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Competition between pairing and tripling in one-dimensional fermions with coexistent
s- and p-wave interactions
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We theoretically investigate in-medium two- and three-body correlations in one-dimensional two-component
Fermi gases with coexistent even-parity s-wave and odd-parity p-wave interactions. We find the solutions of the
stable in-medium three-body cluster states such as the Cooper triple by solving the corresponding in-medium
variational equations. We further feature a phase diagram consisting of the s- and p-wave Cooper pairing phases,
and Cooper tripling phase, in a plane of s- and p-wave pairing strengths. The Cooper tripling phase dominates
over the pairing phases when both s- and p-wave interactions are moderately strong.
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I. INTRODUCTION

In recent years, studies on superfluidity and supercon-
ductivity have attracted lots of focus in various fields.
Understanding the nontrivial states arising from the compe-
tition and coexistence of more than two orders is one of the
most important and challenging topics. Along this direction,
competing orders and clustering play an essential role for
the realization of strongly correlated condensates [1–4]. In
condensed-matter systems, a fascinating example is an ex-
otic state such as anapole superconductivity with competing
even- and odd-parity pairing channels [5] where its relevance
for UTe2 has been discussed recently. In neutron stars and
magnetars, 1S0 and 3P2 neutron superfluids [6] and moreover
their coexistence [7] have also gathered considerable atten-
tion. The s- and p-wave components of nuclear forces are also
important for the formation of neutron-rich halo nuclei [8] and
partially for tetraneutrons [9,10].

A clean and controllable quantum system is suitable to in-
vestigate these unconventional states in a systematic manner.
An ultracold Fermi gas is regarded as an excellent platform
for the study of many-body quantum systems. The remarkable
feature of this atomic system is the controllable interaction
through the Feshbach resonance [11]. In a three-dimensional
s-wave superfluid Fermi gas, the pairing superfluid undergoes
a crossover from a Bardeen-Cooper-Schrieffer (BCS) regime
with weak-coupling Cooper pairs to a Bose-Einstein conden-
sation (BEC) regime of tightly bound molecules [12–14]. The
p-wave interaction is also tunable near the p-wave Feshbach
resonance and p-wave Fermi gases have also been studied ex-
tensively towards the realization of p-wave Fermi superfluids
[15–19].

As a step forward, it is also exciting to figure out the
properties in a system with both s- and p-wave interactions
as shown in Fig. 1. In addition to the interdisciplinary poten-
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tial interests in condensed-matter and nuclear physics, such
a situation can be realized in cold atomic systems. Indeed,
Fermi superfluids with hybridized s- and p-wave pairings,
which can be realized in two-component 40K Fermi gases
near the overlapped s- and p-wave magnetic Feshbach reso-
nances [11,20], have been studied theoretically in Ref. [21].
A Borromean trimer is also predicted in a three-dimensional
mass-imbalanced mixture with hybridized interactions [22].
Moreover, an emergent s-wave interaction in quasi-one-
dimensional Fermi gases near the p-wave resonance has been
reported experimentally [23].

While superconductors/superfluids with s- and p-wave
Cooper pairs have been studied extensively, such a cluster-
ing associated with the Cooper instability is not necessarily
limited to Cooper pairs but may involve more-than-three-
body bound states in the presence of both s- and p-wave
interactions. To investigate the three-body clustering in quan-
tum many-body systems, we need to consider the in-medium
three-body problem. For such a purpose, the generalized
Cooper problem has been further applied to cluster states
such as Cooper triples [24–28] and even Cooper quartets
[29–33]. These Cooper clusters may exhibit nontrivial many-
body properties distinct from conventional superconductors.
While the many-body properties of the Cooper triple phase
are still elusive, several theoretical proposals about this point
have been reported in Refs. [24–28], where the quantum
phase transition from the BCS superfluid phase to the Cooper
triple phase have been discussed. Moreover, the three-body
loss would be an experimental signature for the emergence
of Cooper triples as in the case of Efimov effects in cold
atomic systems [27,34]. The investigation of the fate of such
higher-order clustering is also a fascinating topic in various
fields. These approaches are useful for a further understanding
of the many-body ground states.

Another advantage of cold atomic systems is a control-
lable dimensionality associated with the trap potential [35].
The realization of a low-dimensional system near the Fes-
hbach resonance leads to enhanced pairing effects known
as confinement-induced resonance [36–38]. Moreover, the
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FIG. 1. Schematic figure representing our model. We consider
the degenerate two-component fermions (states a and b occupying
the energy levels E up to the Fermi energy EF) and the consequence
of coexistent interspecies s-wave interaction Vs and intraspecies p-
wave interactions Vp (acting on two identical fermions in the a state),
which lead to the Cooper instabilities towards the s- and p-wave
Cooper pairs, and the Cooper triple.

stability against the three-body loss in a one-dimensional
fermionic system near the p-wave Feshbach resonance has
been predicted theoretically [39,40] and recently several ex-
perimental groups have performed loss measurements in this
system [23,41,42]. Apart from these backgrounds associ-
ated with cold atomic experiments, these atomic systems
are of interest as quantum simulators of different low-
dimensional condensed-matter and nuclear systems. Indeed,
one-dimensional superconductors have attracted much atten-
tion in condensed-matter physics [43]. In nuclear physics, the
low-dimensional systems are considered as benchmark mod-
els [44] or some specific configurations such as two-neutron
halo nuclei in a one-dimensional mean field [45].

In this paper, we investigate a one-dimensional fermionic
system with both s- and p-wave interactions schematically
shown in Fig. 1. For simplicity, we consider the spin- and
mass-balanced case in this work. By solving the in-medium
three-body equation derived from the variational principle, we
show the solutions of the stable in-medium three-body cluster
state (such as a Cooper triple) in the present system. Accord-
ingly, we also show a phase diagram consisting of s- and
p-wave pairing states, and the Cooper triple states. Our result
can be tested in 40K Fermi gases near the overlapped s- and
p-wave resonances around B = 200 G [21]. In addition, our
model with both s- and p-wave interactions is similar to the
recent experiment of 40K Fermi gases [23], where an s-wave
interaction emerges near the p-wave Feshbach resonance due
to the quasi-one-dimensionality.

This paper is organized as follows. The theoretical frame-
work is presented in Sec. II, where we show the Hamiltonian
for a one-dimensional two-component Fermi gas with both
s- and p-wave interactions. We apply a variational method
for in-medium three-body states on top of the Fermi sea to
this model. In Sec. III, we show our numerical results for the
in-medium bound states and the ground-state phase diagram.

Finally, a summary and perspectives will be given in Sec. IV.
In the following, we take h̄ = c = kB = 1. The system size is
taken to be a unit.

II. THEORETICAL FRAMEWORK

We consider one-dimensional two-component fermions
with coexistent s- and p-wave interactions. The Hamiltonian
of such a system reads

H = K + Vs + Vp, (1)

K =
∑

k

(ξk,ac†
k,ack,a + ξk,bc†

k,bck,b), (2)

Vp = Up

2

∑
p,p′,q

pp′c†
p+q/2,ac†

−p+q/2,ac−p′+q/2,acp′+q/2,a, (3)

Vs =Us

∑
p,p′,q

c†
p+q/2,ac†

−p+q/2,bc−p′+q/2,bcp′+q/2,a, (4)

where c(†)
k,a and c(†)

k,b represent the annihilation (creation) op-
erators of the two-component fermions with the states a
and b (e.g., hyperfine states and spins), respectively; here,
ξk,i = k2/(2mi ) − μi (i = a, b) in the kinetic term K is the
single-particle energy with momentum k, atomic mass mi, and
chemical potential μi. For simplicity, we consider the mass-
and spin-balanced system as m ≡ ma = mb and μ ≡ μa = μb.
In the generalized Cooper problems, we take μ = EF where
EF is the Fermi energy. Vp represents the short-range p-wave
two-body interaction with a coupling constant Up, and Vs cor-
responds to the s-wave two-body interaction with a coupling
constant Us. Here, the contact couplings Us and Up can be
renormalized by introducing the s-wave and p-wave scattering
lengths [46,47] as

Us = − 2

mas
, (5)

and

m

2ap
= 1

Up
+

∑
p

p2

2εp
, (6)

with εp = p2/(2m), respectively. Since we are interested in
an attractive s-wave interaction, the positive s-wave scattering
length as > 0 is taken. The p-wave scattering length can be
taken as both positive and negative values, and 1/(kFap) = 0
corresponds to the p-wave unitarity [47,48].

For convenience, here we further introduce the pair opera-
tors as

S†
p,q = c†

p+q/2,ac†
−p+q/2,b, (7)

and

P†
p,q = c†

p+q/2,ac†
−p+q/2,a. (8)

Correspondingly, the Hamiltonian can be rewritten as

H =
∑

k

(ξk,ac†
k,ack,a + ξk,bc†

k,bck,b)

+ Up

2

∑
p,p′,q

pp′P†
p,qPp′,q + Us

∑
p,p′,q

S†
p,qSp′,q. (9)
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The trial wave function for the in-medium three-body state is
adopted as

|�CT〉 =
∑
p,q

θ (|p + q/2| − kF)θ (| − p + q/2| − kF)

× θ (| − q| − kF)�p,qF †
p,q|FS〉

≡
′∑

p,q

�p,qF †
p,q|FS〉, (10)

where

F †
p,q = c†

p+q/2,ac†
−p+q/2,ac†

−q,b (11)

creates a triple above the Fermi sea, and |FS〉 denotes the
Fermi sea. In addition, here

∑′
p1,p2,...

is adopted to denote
the momentum summation restricted by the Fermi surface for
convenience. The step functions associated with the Fermi
surface will be recovered when we evaluate the momen-
tum summation numerically. By minimizing the ground-state
energy based on the variational principle, the variational pa-
rameter �p,q will be determined correspondingly, and it is
easy to find �p,q = −�−p,q. Based on the fact that q describes
the relative momentum between a p-wave pair of two identical
fermions in state a and a fermion in state b, we assume even
parity between them as �p,q = �p,−q.

The expectation values for the kinetic and interaction parts
are obtained as

〈�CT|K|�CT〉

=
′∑

p,q,p′,q′,k

(ξk,a�
∗
p,q�p′,q′ 〈FS|Fp,qc†

k,ack,aF †
p′,q′ |FS〉

+ ξk,b�
∗
p,q�p′,q′ 〈FS|Fp,qc†

k,bck,bF †
p′,q′ |FS〉)

= 2
′∑

p,q

(ξp+q/2,a + ξ−p+q/2,a + ξ−q,b)|�p,q|2, (12)

and

〈�CT|Vs|�CT〉 =Us

′∑
k,k′,Q,p,q,p′,q′

�∗
p,q�p′,q′

× 〈FS|Fp,qS†
k,QSk′,QF †

p′,q′ |FS〉

= 2Us

′∑
p,q,q′

�∗
p,q(�p+q/2−q′/2,q′

+ �p−q/2+q′/2,q′ ), (13)

〈�CT|Vp|�CT〉 = Up

2

′∑
k,k′,Q,p,q,p′,q′

kk′�∗
p,q�p′,q′

× 〈FS|Fp,qP†
k,QPk′,QF †

p′,q′ |FS〉

= 2Up

′∑
p,q,p′

pp′�∗
p,q�p′,q, (14)

respectively.

Furthermore, from the variational principle, we obtain

δ

δ�∗
p,q

〈�CT|(H − E3)|�CT〉 = 0, (15)

where E3 is the ground-state energy of a Cooper triple state.
Consequently, the variational equation reads

(ξp+q/2,a + ξ−p+q/2,a + ξ−q,b − E3)�p,q + Up

′∑
p′

pp′�p′,q

+ Us

′∑
q′

(�p+q/2−q′/2,q′ + �p−q/2+q′/2,q′ ) = 0. (16)

In order to simplify the further derivations, here we introduce

�p(q) = Up

′∑
p′

p′�p′,q, (17)

and

�s(k) = Us

′∑
q′

�k+q′/2,q′ . (18)

One can further find that

�p(q) = �p(−q), �s(k) = −�s(−k). (19)

Consequently, the variational equation can be recast into

(ξp+q/2,a + ξ−p+q/2,a + ξ−q,b − E3)�p,q + p�p(q)

+ �s(p − q/2) − �s(−p − q/2) = 0. (20)

Correspondingly, one has the in-medium three-body equa-
tions for �p(q) and �s(k) as

�p(q)

⎡
⎣1 + Up

′∑
p

p2

ξp+q/2,a + ξ−p+q/2,a + ξ−q,b − E

⎤
⎦

= −Up

′∑
p

p
�s(p − q/2) − �s(−p − q/2)

ξp+q/2,a + ξ−p+q/2,a + ξ−q,b − E
, (21)

and

�s(k)

⎡
⎣1 + Us

′∑
q

1

ξk+q,a + ξ−k,a + ξ−q,b − E

⎤
⎦

= −Us

′∑
q

(k + q/2)�p(q) − �s(−k − q)

ξk+q,a + ξ−k,a + ξ−q,b − E
, (22)

respectively.
For comparison, we also calculate s- and p-wave Cooper

pairing energies E2,s and E2,p, which can be obtained from the
in-medium two-body equations for the s-wave pairing [14]

1 + Us

′∑
q

1

ξq,a + ξq,b − E2,s
= 0, (23)

and for the p-wave pairing [49]

1 + Up

′∑
p

p2

ξp,a + ξ−p,a − E2,p
= 0, (24)

respectively.
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At the end of this section, we note that our variational
approach can be used to describe the BCS-BEC crossover and
its three-body counterpart qualitatively [48]. It is well known
that the three-dimensional BCS-BEC crossover has been stud-
ied by the BCS-Leggett mean-field theory [12–14], where the
deviation of the chemical potential from the Fermi energy
is allowed. In the BCS-Leggett state (i.e., a BCS-like wave
function), as the attraction increases, the chemical potential
becomes different from the Fermi energy and turns into a
negative one in the BEC regime. Consequently, it can properly
describe the molecule formation in the BEC limit regardless
of its mean-field framework. Similarly, the variational wave
function of Cooper problems for the calculation of the clus-
tering energy can also reproduce both the Cooper pairing in
the weak-coupling BCS limit and the molecular formation
in the strong-coupling BEC limit. Moreover, the generalized
Cooper problem investigated here for the three-body sector
can also describe both the Cooper triples in the weak-coupling
regime and the trimer formation in the strong-coupling regime
[24,48]. In this regard, the variational approach adopted here
based on the extension of the few-body problem enables us
to study the weak- and strong-coupling regimes in a unified
manner.

III. RESULTS AND DISCUSSION

Figure 2 shows the numerical results of the in-medium
three-body energy E3 obtained by solving Eqs. (21) and (22),
where the momentum cutoff 	 = 10kF is used. One can
find that, in general, at certain 1/(kFap), |E3| becomes larger
with an increase of 1/(kFas). Correspondingly, by adopt-
ing 1/(kFas) = 3, the solutions to the in-medium three-body
equations (21) and (22) can be even found in the weak-
coupling side, which is shown in Fig. 2(b).

In addition, E3 also exhibits a cutoff dependence as shown
in Fig. 2(c). |E3| tends to increase with increasing 	 as found
in the one-dimensional system with a p-wave interaction and
three-body coupling [49,50]. The physical origin of such a
UV cutoff is associated with the short-range properties of the
interaction (e.g., effective range, short-range repulsion) [11].
On the other hand, a non-mean-field correlational collapse
called the Thomas collapse [51], where the short-range attrac-
tive interaction induces a deep three-body bound state with a
large binding energy proportional to 	2, appears in some of
the three-body problems. It is in stark contrast to the two-body
problem and the associated Cooper pairing. In the present
case, even only with the p-wave interaction, the three-body
integral equation shows an explicit ultraviolet divergence
[49,50], regardless of the absence of three-body bound states.
Since our approach incorporates such cutoff-dependent three-
body properties with the Pauli-blocking effect, our numerical
results also exhibit a cutoff dependence. We also note that the
three-body parameter [34] can be introduced to regularize the
zero-range theory of three particles, e.g., the three-body pa-
rameter κ as E3 = κ2/m. In the three-dimensional case [27],
the finite cutoff plays a role of such a three-body parameter,
which is similar to the present work.

While the Cooper triple and the trimer states are qualita-
tively distinguished in Ref. [27], in this paper we do not go
into details about their differences because these two states

FIG. 2. Calculated in-medium three-body energy E3 and s(p)-
wave pairing energy E2,s(p) as functions of the inverse p-wave
scattering length 1/(kFap) at (a) 1/(kFas ) = 1.4 and (b) 1/(kFas ) =
3. (c) shows the cutoff dependence of E3 at 1/(kFap) =
1/(kFas ) = 1.4.

have no distinct boundaries as in the case of the BCS-BEC
crossover [12–14], and moreover such boundaries quantita-
tively depend on 	 in our model.
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To see a competition between pairing and tripling, we
also plot the energies of s- and p-wave Cooper pairs E2,s

and E2,p obtained from Eqs. (23) and (24) in Figs. 2(a) and
2(b). These two-body energies can be regarded as the Cooper
pairing binding energy with a remaining unpaired fermion
on the Fermi sea, and hence they can be directly compared
with E3 as the energy gains of each cluster. Because E2,s

does not depend on 1/(kFap) through Eq. (23) in the Cooper
problem, E2,s remains a constant at fixed 1/(kFas) in Figs. 2(a)
or 2(b). E2,p is also independent of 1/(kFas) and therefore
E2,p shown in Figs. 2(a) or 2(b) is equivalent to the result
in Ref. [49]. Based on these results combined with E3, one
can see an interplay among three states, that is, tripling, s-
and p-wave pairings. In Fig. 2(a) at 1/(kFas) = 1.4, we find
that the s-wave pairing state is stable (i.e., |E2,s| � |E2,p|) up
to 1/(kFap) � 0.25. Beyond this p-wave coupling strength,
the p-wave Cooper pairing is stabler than the s-wave one
(i.e., |E2,s| � |E2,p|). While E3 also becomes nonzero around
1/(kFas) = 0.8 and exceeds |E2,s| at 1/(kFas) � 1, it is larger
than E2,p in the entire crossover region. On the other hand,
at 1/(kFas) = 3 in Fig. 2(b), |E3| is larger than |E2,p| even in
the weak-coupling p-wave BCS regime [i.e., 1/(kFap) � −1].
At this s-wave coupling strength, |E3| is larger than |E2,p| at
stronger p-wave couplings. While |E2,s| is larger than E3 in
the weak p-wave coupling regime, |E3| starts to dominate over
|E2,s| around 1/(kFap) = 0.6. In this regard, the Cooper triple
state is stable at both strong s- and p-wave couplings.

In Fig. 3, we summarize the ground-state phase diagram
of s- and p-wave Cooper pairing states, and the Cooper triple
states in the present model. The phase boundaries are deter-
mined in such a way that the boundary between tripling and
s-wave pairing, that between tripling and p-wave pairing, and
that between s- and p-wave pairings are given by E3 = E2,s,
E3 = E2,p, and E2,s = E2,p, respectively. While we arbitrar-
ily employ the scattering parameters 0.5 � 1/(kFas) � 3 and
−1.5 � 1/(kFap) � 1.5 in Fig. 3, similar values were realized
in a recent experimental work [23]. Such a phase diagram
captures interesting features associated with competing s- and
p-wave pairings and moreover tripling. As we showed the
cutoff dependence of E3 in Fig. 2(c), the cutoff dependence
of the phase diagram can be also found in Fig. 3, where
we take 	 = 10kF and 	 = 20kF in Figs. 3(a) and 3(b),
respectively. The Cooper triple phase is enlarged when 	

increases, reflecting the increase of |E3| in Fig. 2(c). On the
other hand, since the cutoff dependence of E2,s and E2,p is
weaker than that of E3 because of the renormalization with
respect to as,p, the phase boundary between s- and p-wave
pairings is relatively robust against the change of 	. While
the value of 	 is needed to compare our results with the
experiments, our phase diagram would be useful to understand
the qualitative features of hybridized s- and p-wave interacting
systems.

In the present framework, the p-wave interaction between a
atoms is considered. Similarly, the Cooper triple phase, which
consists of one a atom and two b atoms, can also be found
after introducing the p-wave interaction between b atoms.
Moreover, the possibility of a tetramer state, which we do not
consider in this work, cannot be excluded. In particular, if both
a-a and b-b p-wave interactions are present, the tetramer state
may also appear, but it is out of the scope of this work.

FIG. 3. Phase diagram of s-wave pair phase (|E2,s| >

|E2,p|, |E3|), p-wave pair phase (|E2,p| > |E2,s|, |E3|), and Cooper
triple phase (|E3| > |E2,s|, |E2,p|) in the plane of 1/(kFas ) and
1/(kFap). The momentum cutoffs are taken as 	/kF = 10 and
	/kF = 20 in (a) and (b), respectively.

IV. SUMMARY AND PERSPECTIVES

In this paper, we have investigated competing pairing
and tripling correlations in one-dimensional two-component
fermions with hybridized s- and p-wave interactions. We have
solved the in-medium three-body equation derived from the
variational principle based on the generalized Cooper prob-
lem. The solutions of the stable in-medium three-body cluster
state (i.e., Cooper triple) have been found in this system.
Furthermore, we have shown a ground-state phase diagram
consisting of s- and p-wave pairing states, and Cooper triple
states in a plane of s- and p-wave scattering lengths. The phase
diagram and the three-body ground-state energy show a cutoff
dependence. In particular, the Cooper triple phase is enlarged
by increasing the momentum cutoff.

Our work would be useful for further investigations of
superconductors and superfluids, and an understanding of
the nontrivial states (such as higher-order Cooper clusters)
arising from the competition and the coexistence of both s-
and p-wave interactions. Our results also suggest that low-
dimensional superconductors show a Cooper triple phase due
to enhanced s- and p-wave interactions by confinement or
shape resonances. Moreover, it is interesting to see how simi-
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lar in-medium bound states can appear in neutron-rich matter
and in lattice systems [52].

We note that our variational approach gives an approx-
imate way to explore the ground state on top of a Fermi
sea from the weak-coupling BCS pairing phase to the trimer
phase in the strong-coupling limit. Since we treat pairing and
tripling correlations by using the generalized Cooper prob-
lem, more sophisticated treatments of the many-body effects
and competing orders would also be important future work.
For instance, the density-matrix renormalization group [53]
(which is efficient for the study of low-dimensional strongly

correlated quantum systems) and bosonization [54] (which is
especially successfully applied in one-dimensional systems)
can be adopted to obtain exact results to reveal many-body
properties quantitatively.
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