

α t̂†
�r,α t̂�r,α = 1:

Hs ≈ L

[
λs̄2 − 5λ

2
+ Jn̄ρ0

4

]
+

∑
�k,α

ε�k

(
t̃†
�k,α

t̃�k,α
+ 1

2

)
. (3b)

A. Self-consistent equations at finite temperatures

The parameters ρ0, ρ1, ζ , n̄ of this theory are to be de-
termined self-consistently. In Ref. [15], these calculations
were done at temperature T = 0 only. Here, we do so at
finite T to understand how with temperature the inversion and

quantum oscillations behave in this theory. Equations for ζ

and n̄, obtained by thermal averaging the related operators
(defined above) with respect to Eq. (2b), are written below;
here, β = 1/T :

n̄ = 1

2
− Jρ0

8L

∑
�k,ν

tanh (βE�k,ν
/2)

E�k
, (4a)

ζ = 1

zL

∑
�k,ν

|γ�k|
[

t (1 − ρ1)|γ�k|
2E�k

− ν

]
tanh (βE�k,ν

/2). (4b)

By minimizing with respect to s̄2 and λ the free energy, Fs =
− 1

β
log tr e−βHs , obtained from Eq. (3b), we get the following

equations in the gapped singlet phase:

s̄2 = 5

2
− 3

4L

∑
k

2λ + tζ s̄2γ�k
ε�k

coth (βε�k/2), (5a)

λ = Jn̄ − 3tζλ

4L

∑
�k

γ�k
ε�k

coth (βε�k/2). (5b)

In the gapless antiferromagnetic phase, ε �Q = 0 at �Q =
( π

a , π
a , π

a ); here, a denotes the lattice constant. It gives λ =
ztζ s̄2, and modifies Eq. (5a) to

s̄2 = 5

2
− nc − 3

4L

∑
�k 	= �Q

2λ + tζ s̄2γ�k
ε�k

coth(βε�k/2), (6a)

with condensate density nc accounting for order [23]:

nc = 1

tζ z

⎡
⎣λ − Jn̄ + 3tζλ

4L

∑
k 	=Q

γk

εk
coth (βεk/2)

⎤
⎦. (6b)

From these, we get ρ0 = 1 − 4s̄2 and ρ1 = 4s̄2(Jn̄−λ)
ztζ .

B. Phase diagram

By solving Eqs. (4a)–(5b) self-consistently for n̄, ζ , ρ0,
and ρ1, we obtain the charge and spin dispersions and the
respective energy gaps as a function of t and T in units of J .
At T = 0, we get the results known from Ref. [15]. Namely,
upon increasing t , the inversion of charge dispersion starts at
ti = 0.33, and the spin gap closes continuously at tc = 0.62,
causing a transition from the singlet phase to antiferromag-
netic (AFM) phase [24]. For t < ti the charge gap comes from
the zone center, �k = 0, while for t > ti, it comes from the
surface, γ�k = J|ρ0|(1−|ρ1|)

4t (1+|ρ1|)
√|ρ1| , that quickly tends to γ�k = 0 as t

increases. By tracing the evolution of the inversion point ti
and the antiferromagnetic critical point tc with temperature,
we get a phase diagram in the t-T plane, as presented in Fig. 1.
Inside the antiferromagnetic phase, we use Eqs. (6a) and (6b)
together with Eqs. (4a) and (4b) to find the solution.

At low temperatures, we find the half-filled KLM to have
three distinct insulating phases separated by the inversion line
ti(T ) and the AFM phase boundary tc(T ). Across the inversion
transition (dotted line in Fig. 1), the spins continue to form
a singlet, but the charge dispersion exhibits a change in the
form of inversion. Thus, we call the strong-coupling singlet
phase for t < ti simply as the Kondo singlet (KS) phase, while
that for ti < t < tc as the inverted Kondo singlet (iKS) phase;
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FIG. 1. Phase diagram of the half-filled Kondo lattice model in
the hopping (t)-temperature (T ) plane in units of Kondo interaction
(J). It has three low-temperature insulating phases: a strong-coupling
Kondo singlet (KS), inverted Kondo singlet (iKS), and the anti-
ferromagnetic (AFM) phase. The dotted line marks the inversion
transition. The continuous line marks the antiferromagnetic transi-
tion. The hatched region marks the limitation of the present treatment
of Hs for higher temperatures.

the AFM phase enveloped by the iKS phase lies entirely in
the region exhibiting inversion. Notably, the iKS phase is
found to grow in extent upon increasing T . It implies that
the real Kondo insulators with not-so-strong Kondo couplings
would invariably realize the iKS phase. It has important con-
sequences for the quantum oscillations at finite temperatures;
as figured out in Ref. [15], inversion is a necessary condition
for the quantum oscillation to occur in the Kondo insulating
bulk.

Across the inversion transition, the quasiparticle density
of states (DOS) near the charge gap �c exhibits a notable
change in the behavior from (E − �c)1/2 in the KS phase
to (E − �c)−1/2 in the iKS phase; see Fig. 2. It is so caused
by the dimensional reduction of dispersion near �c. The low-
energy dispersion in the KS phase, E�k,− − �c ∼ |�k|2, is fully
three dimensional around the zone center, whereas in the iKS
phase, E�k,− − �c ∼ k2

⊥ is effectively one dimensional because
the energy close to �c increases only along the normal to the
gap surface; k⊥ is the component of �k ⊥ to the gap surface.

FIG. 2. Left: Quasiparticle density of states (DOS) at T = 0.
Right: Specific heat Cv . Note the change in behavior of DOS from
(E − �c )1/2 in the KS phase to (E − �c )−1/2 in the iKS phase,
near the charge gap �c. It amounts to enhancing Cv in the iKS
phase. Also note the bunching of specific-heat data into two groups
corresponding to KS and iKS, when plotted as Cv/�

2
c vs T/�c; here,

�c is T dependent.

This change in DOS would show up in physical quantities
such as the specific heat Cv . In the two types of Kondo in-
sulators distinguished by inversion, the specific heat at low
enough temperatures is expected to behave as

Cv ∼ �2
c e−�c/T ×

{
T − 1

2 (for KS insulators),

T − 3
2 (for iKS insulators).

(7)

Since this difference arises due to inversion, it can be used ex-
perimentally to differentiate between the two types of Kondo
insulators. In both cases, Cv scales as �2

c . Hence, Cv/�
2
c vs

T/�c for different Kondo insulators would form two bunches
corresponding to KS and iKS types, as the calculated specific
heat in Fig. 2 shows. (Notably, the specific heat for iKS insu-
lators has the BCS form [25]; the two behave similarly for the
same reason, although they describe different phenomena.)

Upon increasing T further, we hit the boundary of the
hatched region in Fig. 1, whereafter finding the self-consistent
solutions of Eqs. (5a) and (5b) becomes difficult; for small
t/J , it happens where the crossover from the KS to ther-
mal paramagnetic insulator is expected (T/J ∼ 0.375), and
for larger t/J , it happens where the iKS insulator to metal
transition is expected. This difficulty arises due to the approx-
imation s̄ for local singlets, which is fine at low but not at high
temperatures. It calls for other ways of treating Hs to access
high-temperature phases within this theory. The present ap-
proach describes the low-temperature insulating phases of the
half-filled KLM in good detail.

III. MAGNETIC QUANTUM OSCILLATIONS

We now study the dynamics of charge quasiparticles in
magnetic field, and investigate the behavior of quantum os-
cillations at low temperatures. As in Ref. [15], we do it by the
following minimal finite-field extension of the zero field Hc

of Eq. (2a):

Hc,α = Jρ0

4

(∑
�r∈A

â†
�r â�r +

∑
�r∈B

b̂†
�r b̂�r

)
− it

2

∑
�r∈A

∑
�δ

× cos(2πα ry x̂ · δ̂)[ψa,�r φb,�r+�δ + ρ1ψb,�r+�δ φa,�r]. (8)

Here, α = Ba2/(e/h) is the magnetic flux in units of e/h for
magnetic field B along the z direction (described by the vector
potential �A = −yBx̂ along the x direction), and ry is the y
component of �r. In numerical calculations, α is taken as p/q,
with p = 1, 2 . . . q for a prime number q; we take q = 503.
We diagonalize Hc,α numerically for different values of α for
several different T ’s and t’s by putting in Eq. (8) the corre-
sponding zero-field values of ρ0 and ρ1. We then calculate its
free energy Fc(α, T, t ) and obtain from it the magnetization
M = −(∂Fc/∂α)/L.

In Fig. 3, we present the magnetization data thus cal-
culated. As in the ground state [15], we get oscillations in
M/α with 1/α also at finite temperatures; with backgrounds
subtracted, the oscillations die off to zero. These oscillations
occur only in the inverted region; they grow in strength by
increasing hopping, but weaken by increasing temperature.
For t around 0.7, we begin to see clear magnetic quantum
oscillations. The iKS phase at such hopping values occurs
invariably at higher temperatures, so the oscillations seen in
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FIG. 3. Magnetic quantum oscillations obtained from our cal-
culations. They oscillate with frequency f0 = 0.185, and weaken
by increasing temperature or decreasing hopping. (The same color
code applies to the data in the plots on the left and the right for the
same t .)

the iKS phase are weaker compared to those seen in the AFM
phase, but they are unmistakably there on both sides of the
iKS-AFM phase boundary. Fourier transforming this mag-
netization data gives the oscillation frequency f0 = 0.185; it
has been identified to correspond to a contour on the γ�k = 0
surface in the bulk Brillouin zone [15]. We fit the calcu-
lated magnetization with the Lifshitz-Kosevich (LK) formula
M = T√

α

∑
n cn(−1)n+1 sin [(2πn f0/α)+(π/4)]√

n sinh (nbT/α)
[9,26]; ideally, the

cn’s are all equal, say c. We find that an LK fit with only
two parameters b and c, and the first two terms of the series,
already describes these oscillations remarkably well with re-
spect to T . See Fig. 4. This is consistent with experiments;
in YbB12, the LK behavior is observed down to 60 mK [6,7],

FIG. 4. Magnetic oscillations fitted with the Lifshitz-Kosevich
(LK) form for frequency f0 = 0.185. A two-parameter fit (LK fit-1)
with only the first two terms of the formula already looks good. LK
fit-2 is a five-parameter fit involving the first four terms.

and in SmB6 down to about 1 K [4,5]. Notably, if we replace
T in this formula by 1/t , it describes very well the oscil-
lations at T = 0. In dimensionful terms, it means that J2/t
acts effectively as temperature. Hence, we find that the Kondo
insulating bulk not only exhibits quantum oscillations, but it
does so in a Lifshitz-Kosevich-like manner with temperature
as well as the Kondo interaction-induced quantum fluctuations
through a Ruderman-Kittel-Kasuya-Yosida (RKKY)-like pa-
rameter J2/t .

IV. SUMMARY

We have described a low-temperature theory of inversion
and quantum oscillations in the half-filled Kondo lattice model
on a simple cubic lattice with implications for real Kondo
insulators. The key takeaways from this paper are as follows.
The Kondo insulators come in two types, the KS (Kondo
singlet) and iKS (inverted Kondo singlet), distinguished by in-
version. They can be differentiated by spectral or specific-heat
measurements, as they have a different density of states near
the charge gap. The iKS insulators can also realize AFM (anti-
ferromagnetic) order by increasing hopping (say, pressure) or
decreasing temperature. Magnetic quantum oscillations occur
in the bulk of the inverted Kondo insulators (iKS as well
as AFM), and they follow Lifshitz-Kosevich behavior with
respect to temperature as well as J2/t .

ACKNOWLEDGMENTS

B.K. acknowledges SERB (India) for supporting this re-
search under project Grant No. CRG/2019/003251. We also
acknowledge the DST-FIST funded HPC cluster at the School
of Physical Sciences, JNU for computations.

035108-4



LOW-TEMPERATURE THEORY OF INVERSION AND … PHYSICAL REVIEW B 107, 035108 (2023)

[1] C. M. Varma, Mixed-valence compounds, Rev. Mod. Phys. 48,
219 (1976).

[2] P. Misra, Heavy-Fermion Systems (Elsevier, Amsterdam, 2008).
[3] G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman,

A. Berkley, S. Wolgast, Y. S. Eo et al., Two-dimensional
Fermi surfaces in Kondo insulator SmB6, Science 346, 1208
(2014).

[4] B. Tan, Y.-T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z.
Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. Johannes
et al., Unconventional Fermi surface in an insulating state,
Science 349, 287 (2015).

[5] M. Hartstein, W. Toews, Y.-T. Hsu, B. Zeng, X. Chen,
M. C. Hatnean, Q. Zhang, S. Nakamura, A. Padgett, G.
Rodway-Gant et al., Fermi surface in the absence of a Fermi
liquid in the Kondo insulator SmB6, Nat. Phys. 14, 166
(2018).

[6] H. Liu, M. Hartstein, G. J. Wallace, A. J. Davies, M. C.
Hatnean, M. D. Johannes, N. Shitsevalova, G. Balakrishnan,
and S. E. Sebastian, Fermi surfaces in Kondo insulators,
J. Phys.: Condens. Matter 30, 16LT01 (2018).

[7] Z. Xiang, Y. Kasahara, T. Asaba, B. Lawson, C. Tinsman, L.
Chen, K. Sugimoto, S. Kawaguchi, Y. Sato, G. Li, S. Yao, Y. L.
Chen, F. Iga, J. Singleton, Y. Matsuda, and L. Li, Quantum
oscillations of electrical resistivity in an insulator, Science 362,
65 (2018).

[8] N. P. Ong, Quantum oscillations in an insulator, Science 362,
32 (2018).

[9] D. Shoenberg, Magnetic Oscillations in Metals, Cambridge
Monographs on Physics (Cambridge University Press, Cam-
bridge, UK, 1984).

[10] J. Knolle and N. R. Cooper, Quantum Oscillations without a
Fermi Surface and the Anomalous de Haas–van Alphen Effect,
Phys. Rev. Lett. 115, 146401 (2015).

[11] G. Baskaran, Majorana Fermi sea in insulating SmB6: A pro-
posal and a theory of quantum oscillations in Kondo insulators,
arXiv:1507.03477.

[12] L. Zhang, X.-Y. Song, and F. Wang, Quantum Oscillation
in Narrow-Gap Topological Insulators, Phys. Rev. Lett. 116,
046404 (2016).

[13] O. Erten, P. Ghaemi, and P. Coleman, Kondo Breakdown and
Quantum Oscillations in SmB6, Phys. Rev. Lett. 116, 046403
(2016).

[14] H. K. Pal, F. Piéchon, J.-N. Fuchs, M. Goerbig, and G.
Montambaux, Chemical potential asymmetry and quantum os-
cillations in insulators, Phys. Rev. B 94, 125140 (2016).

[15] P. Ram and B. Kumar, Theory of quantum oscillations of mag-
netization in Kondo insulators, Phys. Rev. B 96, 075115 (2017).

[16] I. Sodemann, D. Chowdhury, and T. Senthil, Quantum oscilla-
tions in insulators with neutral Fermi surfaces, Phys. Rev. B 97,
045152 (2018).

[17] P. Ram and B. Kumar, Inversion and magnetic quantum oscilla-
tions in the symmetric periodic Anderson model, Phys. Rev. B
99, 235130 (2019).

[18] R. Peters, T. Yoshida, and N. Kawakami, Quantum oscillations
in strongly correlated topological Kondo insulators, Phys. Rev.
B 100, 085124 (2019).

[19] Y. Tada, Cyclotron resonance in kondo insulator, Phys. Rev.
Res. 2, 023194 (2020).

[20] T. Devakul, Y. H. Kwan, S. L. Sondhi, and S. A. Parameswaran,
Quantum Oscillations in the Zeroth Landau Level: Serpentine
Landau Fan and the Chiral Anomaly, Phys. Rev. Lett. 127,
116602 (2021).

[21] B. Kumar, Canonical representation for electrons and its appli-
cation to the Hubbard model, Phys. Rev. B 77, 205115 (2008).

[22] S. Sachdev and R. N. Bhatt, Bond-operator representation
of quantum spins: Mean-field theory of frustrated quantum
Heisenberg antiferromagnets, Phys. Rev. B 41, 9323 (1990).

[23] R. Kumar and B. Kumar, Fourfold degenerate columnar-dimer
ground state in square lattice antiferromagnets, Phys. Rev. B 77,
144413 (2008).

[24] The zero temperature tc on a simple cubic lattice from the
series expansion method is 0.5 [27], and it is 0.55 from a
bond-operator mean-field theory [28].

[25] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saun-
ders College Publishing, Philadelphia, 1976), Chap. 34, p. 746.

[26] I. M. Lifshitz and A. M. Kosevich, Theory of magnetic suscep-
tibility in metals at low temperatures, Sov. Phys. JETP 2, 636
(1956).

[27] Z.-P. Shi, R. R. P. Singh, M. P. Gelfand, and Z. Wang, Phase
transitions in the symmetric Kondo-lattice model in two and
three dimensions, Phys. Rev. B 51, 15630 (1995).

[28] C. Jurecka and W. Brenig, Bond-operator mean-field theory of
the half-filled Kondo lattice model, Phys. Rev. B 64, 092406
(2001).

035108-5

https://doi.org/10.1103/RevModPhys.48.219
https://doi.org/10.1126/science.1250366
https://doi.org/10.1126/science.aaa7974
https://doi.org/10.1038/nphys4295
https://doi.org/10.1088/1361-648X/aaa522
https://doi.org/10.1126/science.aap9607
https://doi.org/10.1126/science.aau3840
https://doi.org/10.1103/PhysRevLett.115.146401
http://arxiv.org/abs/arXiv:1507.03477
https://doi.org/10.1103/PhysRevLett.116.046404
https://doi.org/10.1103/PhysRevLett.116.046403
https://doi.org/10.1103/PhysRevB.94.125140
https://doi.org/10.1103/PhysRevB.96.075115
https://doi.org/10.1103/PhysRevB.97.045152
https://doi.org/10.1103/PhysRevB.99.235130
https://doi.org/10.1103/PhysRevB.100.085124
https://doi.org/10.1103/PhysRevResearch.2.023194
https://doi.org/10.1103/PhysRevLett.127.116602
https://doi.org/10.1103/PhysRevB.77.205115
https://doi.org/10.1103/PhysRevB.41.9323
https://doi.org/10.1103/PhysRevB.77.144413
https://doi.org/10.1103/PhysRevB.51.15630
https://doi.org/10.1103/PhysRevB.64.092406

