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Interference-induced surface superconductivity: Enhancement by tuning the Debye energy
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In the usual perception, surface superconductivity is associated with the surface nucleation of a supercon-
ducting condensate above the upper critical field in type-II superconductors or with a rearrangement of phonon
properties and the electron-phonon coupling near surfaces/interfaces. Recently, it has been found that there is
another example when the surface superconducting temperature is increased up to 20–25% as compared to the
bulk one due to constructive interference of superconducting pair states. In the present work, we demonstrate
that in fact, such an interference-induced enhancement can be much more pronounced, up to nearly 70%.
Furthermore, here it is shown that such an interference enhancement persists over a wide range of microscopic
parameters.
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I. INTRODUCTION

There are two well-known examples of the surface super-
conductivity. The first one concerns the surface nucleation
of a pare condensate in type-II superconductors below the
third critical field Hc3, when the applied external magnetic
field H is in the interval from Hc2 to Hc3, see the pioneering
works [1–5]. The second variant is related to an enhancement
(and also suppression) of superconductivity due to surface
modifications of the phonon properties, see, e.g., the papers
[6–9].

However, there also exists the surface superconductiv-
ity enhancement at the zero applied field and without any
modifications in the phonon degrees of freedom. For con-
ventional superconductors, the investigations based on both
the Ginzburg-Landau (GL) theory [10] and the microscopic
Bogoliubov–de Gennes (BdG) equations [11–13] have shown
that the order parameter near the surface can be significantly
larger than in bulk. This does not necessarily lead to a notable
increase of the superconducting transition temperature near
the surface Tcs as compared to its bulk value Tcb. The cor-
responding relative difference between the surface and bulk
critical temperatures (Tcs − Tcb)/Tcb was reported to be neg-
ligible (≈10−3) [13]. However, recently it was found within
the BdG equations for the Hubbard attractive model with the
nearest-neighbor hopping that the relative difference between
Tcs and Tcb can increase up to 20–25%, and this increase
was attributed to the formation of boundary pair states with
elevated critical temperatures [14]. Later it was shown [15,16]
that in fact, the enlargement of the surface critical temperature
is caused by the constructive interference of the bulk pair
states near the sample surface. Such a constructive interfer-
ence was found to be most pronounced when the conduction
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band is symmetric with respect to the Fermi level (the half-
filling case).

In the present work we demonstrate that the interference-
induced surface superconductivity can result in an even more
significant increase of (Tcs − Tcb)/Tcb, up to ≈70%. We find
that the impact of the interference is notably enhanced by an
appropriate tuning of the Debye energy. For illustration, we
investigate a one-dimensional (1D) chain of atoms with the
s-wave pairing of electrons within the tight-binding treatment
of the attractive Hubbard model.

The paper is organized as follows. In Sec. II we outline the
relevant BdG formalism. Section III presents our numerical
results for Tcs and Tcb in a wide range of microscopic param-
eters, such as the Debye energy h̄ωD, the attractive coupling
strength of the Hubbard model g > 0, and the electron filling
number ne. The summary of our results and conclusions are
presented in Sec. IV.

II. THEORETICAL FORMALISM

Let us consider a 1D chain of atoms with the s-wave pairing
of electrons in the system and adopt the attractive Hubbard
model within the tight-binding approximation. The related
BdG equations can be written as [14–18]

Eνuν (i) =
∑

i′
Hii′uν (i′) + �ivν (i), (1)

Eνvν (i) = �∗
i uν (i) −

∑

i′
H∗

ii′vν (i′), (2)

where �i is the superconducting order parameter (pair poten-
tial) at the lattice site i; Hii′ is the single-particle Hamiltonian;
and Eν, uν (i), and vν (i) are the quasiparticle energy, electron-
and hole-like wave functions, respectively. In the absence of
external fields, the single-particle Hamiltonian can be written
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as [18]

Hii′ = −
∑

δ

tδ (δi′,i−δ + δi′,i+δ ) − μδii′ , (3)

where tδ is the hopping parameter, δ enumerates the neighbor-
ing coupled atomic-like orbitals, μ is the chemical potential,
and δi,i′ is the Kronecker delta symbol. The Hartree-Fock
mean field interaction is ignored here as its main effect is
reduced to a shift of the chemical potential, see, e.g., Refs.
[17] and [19].

The BdG equations are solved in the self-consistent manner
as μ and �i are dependent on the electron- and hole-like wave
functions [14,15,17,18]. The chemical potential is determined
via the equation for the averaged electron filling number (be-
low referred to as the electron density)

ne = 2

N

∑

ν,i

{ fν |uν (i)|2 + (1 − fν )|vν (i)|2}, (4)

where fν = f (Eν ) is the Fermi-Dirac distribution. The site-
dependent pair potential �i is given by

�i = g
∑

ν

uν (i)v∗
ν (i)[1 − 2 fν], (5)

where the summation is over the BdG pair states uν (i)v∗
ν (i)

with the quasiparticle energies 0 < Eν � h̄ωD [20–22], where
ωD is the Debye frequency (for the conventional phonon
mediated superconductivity). Here we notice that the super-
conductive Hubbard model is often used without the energy
cutoff as the band width is finite, and so the ultraviolet di-
vergence does not appear. Obviously, this does not distort
results when the band width is less than the Debye energy
h̄ωD. However, in the opposite case, one should include the
ultraviolet cutoff to keep the trace of the phonon characteristic
energy and recover the standard BCS results for the parabolic
band approximation.

To solve the BdG equations, we first choose initial values
for �i and μ and insert them into Eq. (1). Second, we derive
the quasiparticle energies, and electron- and hole-like wave
functions by diagonalizing the corresponding BdG matrix.
Third, the obtained solutions are plugged in Eqs. (4) and (5)
to get new �i and μ. Then, the procedure is repeated until the
convergence is reached. When solving the formalism, we take
into account the normalization condition

∑

i

(|uν (i)|2 + |vν (i)|2) = 1, (6)

see, e.g., Ref. [4]. Notice that �i can be chosen real in the
absence of the magnetic field as the Hamiltonian of the system
is time-reversal symmetric.

In the present work we consider the electron densities
ne = 0.8–1.2. In this case the system is close to the half-filling
regime, which steadily guarantees the presence of the surface
enhancement of the critical temperature, as shown in the pre-
vious work [15]. The Debye energy and the Hubbard coupling
strength are taken as free parameters. To avoid unneces-
sary complications, we restrict ourselves to the conventional
nearest-neighbor approximation, i.e., δ = 1 and tδ = t . Below
all the energy related quantities are calculated in units of the
hopping parameter t , i.e., we set t = 1.
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FIG. 1. (a),(b), and (c) The pair potential �i versus the site num-
ber i, calculated at the bulk critical temperature. (d),(e), and (f) The
pair potentials at the edge (surface) �1 and in the center of the chain
(bulk) �(N+1)/2 versus the temperature. The calculations are done at
h̄ωD = 1.5 (a),(d); 1.8 (b),(e); and 2.1 (c),(f) for g = 2 and ne = 1,
other parameters are discussed in the text.

Notice that Eq. (3) is written for the case of an infinite
chain. To consider the surface enhancement of superconduc-
tivity, we investigate a finite 1D chain with infinite potential
barriers at the sites i = 0 and i = N + 1. The number of atoms
contributing to the superconducting condensate is chosen as
N = 301, which is sufficiently large to avoid any quantum-
size effects. For such a finite 1D chain one should keep in
mind that the first term in the parenthesis of the right-hand side
of Eq. (3) is multiplied by 1 − δi,0, whereas the second term
is multiplied by 1 − δi,N+1. In addition, we have the boundary
conditions

uν (0) = uν (N + 1) = 0, vν (0) = vν (N + 1) = 0. (7)

This, taken together with Eq. (5), results in �0 = �N+1 = 0.

III. RESULTS AND DISCUSSIONS

A. Surface superconductivity

Figures 1(a)–1(c) show the order parameter �i calculated
at the bulk critical temperature T = Tcb for ne = 1, g = 2, and
the three values of the Debye energy h̄ωD = 1.5 (a), 1.8 (b),
and 2.1 (c). (We recall that all the energy related quantities are
given in units of the hopping parameter t .) In these plots, �i

vanishes in the center of the chain (bulk) while it is finite near
the edges (surface). As is seen, the system exhibits the surface
enhancement of superconductivity. The values of �1 = �N

are sensitive to the Debye energy. For h̄ωD = 1.5 we have
�1 = 0.29, whereas for h̄ωD = 1.8 and h̄ωD = 2.1 we obtain
�1 = 0.39 and �1 = 0.35.
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FIG. 2. (a) The difference of Tcs and Tcb in units of Tcb as a func-
tion of h̄ωD. (b) Tcs and Tcb versus h̄ωD. The microscopic parameters
are the same as in Fig. 1.

For further details, Figs. 1(d)–1(f) demonstrate �1 and
�(N+1)/2 (bulk) as functions of the temperature T for h̄ωD =
1.5, 1.8, and 2.1, respectively. The electron density and the
coupling strength are the same as in Figs. 1(a)–1(c). One sees
that �1 and �(N+1)/2 approach zero at different temperatures,
which is in agreement with the data shown in Fig. 1(a)–1(c).
Thus, in addition to the bulk critical temperature Tcb, asso-
ciated with the temperature dependence of �(N+1)/2, there
exists the surface critical temperature Tcs, associated with the
temperature behavior of the edge order parameter �1.

Both critical temperatures Tcb and Tcs increase with h̄ωD:
for h̄ωD = 1.5, 1.8, and 2.1, we have Tcb = 0.0925, 0.13,
and 0.205 and Tcs = 0.1425, 0.205, and 0.255, respectively.
However, Tcb and Tcs are not simply proportional to h̄ωD as
in the conventional BCS model. This is clearly seen from
Fig. 2, where (Tcs − Tcb)/Tcb and Tcs, Tcb are shown versus the
Debye energy in Fig. 2 panels (a) and (b). The calculations
are done at g = 2 for the half-filling case, similarly to Fig. 1.
If Tcs and Tcb were proportional to h̄ωD, the relative difference
between Tcs and Tcb in Fig. 2(a) would be constant for any
value of the Debye energy. However, (Tcs − Tcb)/Tcb exhibits
a complex nonmonotonic dependence on the Debye energy
when h̄ωD < 2 and becomes constant only when h̄ωD exceeds
2. From Fig. 2(b) one can see that Tcb and Tcs are almost linear
in h̄ωD only for h̄ωD � 0.4. In the region 0.4 < h̄ωD � 1.75
the trend becomes different: both Tcs and Tcb start to rise with
h̄ωD much faster. Furthermore, Tcs increases with h̄ωD faster
than Tcb, which leads to the notable increase of the relative
difference between Tcs and Tcb, see Fig. 2(a). Then, near
h̄ωD = 2 both critical temperatures approach their maximal
values Tcs,max = 0.25 and Tcb,max = 0.202. As a result, the
relative difference of the surface and bulk critical temperatures
first reaches its maximum of about 61% at h̄ωD = 1.75, and
then drops to the value (Tcs,max − Tcb,max)/Tcb,max = 23.4% at
h̄ωD = 2. For larger values of the Debye energy the relative
difference of Tcs and Tcb remains 23.4%.

To get an insight into the results in Fig. 2, let us consider
the system at temperatures T ∼ Tcs. In this case the order
parameter is sufficiently small and the quasiparticle energy
approaches the absolute value of the single-particle energy
ξk (absorbing the chemical potential). For the single-particle
Hamiltonian given by Eq. (3) with the nearest-neighbor hop-
ping, one obtains [18]

ξk = −2cos(ka) − μ, (8)

with a the distance between the neighboring sites of the 1D
chain and k the crystal momentum. For the half-filling case
μ = 0 and the modulus of the single-particle energy spans the
interval from 0 to 2, and so does the quasiparticle energy at
T ∼ Tcs. According to the selection rule of Eq. (5), only the
BdG pair states corresponding to the quasiparticle energies
smaller than h̄ωD should be taken into consideration. Then, for
relatively small Debye energies, the order parameter includes
the BdG pairs states with 0 < Eν < h̄ωD < 2. In this case the
order parameter and both critical temperatures should increase
with the Debye energy because a larger number of the states is
incorporated. This increase becomes more pronounced when
the Debye energy approaches 2 and nearly degenerate BdG
pair states associated with the edges of the Brillouin zone
come into play. However, when the Debye energy exceeds the
band width, i.e., h̄ωD > 2, a further increase of h̄ωD does not
produce any effect on the superconducting properties since all
possible pair states are already taken into account. This is why
Tcs and Tcb in Fig. 2 do not change with the Debye energy
for h̄ωD > 2. We stress that this conclusion is only related
to the half-filling case with μ = 0. For ne < 1 or ne > 1 the
chemical potential deviates from 0, and the maximal energy
of the contributing quasiparticles becomes larger than 2, see
our results discussed below.

B. Interference of the BdG pair states

It is explained in the previous subsection why Tcs and
Tcb increase with the Debye energy for h̄ωD � 2 while re-
maining the same for h̄ωD � 2. However, those arguments
cannot explain why we have the surface critical temperature
Tcs > Tcb. From the earlier work [15] we know that the ef-
fect of the surface enhancement of superconductivity comes
from the constructive interference of the BdG pair states near
the surface (edge) of the system. Exactly this constructive
interference results in the appearance of the surface critical
temperature rather than any superconducting pair mode lo-
calized near the edges of the chain. This feature has been
revealed in Ref. [15] for h̄ωD � 2, when all the solutions of
the BdG equations contribute to the pair potential [Eq. (5)]
and the analysis of their contributions is not complicated
by the application of the selection rule for the quasiparticle
energies. However, it follows from our present results that
the surface enhancement is much more pronounced for the
Debye energies in the interval from 1.5 to 2.0 which was not
investigated in Ref. [15]. To fill this gap, below we analyze
the contributions of the BdG pair states uν (i)v∗

ν (i) to the order
parameter near the edges of the 1D chain and in its center for
h̄ωD � 2.
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FIG. 3. The cumulative pair potentials �(E )
s ≡ �

(E )
1 and �

(E )
b ≡

�
(E )
(N+1)/2 calculated for h̄ωD = 1.5, 1.8, and 2. Panel (a) corresponds

to T = 0.5 Tcb, and panel (b) is for T = 1.0 Tcb. Other parameters are
the same as in Figs. 1 and 2.

In particular, we follow the paper [15] and investigate the
quantity [for i = 1 and i = (N + 1)/2]

�
(E )
i = g

∑

0<Eν�E

uν (i)v∗
ν (i)[1 − 2 f (Eν )], (9)

below referred to as the cumulative pair potential (order
parameter). Figures 3(a) and 3(b) demonstrate the surface cu-
mulative pair potential �(E )

s ≡ �
(E )
1 and the bulk cumulative

order parameter �
(E )
b ≡ �

(E )
(N+1)/2 at T = 0.5Tcb and Tcb. As

�
(E=h̄ωD )
i = �i, the data in Figs. 3(a) and 3(b) are shown for

E � h̄ωD; the minimal E for nonzero �(E )
s and �

(E )
b corre-

sponds to the lowest quasiparticle energy (the energy gap).
The upper three curves in both panels of Fig. 3 are the results
for �(E )

s at h̄ωD = 1.5, 1.8, and 2 while the lower three curves
represent �

(E )
b calculated for the same values of the Debye

energy. In the calculations we use g = 2 and ne = 1, similarly
to Figs. 1 and 2.

As is seen from Fig. 1(a), �(E )
s and �

(E )
b are close to

one another for small E (�(E )
b is only slightly larger). With

increasing E , the trend changes so that the contribution of
the pair states to the surface cumulative order parameter be-
comes larger than their contribution to �

(E )
b . For example,

for h̄ωD = 1.8 this occurs at E > 0.4 while for h̄ωD = 2.0
the trend changes above E = 0.5. One can see that there
are no pair states that contribute to �(E )

s but do not make
any contribution to �

(E )
b at T = 0.5Tcb. This analysis clearly

demonstrates that the surface amplification of the supercon-
ducting critical temperature is a consequence of near-surface
constructive interference between the pair states spanning the
entire system volume, and not a correlation between electrons
in localized surface states.

We also cannot find any particular state which makes
a major contribution to �(E )

s at T = Tcb. As is seen from
Fig. 3(b), all solutions of the BdG equations with Eν � E
contribute to �(E )

s , and so �1 is controlled by all pair states
with Eν � h̄ωD. Thus, we conclude that the constructive in-
terference of the BdG pair modes is responsible for a nonzero
superconducting condensate near the chain edges at the bulk
critical temperature (and above Tcb). This finding is similar
to the earlier results [15] obtained for the Debye energies
significantly larger than the band width h̄ωD � 2.

Based on the interference scenario of the surface enhance-
ment of superconductivity, the appearance of the maximum
of (Tcs − Tcb)/Tcb as a function of the Debye energy can be
explained as follows. At h̄ωD = 0 we have Tcs = Tcb = 0,
and so the relative difference of the surface and bulk crit-
ical temperatures is equal to zero. As the Debye frequency
increases, more and more pair states appear that contribute to
the superconducting condensate. Obviously, the presence of
a significant number of participating pair states is necessary
for a pronounced constructive interference of such states. This
is why the interference effect gets stronger as h̄ωD increases.
However, when the number of pair states contributing to the
gap function becomes very large, the interference may suffer
from an almost random summation of a large number of dif-
ferent terms (similarly to the random phase approximation).
This suggests that the surface effect should be maximum at a
certain value of h̄ωD, which is in agreement with our results
for (Tcs − Tcb)/Tcb shown in Fig. 2(b).

C. Relative difference of Tcs and Tcb as a function
of microscopic parameters

Here we investigate how the surface enhancement of super-
conductivity is sensitive to the coupling g and electron density
ne. In Fig. 4 one can find (Tcs − Tcb)/Tcb [(a), (b), and (c)]
and Tcs, Tcb [(d), (e), and (f)] as functions of the Debye energy
calculated for the half-filling case, and the couplings g = 1.5
[(a) and (d)], g = 2.5 [(b) and (e)], and g = 3.5 [(c) and (f)].

From Fig. 4(a), we find that for g = 1.5 the maximal rel-
ative difference between Tcs and Tcb is about 38%, which is
by a factor of 1.4 larger than its value 27% for h̄ωD > 2.
For small values of the Debye energy from 0 to ≈0.5 the
quantity (Tcs − Tcb)/Tcb is zero or nearly zero since Tcs and Tcb

approach each other for h̄ωD → 0, see Fig. 4(b). The relative
difference between the surface and bulk critical temperatures
starts to sharply increase with h̄ωD only when the Debye
energy exceeds 1.5 and then, the maximum of (Tcs − Tcb)/Tcb

is reached at h̄ωD = 1.93.
The results change significantly for larger couplings. In

particular, one can see from Fig. 4(b) that for g = 2.5, the
relative difference of the surface and bulk critical tempera-
tures can increase up to 67%, which is much larger than the
maximal value of this quantity at g = 1.5 (38%). Furthermore,
67% is about 4 times larger than the value of (Tcs − Tcb)/Tcb

for h̄ωD > 2 at the same coupling (16%). In addition, here
the relative difference of Tcs and Tcb begins to rapidly in-
crease with the Debye energy when h̄ωD crosses 0.1, which
is much smaller than h̄ωD = 1.5, the onset of such an increase
for g = 1.5. One can see that there are two intervals where
(Tcs − Tcb)/Tcb exhibits a significant growth: from 0.1 to 0.3

024510-4



INTERFERENCE-INDUCED SURFACE … PHYSICAL REVIEW B 107, 024510 (2023)

0 1 2 3
0%

10%

20%

30%

40%

0 1 2 3
0.00

0.02

0.04

0.06

0.08

0.10

0 1 2 3
0%

20%

40%

60%

80%

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3
0%

20%

40%

60%

0 1 2 3
0.0

0.2

0.4

0.6

g = 1.5

ne = 1

N = 301

(T
cs
-T
cb
)/
T
cb

(a) (d)

Tcb

T
cb
,
T
cs Tcs

g = 2.5

(T
cs
-T
cb
)/
T
cb

(b) (e)

Tcb

T
cb
,
T
cs

Tcs

g = 3.5

(T
cs
-T
cb
)/
T
cb

ωD

(c) (f)

Tcb

T
cb
,
T
cs

ωD

Tcs

FIG. 4. (Tcs − Tcb)/Tcb, Tcs, and Tcb as functions of h̄ωD at g =
1.5 (a),(d); 2.5 (b),(e); and 3.5 (c),(f) for the half-filling case.

and from 1.1 to 1.6. For h̄ωD = 0.3–1.1 we have a satura-
tion of this quantity near 43% whereas its maximal value is
reached at h̄ωD = 1.6.

While the data for (Tcs − Tcb)/Tcb at g = 2.5 are signifi-
cantly different from those of g = 1.5, the relative difference
between Tcs and Tcb calculated at g = 3.5 and shown in
Fig. 4(c) is close to the result for this quantity given in
Fig. 4(b). The only minor difference is that the values of
(Tcs − Tcb)/Tcb in panel (c) are by about 6% smaller than
those in panel (b) for large h̄ωD. However, Tcs and Tcb shown
in Fig. 4(f) are more significantly different from the critical
temperatures given in Fig. 4(e). Although the qualitative pic-
ture of the Debye-energy dependence of Tcs and Tcb is the
same in both panels, Tcs,max for g = 3.5 is larger by about
30% than Tcs,max for g = 2.5. A similar result is obtained
for Tcb.

Thus, we find that the maximal value of the relative differ-
ence between Tcs and Tcb at ne = 1 increases with g at small
couplings, then approaches almost 70% at g ≈ 2.5, and slowly
decreases with a further increase in g. Furthermore, one sees
in Figs. 3(a)–3(c) that (Tcs − Tcb)/Tcb is above 40% in a wide
range of the microscopic parameters 0.4 < h̄ωD < 1.9 and
2.0 � g � 3.5.

Finally, we go beyond the half-filling regime and investi-
gate how Tcs, Tcb and their relative difference depend on h̄ωD

at the densities ne = 0.9 and 0.95. Due to the symmetry of the
Hubbard model, the results for ne = 0.9 and 0.95 are the same
as for ne = 1.1 and 1.05, respectively.
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FIG. 5. Beyond the half-filling: (Tcs − Tcb)/Tcb, Tcs, and Tcb as
functions of h̄ωD at ne = 0.9 (a),(c) and ne = 0.95 (b),(d). The cou-
pling is chosen as g = 2.

Figures 5(a) and 5(c) and Figs. 5(b) and 5(d) demonstrate
(Tcs − Tcb)/Tcb, Tcs, and Tcb as functions of h̄ωD calculated
for g = 2 at ne = 0.9 [(a) and (c)], and ne = 0.95 [(b) and
(d)]. One sees from Fig. 5 that for ne = 0.9 and ne = 0.95
the maximal relative difference between Tcs and Tcb is about
45.0% and 54%, respectively, which should be compared with
the maximal relative difference (60%) in Fig. 2(a) for the same
coupling g = 2. The locus of the maximum of (Tcs − Tcb)/Tcb

is at h̄ωD = 1.60 for the both densities. When the density ne

is shifted further to 0.85 and 0.8, the surface enhancement
of superconductivity continues to slightly weaken so that the
maximal relative difference between Tcs and Tcb approaches
38.0% and 29.0%, respectively. These results are in agreement
with the conclusions of Ref. [15] that the interference surface
effect is most pronounced in the half-filling regime. However,
the decrease of (Tcs − Tcb)/Tcb calculated at ne < 1(> 1) with
respect to its value at ne = 1 is moderate. For example, in
the density interval from 0.8 to 1.2, we obtain for g = 2
that the maximal relative enhancement of the surface critical
temperature is above 29%. Notice that this is still larger than
the surface enhancement obtained for the half-filling regime
at h̄ωD > 2 in Refs. [14] and [15].

It is seen from Figs. 5(c) and 5(d) that Tcs and Tcb for ne =
0.9 are nearly the same as the critical temperatures calculated
for ne = 0.95. Qualitatively, their Debye-energy dependence
is similar to that demonstrated in Fig. 4 for the half-filling
case. However, there is a new feature to discuss: Tcb and
Tcs exhibit the presence of cusps situated at h̄ωD = 1.7 for
ne = 0.9 and at h̄ωD = 1.8 for ne = 0.95 (for both Tcb and
Tcs). The reason for the formation of these cusps is the fol-
lowing. At sufficiently large temperatures we can assume that
the quasiparticle energy approaches the modulus of the single-
particle energy given by Eq. (8). As ne < 1, the chemical
potential μ is not any more in the center of the band but shifts
down, i.e., μ < 0. We can distinguish the two branches with
ξk > 0 and ξk � 0. When the Debye energy is smaller than

024510-5



YUNFEI BAI et al. PHYSICAL REVIEW B 107, 024510 (2023)

|ξk=0| = 2 + μ and increases, new contributing BdG states
are supplied by the both branches. However, when h̄ωD ex-
ceeds |ξk=0|, the increase of Tcs and Tsc occurs only due to
the BdG states with ξk > 0 and as a result, the cusps in the
Debye-energy dependence of Tcs and Tcb appear. For ne = 0.9
they appear at h̄ωD = 1.7 since |ξk=0| = 1.7 and μ = −0.3.
In turn, for ne = 0.95 one gets μ = −0.2, and the cusps are
situated at h̄ωD = 1.8. For the half-filling case their locus
approaches h̄ωD = 2.

Obviously, the maximal values of Tcb and Tcs are reached
when the Debye energy exceeds the value |ξk=π/a| = 2 − μ

for μ � 0. For the half-filling case μ = 0 and |ξk=π/a| = 2.
Then, both critical temperatures approach their maxima at
h̄ωD = 2, see Figs. 4(d), 4(e), and 4(f). For ne = 0.95 we
have μ = −0.2 and |ξk=π/a| = 2.2 while for ne = 0.9 one
obtains μ = −0.3 and |ξk=π/a| = 2.3. Therefore, the rela-
tive difference of the surface and bulk critical temperatures
does not change when h̄ωD becomes larger than 2.2 and 2.3,
respectively.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, we find that tuning the Debye frequency
has a significant impact on the surface enhancement of su-
perconductivity in the attractive Hubbard model with the
nearest-neighbor hopping (for the phonon-mediated super-
conductivity). In particular, our study reveals that (Tcs −
Tcb)/Tcb can increase up to nearly 60-70% for the Debye ener-
gies in the interval 1.6–1.8 (in units of the hopping parameter).
This is significantly larger than 20–25% reported previously
for the same model with h̄ωD � 2 [14,15].

We demonstrate that a pronounced surface enhancement
of superconductivity persists over a wide range of the mi-
croscopic parameters. Indeed, the effect is not very sensitive
to a particular value of the coupling constant in the interval
2–3.5 where the maximum of (Tcs − Tcb)/Tcb is about 60–70%
for the half-filling case. When the system deviates from the
half-filling regime, the maximum of (Tcs − Tcb)/Tcb decreases
in agreement with findings in Ref. [15]. However, it remains
significant. For example, at g = 2 the maximal value of the
relative difference between Tcs and Tcb is still above 29% for
the electron densities from 0.8 to 1.2.

It is important to stress that the obtained results for the sur-
face superconductivity cannot be explained by an increase of
the local electron density and the normal local DOS (LDOS)
near the sample boundaries. To go in a more detail on this
point, Fig. 6 demonstrates the site-dependent electron density
and normal LDOS together with the order parameter near
the left edge of the chain. From Fig. 6(a) one can see that
the surface effect in question is not related to a rise of the
local electron density near the sample edges since the den-
sity is uniform. Indeed, the Friedel oscillations, present in
the local density near the chain edges beyond the half-filling
regime, are weakened and washed out when ne approaches
1, as is seen from Fig. 6(a). We find that the local den-
sity of electrons is constant when the surface effect is most
pronounced.

The Friedel oscillations in the normal (g = 0) LDOS near
the sample edges are present even in the half-filling case, as
is seen from Figs. 6(b) and 6(c). However, there is no any
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FIG. 6. (a) The site-dependent order parameter and local elec-
tron density at T = 1.1Tcb, ne = 1, h̄ωD = 1.5, and g = 2; (b) and
(c) demonstrate the zero-bias and energy dependent normal LDOS
(g = 0) for the same T and ne as in panel (a).

overall enhancement of the normal LDOS near the sample
boundaries. Moreover, one can see that the Friedel oscillations
are significant only in the domain with i < 21. They are com-
pletely washed out for i > 25. However, the surface-enhanced
order parameter is not zero even for i = 51 while the bulk
order parameter is already zero in this case (we recall that
here T = 1.1Tcb). Thus, one can conclude that the Friedel
oscillations of the LDOS and electron density near the chain
edges cannot explain the surface enhancement of the super-
conducting condensate. This confirms our conclusion that the
surface enhancement of superconductivity found in the attrac-
tive Hubbard model for the Debye energies less than the band
width is a result of the constructive interference of the pair
states. This is similar to the results obtained previously [15]
for the same model with h̄ωD � 2.

Here the question may arise whether the mean field results
obtained in the present study are reliable since 1D systems
suffer from strong superconducting fluctuations [23–27]. The
point is that the interference effects are not sensitive to the
system dimensionality and the surface enhancement of super-
conductivity occurs also in 2D and 3D systems (see, e.g., Ref.
[14]), where the fluctuations are much less important. This
is why we can expect that our conclusions obtained for the
1D chain (with a relatively simple formalism) are general
and hold for higher dimensions. For example, the surface
superconductivity impact in a 3D superconductor occupying
the half-space (say, for x > 0) can be estimated by introducing
an additional factor in Eq. (5) that accounts for the states in the
y and z directions (considering that these states are the plain
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waves). This changes the total DOS at the Fermi level but does
not alter the constructive interference of the BdG pair states.

In addition, since the interference of pair states can be
influenced by the boundary conditions at the chain edges, it
is necessary to say a few words about their possible effects
in the context of the stability of the surface enhancement
of superconductivity. The study performed in Ref. [15] has
demonstrated that the surface superconductivity is more sen-
sitive to impurities than the bulk one. This is the reflection of
the fact that the interference of the pair states is the origin of
the surface enhancement. However, the effect survives at mod-
erate surface disorder (roughness) unless the surface impurity
potential becomes of the order of the hopping parameter.
Further investigations of the boundary effects, including more
sophisticated variants of the confinement potential at the sam-
ple boundaries, would be a significant deviation from the goals
of the present study. Our consideration of the infinite potential
walls at the chain edges (open boundary conditions) is dictated
by the fact that the recent results for the interference-induced
surface superconductivity were obtained for infinite confine-
ment barriers [14,15]. Thus, our choice makes it possible to
avoid any effects of a more elaborated finite potential when
comparing our results with the earlier calculations.

As it follows from the present investigation, control-
ling the Debye frequency can be important to increase the
superconducting surface temperature effect for the phonon-
mediated superconductors. The Debye frequency depends
on the phonon group velocity. There are several ways of
controlling/tuning the phonon dispersion relation (phonon
engineering [28]) and hence the phonon group velocity. For
example, by properly selecting the parameters of cladding

materials and their thicknesses, one can control the group
velocity of phonons near the sample surface [29,30]. In ad-
dition, the frequency and group velocity of acoustic phonons
can decrease nonmonotonically with an increasing doping
concentration, revealing pronounced phonon softening effects
governed by the doping level [31]. The phonon hardening
can be reached by isotope substitutions like in H3S, where
replacement of 32S atoms by the heavier isotopes 33S, 34S, 35S,
and 36S produces a significant effect on the lattice dynamics
[32]. Finally, the strain at the sample surface/interface also af-
fects the phonon structure and dispersion relation [7,8,33,34],
and so it can be used to manipulate the Debye frequency.
Notice that the phonon softening near surfaces can have a dual
effect on the surface superconductivity enhancement: firstly,
by increasing the electron-phonon coupling, and secondly,
by increasing Tcs as compared to Tcb due to changing the
ratio of the Debye energy to the energy band width. Thus,
taking into account the present technological possibilities of
manipulating the Debye frequency in a controllable way, our
research suggests an innovative way of tailoring the surface
superconducting characteristics.
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