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Minimum model for the main feature of shock Hugoniot near its maximum compression ratio
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When being compressed by a single shock, most materials show a maximum compression ratio beyond the
ideal-gas limit of four. In most cases, this phenomenon has long been conjectured to originate from the ionization
of core electrons, but a clear physical picture is still lacking. Here we present a simple illustration from the
energy-band picture of dense plasmas, where the total energy includes only the contributions from ionization of
the bound electrons in addition to those from ideal-gas-like free particles. This additional energy term (ionization
energy) directly leads to an additional term in the compression ratio η, which gives a peak on the Hugoniot
adiabat. Furthermore, peaks given by different bound states are shown to add linearly (η ≈ 4 + ∑

i �ηi), yielding
multipeaked Hugoniots. Quantitative predictions regarding those Hugoniot peaks can be provided systematically
by using this minimum model, showing a good agreement with first-principles calculations and experimental
data.

DOI: 10.1103/PhysRevB.107.035102

I. INTRODUCTION

Shock compression of materials is involved in various sit-
uations like inertial confinement fusion [1,2], astrophysical
processes [3], and the study of warm and hot dense matter
[4]. The initial and final states before and after the pass of a
single shock are related by the Rankine-Hugoniot relation [5],
E − E0 = (1/2)(p + p0)(V0 − V ), which is the direct conse-
quence of mass, momentum, and energy conservations. Here,
E , p, and V stand for the internal energy, pressure, and vol-
ume of the postshock state, and the subscript “0” denotes the
preshock state. This relation is well known to imply an upper
bound for the compression ratio V0/V ≡ ρ/ρ0 ≡ η. For exam-
ple, the ideal-gas equation of state (EOS) yields a maximum
compression ratio η = 4 with this relation.

Since a strong enough shock turns everything into an ideal-
gas-like state [6], the Hugoniot adiabat always approaches
η = 4 under the strong shock limit (radiation energy not con-
sidered). However, most real-world materials have “peaks” on
the Hugoniot, as suggested by experiments and computational
EOS studies—the compression ratio would show one or more
local maxima where its value significantly exceeds four be-
fore finally approaching the ideal-gas limit [7–9]. This is an
important feature of EOS in the warm or hot-dense region,
and has drawn much attention since decades ago in the study
of shock-compressed deuterium [7,10–12].

Since the Hugoniot is determined solely by the EOS, these
peaks should emerge naturally if the underlying EOS is mod-
eled properly, either by first-principles calculations [9,13,14]
or analytical models [15–19]. However, in most cases those
numerical or analytical EOS’s are rather complicated, involv-
ing many subtle effects so as to pursue higher accuracy and
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a wider applicable range. This makes it difficult to single out
the most important underlying physics for these peaks.

At the other extreme, a qualitative but quite reasonable
explanation exists (see, for example, Ref. [13]). For ideal gas,
all the p�V work turns into kinetic energy Ek of particles
and contributes to pressure as 2Ek/(3V ). However, for real
materials, some internal degrees of freedom may get excited
as temperature raises, such as ionization of core electrons
or molecular dissociation. These additional energy-absorption
mechanisms reduce the proportion of total absorbed energy
being converted to Ek , making the material have lower pres-
sure, i.e., being more compressible than an ideal gas. This
explanation captures the key physics in general, but there is
still a gap in between—how precisely an energy-absorbing
process (like ionization) gives rise to a peak on the Hugoniot?
Do these peaks have a universal profile? And, how are their
positions and sizes related to the number and energy levels of
the bound electrons?

In this paper, we would like to present a simple but uni-
versal illustration on the origin of these peaks by using the
energy-band picture of dense plasmas. We show that ioniza-
tion of every bound level would directly give rise to a peak
on the Hugoniot. In addition, contributions from different
bound levels �ηi are shown to add linearly to give the overall
compression ratio exceeding four (η ≈ 4 + ∑

i �ηi, where
the subscript i denotes the numeration of different bound
levels). Using this model, some global trends in which the
preshock density, ionization energy, numbers of bound and
free electrons, etc. may affect the peak heights (hence the
maximum compression ratio) are presented in a general way.

II. A SINGLE BOUNDED STATE

Electron orbitals in hot dense plasmas can be character-
ized as being bound or free in general [20]. Since thermal
ionization of inner-shell electrons absorbs much more energy
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FIG. 1. A bound-state level introduces a peak in the Hugoniot
upon ionization. (a) An illustration of the energy spectrum. Although
the energy levels have shifted compared with the atomic levels,
the overall structure remains: one (or more) bound-state level(s)
resides beneath the continuum. (b) The ionization rate x(T ) increase
monotonically along the Hugoniot, showing an “S-shaped” curve.
Maximum compression ratio is related approximately to the point
with maximum x/T , so �η has a peak. (c), (d) Pressure, compression
ratio, and ionization rate along the principal Hugoniot of beryllium
given by this model. The parameters used for panels (b)–(d) are
ε = 97.2 eV, z0 = g = 2, and e(0)

F = 14.7 eV.

in most cases than pressure ionization or breaking chemical
bonds, the following analysis focus primarily on thermal ion-
ization.

Here, the bound state is treated as a discrete energy level
with negligible broadening, and the free orbitals as ideal gas,
as sketched in Fig. 1(a). Occupation of a bound state is given
by

Ne,b ≡ Ng(1 − x) = Ng

1 + e(−ε−μ)/T
. (1)

where N and Ne,b are the numbers of atoms and bound elec-
trons, −ε is the bound-state energy, g is the degeneracy, and μ

is the chemical potential which equals that of the free-electron
gas. Since thermal ionization of the bound state is the process
to be studied, the bound-state occupation number cannot be
vanishingly small. So, describing the occupation with Fermi-
Dirac distribution is necessary.

On the other hand, free electrons can be modeled
classically—the temperature regime of interest here is on the
order of the core-shell ionization energy, significantly larger
than the corresponding Fermi energy.1 The chemical potential
of the free electrons, as a function of free electron density ne

and temperature T , is thus given by

ne ≡ Ne, f

V
≡ Nz̄

V
= 2

(
m

2π h̄2

)3/2

T 3/2eμ(ne,T )/T . (2)

Here, m is the mass of an electron, h̄ is the Planck constant,
and the average ionic charge z̄ equals the number of initially
free electrons per atom, z0, plus that from ionization: z̄ = z0 +
gx. We assume no ionization of core electrons at the initial
state, so that the nucleus charge Z = z0 + g.

To describe the Hugoniot adiabat, we have to study the
energy difference between the pre- and postshock states. For
the kinetic part, both ions and free electrons are effectively
classical ideal gas for the postshock state, so their kinetic
energy Ek = (3/2)(1 + z̄)NT . As for the preshock state, the
free electron can be modeled as degenerate Fermi gas (espe-
cially for metals) and E (0)

k = (3/5)Nz0e(0)
F where e(0)

F is the
initial-state Fermi energy.

The difference in potential energy takes a very simple form
in the energy-band picture, which is the difference in bound-
state electrons times the bound-state energy level �Ep =
Ngεx. Other sophisticated terms, like the electron-electron
interaction, exchange energy, etc., can largely be absorbed in
the precise value of this ionization potential, as explained in
Sec. IV and the Supplemental Material [21]. Therefore,

E − E (0) = 3
2 (1 + z̄)NT + Ngεx − E (0)

k . (3)

Postshock pressure can be well approximated it by its
kinetic part pV ≈ (2/3)Ek . And it is safe to ignore the initial-
state pressure p0, since postshock pressure near the maximum
compression ratio is usually several orders higher. Taken to-
gether, the Rankine-Hugoniot relation reads

Ek + Ngεx − E (0)
k = Ek

3
(η − 1), (4)

from which the compression ratio can be solved explicitly,

η = 4 + 3gεx

Ek
− 3E (0)

k

Ek
. (5)

If without ionization of the bound electrons, the first and
the third term on the right-hand side (r.h.s.) recapitulate the
Hugoniot of ideal electron gas [22] that η increases mono-
tonically and saturates at four, shown as the dashed curve in
Fig. 1(c). With ionization, however, the additional ionization
energy (Ngεx) brings in the second positive term in Eq. (5).
Denote this extra term as �η,

�η ≡ 3gεx

Ek
= 2g

1 + z̄

εx

T
. (6)

1For example, the principal Hugoniot of beryllium reaches its max-
imum compression ratio ηmax at ≈100 eV, while the Fermi energy eF

is ≈47 eV with three free electrons per atom at four times compres-
sion, thus T/eF ≈ 2. The energy difference due to degeneracy is less
than 5%, which should not alter the main underlying physics here
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We argue that Eqs. (5) and (6) have already contained the
essential physics for the emergence of a peak in η along the
Hugoniot. When the postshock temperature is low compared
with ε, the ionization rate x ∼ e−ε/T goes to zero, making
�η ≈ 0 and the Hugoniot shows no deviation from ideal
electron gas in the low-pressure region. At the other extreme,
for very strong shocks with T � ε, ionization is nearly 100%
(x ≈ 1) and �η should decay with T as ≈ 1/T . Since tem-
perature increases monotonically along the Hugoniot curve,2

the ionization rate x should always be an “S-shaped” function
increasing monotonically from zero to saturation. The value
of x/T thus show a peak in between, and so does �η, see
Fig. 1(b). Note that this argument for the presence of a peak
is quite general and does not depend on the specific profile of
the “S-shaped” ionization curve, nor on parameters like ε or
g. There is also a universal feature implied by this argument
that for T � ε, η scales as (η − 4) ∼ 1/T .

With Eqs. (1) and (2), ionization rate x in the present model
can be solved explicitly:

x =
⎡
⎣1 + 4η

3
√

π

z̄

z0

(
e(0)

F

T

)3/2

eε/T

⎤
⎦

−1

. (7)

Given the initial state, for each postshock temperature T ,
Eqs. (5)–(7) thereby determine a Hugoniot state in a self-
consistent manner.

For example, the ionization energy of metallic beryllium
χ = 111.5 eV, which is measured from the bound state (1s
orbital, degeneracy g = 2) to the Fermi surface [24]. Thus, in
our formalism we can take −ε ≈ e(0)

F − χ = −97.2 eV and
z0 = Z − g = 2. With these parameters, Eqs. (5)–(7) give the
self-consistent solution as solid lines in Figs. 1(b)–(d).

The ionization rate x along the Hugoniot indeed exhibits
an S-shaped profile as in Fig. 1(b). Due to the prefactor
1/(1 + z̄) in Eq. (6), the maximum of x/T does not coincide
precisely with the maximum of �η; but the general picture is
justified—the rise and fall of x/T leads to a peak of �η. As
expected, temperature at the peak is on the same order as ε,
indicating that the peak is related to ionization. This point is
also reflected by directly plotting x against η as in Fig. 1(d),
that the ηmax-state corresponds to roughly 50% ionization.

At relatively lower temperatures, T ∼ e(0)
F , which is tens of

eV here, the E (0)
k /Ek term in Eq. (5) is non-negligible that the

peak smoothly “blends” into the sloped part of the Hugoniot
[Fig. 1(c)]. This effect would significantly reduce the peak
height if the ionization potential is not high enough compared
with E (0)

k [like the M-shell peak of iron as in Fig. 3(d); see
also the black curve in Fig. 2(a)]. Therefore in most cases,
only the core electrons with high-enough ionization potentials
contribute to the Hugoniot peak(s).

2This is true unless the Hugoniot crosses a phase boundary. An
example of temperature decrease with η along the Hugoniot can be
observed in the shock compression experiment of diamond carbon
[23]. But the ionization peaks appear always at sufficiently high
temperatures, away from all kinds of phase boundaries.

4 5 6 4 5 6η

10

1

0.2

t

5

η

x

0

0.5

1(a)

3 4 5 6
2

4

6

8

c v
 /1

.5
k B

η

(z0=1; g=2)

e /ε=0.019
e /ε=0.094 (Li)
e /ε=0.469

0
F
0
F
0
F

(b)

(c)

FIG. 2. Coincidences among the maximum compression ratio,
max heat capacity, and 50% ionization are parameter dependent.
e(0)

F /ε takes three different values here, 0.019 (pink), 0.094 which
corresponds to lithium at normal density (red), and 0.469 (black);
while z0 and g are fixed to 1 and 2, respectively. (a) The temper-
ature at ηmax can be higher or lower than the ionization potential
depending on e(0)

F /ε. (b) Ionization rate is close to 50% at ηmax but
parameter dependence still exists. (c) For e(0)

F /ε different from that of
normal-density lithium, the deviation between the max-cv point and
the max-compression point can also be significant.

III. SOME RULES OF THUMB AT ηmax

In the case of beryllium presented in Fig. 1, there seem
to be some quantitative correlations near the maximum com-
pression point. First, ηmax occurs at T = 92.3 eV, which is
close to the ionization energy |ε| = 97.2 eV. Second, z̄ = 3.05
at ηmax, which is very close to the state where the K shell is
half-ionized. Third, the maximum value of the heat capacity
cv along the Hugoniot appears at z̄ = 2.83, which is also close
to the ηmax point. Qualitatively speaking, these coincidences
are as expected—both the increments in compression ratio
and in heat capacity beyond the ideal-gas limit originate from
the underlying energy-absorbing process, which is ionization
here. So they appear in roughly the same temperature range.

These “rules of thumb” are frequently discussed in the
literature where principal Hugoniots are obtained using first-
principle calculations [25–28]. In many cases they may even
appear to be quantitatively precise, and people may wonder
whether there exists any general underlying principle. How-
ever, with the model introduced here, we would like to clarify
that there is no such simple universal argument—these rules
actually depend on case-specific parameters such as initial
density, ionization energy, and the numbers of free and bound
electrons.

Our self-consistent model can be cast into a dimensionless
form where the minimum number of model parameters are
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kept. Define t ≡ T/ε:

x =
⎡
⎣1 + 4η

3
√

π

(
e(0)

F

ε

)3/2(
1 + gx

z0

)
t−3/2e1/t

⎤
⎦

−1

, (8a)

η = 4 + 2gx/t

1 + z0 + gx
− 6

5

(
e(0)

F

ε

)
z0/t

1 + z0 + gx
. (8b)

The solution is completely determined by only three inde-
pendent dimensionless parameters: the number of initial free
electrons per atom, z0, the number of initially bound electrons
(per atom), g, and the ratio between initial-state Fermi energy
and the ionization energy e(0)

F /ε, which reflects the initial
density.

In Fig. 2 we study the influence of e(0)
F /ε on these three

“rules” with z0 fixed to 1 and g to 2. For metallic lithium, one
has ε = 50 eV [24] and e(0)

F = 4.7 eV, corresponding to the
red curve in Fig. 2. The black curve, however, stands for a
hypothetical material where the numbers of free and bound
electrons are the same as lithium, but the ionization energy
is artificially decreased (or equivalently, density is artificially
increased), and vice versa for the pink curve. In the results,
first, the temperature at maximum compression can be higher
or lower than the ionization potential, depending on e(0)

F /ε

[Fig. 2(a)]. Second, for lower (higher) e(0)
F /ε, the maximum

of cv may come earlier (later) along the Hugoniot than the
maximum of η [Fig. 2(c)]. And third, the ionization rate x
at ηmax also changes, although not by a significant amount
[Fig. 2(b)]. In short, all the three above-mentioned rules of
thumb are compromised if initial density or ionization energy
are altered; their seemly widespread validity owns most likely
to the fact that these dependencies are actually not quite sen-
sitive, rather than some general underlying theory.

IV. MULTIPLE BOUND STATES

The present model can be extended straightforwardly to
include multiple bound levels, as

pV = 2

3
Ek, �E = Ek − E (0)

k + N
∑

i

giεixi, (9)

where Ek = (3/2)(1 + z̄)NT as above. In parallel with
Eqs. (3)–(5), since the nonkinetic part of energy difference
is now a sum of contributions from different bound states, the
�η term now becomes a summation over the bound levels,
too. This leads to

η = 4 +
∑

i

�ηi − 3E (0)
k

Ek
, �ηi = 2gi

1 + z̄

εixi

T
. (10)

Because the �ηi from different bound levels reach their peaks
at different temperatures in general, the sum gives a Hugoniot
with multiple peaks.

Although this general picture for multipeaked Hugoniot is
simple and clear, the exact values of the bound-state energies
need more explanations. First, simply using the solid-state
ionization energies (as done above for Li and Be) will lead
to systematic underestimations. For example, the K-shell ion-
ization energy for solid-state aluminum is measured when the
L shell remains fully occupied, providing more screening than

in shock-compressed aluminum plasmas where the ionization
of K electrons takes place with almost empty L shells. For
single-shell elements like Li and Be, such differences vanish
since there are no L shells. But it is no longer the case for
multishell materials like aluminum or iron [21].

On the other hand, using ionization energies of isolated
atoms would result in systematic overestimation. It is well
known that the ionization energy in dense plasmas χ is lower
than that of isolated atoms χ (free) due to electron-ion and
electron-electron interactions. The difference is the so-called
ionization potential depression (IPD). A simple estimation for
IPD in dense plasmas could be χ (free) − χ = (3/2)(z̄/R) [29].
The equation is in atomic units and R is the radius of the ion
sphere (4π/3)R3 ≡ V/N . It can be shown using this estima-
tion that simply ignoring IPD will also introduce considerable
error (Fig. S1 in the Supplemental Material [21]).

Our goal is to model the difference in potential energy
between the preshock state (ion charge =z0) and the postshock
state (ion charge =z′). To follow the energy band picture based
on fixed energy levels, the shift of levels due to diminished
screening and IPD are accounted for as follows: First, the
energy difference is simply the sum of successive ionization
energies �Ep = χz0+1 + · · · + χz′ . Then, in these successive
ionization energies (χn), the effect of IPD should increase with
ion charge n because the density of free electrons increases
so there should be on average n − 1 to n free electrons per
atom in the entire plasma environment when the nth electron
ionizes, and we take an intermediate value n − 1/2.

Therefore, the energy levels are approximated as

χn ≈ χ (free)
n − 3

2

41/3

R0

(
n − 1

2

)
. (11)

The successive ionization energies of isolated ions χ (free) are
cited from the tables from National Institute of Standards and
Technology (NIST) [32]. And IPD is estimated at η ≈ 4, since
most thermal ionizations relevant to the Hugoniot peaks take
place at η ≈ 4. Finally, the energy level for each of the bound
electrons is defined as −εn = −χn. In this way, the ionization
potential in the energy-band picture reflects the total work
against Coulomb potential for the nth electron to ionize, of
which the sum gives the total increase in potential energy [21].

Although errors still exist for the above estimation of the
ionization potential, Eq. (11) is good enough within the scope
of the present work (as explained in the Supplemental Ma-
terial [21]). For example, it gives ε = 85.3 and 121.7 eV
for the two 1s electrons of Be, of which the mean value
(103.5 eV) is very close to that used in Fig. 1 (97.2 eV), as
expected.

For aluminum, the energy levels of the outermost three
electrons go above the continuum after IPD correction, in-
dicating that they are already free initially. The remaining
10 electrons (1s2, 2s2, 2p6) are treated as bound electrons
here. Their contributions add up to give two peaks. For iron,
Eq. (11) sets the eight outermost electrons free (i.e., pressure
ionized), thus a total of 18 bound electrons are considered
for thermal ionization (1s2, 2s2, 2p6, 3s2, 3p6). The principal
Hugoniots for aluminum and iron calculated using Eqs. (7),
(10), and (11) are shown in Figs. 3(a)–3(d). Values of the max-
imum compression ratio and the corresponding pressure (Al:
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FIG. 3. Multiple bound-state levels lead to multiple peaks on the Hugoniot. (a) For Al, 10 core electrons from the 1s, 2s, and 2p subshells
introduce �η peaks in different temperature ranges, yielding double-peaked Hugoniots when being summed. Contributions from each of the
subshells is plotted separately. (b) Fe, the 18 core electrons from three different shells give three peaks in �η. (c), (d) η-p Hugoniot for Al and
Fe. The results (solid black curves) are obtained simply by adding the �η peaks shown in panels (a) and (b) to the “background” Hugoniot
without ionization (dashed black lines). Several much more detailed first principles [14,30] and average atom model results [18,19,31] from
the literature are also marked for comparison. (e), (f) Ionization rate along the principal Hugoniot, represented by averaged ion charge z̄. The
peaks in η appears to coincide roughly with 50% ionization of each of the core shells, as mentioned above. For Al, z̄ = 7 and 12 are marked
with dashed bars. For Fe, the bars mark z̄ = 12, 20, and 25.

ηmax = 4.94, at 328 Mbar; Fe: ηmax = 4.91, at 7913 Mbar)
and the main features of the Hugoniot profiles are basically
consistent with those obtained by first-principles calculations
[14,30] and detailed average atom models [18,19,31]. The
remaining error should originate from our rough estimations
of the energy levels rather than the overall picture [21].

Mean ion charges along the Hugoniot are given in
Figs. 3(e) and 3(f), which reflect the ionization rate of each
shell. Again, the maxima of compression ratio appear to coin-
cide (but not precisely) with half filled shells.

Besides elements with multiple core shells as analyzed
above, the picture that individual peaks are added linearly
to give the overall increment in η applies to mixtures and
compounds, too, where the bound-state levels may come
from different types of atoms. In Fig. 4 we present result on
aluminum oxide. Although the Hugoniot of pure aluminum
displays two well-separated peaks, that of Al2O3 shows
single-peak structure—simply because the K-shell peak of
oxygen appears right between the two Al peaks. This feature
is confirmed by recently published first-principles results [9],
although the ηmax predicted here is slightly smaller.

Our model also offers a way to understand the Hugoniot of
compounds (or mixtures) composed of mid-Z and very-low-Z
elements, for instance LiF, H2O, CH, etc. In those cases, the
Hugoniot peak originates primarily from core electrons of the
mid-Z atom. The very-low-Z atom species, which dissociates
and fully ionizes much earlier than the main peak appears,
provides only an “inert” background of the heat capacity.

Take CH plastic as an example. If without hydrogen,
carbon with its fractional density (12/13)ρ0 = 0.97 g/cm3

gives ηmax = 1.76 [Fig. 4(b), dotted green line]. However,
hydrogen, which has become fully ionized at much lower
temperature, gives two additional free particles per carbon
atom. These additional particles modify the kinetic-energy
term Ek = (3/2)(1 + z̄ + 2), where z̄ is the average charge of
carbon ions; hence �η [Fig. 4(b), dotted blue line]. These
analyses are in good agreement with first-principles results
[33].

V. ESTIMATING MAX COMPRESSION

The origin of the Hugoniot peaks have been explained
above in a simple and general way. In this section, we would
like to discuss the maximum achievable compression ratio
along the principal Hugoniot. The maximum possible single-
shock compression ratio is itself of general interest, and is
also a natural test for the adequacy of our understandings
for beyond-four-times compression. There exist some early
attempts in providing such an upper bound through some gen-
eral arguments [15,34], but their estimated bounds are rather
loose (e.g., η � 7 according to Ref. [34]), and not based on an
appropriate treatment of core-shell ionization.

To explore such global trends, in this section we ignore
the initial-state kinetic energy E (0)

k completely, and further
assume ionization to be strictly sequential, i.e., the (z0 + 1)st
electron ionizes only after the ionization of all the previous

035102-5



JINGXIANG SHEN AND WEI KANG PHYSICAL REVIEW B 107, 035102 (2023)

FIG. 4. Principal Hugoniot of compounds. (a) Aluminum oxide.
Initial density ρ0 = 3.99 g/cm3 following Ref. [9]. The Hugoniot
obtained here (solid black curve) shows only one maximum in
compression, because the oxygen K-shell peak lies just in between
the two aluminum peaks. First principles calculation [9] shows the
same feature. (b) CH plastic (polystyrene, C8H8) with initial density
ρ0 = 1.05 g/cm3. Our predicted Hugoniot (solid black curve) is
consistent with first-principles results [33]. Dotted lines show that
the carbon K-shell peak is modified due to the presence of hydrogen,
as illustrated in the main text.

z0 electrons have completed. These assumptions make the
amount by which η exceeds four equal to the sum of �ηi from
every single bound electron (per atom), and the latter can be
studied independently. Setting E (0)

k to zero and replacing g by
1 in Eq. (8), one has

x =
[

1 + 4η

3
√

π
α3/2(z0 + x)t−3/2e1/t

]−1

, (12a)

and

η = 4 + 2

1 + z0 + x

x

t
, (12b)

which describes the (z0 + 1)st electron alone.
Only two effective parameters remained in Eq. (12), α ≡

e(0)
F /εz2/3

0 which represents the preshock density, and z0.
Therefore, the entire parameter space can be explored and
visualized exhaustively. The quantity of interest here is the
maximum increment in η contributed by this single bound
electron, δηm ≡ maxt (η − 4), which is shown as the contour
in Fig. 5.

At a first glance, very large compression ratio may seem
to be allowed—by lowering both parameters, every single
bound electron may contribute by as much as ≈2 or 3 to �η.
However, the parameter range for real solid-state materials
is in fact strictly constrained. Consider the K shell as an
example. For an average K electron, z0 = Z − 1 is a good

z0

e 0
/ε

Li

Na

Fe

Mo

Be

Al

FIG. 5. The maximum increment in compression ratio due to
single bound electron (δηm, contour) depends on only two effective
parameters according to Eq. (12). Estimations of the two parameters
for realistic K-, L-, and M-shell electrons are shown as solid lines,
with the atomic number Z increasing from the upper left to the
lower right. Here, only the cases with Z � 11 are shown for the L
shell, and Z � 30 for the M shell. Shaded regions marks the range
3.2 eV < e(0)

F /z2/3
0 < 9 eV.

estimation. As for the other parameter α ≡ e(0)
F /εz2/3

0 , the
characteristic energy e(0)

F /z2/3
0 reflects the initial atomic num-

ber density, it does not differ by orders of magnitude among
solid-state materials. In most cases it lies between 3.2 eV
(Na) to 9 eV (Be), hence choosing e(0)

F /z2/3
0 ≈ 6 eV would

be reasonable. The K-shell ionization potential is approxi-
mately ε ≈ Z2 × 13.6 eV − �χ IPD, and IPD here is roughly
�χ IPD ≈ (3/2)(41/3/R0)(Z − 1) according to Eq. (11). Thus
for a K-shell electron, the two parameters are effectively con-
strained on a one-dimensional curve as the nucleus charge Z
varies:

α ≡ e(0)
F

εz2/3
0

= 0.27

0.61Z2 − Z + 1
, z0 = Z − 1. (13)

This defines the blue line in Fig. 5 on which the points corre-
sponding to different Z values are marked out for clarity. It is
clear that the lower-left corner in Fig. 5 is actually unreachable
for real solid materials.

A global trend is revealed as well. The K-shell peak height
tends to decrease with increasing nucleus charge—δηm of a
K-shell electron decreases from ≈0.4 for Li and Be to ≈0.15
for Mo. This is consistent with the literature that claims that
the K-shell peak becomes hardly visible for high-Z materials
[8,35] as well as with our previous results in Figs. 3(a) and
3(b) that the K-shell peak of iron is visibly smaller than that
of aluminum. Mathematically, this trend can be traced back
to the (1 + z0 + x)−1 factor in Eq. (12b)—the larger is Z ,
the smaller this prefactor. Intuitively, for z0 � 1 the kinetic
energy of the existing free electrons become overwhelmingly
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high compared with the energy cost to ionize another K-shell
electron.

This trend holds also for L- and M-shell electrons which
are shown as the black and red curves in Fig. 5. In general, a
single L- or M-shell electron does not contribute as much to
compression ratio as a K electron because its ionization en-
ergy is much lower. However, these outer shells contain more
electrons in general. This makes their overall contributions to
compression ratio, which is roughly the number of electrons
times δηm, become comparable or even more significant than
the K shell. This is especially true for high-Z materials.

For example, for iron (Z = 26) an average K-, L-, or
M-shell electron has δηm ≈ 0.2, 0.12, or 0.04, as estimated
here. The number of bound electrons in them are 2, 8, and
8, respectively. Therefore, the shell-summed �η (≈Nδηm)
should be 0.4, 1.0, and 0.3 for the K-, L-, and M-shell, re-
spectively. So, ηmax is reached by the L-shell peak, as shown
in Fig. 3(b). For lead (Z = 82), δηm again decreases with the
shell number, ≈0.11, 0.08, 0.07, 0.05 for the K , L, M, and N
shells. However, since the number of electrons in these shells
increases rapidly (2, 8, 18, and 32), the N-shell peak would be
the highest.

Therefore, there are two competing global tendencies as Z
increases—contribution by a single electron from a given shell
tends to decrease with Z and with the shell quantum number
n; while the total number of bound electrons increases rapidly
with n, making ηmax tend to be reached by higher-n shells for
higher-Z materials. These two competing trends have several
implications. First, the value of ηmax increases very slowly
with Z: from ≈5 (Al) to ≈6 (Pb) for solids. Second, although
ionization energy of a given shell increases rapidly with Z ,
that of the shell responsible for maximum compression cor-
relates only weakly with Z , as has been discussed with a
summary of the numerical results [9].

Besides that ηmax increases slowly with Z , the contour
in Fig. 5 also implies that higher compression ratio can be
reached by starting from lower initial density. Decrease in
initial density leads to a decrease in e(0)

F (while z0 and ε remain
largely unchanged), which corresponds to moving vertically
downward in Fig. 5, i.e., up the contour of δηm. Thus, lower
(higher) initial density leads to higher (lower) maximum com-
pression ratio in general. This tendency has been repeatedly
demonstrated by experiments and first-principles calculations
[13,26,27]. And single-shock compression ratios of around 7–
8 are reported for low-density foams experimentally [36,37].

It can be read from Fig. 5 that δηm scales as − ln α (hence
− ln ρ0) since the contour is roughly equally spaced while
α is in log scale. Therefore, although achieving arbitrarily
large compression ratio with arbitrarily low initial density may
seem to be possible theoretically, this logarithmic divergence
is extremely slow. Even for foam with ≈1/10 solid-state den-
sity, a single shock can compress it for no more than ≈7 times,
as predicted here3. (Fig. 6).

3This analysis applies only to shocks strong enough to vaporize or
ionize the foam. Because in Eq. (12) we are assuming the increment
in thermal energy is directly related to the increment in pressure.
Especially, this analysis may not apply to mechanical crushing of
foams with very high porosity

10-2 10-1 100 101
4

5

6

7

8

ρ0 (g/cm3)

η m
ax

Be

Li
Al

Fe
Pb

FIG. 6. Maximum single-shock compression ratio decreases
with the preshock density ρ0. Results for Li, Be, Al, Fe, and Pb are
obtained using the same set of equations as in Fig. 3. ρ0 range from
0.01 to 2 times the solid-state density.

VI. DISCUSSION

A. Corrections on ideal-gas pressure

Many features concerning the peaks on the Hugoniot adi-
abat are successfully captured by the simple model presented
above, and the underlying mechanism is clearly revealed and
shown to be general. This success should own mainly to the
energy terms we have used. The energy difference can in prin-
ciple be well modeled by the energy-band picture if provided
with a satisfactory estimation of IPD.

However, the pressure term we have used above includes
only the kinetic term. This approximation in pressure is nec-
essary for us to introduce the decomposition of �η as Eq. (10),
thereby making the overall picture simple. In this section, we
show that the neglected nonkinetic pressure term indeed has
little effect.

The situation here resembles very much the well-known
paradox in metals, where the Coulomb interaction seems to
be so strong but the conduction electrons can still be treated
as near-free. The key point is that core repulsion effect due
to wave function orthogonalization has largely compensated
the electron-ion attraction [38,39]. In this spirit, the Coulomb
energy for an average ion is (following Ref. [38])

EC = − 3

4π

(
9π

4

)1/3 z̄4/3

R
− 9

10

z̄2

R
+ 3

2

z̄2R2
c

R3
(a.u.). (14)

The three terms above are the exchange energy, classical
Coulomb attraction, and core repulsion with Rc being the ion
core radius. The Coulomb interaction contributes to the total
pressure by pc = −∂EC/∂V , therefore,

pCV = −3z̄2

2R

[
1

4π

(
9π

4

)1/3

z̄−2/3 + 1

5
−

(
Rc

R

)2
]
, (15)

where V is the volume of an average ion.
As an example, for aluminum near the maximum compres-

sion state, we have η = 4.9 and z̄ = 7 according to Fig. 3(e),
thus R = 1.75 bohr. The radius of an Al7+ ion is roughly
0.8 bohr, defined as enclosing 90% of the L-shell electron
density. Therefore, the pressure modification due to exchange
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FIG. 7. Hugoniot peaks of aluminum in terms of the shock and
particle velocities D and U . The solid blue curve given by Eq. (18)
represents the same calculated Hugoniot states as the black curve in
Fig. 3(c). The K- and L-shell peaks are marked with arrowheads. The
dashed red line is a linear fitting to the Hugoniot adiabat obtained
in this work, with c0 = 5.5 km/s and a = 1.18. The inset shows
the same plot on a linear scale. Open squares mark a high-precision
quadratic fitting to experimental data [40].

energy, classic Coulomb attraction, and core repulsion are
−14.9, −107.3, and +110.8 Mbar, respectively, which sums
up to give only −11.4 Mbar. Note that kinetic pressure at this
condition is +348 Mbar. The compression ratio η would be
perturbed by (1 − η)pC/pk ≈ +0.13 due to the modification
in pressure. ηmax thus changes from ≈4.9 to ≈5.0, which
is indeed a small modification in the scope of the present
paper.

B. Hugoniot peaks in the D-U representation

In many cases [36,40] the shock Hugoniot is studied in
terms of the shock velocity D and corresponding particle
velocity behind the shock front U . So it worth studying how
the peak structures in η are reflected in the D-U plot. For sta-
tionary zero-pressure samples compressed by a single shock,
the increase of internal energy always equals to the increase
of bulk kinetic energy.

�E = Ek + N
∑

giεixi − E (0)
k = Nm

U 2

2
, (16)

where m is the atomic mass. On the other side, using the
relations p = ρ0DU and η = D/(D − U ), we have

pV = NmU (D − U ). (17)

Substituting pV with (2/3)Ek and eliminating Ek , Eqs. (16)
and (17) finally yield

D = 4

3
U + 2e(0)

k

3U
− 2

∑
giε

′
ixi

3U
. (18)

Here, e(0)
k ≡ E (0)

k /Nm, ε′
i ≡ εi/m. This result has very sim-

ilar form as Eq. (10), that the three r.h.s terms correspond to
η = 4, initial energy, and the sum of ionization peaks, respec-
tively. Note that the peaks in shock velocity D are negative,
indicating greater compressibility.

Note that Eq. (18) is not applicable to very weak shocks be-
cause it diverges when U approaches zero. This is because the
approximation p ≈ pk brings in huge relative error as U → 0.
Despite this, the well-known linear relationship between D
and U for solid materials is reproduced here for a wide range
of U (Fig. 7, dashed red line). This linear relationship remains
valid even up to η ≈ 4.5, in agreement with Ref. [40] where
linear D-U relation plus a very small quadratic term provides
high-precision fitting to experimental data before the Hugo-
niot turns back.

VII. CONCLUSION

Along the Hugoniot adiabat, some internal degrees of free-
dom are excited as temperature rises, making the compression
ratio go beyond four. This is a general feature for the shock
Hugoniot of all materials. We provide an explanation for it
which takes into account only the minimum necessary physics
but provides a fairly satisfactory accuracy. We show that a
positive additional energy term besides the kinetic energy
is directly related to a peak in compression ratio η on the
Hugoniot. In most cases, this term is the ionization energy
of bound electrons. The increment in η due to different bound
electrons are shown to add linearly as η ≈ 4 + ∑

�ηi, giv-
ing the Hugoniot with multiple peaks. This general picture
explains in a natural way many global trends in which ηmax

varies with nucleus charge Z . Also, the “rules of thumb”
among ηmax, cv max, and 50% ionization states are reproduced
and discussed. The present results have clearly resolved the
origin of the peak structures of the Hugoniot and clarified
some of the important effects and relevant energy scales in
this regime. This may help us to better understand results from
theoretical calculations and experiments.
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