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Non-Hermitian Chern insulators differ from their Hermitian cousins in one key aspect: their edge spectra
are incredibly rich and confounding. For example, even in the simple case where the bulk spectrum consists of
two bands with Chern number ±1, the edge spectrum in the slab geometry may have one or two edge states
on both edges or only at one of the edges, depending on the model parameters. This blatant violation of the
familiar bulk-edge correspondence casts doubt on whether the bulk Chern number can still be a useful topological
invariant and demands a working theory that can predict and explain the myriad of edge spectra from the bulk
Hamiltonian to restore the bulk-edge correspondence. We outline how such a theory can be set up to yield
a thorough understanding of the edge phase diagram based on the notion of the generalized Brillouin zone
(GBZ) and the asymptotic properties of block Toeplitz matrices. The procedure is illustrated by solving and
comparing three non-Hermitian generalizations of the Qi-Wu-Zhang model, a canonical example of two-band
Chern insulators. We find that, surprisingly, in many cases the phase boundaries and the number and location of
the edge states can be obtained analytically. Our analysis also reveals a non-Hermitian semimetal phase whose
energy-momentum spectrum forms a continuous membrane with the edge modes transversing the hole, or genus,
of the membrane. Subtleties in defining the Chern number over GBZ, which in general is not a smooth manifold
and may have singularities, are demonstrated using examples. The approach presented here can be generalized
to more complicated models of non-Hermitian insulators or semimetals in two or three dimensions.

DOI: 10.1103/PhysRevB.107.035101

I. INTRODUCTION

In recent years, substantial progress has been made in
characterizing the topological properties of non-Hermitian
Hamiltonians describing noninteracting particles hopping on
periodic lattices [1–4]. Despite its apparent simplicity, many
aspects of the problem, especially in dimensions higher than
one, still remain shrouded in mystery and lack the same level
of completeness or clarity as the Hermitian topological phases
of matter. To motivate our paper and to pinpoint the problem,
we jump right to a concrete model. More detailed discussions
of the background, including previous results that inspired and
influenced our paper, will be given in Sec. VI.

A. The Qi-Wu-Zhang model

We are interested in the non-Hermitian generalizations of
Chern insulators in two dimensions (2D). A simple example
of Hermitian Chern insulators is a two-band model introduced
by Qi et al. on a square lattice [5]. Its Hamiltonian reads

H0(k) = d(k) · σ

= sin kxσx + sin kyσy + (m − cos kx − cos ky)σz,

(1)

where k = (kx, ky) is the crystal momentum, σ = (σx, σy, σz )
denotes the Pauli matrices to describe the two orbital degrees
of freedom (pseudospin 1/2), and the momentum-dependent
magnetic field d = (dx, dy, dz ) with dx = sin kx, dy = sin ky,
dz = m − cos kx − cos ky. The tuning parameter m is real

and plays the role of Dirac mass to dictate the energy gap.
Note that the energy is always measured in units of the
nearest-neighbor hopping t which we have set to be 1. The
Qi-Wu-Zhang model Eq. (1) has the virtue of being math-
ematically elegant with a clean-cut phase diagram [5]: For
|m| < 2, the system is topologically nontrivial with the Chern
numbers of the two bands being ±1, the energy gap closes
when m = ±2, and the system becomes topologically trivial
for |m| > 2. From the Chern numbers of the bands, we im-
mediately know that there is one chiral edge mode inside the
energy gap for |m| < 2.

B. Three non-Hermitian generalizations

A few different non-Hermitian generalizations of the Qi-
Wu-Zhang model have been considered in the literature.
Below, we will analyze and compare three examples. They are
obtained by adding one extra term to the Qi-Wu-Zhang model
H0, resulting in increasing complexity in the edge spectra. The
first model is

H1 = H0 + ihzσz. (2)

The constant hz term introduces an imaginary part to the
magnetic field d by replacing dz → dz + ihz while retaining
dx,y in H0. In Ref. [6], a three-dimensional generalization
(with kz) of this model was used to discuss Weyl exceptional
rings. This model will be analyzed in Sec. III, and its phase
diagram in the slab geometry (e.g., with open boundaries in
the x direction, x ∈ [0, L], and periodic boundary condition
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FIG. 1. Summary of main results: A myriad of phases of non-Hermitian Chern insulators in slab geometry, x ∈ [0, L] in the limit of large L
with periodic boundary conditions along y. The three panels (a)–(c) show the phase diagram for the generalized Qi-Wu-Zhang model H1, H2,
and H3, respectively. For model H1 in (a), there are three phases indicated by color: the gapped topological phase with Chern number ±1 (C1),
the gapless phase (GL), and the trivial band insulator (T). This model is discussed in Sec. III. For H2 in (b), the C1 phase is further partitioned
into three regions, where the subscripts such as LR describe the localization of the edge modes. There is also a gapped phase C2 with Chern
number ±2 and a topological gapless phase S. Both are unexpected from the bulk phase diagram. See Sec. IV for details. For model H3 in (c),
the C1 phase has two regions with distinct edge behaviors, and a topological gapless phase S′ (Sec. V).

along y) is summarized in Fig. 1(a). We use H1 as a warm-up
example to set the stage for models H2 and H3 below, which
feature much more complicated phase diagrams.

The second model is similar to H1, but with the non-
Hermitian term applied to σx instead:

H2 = H0 + ihxσx. (3)

This model has been investigated by Kawabata et al. in
Ref. [7] to illustrate the breakdown of bulk edge corre-
spondence in non-Hermitian Chern insulators. These authors
obtained the phase diagram of H2 in the slab geometry by
numerical diagonalization. Our objective here is to formulate
an analytical theory to predict all the phase boundaries based
on the notion of GBZ without resorting to numerical diago-
nalization of finite size systems with boundaries. This is done
in Sec. IV, and the analytical result for L → ∞ is summarized
in Fig. 1(b). Note that we label the various phases differently
from Ref. [7], for reasons to be elaborated on in Sec. IV.

The third model is defined as

H3 = H0 + it1 sin kxσz. (4)

A more general version of this model with an extra term
involving sin ky was considered in Ref. [8] as an example of
the non-Hermitian skin effect. The phase diagram of H3 in
the slab geometry, however, remains unexplored to our best
knowledge. We solve this model in Sec. V and the resulting
slab phase diagram is shown in Fig. 1(c).

C. New phases in slab geometry

The slab phase diagrams in Figs. 1(b) and 1(c) exhibit a few
striking features when viewed alongside the corresponding
bulk (i.e., with periodic boundary conditions in both x and
y directions) phase diagrams. All three generalized Qi-Wu-
Zhang models above bear the form

Hbulk(k) = D(k) · σ, (5)

where the vector D depends on k and is in general complex.
For example, for H3 we have Dx = dx, Dy = dy, Dz = dz +

it1 sin kx. Its bulk spectrum is simply

Ebulk(k) = ±
√

D2
x + D2

y + D2
z , (6)

with k confined within the Brillouin zone (BZ). When the
spectrum on the complex E plane has a well-defined line gap,
one can compute the Chern number of each band from its
biorthogonal eigenstates. But the knowledge of Ebulk(k ∈ BZ)
offers little help in comprehending the corresponding slab
phase diagram for the case of H2 or H3.

Take H2 for example. As highlighted in Fig. 1 of Ref. [7],
its bulk phase diagram is partitioned by equally spaced di-
agonal lines on the (m, hx ) plane. Three gapped phases with
Chern number C = 0,±1, respectively, have the shape of a
perfect diamond with side length

√
2. In contrast, the slab

phase diagram of H2 in Fig. 1(b) is rather different. Most
striking is the appearance of a gapped phase C2 (labeled as
NL/R = 2 in Ref. [7]) that has two edge modes on both the
left (x = 0) and right edge (x = L). This phase is unexpected,
seemingly popped out from nowhere, because there is no
bulk phase with Chern number C = ±2. The second notable
feature is the emergence of two phases CLL

1 and CRR
1 (labeled

as NL = 2 and NR = 2 in Ref. [7]) with two edge modes
localized at only one of the edges, which is impossible for
Hermitian Chern insulators. It is obvious that these features
cannot be inferred from Ebulk(k ∈ BZ), and the familiar bulk-
edge correspondence breaks down.

These observations beg the following questions. Can one
predict when these caprice edge modes decide to switch sides,
e.g., relocate from the left edge to the right edge as parameters
m and hx are varied? Moreover, what determines the curved
phase boundaries of these phases? The goal of our paper is
to address these questions to achieve a more refined under-
standing of H2. For instance, we will prove in Sec. IV that
all the phase boundaries of H2 shown in Fig. 1(b) are actually
given by a set of simple analytical curves. In Sec. V, we apply
the theoretical technique developed to analyze the even more
challenging case of H3.
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D. Strategy to characterize the new phases

Our strategy to comprehend non-Hermitian Chern insu-
lators in the slab geometry is built upon a few techniques
developed earlier for one-dimensional (1D) non-Hermitian
Hamiltonians. A key idea is to include localized (non-Bloch)
states besides the familiar Bloch waves by allowing the wave
vector to take complex values. This is motivated in part by
the non-Hermitian skin effect, i.e., the emergence of extensive
number of eigenstates localized at the open boundaries, e.g.,
at x = 0 and/or L. For a given 1D tight-binding Hamiltonian
H (kx ), by replacing eikx with a complex number β, one obtains
an analytically continued Hamiltonian H(β ):

H (kx ) → H(β ). (7)

Its eigenvalues E (β ) will reproduce the open-boundary spec-
trum in the thermodynamic limit of L → ∞ if β is restricted
to a closed curve on the complex plane known as the general-
ized Brillouin zone (GBZ):

β ∈ GBZ. (8)

In the context of 1D non-Hermitian band insulators, the con-
cepts of non-Bloch band theory and GBZ were first proposed
in Ref. [9]; the correct definition of GBZ for the general
case was given in Ref. [10]. Once the GBZ is determined,
one can define topological invariants such as the winding
number. It was shown that the phase boundaries obtained
from H(β ∈ GBZ) match those from numerical diagonaliza-
tion of finite-size systems with open boundaries. In this way,
the bulk-boundary correspondence is restored by introducing
GBZ for 1D non-Hermitian Hamiltonians.

At first, one might expect that this approach can be gener-
alized trivially to two dimensions to describe non-Hermitian
Chern insulators. Consider, for instance, H2 or H3 in the slab
geometry with open boundaries at x = 0, L and periodic along
y. One can follow the 1D recipe by the replacement

eikx → β (9)

to construct an analytically continued Hamiltonian,

H (kx, ky) → H(β, ky), (10)

where ky is a good quantum number. H(β, ky) can be viewed
as a 1D Hamiltonian with parameter ky. For each given ky, one
may compute the corresponding GBZ curve for H(β, ky):

β ∈ GBZ(ky). (11)

In principle, these ky-dependent GBZ curves will congregate
into a 2D surface in the space of (Reβ, Imβ, ky ). Let us call
this 2D surface the GBZ surface, or GBZs, to differentiate it
from the 1D GBZ curve:

GBZs = ∪ky GBZ(ky). (12)

It reduces to the two-torus BZ if the Hamiltonian is Her-
mitian. One can proceed to define Chern numbers on GBZs

and use them to characterize each phase of H(β, ky). If ev-
erything works out as expected, the resulting phase diagram
should agree with the numerical diagonalization of large-size
systems.

In reality, carrying out this plan runs into difficulties. The
GBZ surface is, in general, not a smooth compact manifold

FIG. 2. (a) An example of the generalized Brillouin zone surface
(GBZs) for model H3. It is a three-dimensional surface in the space
(Reβ, Imβ, ky ), continuous but not necessarily smooth. Different
values of ky ∈ [0, 2π ] are colored coded. (b) The cross section of the
GBZs at ky = 0. The red curve is the GBZ showing numerous cusps.
It consists of arc segments belonging to multiple auxiliary GBZ
curves (in grey) which intersect with each other. Thus, the GBZs,
in general, is not a smooth manifold but an algebraic variety. The
results are obtained numerically by following the algorithm outlined
in Sec. II C. The parameters used are m = 0.6 and t1 = 0.4.

like the two-torus. This makes the definition and numerical
computation of the Chern number challenging. Computing the
GBZ curve for 1D non-Hermitian Hamiltonians is a nontrivial
task. A few powerful algorithms have been developed so far
[10–12], and they rely on numerical solution of algebraic
equations (e.g., finding the roots of polynomial equations or
the intersections of two curves) to yield a collection of discrete
data points for β on the complex plane. With sufficient resolu-
tion, these data points coalesce into a curve which is believed
to be continuous and closed, but not necessarily smooth. In
fact, it often has sharp turns, or cusps. An example is the
red curve in Fig. 2(b). After running the algorithm for each
ky ∈ [0, 2π ], the resulting GBZs inherits these cusps, see the
example shown in Fig. 2(a).

To make matters worse, the resulting GBZs sometimes
features singularities as ky is varied. For example, each GBZ
curve of H2 is a circle of radius r on the complex plane, but r
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FIG. 3. Singularities in the circular GBZ of model H2. The radius
r2, given by Eq. (29), is plotted as a function of ky ∈ [0, 2π ] for m =
0.1, hx = 0.2 (in blue), and for m = 0.1, hx = 1 (in red). It shrinks
to zero when m − cos ky + hx = 0, and blows up to infinity when
m − cos ky − hx = 0.

shrinks to zero or blows up to infinity at certain ky values as
shown in Fig. 3. Thus, to evaluate the Chern number from the
Berry connection for a general non-Hermitian Chern insulator,
we have to settle for irregular mesh points on a rugged GBZs

and watch out for singularities, e.g. when the GBZ surface
shrinks to a point. Note that, previously, in Ref. [13], the
singularities of GBZ in 1D non-Hermitian models have been
noted. Here, we focus on 2D models. To circumvent these sub-
tleties and crosscheck the Chern number calculation, we shall
also pursue an alternative scheme to characterize the topolog-
ical invariant of H(β, ky) using the eigenvectors on the Bloch
sphere.

From Secs, III–V, the three models H1,2,3 are discussed,
in turn, to illustrate the technical complexities and challenges
in executing the strategy outlined above centering around
H(β, ky) and GBZs. In particular, we show how analytical
solutions can be obtained for H2 to yield a thorough un-
derstanding of the problem. By working through these three
examples, we hope the reader can appreciate the rich, non-
trivial behaviors of non-Hermitian Chern insulators with open
boundaries as highlighted in Fig. 1.

II. COMPUTING THE GBZ

The concept of a GBZ plays a crucial role in our analysis
of the non-Hermitian Chern insulators. In this section, we
outline the technical procedures to compute the GBZs for our
two-band models. Based on existing algorithms, we introduce
a few tricks so the numerical task is simplified and analytical
results become possible. This leads to a rather detailed knowl-
edge of how the GBZ varies with the parameters such as m, hx

or t1, and ky, including the development of singularities.

A. The algorithm

The first step of the algorithm is to analytically con-
tinue Hbulk (kx, ky) by the replacement eikx → β. Take model
H2(kx, ky) as an example. After the replacement, H2 becomes

H2(β, ky) =
(

ihx + β − β−1

2i

)
σx + sin kyσy

+
(

m − cos ky − β + β−1

2

)
σz. (13)

The two eigenvalues of H2 are ±E (β ), where the ky depen-
dence of E has been suppressed for brevity. We will focus
on their square, which is a Laurent polynomial of complex
variable β:

ε(β ) ≡ E2(β ) = a′β2 + b′β + c′

β
. (14)

Here the coefficients

a′ = −m + cos ky + hx, (15)

b′ = m2 − 2m cos ky + 2 − h2
x , (16)

c′ = −m + cos ky − hx. (17)

For β living on the unit circle with |β| = 1, let β = eikx with
kx ∈ [−π, π ], then ε(β ) becomes ε(kx ) to reproduce the bulk
spectrum Eq. (6), i.e., the spectrum of H2 with periodic bound-
ary conditions.

To discuss the slab geometry with open boundaries and
the corresponding edge modes, let us write H2 in second
quantized form:

H2 =
L∑

n=1

∑
ky

[ψ†
n Aψn + ψ†

n Bψn+1 + ψ
†
n+1Cψn]. (18)

Here the good quantum number ky is the crystal momentum
along y, n is the unit cell index along x, the creation operator
ψ†

n is a shorthand notation for the spinor [ψ†
n,↑(ky), ψ†

n,↓(ky)],
and A, B, C are 2 × 2 matrices:

A = [m − cos ky]σz + ihxσx + sin kyσy, (19)

B = (−σz + iσx )/2, (20)

C = B†. (21)

Again, the ky dependence of ψn and A is suppressed for
brevity. In other words, H2 is a block Toeplitz matrix:

T =

⎡
⎢⎢⎣

A B 0 0 ..

C A B 0 ..

0 C A B ..

.. .. .. .. ..

⎤
⎥⎥⎦

L×L

. (22)

This form is particularly convenient for finding the dispersion
and location of the edge states in Sec. IV.

We stress that the open spectrum (i.e., the set of eigenvalues
of T for a system of size L in the x direction with open
boundaries at x = 0, L) may bear little similarity with the bulk
spectrum Ebulk(kx, ky) in Eq. (6). Furthermore, the open spec-
trum depends on the size L. And since T is non-Hermitian, its
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numerical diagonalization is prone to instabilities and large
errors when L is large. Some of these counterintuitive phe-
nomena have been long noticed for non-Hermitian Toeplitz
matrices (here we are dealing with block Toeplitz matrices).
A simple example is when the three matrices A, B, and C
reduce to numbers with A = 0. In this case, the bulk spectrum
is an ellipse (a curve), while the open spectrum is a line
segment within the ellipse. The sensitive dependence of the
spectra on the boundary conditions has been well recognized
for non-Hermitian Hamiltonians.

The spectra of T in the thermodynamic limit L → ∞, save
for a subset corresponding to the edge states, are called contin-
uum bands. The eigenvalues of T congregate into continuum
sets (e.g., lines) on the complex E plane. And the correspond-
ing eigenstates may include localized states that do not belong
to the bulk spectrum with periodic boundaries. A key step
in understanding the slab phase diagrams of non-Hermitian
Chern insulators is to find the continuum bands. Remarkably,
this task can be reduced to an algebraic problem involving
the analytically continued Hamiltonian H(β ). The eigenvalue
problem of H(β ) has the following generic form:

Pp+q(β, E )

β p
= 0. (23)

Here Pp+q denotes a polynomial of β of degree p + q (it is
also a polynomial of E of some other degree). For example,
in Eq. (14) for H2, we have p = 1 and q = 1. For generalized
Qi-Wu-Zhang models, Eq. (23) can be further simplified to a
form similar to Eq. (14),

ε(β ) = Qp+q(β )

β p
, (24)

where Qp+q is a polynomial of β of degree p + q with coef-
ficients independent of E . Equation (24) defines a mapping
β → ε, i.e., from β on the complex plane to ε = E2, which is
also complex. Note that this is a multiple-to-one mapping: For
a given image ε, we label its preimages by βi and order them
by their magnitudes:

|β1| � |β2| � ... � |βp+q|. (25)

For E to lie within the continuum band, its preimages βp and
βp+1 must satisfy the degeneracy condition:

|βp| = |βp+1|. (26)

This key result was established in Refs. [9,10] for 1D non-
Hermitian Hamiltonians. And in the context of Toeplitz
matrices, it was first proved by Schmidt and Spitzer (see The-
orem 1 of Ref. [14] and Refs. [15,16] for a review). Solving
Eq. (26) together with Eq. (24) accomplishes two goals at
once: the set of E ’s form the continuum band, and the union
of the set βp and set βp+1 gives the GBZ.

B. Circular GBZ for model H2

Let us apply the algorithm to H2 to show its GBZ is a circle.
Recall from Eq. (14), ε(β ) = a′β + b′ + c′/β, so p = 1 and
each ε only has two preimages, β1 and β2. The degeneracy
condition requires them to have equal magnitude, therefore we
can follow the parametrization scheme of Ref. [10] to write

β2 = β1eiθ . (27)

Next, using ε(β1) = ε(β2 = β1eiθ ), we find

β2
1 = c′

a′ e
−iθ . (28)

Thus the GBZ for H2 is a circle with radius

r2(ky) =
∣∣∣∣m − cos ky + hx

m − cos ky − hx

∣∣∣∣
1/2

. (29)

We stress that working with ε = E2 is a simple yet crucial
trick to render the problem analytically tractable.

Figure 3 shows two examples of the GBZ radius varying
with ky. It clearly illustrates the pinching of the GBZs where
r2 vanishes, as well as the divergence of r2 at certain ky values
dependent on the parameter m and hx.

C. GBZ for model H3

Next we apply the algorithm to the analytically continued
model H3, which has the form

H3(β, ky) = β − β−1

2i
σx + sin kyσy

+
(

m − cos ky + 1 − t1
2

β − t1 + 1

2
β−1

)
σz.

(30)

Its eigenvalue square is the Laurent polynomial

ε(β ) ≡ E2(β ) = aβ2 + b/β2 + cβ + d/β + f , (31)

with

a = t1(t1 − 2)/4, (32)

b = t1(t1 + 2)/4, (33)

c = +(m − cos ky)(t1 − 1), (34)

d = −(m − cos ky)(t1 + 1), (35)

f = (m − cos ky)2 + sin2 ky − t2
1 /2 + 1. (36)

Comparing with the general form Eq. (24), we find that, in this
case, p = q = 2, so the degeneracy condition becomes

|β2| = |β3|. (37)

This motivates the parametrization β3 = β2eiθ . To find the
GBZ, we need to solve the quartic equation

ε(β2) = ε(β2eiθ ) (38)

for β2 for all possible values of θ .
Before attempting a general solution, let us first consider a

special case m = 1 and ky = 0, so c = d = 0. Then the Lau-
rent polynomial Eq. (31) simplifies to ε(β ) = aβ2 + b/β2 +
f , and Eq. (38) can be solved by hand. After a little algebra,
we find

β4
2 = t1 + 2

t1 − 2
e−i2θ . (39)

Thus, the GBZ for m = 1 and ky = 0 is a circle of radius

r3 =
∣∣∣∣ t1 + 2

t1 − 2

∣∣∣∣
1/4

. (40)
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For general values of (m, t1, ky), we choose to solve
Eq. (38) numerically to find its four solutions ηi, i = 1, 2, 3, 4.
For each solution ηi, we compute its image ε∗ = ε(ηi), and
find all four preimages of ε∗ and sort them into

|ξ1| � |ξ2| � ξ3| � |ξ4|. (41)

If |ξ2| = |ξ3| and ηi = ξ2 or ξ3, we conclude that ηi and ηieiθ

satisfy the condition Eq. (37) and therefore belong to the GBZ.
Repeating this procedure for a discrete grid of θ values within
the interval [0, 2π ] will produce a set of data points to form
the GBZ curve [e.g., the red curve in Fig. 2(b)].

It is not immediately obvious that the GBZ obtained this
way is guaranteed to be a connected, closed curve. To gain a
better understanding, it is useful to examine all the solutions
of Eq. (38), including those that do not meet the criterion
Eq. (37) and thus do not belong to the GBZ. As the solutions
of a polynomial equation, they forms continuous curves on
the complex β plane which are called the auxiliary GBZ by
Ref. [11]. For example, some of the solutions satisfy |β j | =
|β j+1|, with j �= q. These curves may intersect, and GBZ is
nothing but a subset of the auxiliary GBZ, consisting of arcs
connected to each other at these intersection points. Figure 2
shows the computed GBZ (in red) and other auxiliary GBZ
for parameters m = 0.6, t1 = 0.4 with ky = 0.

It is clear from the discussion above that the GBZ, unlike
the familiar BZ, is not necessarily a smooth manifold and may
feature singular points. More precisely, it should be called an
algebraic variety, as it is derived from solutions to polynomial
equations.

D. GBZ from self-intersection

The recipe outlined in the preceding subsections works
very well in tracing out smooth GBZ curves, e.g., approxi-
mately of elliptical shape. Its performance suffers, however,
when the GBZ contains segments going along the radial di-
rection, which can be easily missed if the mesh grid of θ is
not fine enough. Thus, it is useful to develop an alternative
method that can find points on the GBZ at a given radius
ρ on the complex β plane. An ingenious algorithm of this
type was proposed in Ref. [12] based on the self-intersection
and winding of the image ε(β ). Below, we show how it can
be adapted to H3. Readers who are not interested in these
technical details can skip to Sec. III.

Let Cρ be a circle of given radius ρ on the complex plane.
As β varies along Cρ to complete a cycle, its image ε(β ) traces
out a closed curve �ρ on the complex plane of ε:

�ρ = {ε(β ∈ Cρ )}. (42)

Thus, for two distinct points βi and β j on Cρ to map to the
same image εs ∈ �ρ ,

ε(βi ∈ Cρ ) = ε(β j ∈ Cρ ) = εs, (43)

εs must be a self-intersection points of the curve �ρ . For
our problem, we observe that the location of these points are
mirror symmetric with respect to the real axis, because all
coefficients a to f in Eq. (31) are real.

Plotting the curve �ρ reveals that it is, in general, very com-
plicated. One may take a purely numerical approach to find its
intersection points. But it is time consuming (we must repeat

the calculation for different ρ’s and different parameters such
as ky) and requires fine-tuning for different parameters. It turns
out that with some effort all the self-intersection points for
model H3 can be found analytically as follows. For a given
radius ρ, let us parametrize β = ρeiθ and separate ε into
real and imaginary parts, ε(β = ρeiθ ) = x(θ ) + iy(θ ). Then
Eq. (31) becomes two equations,

x(θ ) = a+ cos 2θ + c+ cos θ, (44)

y(θ ) = a− sin 2θ + c− sin θ, (45)

with the shorthand notation

a± = aρ2 ± bρ−2, (46)

c± = cρ ± dρ−1. (47)

According to Eq. (43), a self-intersection point of �ρ corre-
sponds to a solution to the equation set

x(θ ) = x(θ ′), (48)

y(θ ) = y(θ ′), (49)

with θ �= θ ′. These trigonometric equations can be converted
into polynomial form by introducing

u = cos θ, v = cos θ ′, (50)

and applying trig identities. For example, Eq. (48) for x re-
duces to

u + v = −c+/2a+ (51)

after factoring out (u − v). Eq. (49) for y is more involved.
One can square it to obtain a quartic equation for u and v using
sin2 θ = 1 − u2. Luckily, we can factor out (u − v) again, and
evoke Eq. (51) to reduce it to a quadratic equation for u,

auu2 + buu + cu = 0, (52)

where the coefficients have lengthy expressions

η = −c+/2a+,

au = 8a2
−η + 4a−c−,

bu = −8a2
−η2 − 4a−c−η,

cu = 4a2
−η3 + 4a−c−η2 + (c2

− − 4a2
−)η − 4a−c−.

The quadratic Eq. (52) yields a pair of solutions u±. An-
other independent solution of Eq. (49) corresponds to y(θ ) =
y(θ ′) = 0, leading to

u3 = −c−/2a−, (53)

with the corresponding intersection point lying on the real
axis. For each solution of u, we can work backward to find
θ = arccos(u), v, θ ′, and εs = x(θ ) + iy(θ ).

In some special cases, the self-intersection points coincide
and merge into a single point. This corresponds to having
three β’s on the circle Cρ that map to the same value of ε. In
Ref. [12], this is called three-bifurcation point. Let the three
β’s be β1 = ρc, β2 = ρceiθ , and β3 = ρce−iθ . They are the
solutions of the quartic equation:

aβ4 + cβ3 − εβ2 + dβ + b = 0. (54)
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Using Vieta’s formulas, after eliminating θ , we find ρc is the
solution of a high order equation

a2ρ8
c + adρ5

c − cbρ3
c − b2 = 0, (55)

which can be solved numerically, e.g., using MATHEMATICA.
Once ρc is known, θ can be found via

cos θ = − 1
2

(
ρ4

c a/b + ρcd/b + 1
)
. (56)

This example illustrates the modest algebraic price one has
to pay to understand the continuum bands of non-Hermitian
Chern insulators. To summarize, the self-intersection points εs

can be found analytically from the values of a, b, c, d , and ρ,
except for solving Eq. (55) for the special case of higher-order
bifurcation points.

Not all the self-intersection points εs found above belong to
the continuum band. Reference [12] established a qualifying
criterion: The neighborhood of εs is divided into four regions
by the two intersecting lines at εs; with respect to a chosen
point εw in one of these regions and away from �ρ , the
winding number of the curve �ρ defined by

W (εw ) = 1

2π

∫
�ρ

dzArg(z − εw ) (57)

should be +1, 0,−1, 0 respectively. (The patterns of the
winding number near a higher-order birfurcation points are
more complicated and discussed in Ref. [12]). The winding
number is easy to evaluate numerically with the help of the
argument principle,

W (εw ) = Nw − p, (58)

where p = 2 and Nw is the number of the preimages of
εw residing inside the circle Cρ . For those qualified self-
intersection points with the right set of winding numbers, we
collect their preimages ρeiθ on the circle Cρ as a subset of
GBZ. By changing the radius ρ and repeating the procedure,
one obtains the whole GBZ curve.

What about those rejected εs with the “wrong” winding
number patterns? Their preimages are nothing but the aux-
iliary GBZ. The self-intersection method described here is
complementary to the scheme given in the preceding subsec-
tions. It excels at resolving the cusps where the other method
struggles. We have checked that these two methods agree with
each other and produce the same GBZ as well as the auxiliary
GBZ.

III. EXCEPTIONAL RING OF MODEL 1

Some non-Hermitian Chern insulators are adiabatically
connected to the familiar Hermitian Chern insulators. One
example is the model H1 defined in Eq. (2) by replacing
m with a complex Dirac mass m + ihz in the Qi-Wu-Zhang
model H0. In this case, the bulk-edge correspondence holds as
usual, and there is no need for introducing the notion of the
GBZ. The other two models H2,3, in comparison, will not be
so cooperative. Model H1 provides a nice geometric picture of
the band topology in terms of the d vectors. Here we show that
the phase diagram of H1 on the (m, hz ) plane [Fig. 1(a)] can
be understood quantitatively by analyzing the the singularity
of H1 in the space of d. This viewpoint based on the d vectors
was advocated in Ref. [17] for a more complicated model.

FIG. 4. The ring and the tent: Geometric visualization of the d
vector (golden surface, the tent) and the exceptional ring, Eqs. (60),
for model H1. At fixed m = 0.25, for hx = 0.3, the exceptional ring
(red) resides inside the tent, the system is within the topological
phase C1. For hx = 0.8, the ring (blue) intersects the tent surface,
the system is gapless. For hx = 1.5, the ring is outside the tent, the
system is gapped but topologically trivial. The base of the tent is at
m = 0.25.

As kx and ky vary throughout the BZ, the vector d(kx, ky )
defined in Eq. (1) traces out a closed surface in the space
of (dx, dy, dz ). The surface is mirror symmetric with respect
to the plane dz = m, where it becomes pinched along the
diagonal lines |dx| = |dy| ∈ [0, 1]. It is useful to imagine the
upper half of the surface as a bloated tent of height 2 with its
bottom stitched together along two lines on the ground. The
eigenvalues of H1(kx, ky) will vanish when

d2
x + d2

y + (dz + ihz )2 = 0. (59)

And the singularity here is an exceptional point. Separating
the real and imaginary parts, we find the condition becomes

dz = 0, d2
x + d2

y = h2
z . (60)

This defines a ring of radius hz on the plane of dz = 0. We will
call it the exceptional ring (Ref. [17] uses the more generic
name “singularity ring”). In the limit of hz = 0, the Qi-Wu-
Zhang model is recovered and the ring shrinks to a point at
the origin which, since the work of Berry [18], is often called
a magnetic monopole carrying magnetic charge. In this sense,
the ring here is a ring of magnetic charge.

Now the phase diagram of model H1 can be worked out
from the geometries of the tent (centered at dz = m with
overall height 2|m|) and the exceptional ring (centered around
dz = 0 with radius hz), see Fig. 4. When the exceptional ring
lives inside/outside the tent, the system is a topologically
nontrivial/trivial insulator; when the ring intersects the tent,
the spectrum is gapless. Figure 1(a) shows the phase diagram
of H1 where the two gapped phases are separated by the
gapless region. By examining the cross section of the tent
surface with the dz = 0 plane and how it touches the ring, one
can determine the phase boundaries. For example, for m = 1
the lower critical point is at hz = 1 and the upper critical point

035101-7



JAMES BARTLETT AND ERHAI ZHAO PHYSICAL REVIEW B 107, 035101 (2023)

is at hz = √
3/2. At m = 0, the transition to the trivial gapped

phase occurs at hz = 2. And the gap closes at m = 2 and
hz = 0. One can check that the edge states have real energy,
and the bulk-edge correspondence holds for H1.

IV. ANALYTICAL THEORY OF MODEL 2

In this section, we revisit the phases and edge modes of
H2, which has been investigated numerically in Ref. [7]. As
discussed in the Introduction, our goal here is to achieve an
analytical understanding. To this end, we shall restrict our
focus to the first quadrant of the (m, hx ) plane with m, hx > 0.
The phase diagram in other quadrants can be obtained by
using symmetry. In particular, we establish the following eight
theorems.

Theorem 1. The GBZ for model H2(β, ky) defined in
Eq. (13) is a circle of radius r2 given by Eq. (29).

Theorem 2. The band structure of H2(β ∈ GBZ, ky) defines
three topologically nontrivial phases with robust edge states.
Phase C1 (C2) has line gap and band Chern number ±1 (±2),
while phase S is gapless. The phase boundaries shown in
Fig. 1(b) are given by four curves on the (m, hx ) plane,

m =
√

1 + h2
x + 1, (61)

m =
√

1 + h2
x − 1, (62)

hx =
√

(m − 1)2 + 1, (63)

hx =
√

(m + 1)2 + 1. (64)

They mark the closing of the gap in the continuum band.
Theorem 3. In the thermodynamic limit L → ∞, one of the

edge modes of H2 has dispersion

E+
edge(ky) = + sin ky, (65)

with decay factor [defined in Eq. (78) below]

λ+ = m − cos ky − hx. (66)

In slab geometry, it is localized on the left (right) edge if
|λ+| < 1 (>1).

Theorem 4. The other edge mode has dispersion

E−
edge(ky) = − sin ky, (67)

with decay factor

λ− = m − cos ky + hx. (68)

It is localized on the right (left) edge if |λ−| < 1 (>1).
Theorem 5. Phase C1 is further partitioned into three re-

gions (RR, LR, LL) based on the localization of the two edge
modes near ky = 0. For example, in the LR region, the E+
mode is localized on the left (L) edge, while the E− mode
is localized on the right (R) edge. These three regions are
separated by two lines:

m = hx, (69)
m + hx = 2. (70)

These lines do not correspond to gap closing. Rather, they
mark the divergence of the localization length, i.e., |λ±| = 1,
at ky = 0.

FIG. 5. Deviation of the continuum band spectrum (blue) from
the bulk spectrum (red) for model H2. (a) Phase C1 with m = 0.9,
hx = 0.5. (b) Phase C2 with m = 0.15, hx = 0.9. Notice the opening
of the line gap in case (b) and the dramatic reconstruction of the band
structure (red → blue) as the boundary conditions change.

Theorem 6. In phase C2, there are four edge modes at zero
energy. Among them, E±(ky = π ) are localized on the left
edge, while E±(ky = 0) are localized on the right edge.

Theorem 7. Phase S is gapless with two edge modes local-
ized on the left edge and crossing E = 0 at ky = π .

Theorem 8. The energy eigenvalues of H2 are real for m +
cos ky > hx. For example, phase T at the bottom right corner
of Fig. 1(b) has a real spectrum.

Taken together, these eight theorems provide a clear char-
acterization of the phases and the edge modes of model 2.
These analytical results agree with the numerical diagonal-
ization of H2 for large L in slab geometry found in Ref. [7].
Below, we prove these theorems, and present a more detailed
discussion of the phase diagrams, edge modes, and topologi-
cal invariants.

A. Continuum bands

Theorem 1 has been proved back in Sec. II B. Since the
GBZ is a circle, β ∈ GBZ can be parametrized by introducing
a wave vector k̃x:

β = r2eik̃x , k̃x ∈ [−π, π ]. (71)

Then the continuum bands of H2(β, ky ) can be found from
Eq. (13). After a little algebra, we find

E2
c (k̃x, ky) = 1 + m2

y − h2
x + (hxr− − myr+) cos k̃x

+ sin2 ky + i(hxr+ − myr−) sin k̃x, (72)

where the shorthand notation

my = m − cos ky, (73)

r± = r2 ± r−1
2 . (74)

In general, the eigenenergy Ec is complex according to
Eq. (72). Within the region my > hx, however, hxr+ − myr− =
0 and therefore E2

c is real. By direct calculation, one can
further show E2

c > 0 which proves Theorem 8.
Inspecting the continuum band structure confirms that

phase C1 and C2 have a line gap, while phase S is gapless.
Figure 5 gives two examples of the continuum bands (in color
blue) for phases C1 and C2, respectively. It is illuminating to
compare the continuum band E2

c above with the bulk spectrum
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of H2(kx, ky ):

E2
bulk(kx, ky) = 1 + m2

y − h2
x − 2my cos kx

+ sin2 ky + i2hx sin kx. (75)

This result clearly illustrates the highly nontrivial reconstruc-
tion of the band structure in many non-Hermitian Chern
insulators, E2

b → E2
c , as the boundary conditions change from

periodic to open along the x direction. In Fig. 5, the bulk
spectra (in color red) obviously deviate from the correspond-
ing continuum bands (in blue). For example, in phase C2 one
would expect the system to be gapless from the bulk disper-
sion, but instead the continuum band in the slab geometry
develops a line gap, giving rise to a novel phase C2. Such band
reconstruction is responsible for much of the rich behaviors of
non-Hermitian Chern insulators in the slab geometry.

Let us find out when the gap closes from the expression of
E2

c (k̃x, ky). First, consider ky = 0, so my = m − 1. For the case

of my > hx, let z =
√

m2
y − h2

x , then

E2
c = 1 + z2 − 2z cos k̃x. (76)

Obviously, E2
c = 0 requires cos k̃x = 1 so the solution is z =

1, i.e., m2
y − h2

x = 1 leading directly to Eq. (61). For the oppo-
site case my < hx, the gap touches down at k̃x = 0 or π with

E2
c = (my ± r+/2)2 − (hx ± r−/2)2. (77)

Thus E2
c = 0 leads to, after a little algebra, h2

x = m2
y + 1

which gives Eq. (63). Similarly, the gap may close at ky = π

with my = m + 1 instead. Running the calculation again for
my > hx, we are led to Eq. (62), while for my < hx, the result
is Eq. (64). Now we have found all the phase boundaries
summarized in Theorem 2.

B. Edge modes

Theorems 3 and 4 are not new results. The edge dispersions
Eqs. (65) and (67) were established previously in Ref. [7].
For completeness, we briefly recount the derivation here.
This serves three purposes. First, it clarifies the origin of the
analytical expression for λ± which we will use to establish
Theorems 5–7. Second, we will apply the same approach to
model 3 in the next section, where the calculation becomes
more challenging. Third, we find it fascinating that sinusoidal
edge dispersion emerges not only for models H2 and H3 (see
Sec. V B) but also for some driven quantum Hall systems [19].
Thus, it is worthwhile to review the main arguments.

Consider a semi-infinite system (x � 0) with an open
boundary at x = 0 (the left edge) described by the matrix T in
Eq. (22) with L → ∞. Seeking a solution for the edge state,
we try the ansatz

ψ = (φ, λφ, λ2φ, ...)T , (78)

where λ is referred to as the decay factor, φ is a two-
component spinor and (...)T means transpose. In terms of
the 2 × 2 matrices A, B,C defined in Eqs. (19) to (21), the
eigenvalue problem T ψ = Eψ reduces to

[A + Bλ]φ = Eφ, (79)

[Cλ−1 + A + Bλ]φ = Eφ. (80)

Following Ref. [7], we conclude that Cφ = 0, and φ =
(1, i)T /

√
2. Plugging φ back into Eq. (79), we are facing the

following dilemma:

(m − cos ky − λ − hx )φ∗ = (E − sin ky)φ. (81)

The only way for this equation to hold is for the two coeffi-
cients in the parenthesis to vanish. This proves Eqs. (65) and
(66).

Note the energy of the edge state is always real and crosses
zero at ky = 0 or π . Let us examine the spatial profile of
this edge mode near ky = 0. It is localized on the left edge
if the wave function decays with increasing x, that is, if
|λ| < 1. According to Eq. (66), this occurs within the strip
hx < m < 2 + hx (recall we only focus on the first quadrant
m, hx > 0). Outside this region on the (m, hx ) plane, |λ| > 1
so the solution E+ describes a mode that grows with x, i.e.,
localized on the right edge. (In the slab geometry, an edge
mode on the right edge still needs to satisfy the open boundary
condition at x = 0.)

The other edge mode solution can be worked out analo-
gously by considering a semi-infinite system occupying x �
0, with an open boundary on the right edge x = 0. In this case,
we seek solution of the type

ψ = (..., λ2φ, λφ, φ)T , (82)

with

[Cλ + A]φ = Eφ, (83)

[Cλ + A + Bλ−1]φ = Eφ. (84)

By repeating the argument in the preceding paragraph, it is
straightforward to show Eqs. (67) and (68). At ky = 0, we find
that when m + hx < 2, |λ| < 1, i.e., the edge state is localized
on the right edge. Otherwise, the solution represents a state
on the left edge. Note that in the discussion above, we have
implicitly assumed the continuum band structure has a gap at
ky = 0. Otherwise, the solution does not qualify as an edge
state.

These results regarding the location of the edge modes
near ky = 0 can be combined to yield the localization phase
diagram shown in Fig. 6(a). We can identify four regions on
the (m, ky) plane: LL, RR, LR, and RL. Here the first capital
letter indicates whether the E+(ky ∼ 0) mode resides on the
left (L) or right (R) edge, while the second letter describes
the location of the E−(ky ∼ 0) mode. In particular, the RR,
LR, and LL regions are separated by two lines, m = hx and
m + hx = 2, where |λ±| = 1. This proves Theorem 5.

The edge states E± also cross zero energy at ky = π in-
side phase C2 and phase S. From the expression for λ+ in
Eq. (66), we conclude that E+(ky ∼ π ) is localized on the
left edge for m < hx < m + 2. Similarly, from λ−, we find
that E−(ky ∼ π ) is always localized on the left edge in the
first quadrant. The resulting localization phase diagram for
the edge modes near ky = π is summarized in Fig. 6(b). If we
overlay Figs. 6(a) and 6(b), we are led to Theorem 6: Inside
phase C2, the two modes E±(ky ∼ 0) are within the region of
RR, while E±(ky ∼ π ) are within the region of LL. In other
words, out of the four edge modes crossing the zero energy,
two of them are on the left edge, and the other two are on the
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FIG. 6. The localization phase diagrams for the edge modes of
model H2 near (a) ky = 0 and (b) ky = π . The first (second) capital
letter indicates the localization of the E+ (E−) edge mode. Com-
bining these results with the phase boundary in Theorem 2 fixes the
phase diagram of model H2 in Fig. 1(b). See main text for details.

right edge. We stress once again that such a scenario is only
possible in non-Hermitian Chern insulators.

C. Chern number

To characterize all gapped phases of model H2, we com-
pute the Chern numbers. The starting point is the analytically
continued, non-Hermitian Hamiltonian H2(β, ky ) in Eq. (13)
with β = r2(ky)eik̃x ∈ GBZ. The left and right eigenstates of
H2 are defined as

H2 |ψ�〉 = E� |ψ�〉 , (85)

〈ξ�|H2 = 〈ξ�| E�. (86)

Here � = ± is the band index, and the dependence on (β, ky )
is suppressed. The right eigenstates {|ψ�〉} are linearly in-
dependent but not necessarily orthogonal [20]. Instead, we
require them to satisfy the biorthogonal normalization con-
dition, 〈ξ�|ψ�′ 〉 = δ�,�′ . The (generalized) Chern number is

defined as an integral of the Berry curvature over the GBZ
surface:

C� = 1

2π i

∫
GBZs

dk̃xdkyε
i j∂i 〈ξ�| ∂ j |ψ�〉 . (87)

Here i, j = k̃x, ky are the two independent directions on the
GBZ surface, with repeated indices summed over.

According to Eq. (29), the GBZ curve as a circle shrinks
to a dot (r2 = 0) when cos ky = −(m + hx ) and the radius r2

diverges when cos ky = −(m − hx ). Thus, rigorously speak-
ing, the Berry curvature becomes ill defined at these singular
points of ky. To yield a sensible result, the integral in Eq. (87)
must be understood as the principal value. An efficient, gauge-
invariant way to numerically evaluate the Chern number is to
partition the BZ into little patches and find the flux through
each patch, e.g., by taking the trace of the Berry connection
along the boundary of the patch [21]. This algorithm can be
generalized to compute the Chern number over the GBZs,
as long as one carefully avoids hitting the singular points
along the patch boundaries. To understand why this procedure
works, imagine continuously deforming the GBZs only at
the vicinity of these singularities so it becomes closed and
smooth, leaving the patch boundary intact. Thanks to Gauss’s
theorem, the total flux stays the same during the deformation,
as long as the small deformation does not encounter any
magnetic charge. Then, the Chern number calculated on the
deformed smooth GBZs is well-defined, and has the same
value as the original GBZs with integrable singularities. We
find the resulting Chern number for phase C1 (C2) is ±1 (±2),
which completes the proof of Theorem 2.

To cross-check the numerical calculation of the Chern
number, we adopt a complementary scheme to visualize and
characterize the topology of the gapped phases. The eigen-
value problem of H2 in Eq. (85) defines a mapping from
the GBZs to the Bloch sphere once the eigenvector of H2 is
parametrized using the polar angle θ and the azimuthal angle
φ,

(β, ky ) ∈ GBZs �→ |ψ〉 = eiχ

(
cos θ

2
sin θ

2 eiφ

)
, (88)

with χ the overall phase. Then one can define the Chern
number as the number of times the images of (β, ky) cover
the whole Bloch spheres as it varies throughout the GBZs.
Figure 7 shows the wrapping for phases C1 and C2. They agree
with the numerical integration results above. This approach
circumvents the subtleties regarding Berry curvature near
the singular points of GBZ. Interestingly, it also provides a
geometric picture of these singularities. Direct analytical cal-
culation reveals that, at these singular points, the eigenstates
lie within the equator of the Bloch sphere. More specifically,
r2 → 0 and ∞ corresponds to the eigenvector pointing along
the ∓y axis, respectively, i.e., θ = π/2 and φ = ∓π/2. These
two points are visible in Fig. 7 as the center of the small
concentric red and blue rings.

D. The gapless phase S

Phase S is gapless, and it has no analog in Hermitian Chern
insulators. When the spectrum (in slab geometry) is plotted on
the complex energy plane, there is no line gap (but there is a

035101-10



UNRAVELLING THE EDGE SPECTRA OF NON-HERMITIAN … PHYSICAL REVIEW B 107, 035101 (2023)

FIG. 7. Counting the Chern number by the wrapping of eigen-
vectors of model H2 on the Bloch sphere. (a) Phase C1 with m = 1.5,
hx = 0.3. Different colors correspond to a discrete set of ky values
from 0 to 2π , while the data points of the same color depict vary-
ing k̃x for a given ky. As (k̃x, ky ) transverse the entire GBZs, the
eigenvector covers the Bloch sphere exactly once. (b) Phase C2 with
m = 0, hx = 1. Here only ky values restricted to [0, π ] are shown and
they are sufficient to cover the whole Bloch sphere. Thus, the Chern
number is two. In the trivial phase T (not shown), the eigenvectors
cannot cover the entire Bloch sphere.

point gap around E = 0). The continuum band spectrum in
Fig. 8(a) forms a single connected surface with “holes” in the
space of (ReE , ImE , ky). The finite-size spectrum in Fig. 8(b)
clearly shows a pair of edge states crossing E = 0 at ky = π

as described by Eqs. (65) and (67). From the localization
phase diagram of these modes in Fig. 6(b), it is clear that both
modes localize on the left edge, which proves Theorem 7 and
is confirmed by numerical results. Note the good agreement
between Figs. 8(a) and 8(b) for L = 50. For large L, the
diagonalization of the non-Hermitian Hamiltonian is prone
to numerical instabilities, and the resulting spectrum starts
to show large fluctuations due to numerical error and then
becomes unreliable. This further reinforces the usefulness of
the GBZ and the analytical approach we advocate here which
operates directly in the L → ∞ limit.

In passing, we mention that in the phase diagram Fig. 1(b),
the trivial region T at the bottom-right corner has a line
gap and real spectrum. In comparison, the spectrum of the
T region at the left top corner is complex. The region GL
is gapless, there are edge modes but they do not cross zero
energy. To summarize, analytical results obtained for H2 in
this section capture all the main features of the phase diagram,
edge states, and topological characterization of each gapped
phase. This example illustrates the capability as well as the
subtleties of this approach based on the GBZ. We will apply
the approach to another model in the next section.

V. MODEL 3

In this section, we analyze H3, the third model of
non-Hermitian Chern insulators defined in Eq. (4). Com-
pared to model H1 and H2 above, this model introduces a
unique feature: the hopping between neighboring unit cells
is nonreciprocal. More specifically, the intraorbital hopping
amplitudes to the left and right are given by 1 + t1 and 1 − t1,
respectively. The finite t1 term makes it more challenging to
find the GBZ, the continuum band structure, the phase dia-
gram, and the edge states. But these tasks are still manageable
thanks to the techniques developed in Secs. II and IV.

FIG. 8. The gapless phase S of model H2. (a) The continuum
band spectrum from analytical calculation. (b) Spectrum from nu-
merical diagonalization of a slab with L = 50, showing a pair of edge
states crossing E = 0 at ky = π . Both are localized at the left edge.
m = 0.3, hx = 1.25.

For the sake of clarity, we summarize our main results
into Theorems 9–13 below. Hereafter, the term phase diagram
refers to the phase diagram for model 3 in slab geometry (with
open boundaries at x = 0, L and periodic boundary conditions
along y) in the limit of L → ∞, and we shall restrict our atten-
tion to the first quadrant of the parameter space, m, t1 > 0. It
is straightforward to generalize the analysis to other parameter
regions.

Theorem 9. For ky = 0, the GBZ is a circle on the complex
β plane with radius r3 given by Eq. (40).

Theorem 10. The phase diagram of H3 is mirror symmetric
with respect to m = 1. It consists of six regions shown in
Fig. 1(c). The continuum bands of phase T have a line gap and
are topologically trivial (i.e., their Chern numbers are zero).
Region CLR

1 and CLL
1 belong to the same gapped phase with

band Chern numbers ±1. Phase GL1, GL2, and S′ are gapless.
Theorem 11. Region CLR

1 is bounded by two straight lines,
m = 2 and t1 = 1. All other phase boundaries correspond
to gap closing at E = 0 and ky = 0, and are determined by
solving an algebraic problem, Eqs. (93) and (94) below. In
particular, Phase CLL

1 , GL1, and S′ meet at the tricritical point
m = 1 and t1 = √

2.
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Theorem 12. One of the edge states has dispersion

E+
edge = sin ky. (89)

It is always localized the left edge for t1 > 0.
Theorem 13. The other edge state has dispersion

E−
edge = − sin ky. (90)

It is localized on the right (left) edge if t1 < 1 (t1 > 1).

A. Phase boundaries

The rough contour of the phase boundaries can be obtained
from numerical diagonalization of the matrix T for finite L.
For example, one can monitor the minimum magnitude of the
eigenenergy, |E |min. On the one hand, this quantity is finite for
gapped phases (e.g., phase T) that are topologically trivial, i.e.,
have no edge states, or gapless phases (e.g., phase GL2) that
avoid E = 0. On the other hand, it vanishes for topological
phases with edge modes (e.g., phase C1 and S′). Such a quick
scan, however, has trouble in locating the precise boundary of
phase GL1 which is gapless and contains E = 0. In particular,
one notices that the numerical spectrum depends sensitively
on L. It is well-known that diagonalization of large non-
Hermitian matrices can experience numerical instabilities, and
caution must be exercised before trusting their accuracies, see
Refs. [2,11,22–24] for detailed discussions. Thus, an alterna-
tive, algebraic method that works well in the limit of L → ∞
is desired.

We reiterate the key point that for non-Hermitian Chern
insulators, the knowledge of the bulk spectrum may offer little
help in determining or understanding its slab phase diagram
as we have witnessed in the case of H2. For model H3 here,
the bulk energy Ebulk(kx, ky) closes its gap along the line of
m = 2 at kx = ky = 0, and along the line of t1 = 1 at ky =
0 and cos kx = m − 1. While the m = 2 line agrees with the
phase boundary between CLR

1 and T, the t1 line, as we shall
show below, is not a phase transition line. Moreover, the bulk
spectrum fails to predict phase CLL

1 , GL1, and S′.
Now we show that all the phase boundaries in the limit of

L → ∞ can be worked out from the analytically continued
Hamiltonian H3(β ∈ GBZ, ky). For any given value of ky, the
GBZ can be computed using the two algorithms outlined in
Secs. II C and II D. As a simple example, let us consider the
cutline m = 1 with varying t1, and focus on ky = 0. In this
case, Theorem 9 was already proved back in Eqs. (39) and
(40). With the GBZ being a circle, we can parametrize it using
a fake wave vector k̃x:

β = r3eik̃x . (91)

Then the continuum band spectrum simplifies for t1 < 2:

E2(k̃x, ky = 0) = 1 − t12

2
− it1

√
4 − t2

1 sin(2k̃x ). (92)

Immediately, we see that for k̃x = 0, E vanishes when t1 =√
2, which marks the tricritical point between phases CLL

1 ,
GL1, and S′. Away from the central m = 1 line, an analytical
solution seems out of reach, and the GBZ has to be found
numerically to yield the continuum bands.

For the purpose of finding the phase boundaries, however,
it is not necessary to gain a full knowledge of either the GBZ

FIG. 9. Comparing the continuum band spectrum Ec (in blue),
defined for the slab geometry in the limit of L → ∞, with the bulk
energy spectrum Ebulk (in red) for model H3. (a) For phase CLR

1 with
m = 0.9, t1 = 0.5. (b) For phase CLL

1 with m = 1.2, t1 = 1.1. Notice
the gap opening as the boundary conditions change in case (b).

or the continuum bands. It turns out that for model 3, one only
needs to check when the energy gap closes at E = 0 at some
ky values, say ky = 0. Below, we outline how this problem
can be reduced to solving a quartic equation. Following the
notation introduced in Sec. II, let ξi with i = 1, 2, 3, 4 be the
four solutions to the quartic equation

ε(β ) = aβ2 + b/β2 + cβ + d/β + f = 0, (93)

with their magnitudes ordered according to Eq. (41). In other
words, ξi are the preimages of ε = 0. Then a gap closing,
E (β ∈ GBZ, ky = 0) = 0, requires the two roots of the quar-
tic Eq. (93) to have the same amplitude:

|ξ2| = |ξ3|. (94)

Recall that the coefficients a to f depend on parameter m and
t1. Thus, to find points on the (m, t1) plane where Eq. (94) is
satisfied, we can simply follow a given horizontal or vertical
cut and plot |ξi| to see where |ξ2| and |ξ3| intersect. (While
the roots of quartic equations are analytically known, they
are unwieldy to manipulate so we opt to find and compare
|ξ2| and |ξ3| numerically.) The phase boundaries obtained this
way are summarized in Fig. 1(c). They agree with the rough
outline from numerical diagonalization of finite-size slabs.
The main advantage of the algebraic approach is that the phase
boundaries (e.g., that of phase GL1) can be obtained precisely.
Compared to model 2, here the phase boundaries of model
3 are no longer simple analytical curves, but we still find
it remarkable that it follows from the solution of a quartic
equation.

Once these boundaries are drawn from the gap closing
condition, we can investigate the continuum bands in each
region. For example, one can confirm that C1 and T are gapped
with a line gap, while GL1, GL2, and S′ are gapless. Figure 9
highlights the contrast between the bulk spectrum (red) and
the slab spectrum (blue) in the limit of L → ∞ obtained from
H3. For example, the existence of the line gap (and the edge
states) within phase CLL

1 would have been completely missed
by only considering Ebulk(kx, ky). To unambiguously identify
each phase, in the next subsection we proceed to look into
their edge spectra and topological invariants. For example, we
shall see that regions CLR

1 and CLL
1 are divided by a transition

line at t1 = 1 where the edge modes change location.
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B. The dispersion and location of edge modes

To find the edge states and prove Theorems 12–14 for
model H3, we once again face the big matrix T in Eq. (22).
But this time its submatrices are given by

A = [m − cos ky]σz + sin kyσy, (95)

B = [(−t1 − 1)σz + iσx]/2, (96)

C = [(t1 − 1)σz − iσx]/2. (97)

The overall strategy is the same as in Sec. IV B. The wave
functions of the edge modes, however, become more cumber-
some due to the nonreciprocal hopping t1.

First, consider the semi-infinite geometry (x � 0) with an
open boundary at x = 0, the left edge. To solve the eigenvalue
problem T ψ = Eψ , let us write ψ as

ψ = (v1, v2, v3, ...)
T , (98)

where vi is a two-component spinor. This leads to

Av1 + Bv2 = Ev1, (99)

Cvn−1 + Avn + Bvn+1 = Evn, (n � 2). (100)

In the limit t1 = 0, we conclude v1 = (1, i)T /
√

2 and E =
sin ky, which we take as the guess solution for the general case.
From v1, all other vn can be found inductively using Eqs. (99)
and (100). Exploiting the properties of Pauli matrices, after
some algebra we conclude that

vn = λnv1, (101)

where λn is a number. Within this ansatz, Eqs. (99) and (100)
become the following recursion relation for λn:

(2 + t1)λn = 2(m − cos ky)λn−1 + t1λn−2, (102)

with the initial condition

λ0 = 0, λ1 = 1. (103)

We seek a solution of the power-law form λn = λn. Here λ

describes the decay (or growth) of the wave function {vn =
λnv1}, and must obey the quadratic equation

(2 + t1)λ2 − 2(m − cos ky)λ − t1 = 0. (104)

This equation has two solutions, which we call λ±. The gen-
eral solution is then the superposition λn = c1λ

n
+ + c2λ

n
−. The

initial condition Eq. (103) fixes the coefficients c1,2. The final
result is

λn = λn
+ − λn

−
λ+ − λ−

=
n−1∑
j=0

λ
n−1− j
+ λ

j
−. (105)

It decays with increasing n if and only if |λ±| < 1, or, equiv-
alently, |λ+λ−| < 1. This condition can be further simplified
by recalling Vieta’s formula,

|λ+λ−| = t1
2 + t1

< 1, (106)

for t1 > 0. Note that this criterion is independent of m or ky.
It follows that that the edge state with energy E+

edge = sin ky

is always localized on the left edge for t1 > 0. This proves
Theorem 12.

The calculation of the other edge mode proceeds similarly.
For a semi-infinite system (x � 0) with an open boundary at
x = 0, let us label the wave function as

ψ = (..., u3, u2, u1)T . (107)

With ansatz E−
edge = − sin ky, uT

1 = (i, 1)/
√

2, and un = λnu1,
one finds that the decay factor λ is determined by

(2 − t1)λ2 − 2(m − cos ky)λ + t1 = 0. (108)

This result can also be obtained from Eq. (104) by symmetry
arguments and replacing t1 → −t1. For t1 > 0, the magnitudes
of the two solutions satisfy

|λ+λ−| = t1
|2 − t1| . (109)

Thus, the E− edge mode is localized on the right edge if t1 <

1, and on the left edge if t1 > 1, proving Theorem 13. The
transition occurs at t1 = 1.

It is worthwhile to take a closer look at the E− solution
above in the region t1 > 1. At t1 = 2, the matrix C becomes
singular with a vanishing determinant and its inverse be-
comes ill defined. Accordingly, |λ+λ−| diverges according
to Eq. (109). We emphasize that there is nothing physically
singular at this point. To get a clearer picture, we must rec-
ognize that once t1 exceeds 1 and the E− mode is localized
on the left edge, it is much more natural to find its wave
function by starting from the left boundary rather than from
the right boundary as done in Eq. (107). More explicitly, we
repeat the same recipe as prescribed in Eq. (98), but this time
with ansatz E−

edge = − sin ky and vT
1 = (i, 1)/

√
2 instead. The

corresponding decay factor now satisfies the equation

t1λ
2 − 2(m − cos ky)λ − (t1 − 2) = 0. (110)

The magnitudes of its two solutions obey

|λ+λ−| = |t1 − 2|
t1

. (111)

Compared to Eqs. (109), here the roles of t1 and (t1 − 2) are
switched, now that we seek the edge state wave function start-
ing from the left boundary. It follows that the E−

edge mode is
localized on the left edge if t1 > 1 and on the right edge if t1 <

1. This is consistent with our result obtained in the preceding
paragraph and provides an alternative proof of Theorem 13.
The calculation here also yields the decay factor along the
line t1 = 2, where Cv1 = 0. In this case, Eq. (110) reduces
to a linear equation, and we have λ = 2(m − cos ky)/t1 and
λn = λn.

To summarize, within the region CLR
1 , the two modes E±

edge

reside on opposite edges of the slab. In region CLL
1 and phase

S′, they both reside on the left edge, which is impossible
for Hermitian Chern insulators. At the transition line t1 = 1,
where |λ+λ−| = 1, the E−

edge mode permeates into the bulk,
and therefore strictly speaking is no longer an edge mode.
These analytical results agree with the edge states obtained
from numerical diagonalization of finite systems, see Fig. 10.
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FIG. 10. The spectrum of H3 in slab geometry (with slab width
L = 35) inside (a) the CLR

1 region for m = 0.9, t1 = 0.5, and (b) the
CLL

1 region with parameters m = 1.2 and t1 = 1.1. In both cases, a
pair of edge modes E±

edge = ± sin ky transverse the line gap. Note,
however, that for case (a), one mode is localized on the right edge
and the other on the left edge, whereas in (b), both edge modes are
localized on the right edge. The transition in the localization behavior
occurs at line t1 = 1 which separates region CLR

1 and CLL
1 .

C. Chern numbers

For each given value of ky, the GBZ curve of H3(β, ky) can
be found by following the recipes described in Sec. II. As ky is
varied from −π to π , the GBZ curve deforms to produce a 2D
surface GBZs defined in Eq. (12), which is continuous but may
have singularities. Figure 2 shows an example of GBZs for
m = 0.6 and t1 = 0.4. Once the GBZ surface is known, one
can proceed to compute the Chern numbers using Eq. (87) by
discretizing the GBZs into patches. One can verify that region
CLR

1 and CLL
1 have the same Chern numbers ±1, while region

T is topologically trivial with Chern number zero.
Since the discretization of GBZs is numerically involved,

we also extract the Chern number by counting the number
of times the right eigenvector in Eq. (88) wraps around the
Bloch sphere, as done for model 2 in Sec. IV C. According
to Fig. 11, within phase C1, including region CLR

1 shown in

FIG. 11. Chern number determined from the eigenvectors of
model H3 on the Bloch sphere. (a) Region CLR

1 with m = 0.6, t1 =
0.4. Different colors correspond to a discrete set of ky values from 0
to 2π , while the data points of the same color depict transversing the
GBZ curve for a given ky. As (β, ky ) varies throughout the GBZs,
the eigenvector covers the Bloch sphere exactly once. (b) Region
CLL

1 with m = 1.2, t1 = 1.1. Here, again ky varies from 0 to 2π

and the eigenvector covers the Bloch sphere exactly once as (β, ky )
transverse the entire GBZs. In the trivial phase T (not shown), the
eigenvectors do not cover the whole Bloch sphere.

panel (a) and region CLL
1 shown in panel (b), the eigenstate

wraps the Bloch sphere once. Within the trivial phase T, the
eigenstate does not cover the entire sphere. This verifies that
CLR

1 and CLL
1 differ topologically from phase T, and finishes

the proof of Theorem 10. We emphasize that Theorem 10 here
relies on numerical evaluation of the Chern number and the
phase boundary from a well-defined algebraic problem. This
is slightly different from the proof of, e.g., Theorem 7, where
the phase boundary is simple and analytically known.

D. The gapless phase S′

A large area of the phase diagram Fig. 1(c) is occupied by
the gapless phase S′. An example of the slab spectrum within
this phase is shown in Fig. 12 for t1 = 1.9 and m = 1. One ob-
serves that the two bands merge into a single membrane in the
space of (ky, ReE , ImE ). While the spectrum on the complex
energy plane appears gapless, the membrane possesses a hole
around E = 0, which becomes apparent when projected on
the (ky, ImE ) plane. In other words, within a certain interval
of ky values around ky = 0, the spectrum is gapped. This sit-
uation is very different from Dirac semimetals, where the gap
closes at isolated point degeneracies. A pair of edge modes
E±

edge = ± sin ky transverse the hole, and both of them reside
on the left edge as proved in Sec. V B. Note the edge states
here differ from those in phase S of model H2 which cross
E = 0 at ky = π instead, see Fig. 8. We have checked that
the edge states are robust against on-site disorder, e.g., in the
value of m.

In short, this gapless phase is a rather unique feature of
non-Hermitian Chern insulators. The edge states are separated
from the continuum bands in the imaginary part of the energy,
and therefore in principle can be probed by dynamics [25]. In
some sense, the existence of phase S′ attests to the resilience
of non-Hermitian Chern insulators. When the gap is forced to
close, for example, by increasing the nonreciprocal hopping
parameter t1 at fixed m, the edge modes may survive. The
persistence is most apparent along the line of m = 1 in the
phase diagram Fig. 1(c).
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FIG. 12. The spectrum of H3 in slab geometry inside the gapless
phase S′, m = 1, t1 = 1.9, L = 50. The continuum bands form a
single surface/membrane. Two edge modes transverse the hole of
the membrane, crossing E = 0 at ky = 0. Both of them are localized
on the left edge.

VI. COMPARISON TO EARLIER WORK AND OUTLOOK

A large body of work has been devoted to study non-
Hermitian tight-binding models. For a more comprehensive
review of recent progress in this field, see, for example,
Refs. [1–4]. Here we only mention a few works that provided
crucial techniques used in our paper or set the stage for our
work. Non-Hermitian Hamiltonians describing particles hop-
ping in 1D, such as the Hatano-Nelson model [26,27], the
generalized Su-Schrieffer-Heeger [9,28–31], and Rice-Mele
model [32–35] are well understood. These models show-
case a number of phenomena including the non-Hermitian
skin effect and exceptional points in the energy spectrum
that are unique to non-Hermitian systems. To character-
ize the topology of these non-Hermitian systems, unique
concepts and techniques were developed, beyond the estab-
lished framework for Hermitian Bloch Hamiltonians. The
initial theoretical efforts focused on the classification of the
topological phases based on the dichotomy between point
gaps and line gaps [27,36–40]. Later works gave a more
general classification using braid groups [41,42] and knots
[43] for non-Hermitian models with separable bands [44].
For multiband systems in 1D with an odd number of bands,
invariants can be constructed through the Majorana stellar
representation [45–47]. To restore the bulk boundary corre-
spondence, the notion of GBZ was introduced in [9] and
[10] for 1D non-Hermitian Hamiltonians. And the topological
origin of the non-Hermitian skin effect in 1D was clarified in
Refs. [27,48–52] and attributed to the existence of point gap,
which allows the winding number to be defined as the topo-
logical invariant. Compared to the thorough understanding
achieved in 1D, non-Hermitian topological phases in 2D and
3D are much less understood with many questions remaining
open.

Now we compare our approach and results to a few existing
works on non-Hermitian Chern insulators in 2D. In Ref. [53],

Yao et al. considered a generalized Qi-Wu-Zhang model with
imaginary magnetic fields. They compared the bulk phase di-
agram (Fig. 1 in Ref. [53]) with that of the slab phase diagram
(Fig. 3 in Ref. [53]) obtained by defining a non-Bloch Chern
number. These authors treated the non-Hermitian term as a
small perturbation, and computed the Chern number using a
continuum approximation. In our work, no approximation or
extrapolation of the Hamiltonian was made, and the procedure
used to compute the GBZs and continuum bands are general.
We stress that our strategy of computing the GBZs of 2D
models builds on the original algorithm outlined in [10], the
notion of auxiliary GBZ curves [11], and the self-intersection
method [12].

Model H2 in our work was introduced by Kawabata et al.
[7]. These authors obtained the slab phase diagram (Fig. 7 in
Ref. [7]) numerically and compared to the bulk phase diagram
(Fig. 1 in Ref. [7]). They also analytically derived the disper-
sion of the edge modes, and found their localization in the slab
geometry (roughly speaking the content of Theorems 3 and 4
here). Here, we take several steps further to obtain the GBZ,
the continuum bands, the Chern numbers, and the analytical
forms of all the phase boundaries. We also give a precise
identification of the gapless phase S and phase C2 in terms
of their continuum band structure and Chern numbers. Our
phase diagram Fig. 1(b) labels the phases differently from [7].
These new results, summarized in Theorems 1 and 2 and 5–8,
give a thorough understanding of this non-Hermitian Chern
insulator.

Other theoretical approaches have been proposed to de-
scribe non-Hermitian topological phases in 2D. Reference
[54] introduced a framework based on the transfer matrix in
real space to analyze the Qi-Wu-Zhang model with imaginary
fields, and Ref. [50] employed single and doubled Green’s
functions to describe the Qi-Wu-Zhang model in an imaginary
magnetic field, including the boundary modes and the phase
diagram. Reference [55] employed the entanglement spec-
trum to determine topological properties in the gapped phases
of the Qi-Wu-Zhang model in an imaginary magnetic field
along the y direction. Reference [56] constructed real-space
topological invariants to characterize the topological phases
for the Qi-Wu-Zhang model in an imaginary magnetic field.
Reference [57] characterized a non-Hermitian Qi-Wu-Zhang
model obtained by a similarity transformation, and proposed
a topological invariant for classification. In passing, we also
mention Ref. [58] which focused on non-Hermitian Dirac
Hamiltonians with gapless spectrum and exceptional points.
Reference [59] proposed an alternative avenue toward real-
izing non-Hermitian 2D models using waves backscattered
from the boundaries of insulators. A geometric visualization
of the topology of non-Hermitian 2D modes based on the d
vector was advocated in Ref. [17]. We borrow this perspective
in our treatment of model H1. Note, however, the 2D model
studied in Eqs. (31) and (32) of Ref. [17] was more com-
plicated than H1,2,3 here. A more general version of H3 was
mentioned in Ref. [8] in discussing the non-Hermitian skin
effect.

The main objective of this paper is to outline an alge-
braic procedure to reliably predict the fascinating slab phase
diagrams, including the behaviors of edge modes, for non-
Hermitian Chern insulators. The algebraic procedure does
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not rely on numerical diagonalization of finite size systems,
and therefore is free from the numerical errors that plague
the diagonalization of large non-Hermitian matrices. This is
not a trivial task, for we have seen GBZs with cusps and
singularities, topological gapless phases such as S and S′ or
the higher Chern number phase C2 that are unexpected from
bulk analysis, and edge states switching sides while the Chern
numbers remain the same. The breakdown and resurrection
of the bulk-edge correspondence is illustrated by two exam-
ples, H2 and H3. Such refinement in the understanding of
generalized Qi-Wu-Zhang model is achieved by combining
various bits of technology available in the literature: analytical
continuation, calculation of GBZ curves, analytical solution of
the edge spectrum, visualization of the Chern number, etc. We
hope these examples are helpful to readers who are interested
in analyzing other non-Hermitian topological phases of matter
in 2D and 3D.

We have focused exclusively on the slab geometry to limit
the paper to a reasonable length. An open question is to
analyze the edge and corner modes in finite systems with open
boundaries in both the x and y directions, e.g., a rectangle of
size Lx × Ly. As pointed out in Ref. [25], the edge states of
a non-Hermitian Chern insulator may gravitate to corners due
to the skin effect, forming the so-called boundary-skin mode.
The 1D theory established in Refs. [48,49] can be applied

to the effective Hamiltonian that describes the edge degrees
of freedom in the slab geometry to understand their corner
localization in rectangle geometry. Our preliminary analysis
indicates that this scenario is possible for both model H2 and
model H3. A comprehensive analysis of the non-Hermitian
skin effect in 2D Chern insulators is beyond the scope of this
paper and left for future work.

Non-Hermitian lattice models have been realized in ex-
periments using topological electric circuits [60–62], coupled
optical ring resonators [63–65], nitrogen-vacancy centers
[66–69], cavity opto-mechanical systems [70], phononic crys-
tals with active acoustic components [71], and mechanic
metamaterials [72] to name just a few. These experimental
techniques can potentially be applied to realize the models
described here. Once their topological properties are char-
acterized and understood, non-Hermitian systems may offer
exciting opportunities for applications such as topological
lasing [73–86], enhanced quantum sensing [87–89], and quan-
tum batteries [90].
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