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Noncompact lattice Higgs model with Abelian discrete gauge groups:
Phase diagram and gauge symmetry enlargement
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We study the phase diagram and phase transitions of the three dimensional multicomponent lattice Higgs
model with noncompact Abelian discrete groups. The model with noncompact U(1) gauge group is known to
undergo, for a sufficiently large number of scalar fields N , a continuous transition associated to the charged
fixed point of the continuous Abelian Higgs field theory. We show that in the model with gauge group Z(nc)

q ≡
2πZ/q only critical transitions in the orthogonal universality classes are present for small values of N , while a
symmetry enlargement to the continuous Abelian Higgs universality class happens when q � 5 and N is large
enough.
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I. INTRODUCTION

Global symmetries and their spontaneous breaking play an
essential role in condensed matter physics, where they have
been used to classify phases of matter and phase transitions
since the late 1930s [1,2]. More recently, global symme-
tries played a pivotal role in the modern theory of critical
phenomena and renormalization group [3–5], which clarified
the relation between continuous phase transitions, symmetry
breaking, and quantum field theories.

In this framework universality classes are associated to the
symmetry breaking pattern of the effective Hamiltonian at
the fixed point (FP) of the renormalization group (RG) flow,
and not to that of the microscopic Hamiltonian. This allows
for the existence of symmetry enlargements, associated to
the emergence of new symmetries at the critical point. This
happens when the symmetry group of the FP effective Hamil-
tonian is larger than that of the microscopic Hamiltonian. A
simple model displaying symmetry enlargement is the three
dimensional q-state clock model, whose symmetry group is
Zq � O(2) but whose critical point is in the O(2) universality
class for [6] q � 5; see also Refs. [7–10] for similar cases.

Despite having been originally introduced in high energy
physics [11], gauge theories are by now known to be ubiqui-
tous also in condensed matter physics [12–14], not to mention
the condensed matter side of high energy physics (see, e.g.,
Refs. [15,16]). It is thus fundamental to understand the critical
behavior of models which are characterized both by global
and local symmetries. Multicomponent scalar models [17]
appear to be ideal candidates for this purpose: their critical
properties can in some cases be determined or at least guessed
by analytical methods; moreover, they are quite easy to study
by numerical simulations. The aim of this paper is to inves-
tigate by Monte Carlo simulations a multicomponent lattice
scalar model with discrete Abelian gauge group to understand
if symmetry enlargement is possible at a second order phase
transition in which both gauge and matter degrees of freedom
are critical.

To put this statement in context it is convenient to recall
some facts about critical phenomena in gauge theories. Indeed
three different scenarios can be realized at the critical point of
a model displaying both local symmetries, constraining the
form of the interactions, and global symmetries, associated to
the transformation properties of the matter fields.

In the first scenario gauge fields simply act as spectators
at the transition, without developing long range correlations.
In this case the only role of the local invariance is that of
preventing some modes (the nongauge invariant ones) from
acquiring nonvanishing expectation values. The critical be-
havior can be modeled by using a local gauge invariant order
parameter and everything goes on exactly as if no gauge
symmetry were present. This happens in the multicomponent
compact lattice Abelian Higgs model [18–20], in models with
compact discrete Abelian symmetry [21,22], and in most of
the non-Abelian models studied so far [23–26].

The second scenario is the dual of the first one: mat-
ter fields remain noncritical, while gauge modes develop
long range order. Just like the transitions in pure gauge
models [27–29], transitions in this class are characterized
by the absence of a local order parameter and they are thus
called topological transitions. Examples of this behavior are
found in the multicomponent noncompact lattice Abelian
Higgs model [30–32], in the multicomponent compact lattice
Abelian Higgs model with charge Q � 2 (see Refs. [33,34]),
and also in some non-Abelian models [25,36,37].

Finally, the third scenario is the one in which both the
gauge and the matter fields become critical at the transition.
When this happens, a local gauge invariant order parameter
exists, but an effective field theory description of the critical
behavior requires one to explicitly use both matter and gauge
fields in the effective Hamiltonian. It should be clear that
transitions of this class are the most peculiar ones and this
is the case that is usually referred to as “beyond the Landau-
Ginzburg-Wilson paradigm” [38]. At present we however
know only a few classical lattice models exhibiting this type
of critical transition: compelling evidence has been found
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for the multicomponent noncompact lattice Abelian Higgs
model [32] and the multicomponent compact lattice Abelian
Higgs model with charge Q � 2 (see Refs. [33,34]), while for
non-Abelian gauge models we only have hints of this type
of behavior [25,26] (see [25,26,36,39] for the ε-expansion
analysis of the non-Abelian case).

Let us now go back to symmetry enlargements in gauge
models. When gauge fields are noncritical, symmetry enlarge-
ments are known to happen, with examples of continuous
global O(2) symmetry emerging from discrete global Zq sym-
metries reported, e.g., in Refs. [21,22]. Symmetry enlarge-
ments have also been observed in pure gauge theories (see,
e.g., Ref. [29]); thus it seems reasonable to guess the same
phenomenon to be present also in the more general case of
the second scenario above. The case in which both gauge and
matter fields are critical is the less studied one and the question
of the existence of symmetry enlargement is still open.1

Note that the existence of symmetry enlargement in
the “third scenario” theories is far less trivial that in the
other cases, especially when a discrete gauge group is in-
volved. In the first scenario (global symmetries) symmetry
enlargement can be analytically studied by investigating, us-
ing the corresponding continuum quantum field theory, the
relevance/irrelevance of the lower dimensional symmetry
breaking term. To the best of our knowledge the same is
also true, modulo dualities, for all the known cases in which
symmetry enlargement takes place in pure gauge theories.
Such a technique is however generically not available to study
models with critical discrete gauge fields coupled to critical
matter fields.

To numerically investigate the existence of symmetry en-
largement in this case we study a variant of the noncompact
lattice Abelian Higgs model with N scalar fields, and specif-
ically the variant in which the gauge field is restricted to the
noncompact proper subgroup Z(nc)

q ≡ 2πZ/q of U(1)(nc) = R
(we denote by a superscript nc the noncompact groups, in
order to avoid confusion with the compact ones). The lattice
model with gauge group U(1)(nc) is indeed known to ex-
hibit, for N � 10, critical transitions governed by the charged
(i.e., with nonvanishing gauge coupling) FP of the continu-
ous Abelian Higgs field theory [32], thus realizing the third
scenario described above.

It is natural to expect the phase diagram of the Z(nc)
q model

to approach that of the model with gauge group U(1)(nc) in
the limit q → ∞. Our main aim is to understand if a finite
value q∗ exists such that for q � q∗ the Z(nc)

q model displays
transitions of the continuous Abelian Higgs universality class,
as the U(1)(nc) model. We thus investigate the phase diagram
and phase transitions of the Z(nc)

q model for several values
of q and for N values below (N = 2) and above (N = 25)
the threshold for the appearance of the charged FP in the
continuous Abelian Higgs model.

A similar strategy has been very recently adopted in
Ref. [40], where a Zq deformation of the compact U(1) lattice

1A different kind of emergent symmetry was observed in Ref. [35],
in which two dimensional models with related numbers of scalar
flavors and colors turned out to have the same continuum limit.

Abelian Higgs model with charge Q = 2 (see Refs. [33,34])
was investigated. By studying the region of the parameter
space where transitions of the continuous Abelian Higgs uni-
versality class could emerge, the authors found however only
first order transitions for values of q up to q = 10.

The paper is organized as follows. In Sec. II we summarize
the main features of the phase diagram of the lattice U(1)(nc)

model, then we introduce the lattice Z(nc)
q model and provide

arguments to delineate its phase diagram. In Sec. III we define
the observables that are used in the Monte Carlo simulations
and we present the numerical results obtained, discussing
separately the case in which only matter fields are critical
(N = 2) and the case in which both gauge and matter fields
develop critical correlations (N = 25). Finally, in Sec. IV we
draw our conclusions and discuss open problems to be further
investigated.

II. LATTICE MODEL

A. U(1)(nc) lattice model

The lattice Hamiltonian of the noncompact U(1)(nc) (equiv-
alently R) Abelian Higgs model with N scalar field flavors is

H = Hz + Hg,

Hz = −JN
∑

x,μ

2 Re (eiAx,μ z̄x · zx+μ̂),

Hg = κ

2

∑

x,μ>ν

(�μAx,ν − �νAx,μ)2,

(1)

where x stands for a lattice point and μ, ν = 1, 2, 3 denote
the positive directions along the axes. In this expression zx

represents a N-component complex vector subject to the
constraint z̄x · zx = 1, while the gauge field Ax,μ is a real
number and the finite differences �μAx,ν are defined by

�μAx,ν = Ax+μ̂,ν − Ax,ν . (2)

The partition function of the U(1)(nc) model is formally
defined by the expression (see later for a caveat)

Z =
∑

{zx,Ax,μ}
e−βH , (3)

and in the following we will set β = 1, which is equivalent to
measure J and κ in units of β.

The Hamiltonian in Eq. (1) is invariant under the global
SU(N ) symmetry zx → Mzx, with M ∈ SU(N ), and under
the local U(1) symmetry

zx → eiαx zx, Ax,μ → Ax,μ + αx+μ̂ − αx, (4)

with αx ∈ R. The theory is also invariant under the global
transformation Ax,μ → Ax,μ + 2πnμ, where nμ is an integer
depending only on the direction μ, which is the equivalent for
this model of the center symmetry in compact lattice gauge
theories [41,42]. This invariance makes the partition function
of the theory divergent, even after gauge fixing, on finite
lattices with periodic boundary conditions, and to make the
theory well defined on a finite lattice it was suggested [32] to
use the C∗ boundary conditions [43]

Ar+Lν ν̂,μ = −Ar,μ, zr+Lν ν̂ = z̄r, (5)

where Lν is the lattice extent in the direction ν.
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FIG. 1. Qualitative sketch of the phase diagram of the lattice
Abelian Higgs with gauge group U(1)(nc) and N scalar flavors.

A sketch of the phase diagram of the lattice Abelian Higgs
model with gauge group U(1)(nc) is shown in Fig. 1 (see
Refs. [30–32]): three different thermodynamic phases exist,
which are separated by three transition lines and a multicritical
point. To understand the topology of the phase diagram it is
convenient to look at the model for extremal values of the
parameters, i.e., 0 or ∞ (see, e.g., Ref. [32] for more details).

For κ → ∞ the minimum of the Hamiltonian
corresponds to

�μAx,ν − �νAx,μ = 0. (6)

Thus with a gauge transformation it is possible to set Ax,μ = 0
(in the infinite volume limit). It is then simple to show that
the model reduces to the O(2N) lattice model, which has a
second order phase transition as a function of J for any N .
For κ = 0 we instead obtain the gauged form of the lattice
CPN−1 model [18–20], which displays as a function of J a
second order transition of the O(3) universality class for N =
2 and a first order phase transition for N > 2. This transition
is associated to the spontaneous breaking of the global SU(N )
symmetry of the model and the order parameter is the gauge
invariant bilinear

Qab
x = z̄a

xzb
x − 1

N
δab. (7)

For J = 0 the model reduces to a system of noninteract-
ing lattice photons and no phase transition is encountered
by varying κ . In the J → ∞ limit it can be shown that
the only configurations with nonvanishing weight are those
with Ax,μ = 2πmx,μ, where mx,μ ∈ Z. By performing a du-
ality transformation [44,45] it is then possible to obtain the
Villain discretization of the O(2) model. As a consequence, for
J → ∞ the U(1)(nc) model undergoes for any N a topological
transition of the O(2) universality class (with inverted high
and low temperature phases) at

κU(1)
c (J = ∞) = 0.076051(2). (8)

This value is obtained from βc = 3.00239(6) reported in
Ref. [45] with the identification κc = βc/(2π )2.

The transitions emerging from the boundaries of the phase
diagram merge at a multicritical point and delimit three dif-
ferent phases. The phase in the upper left corner of Fig. 1
is characterized by broken SU(N ) symmetry and long range
gauge correlations [it is the “low temperature” phase of the
inverted O(2) transition]; the phase in the lower part of the

diagram is instead characterized by unbroken SU(N ) symme-
try and long range gauge correlations. Finally in the upper
right phase of Fig. 1 the SU(N ) symmetry is broken and gauge
correlations are short range.

Along the line of phase transitions connecting the multi-
critical point M with the O(2N) asymptotic point, both matter
and gauge field correlators change their long distance behav-
ior. For small values of N , transitions on this line are of the
first order [30–32], while for N � 10 they become continuous
transitions, whose critical properties are consistent with those
expected at the charged FP of the continuous Abelian Higgs
model. Indeed the critical exponents estimated from numer-
ical simulations [32] are consistent with those computed in
the continuous model in the large N limit [46–48]. Also the
number of flavors required for the existence of a second order
phase transition along this line is consistent with analytical
results coming from a constrained resummation of the ε ex-
pansion of Abelian Higgs field theory [49].

B. Z(nc)
q lattice model

Having summarized the results obtained for the lattice
model with U(1)(nc) gauge group, we can now easily intro-
duce the lattice model with reduced gauge symmetry Z(nc)

q ≡
2πZ/q and discuss its possible phase diagram.

The Hamiltonian of the model with gauge invariance Z(nc)
q

is once again Eq. (1), but now the field Ax,μ is not represented
by a generic real number, but it is constrained to be of the form

Ax,μ = 2π

q
nx,μ, nx,μ ∈ Z. (9)

The global SU(N ) symmetry of the U(1)(nc) model is a
symmetry also of the Z(nc)

q model and the corresponding or-
der parameter is the same Qab introduced in Eq. (7). Also
the global symmetry Ax,μ → Ax,μ + 2πmμ, with mμ ∈ Z, is
still present. The local invariance is obviously Z(nc)

q , i.e.,
the Hamiltonian is invariant under the transformation in
Eq. (4) where αx is an integer multiple of 2π/q. Finally, due
to the reduced gauge invariance, also the global symmetry
U(1)(nc)/Z(nc)

q = U(1)/Zq is now present and a gauge invari-
ant order parameter for its breaking is

Oi1···iq = z(i1 )
x · · · z

(iq )
x , (10)

where ik ∈ {1, . . . , N} and z(i)
x stands for the ith component

of zx. Note that this order parameter transforms nontrivially
under the global SU(N ) symmetry, while Qab is invariant
under the U(1)/Zq global symmetry. As a consequence the
U(1)/Zq symmetry can be spontaneously broken only in a
phase in which SU(N ) is also broken.

Let us now discuss the phase diagram of the Z(nc)
q lattice

model. As for the case of the U(1)(nc) model, to understand
the structure of the phase diagram it is convenient to start
analyzing the extreme cases. In the limit J → ∞ and in the
limit κ → ∞ the model is exactly equivalent to the U(1)(nc)

model discussed in Sec. II A. We thus expect for J → ∞ an
inverted O(2) topological transition with critical coupling [see
Eq. (8)]

κ
Zq
c (J = ∞) = κU (1)

c (J = ∞) = 0.076051(2), (11)
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FIG. 2. Qualitative sketch of the phase diagram of the lattice
Abelian Higgs with gauge group Z(nc)

q and N scalar flavors.

while for κ → ∞ we expect a transition in the O(2N) uni-
versality class. For J = 0 the Z(nc)

q model is equivalent to the
J → ∞ limit of the U(1)(nc) model (in this limit gauge field
variables reduce to integer multiples of 2π ; see [30–32]), up
to the rescaling κ → κ/q2. We thus expect also in this case an
inverted O(2) transition with critical coupling

κ
Zq
c (J = 0) = q2κU (1)

c (J = ∞) = q2 0.076051(2) (12)

for all N values.
What happens for κ = 0 is already nontrivial, but it is

natural to expect the presence of two transitions: one at Jc1

at which the global SU(N ) symmetry gets spontaneously bro-
ken and another one at a value of the coupling Jc2 > Jc1, at
which also the U(1)/Zq symmetry gets broken. This transition
is expected to be (if second order) of the O(2) universality
class, since the U(1)/Zq group is locally equivalent to O(2).
A priori the two transitions could also happen at the same
point (i.e., Jc1 = Jc2); however, it seems reasonable to assume
the phase diagram of the Z(nc)

q lattice model to converge to
that of the U(1)(nc) model for q → ∞. Since in the U(1)(nc)

model only a single transition [the SU(N ) breaking one] is
present for κ = 0, it follows that Jc2 → ∞ when q → ∞;
thus Jc2 is generically strictly larger than Jc1. The existence
of two distinct transitions at κ = 0 has been indeed verified in
Ref. [40] using the compact U(1) model [note that for κ = 0
the compact and the noncompact U(1) models are equivalent].

The simplest topology of the phase diagram consistent with
these boundary cases is the one sketched in Fig. 2, in which six
phases are separated by several transition lines that intersect
at three multicritical points.

At the multicritical point denoted by M1 in Fig. 2 two O(2)
lines2 cross each other, but the relevant degrees of freedom
of the two transitions are very different: the O(2) line starting
from J = ∞ is of topological nature, while the O(2) line start-
ing from κ = 0 is associated to a global symmetry breaking.
It thus seems natural to guess the critical behaviors associated
to these two lines to be decoupled at the multicritical point
M1. If this holds true, M1M2 is a line of O(2) topological tran-

2To avoid complicating the discussion we assume all the lines to
correspond to continuous transitions, but obviously the presence of
first order transitions cannot be excluded.

sitions and M1M3 is a line of O(2) global symmetry breaking
transitions.

For small κ values the gauge field always displays long
range correlations [since we are in the “low temperature”
phase of both the inverted O(2) topological transitions] and
moving from small to large values of the coupling J we
pass through two phase transitions, corresponding to the
spontaneous breaking of SU(N ) and U(1)/Zq symmetries,
respectively. For large values of κ , gauge field correlators
are always short range and by increasing the coupling J we
meet a single transition, at which both SU(N ) and U(1)/Zq

symmetries get spontaneously broken. Since the lattice field
strength �μAx,ν − �νAx,μ can only assume discrete values,
for κ → ∞ the number of plaquettes on which the field
strength is nonvanishing is exponentially suppressed in κ . It
is thus reasonable to expect this transition line to be in the
O(2N) universality class.

The region of intermediate κ values, roughly 0.076 � κ �
q2 0.076, is the most interesting one: for small values of the
J coupling gauge field correlators are long range [we are in
the “low temperature” phase of the inverted O(2) transition
departing from J = 0] and no symmetry breaking is present,
but crossing the M2M3 line (see Fig. 2) gauge field correlators
become short range [we are in the “high temperature” phase
of the inverted O(2) transition M1M2] and SU(N ) gets spon-
taneously broken. By further increasing the coupling J we
cross the M1M3 line and also the global U(1)/Zq gets finally
broken.

This phase diagram is consistent with that of the U(1)(nc)

model: in the large q limit the multicritical points M1 and M3

move toward larger and larger values of the couplings, while
the multicritical point M2 becomes the multicritical point M
of the U(1)(nc) model. This phase diagram is also very similar
to the one discussed in Ref. [40], where a Zq gauge version of
the compact lattice Abelian Higgs model with charge Q = 2
was investigated. In this model the O(2) lines starting from
J = ∞ and J = 0 in Fig. 2 become ZQ and Zq lines, respec-
tively, but apart from that the phase diagram looks the same.

To search for a symmetry enlargement when both gauge
and matter degrees of freedom are critical, the points to be
investigated are the ones on the M2M3 line, when N is large
enough that a transition of the continuous Abelian Higgs uni-
versality class is present in the lattice U(1)(nc) model. In the
next section we present the results of numerical simulations
performed along this line for N = 25, which is large enough
for the second order transition of the continuous Abelian
Higgs universality class to be present in the U(1)(nc) model.
We also report the results of some simulations carried out
for N = 2 in the Z(nc)

q lattice model, with the purpose of
checking whether continuous transitions of new universality
classes could appear in this case.

III. NUMERICAL RESULTS

Simulations have been performed on symmetric L3 lat-
tices using C∗ boundary conditions along all directions
[see Eq. (5)]. The gauge field has been updated using the
Metropolis algorithm, using nx,μ + 1 or nx,μ − 1 as a trial
state with the same probability [see Eq. (9)]. Scalar fields
have been updated using a combination of Metropolis and
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overrelaxation updates, in the ratio of 1:5. A typical order
of magnitude of the statistics accumulated is of the order of
O(106) configurations for each data point, taken after 10 com-
plete updates (Metropolis and overrelaxation) of the lattice,
with the autocorrelation time that was at most of the order of
O(103).

A. Observables and finite size scaling

The main observables used are the ones related to the
spontaneous breaking of the global SU(N ) symmetry, written
by means of the gauge invariant Hermitian order parameter
introduced in Eq. (7).

From the two point function in momentum space G̃(p) of
the operator Qab

x , defined by

Q̃ab(p) =
∑

x

Qab
x eip·x,

G̃(p) = 1

L3
Re〈Q̃ab(p)Q̃ab(−p)〉,

(13)

we can define the susceptibility

χ = G̃(0) (14)

and the second moment correlation length

ξ 2 = 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (15)

where pm = (2π/L, 0, 0). Another useful quantity is the
Binder cumulant

U =
〈
μ2

2

〉

〈μ2〉2
, μ2 = 1

L3
Re Tr[Q̃(0)2], (16)

which is a RG invariant quantity, just like Rξ = ξ/L.
Renormalization group invariant quantities are particularly

useful since their finite size scaling (FSS) behavior at a second
order phase transition is very simple. If we denote by R a
generic RG invariant quantity, its FSS is of the form

R = fR(X ) + L−ωgR(X ), (17)

where fR and gR are functions which are universal up to a
rescaling of their arguments, ω is related to the leading irrel-
evant RG exponent of the transition, and X = (J − Jc)L1/ν or
X = (κ − κc)L1/ν . Using the two RG invariant quantities Rξ

and U , it is possible to write down a FSS relation which is
independent of any nonuniversal parameter and of the critical
exponents:

U = FU (Rξ ) + O(L−ω ). (18)

The function FU is universal and depends only on some
generic features of the lattice, like the boundary conditions
and the aspect ratio adopted. In the following we will make
extensive use of this relation to compare the results obtained
in the U(1)(nc) lattice model with those obtained in the Z(nc)

q
lattice model.

For comparison the FSS of the susceptibility χ can be
written in the form

χ = L2−ηq [ fχ (Rξ ) + O(L−ω )], (19)

where we denoted by ηq the anomalous dimension of the
operator Qab. In the following of the paper we mainly rely on

the parameter-free scaling of U against Rξ to identify the uni-
versality class encountered; however, we have also checked
that the scaling of χ against Rξ gives consistent results. For
the O(2N) transition at large κ , it can be shown that ηq is
associated to the RG exponent Y2 of the spin 2 operator of
Ref. [54].

To identify the region M2M3 in Fig. 2 we need to lo-
cate the topological transitions departing from the J = 0 and
J = ∞ lines. Since these transitions are not associated to any
local order parameter, to detect them we need to study the
cumulants of the energy and, in particular, the third cumulant
of the gauge part of the Hamiltonian Hg:

K3 = 〈
H3

g

〉 − 3
〈
H2

g

〉〈Hg〉 + 2〈Hg〉3. (20)

The use of the third (or higher) cumulant is particularly con-
venient to study transitions with negative critical exponent α,
as the O(2) ones [50]. Indeed the nth cumulant satisfies the
FSS relation

Kn = Ln/ν[ fn(X ) + O(L−ω )] + L3Kback (21)

and α < 0 corresponds to 2
ν

< 3; thus the regular background
term Kback dominates the FSS of the second cumulant in this
case.

At first order phase transitions the specific heat and the
Binder cumulant develop peaks whose values scale linearly
with the volume size [51,52]. For weak first order transitions
this asymptotic behavior is however often difficult to identify
unambiguously and it can be more convenient to directly look
for the emergence of a double peak structure in the energy
density. A different strategy, that is more effective in the
case of a very small latent heat, is to verify that the scaling
relation Eq. (18), typical of a second order phase transition, is
violated [18].

B. Case N = 2

To investigate the “small N” case, we start by studying the
phase diagram of the Z(nc)

q model with q = 2, which is the first
notrivial value of q (for q = 1 scalars decouple).

To study the small κ region we fix κ = 0.04, a value
smaller that κ

Zq
c (J = ∞) ≈ 0.076 in Eq. (11). By varying J

we thus look for the presence of a phase transition using the
observables Rξ and U introduced in Sec. III A. A quite strong
first order transition is found for Jc ≈ 0.602, with Monte Carlo
metastabilities preventing a precise estimate of the critical
coupling. In Fig. 3 the behavior of U as a function of Rξ is
reported, which shows the diverging behavior typical of first
order phase transitions, with the sudden increase of the error
bars for L = 32 being due to the appearance of long-lived
metastable states. The first order nature of this phase transition
is also clear from the histograms of the scalar part of energy
density Hz/L3, which are shown in Fig. 4. A double peak
structure is present, which gets more pronounced by increas-
ing the lattice size.

We then move to the large κ side of the phase diagram
by fixing κ = 0.4, a value larger than κ

Zq
c (J = 0) ≈ 0.3 [see

Eq. (12)]. In this case a transition in the O(4) universality
class is found, as can be seen from Fig. 5, where the uni-
versal scaling curve obtained is compared to that of the O(4)
model obtained by fixing Ax,μ = 0. Fitting the behavior of
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FIG. 3. N = 2, q = 2, and κ = 0.04. Behavior of U as a function
of Rξ , obtained by varying the parameter J in the Hamiltonian.

Rξ using the known critical exponent ν of the O(4) model,
see Table I, we obtain for the critical coupling the estimate
Jc = 0.23433(5). This is only slightly larger than the crit-
ical coupling JO(4)

c = 0.233965(2) of the O(4) model; see
Ref. [58], where the critical value of 2NJ is reported.

To complete our preliminary scan of the phase diagram of
the q = 2 model, and identify the M2M3 line in Fig. 2, we
finally perform simulations fixing J = 0.2 (a value smaller
than Jc at κ = 0.4 and κ = ∞) and J = 1 (a value larger than
Jc at κ = 0.04). In both the cases transitions of the O(2) uni-
versality class are found, as can be seen from the FSS results
shown in Fig. 6, obtained by using the known value of the O(2)
exponent ν; see Table I. For J = 0.2 no scaling violations
are observed and the transition is located at κc = 0.2998(7);
for J = 1 scaling violations are sizable and by excluding the
L = 8 lattice data from the fit we estimate the critical coupling
to be κc = 0.0763(4). Both these values are quite close to their
asymptotic values for J = 0 and J = ∞, respectively, see
Eqs. (11) and (12), signaling that the transition lines emerging
from the J = 0 and J = ∞ sides of the phase diagram are
almost vertical.

We finally perform a simulation fixing κ = 0.275, in order
to cross the M2M3 line in Fig. 2. The results obtained for U

FIG. 4. N = 2, q = 2, and κ = 0.04. Histograms of the scalar
part of energy density Hz/L3 for J 
 0.602.

FIG. 5. N = 2, q = 2, and κ = 0.4. Behavior of U as a function
of Rξ , obtained by varying the parameter J in the Hamiltonian.

as a function of Rξ are shown in Fig. 7: data corresponding
to different values of the lattice size L do not collapse on each
other and the peak values of U at fixed L increase significantly
by increasing L. We thus expect in this case the presence of
a first order transition, which is confirmed by the emergence
of a double peak structure in the energy density Hz/L3 when
increasing the lattice size; see Fig. 8.

We can thus conclude that the phase diagram of the model
with q = 2 is fully consistent with the one sketched in Fig. 2,
with the possibly interesting M2M3 line being a line of first
order phase transitions.

To close this section we present results obtained along
the M2M3 line, always at κ = 0.275, for q = 3 and q = 9.
In both cases first order phase transitions are found, as seen
from Figs. 9: no scaling is observed in the U vs Rξ plot;
however, the strength of the first order transition decreases
when increasing q, and for q = 9 data are practically indistin-
guishable from those of the U(1)(nc) model, in which a very
weak first order phase transition is present for N = 2; see
Refs. [31,32].

TABLE I. Critical exponents needed in the FSS analyses. For
the O(2) universality class we use ν and η from Ref. [8] [where
ω = 0.789(4) is also reported], see also Ref. [53], and ηq = 5 − 2Y2,
with Y2 from Ref. [54] (to be used for the large κ transition). For
the O(4) universality class we use ν and η from Ref. [54] (where
ω ≈ 0.79 is also reported), see also Ref. [55], and ηq = 5 − 2Y2,
with Y2 from Ref. [54] (to be used for the large κ transition). For
the Abelian Higgs universality class we use the results obtained in
Ref. [34] (see also Refs. [32,33]); note that in this case the exponent
η is not defined since the corresponding correlator is not gauge
invariant and vanishes. For the O(N ) universality class in the large
N limit we use ν = 1 − 32

3π2N
− 32(27π2−112)

27π4N2 , see Refs. [48,56], and
ηq = 1 + 64

3π2N
− 1024

27π4N2 , see Refs. [56,57].

Univ. class ν η ηq

O(2) 0.67169(7) 0.03810(8) 1.4722(2)
O(4) 0.750(2) 0.0360(3) 1.371(1)
AH(25) 0.817(7) 0.882(2)
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FIG. 6. N = 2 and q = 2. Finite size scaling of the third cu-
mulant K3, obtained by using the known O(2) value of the critical
exponent ν (top) for J = 0.2, with κc = 0.2998(7) (bottom) for
J = 1, with κc = 0.0763(4).

C. Case N = 25

We now discuss the results obtained for the model with 25
scalar flavors, starting again from the q = 2 gauge discretiza-
tion and focusing on the most interesting part of the phase
diagram.

We first of all present the results obtained for κ = 0.4
[larger than κ

Zq
c (J = 0) ≈ 0.3; see Eq. (12)], where a tran-

FIG. 7. N = 2, q = 2, and κ = 0.275. Behavior of U as a func-
tion of Rξ , obtained by varying the parameter J in the Hamiltonian.

FIG. 8. N = 2, q = 2, and κ = 0.275. Histograms of the scalar
part of energy density Hz/L3 for J 
 0.256.

sition of the O(50) universality class is expected. Results
reported in Fig. 10 are fully consistent with this expectation,
since the scaling curve obtained for U against Rξ is well com-
patible with the one of the O(50) model, determined by fixing
Ax,μ ≡ 0 in the simulations. To fit the behavior of Rξ we use
the large N prediction of ν reported in the caption of Table I,
obtaining the estimate Jc = 0.2502(3) for the critical cou-
pling. This value is already quite close to the asymptotic large

FIG. 9. N = 2 and κ = 0.275. Behavior of U as a function of Rξ ,
obtained by varying the parameter J in the Hamiltonian for the model
with q = 3 (top) and q = 9 (bottom). In the latter case data for the
U(1)(nc) model are also shown for comparison.
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FIG. 10. N = 25, q = 2, and κ = 0.4. Behavior of U as a func-
tion of Rξ , obtained by varying the parameter J in the Hamiltonian.

N critical coupling of the O(N) models, Jc = 0.252731 . . .,
reported in Ref. [59].

Other simulations have been performed at κ = 0.275,
which is smaller than κ

Zq
c (J = 0) ≈ 0.3. However, for N =

25, q = 2 the transition line emerging from the J = 0 critical
point is not vertical anymore and in this case we found two
transitions: an O(2) transition at Jc = 0.181(2) and an O(50)

FIG. 11. N = 25, q = 2, and κ = 0.275. (Top) Finite size scaling
of the third cumulant K3, obtained by using the known O(2) value
of the critical exponent ν and Jc = 0.181(2). (Bottom) Behavior of
U as a function of Rξ , obtained by varying the parameter J in the
Hamiltonian.

FIG. 12. N = 25, q = 3, and κ = 0.275. Histograms of the
scalar part of energy density Hz/L3 for J 
 0.267.

transition at Jc = 0.2506(3), as can be seen from the FSS
curves shown in Fig. 11. To approximately locate the position
of the multicritical point M3 in Fig. 2, we thus performed
simulations at fixed J = 0.2, finding an O(2) transition at
κc = 0.2554(15). Simulations at fixed κ = 0.2 show evidence
of two very close transitions at Jc ≈ 0.2518, providing our
best estimate for the position of the multicritical point M3.
Finally, simulations performed at κ = 0.15 found a first order
transition at J ≈ 0.25, with hints of a continuous transition for
slightly larger values of the coupling J; it is thus possible that
this point is on the left of the multicritical point M2 in Fig. 2,
or anyway very close to it.

The region M2M3 is thus quite small for N = 25, q = 2 and
significant crossover effects are expected to be found due to
the nearby O(50) and first order transition lines. Since a com-
plete investigation of the small q case is not our principal aim,
we leave a detailed analysis of this region of the parameter
space to future studies.

The model with N = 25, q = 3 is much simpler: in this
case κ

Zq
c (J = 0) ≈ 0.68 [see Eq. (12)], and by performing

simulations at κ = 0.7 a clear O(50) transition is found
for Jc = 0.25051(15). However, simulations at κ = 0.275

FIG. 13. N = 25, q = 4, and κ = 0.275. Behavior of U as a
function of Rξ , obtained by varying the parameter J in the Hamil-
tonian. For comparison data for the O(50) and the U(1)(nc) models
from Ref. [32] are also reported.
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FIG. 14. N = 25, q = 5, and J = 0.2. Finite size scaling of the
third cumulant K3, obtained by using the known O(2) value of the
critical exponent ν and κc = 1.792(1).

provide clear evidence of a strong first order phase transition
for Jc 
 0.267; see the histograms reported in Fig. 12.

The interpretation of the case N = 25, q = 4 is again prob-
lematic: now κ

Zq
c (J = 0) ≈ 1.2 [see Eq. (12)], but the results

of simulations performed both at κ = 0.4 and κ = 0.275 do
not provide clear indications on the nature of the critical
behavior. In both the cases very large corrections to scaling
are found, with data for U against Rξ that seem to approach
an asymptotic curve that does not correspond either to the
Abelian Higgs nor the O(50) universality classes; see Fig. 13
for the κ = 0.275 case. To make things worse, the apparent
asymptotic curve of the κ = 0.275 data is different from the
one obtained for κ = 0.4. The most natural interpretation of
these results is that much larger lattices would be needed to
really resolve the true critical behavior of the model.

The model with N = 25, q = 5 turns out to be the most in-
teresting one. For this model κ

Zq
c (J = 0) ≈ 1.9 [see Eq. (12)]

and by performing simulations at J = 0.2 and J = 0.25
we find clear O(2) transitions at κc = 1.792(1) and κc =
1.509(2), respectively; see Fig. 14 for the case J = 0.2.

FIG. 15. N = 25, q = 5, and κ = 0.4. Behavior of U as a func-
tion of Rξ , obtained by varying the parameter J in the Hamiltonian.
For comparison data for the U(1)(nc) model from Ref. [32] are also
reported.

FIG. 16. N = 25, q = 5, and κ = 1.2. Finite size scaling of the
third cumulant K3, obtained by using the known O(2) value of the
critical exponent ν and Jc = 0.2727 (L = 8 was not included in
the fit to determine Jc).

Fixing κ = 0.4 and scanning in the coupling J we find the
symmetry enlargement we were looking for: the universal
scaling curve of U against Rξ is indeed the same as that
of the U(1)(nc) model, as can be appreciated from data re-
ported in Fig. 15. By using the critical exponent ν reported
in Table I for the Abelian Higgs universality class, we obtain
for the critical coupling the estimate Jc = 0.29509(2), which
is already remarkably close to the critical coupling JU (1)

c =
0.295511(4) of the U(1)(nc) model with N = 25 for κ = 0.4
(see Ref. [32]).

Simulations of the N = 25, q = 5 model have been carried
out also for κ = 1.2, which turned out to be quite close to the
multicritical point M3 in Fig. 2. Two nearby transitions can
indeed be found at Jc ≈ 0.2674 and Jc ≈ 0.2727, detected by
using Rξ and U , and K3, respectively. The scaling of K3 at the
transition with Jc ≈ 0.2727 is consistent with the exponents
of the O(2) universality class; see Fig. 16 (L = 8 was not
included in the fit for found Jc). The scaling of U against Rξ at
Jc ≈ 0.2674 is instead nontrivial, as can be seen from Fig. 17.
Data seems to collapse on a common scaling curve, although

FIG. 17. N = 25, q = 5, and κ = 1.2. Behavior of U as a
function of Rξ , obtained by varying the parameter J in the
Hamiltonian. For comparison data for the O(50) and U(1)(nc) models
from Ref. [32] are also reported.
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FIG. 18. N = 25, q = 10, and κ = 0.4. Behavior of U as a func-
tion of Rξ , obtained by varying the parameter J in the Hamiltonian.
For comparison data for the U(1)(nc) model from Ref. [32] are also
reported.

significant corrections to scaling are present, especially in the
right part of the figure, where a contamination coming from
the second transition is present. The significant thing to note
is that this scaling curve is, however, different from universal
curves of the O(50) and of the U(1)(nc) models, also shown
in Fig. 17. This behavior can be explained in a natural way
by assuming the multicritical point M3 to be associated to
a continuous transition, whose scaling function is the one
on which data points in Fig. 17 collapse, due to a crossover
phenomenon.

Finally, to verify that the symmetry enlargement observed
for q = 5 is present also for larger values of the discretization
parameter, we present results obtained for the model with
q = 10, again for κ = 0.4. As expected, also in this case
the symmetry enlargement to the Abelian Higgs universality
class is present, as can be seen from Fig. 18. In this case the
transition is located at Jc = 0.29555(2), which is only two
standard deviations away from the value JU (1)

c = 0.295511(4)
obtained in Ref. [32] in the U(1)(nc) model.

IV. CONCLUSIONS

In this work we studied a variant of the noncompact mul-
ticomponent lattice Abelian Higgs model with reduced gauge
symmetry, with the aim of investigating whether the discrete
Z(nc)

q = 2πZ/q gauge symmetry is sufficient for the model to
display transitions in the continuous Abelian Higgs universal-
ity class.

In studying this model we considered two different values
for the number of scalar flavors, namely N = 2 and N = 25.
Although the topology of the phase diagram is the same in
these two cases, the universality classes of the transitions
present in these two cases are very different. Indeed the results
obtained in the model with gauge symmetry Z(nc)

q are expected
to converge, for large q, to those of the model with gauge
symmetry U(1)(nc), and only for large enough N does the
U(1)(nc) model exhibit transitions in which both gauge and
scalar degrees of freedom become critical [30–32].

We thus verified that for N = 2 the numerical results are
consistent with the absence of any symmetry enlargement,
since both the Z(nc)

q and the U(1)(nc) gauge theories display
first order phase transitions in large parts of the phase diagram.

The case N = 25 is clearly the most interesting one. The
analysis of the values q = 2 and q = 4 of the gauge discretiza-
tion parameter cannot be considered conclusive, since large
crossover effects seem to be present. For q � 5, instead, we
unambiguously identified regions of the parameter space in
which the Z(nc)

q gauge symmetry enlarges to U(1)(nc) and the
model with discrete gauge group exhibits transitions of the
continuous Abelian Higgs universality class.

This is not incompatible with the negative results recently
obtained in Ref. [40], where an analogous discretization of the
compact Abelian Higgs model with charge Q = 2 has been
studied, since the presence of first order phase transitions can
never be excluded by universality arguments alone. However,
it will be surely interesting to understand, in future studies,
the dynamical origin of this difference to better understand
the relation between the compact and the noncompact models
[32–34]. In particular, it is still an open question whether
transitions of the continuous Abelian Higgs universality class
are possible in a lattice model with a finite Abelian gauge
group, like the one studied in Ref. [40] but unlike the one used
in the present work (which is discrete but infinite).

We finally note that the results obtained at N = 25, q = 5
for κ = 1.2 suggest the multicritical point M3 in Fig. 2 to
be associated to a continuous phase transition. This is some-
thing that surely deserves to be further investigated, both from
the numerical and from the analytical point of view. Such
a continuous transition would indeed correspond to a very
peculiar multicritical theory, with lines of O(2N), Abelian
Higgs, and O(2) (ordinary and topological) transitions cross-
ing each other.
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