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Vortices in spin-0 superfluids carry magnetic flux
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Vortices in spin-0 superfluids generically carry magnetic fields inside their cores, so that even neutral
superfluid vortices may be thought of as magnetic flux tubes. We give a systematic analysis of this ‘vortex
magnetic effect’ using effective field theory, clarifying earlier literature on the subject. Our analysis shows that
in superfluid helium-4 the vortex magnetic effect may be large enough to be experimentally detectable.
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I. INTRODUCTION

Superfluidity is an emergent phenomena observed in nu-
merous many-body systems, and plays a key role in cold
nuclear, atomic, and molecular systems. Superfluidity arises
due to the formation of a Bose-Einstein condensate (BEC)
of bosonic electrically-neutral (quasi)particles at low tem-
peratures, so that a U (1) particle number symmetry is
spontaneously broken. The condensing bosons may be in-
dividual atoms, as in the atomic superfluids 4He [1,2] or
87Rb [3], or loosely bound neutral Cooper pairs of fermions as
in superfluid 3He [4] or dense neutron matter [5]. Superfluidity
has many parallels with superconductivity, with the crucial
difference that in superconductors the condensing particles are
electrically charged.

Although superfluids arise from condensation of electri-
cally neutral particles, in nature these particles always have
electrically charged constituents. Novel electromagnetic (EM)
properties of a superfluid with scalar condensates (i.e., with
vanishing spin S and orbital angular momentum L) have been
explored in recent years, starting with the experimental work
of Rybalko and collaborators [6,7] in superfluid 4He, which
triggered considerable further theoretical and experimental
work [8–35]. Previous theoretical analyses have applied a
wide variety of phenomenological models to explain the EM
properties of liquid 4He and other superfluids.

Our goal in this paper is to provide a systematic description
of the EM properties of scalar superfluids, i.e., superfluids
with scalar order parameters, in three spatial dimensions using
the technique of effective field theory, e.g., see Refs. [36,37].
As an application, we focus on the magnetic properties of
superfluid vortices. We will show that generic scalar super-
fluids embody a “vortex magnetic effect” (VME), namely
superfluid vortices carry nonzero magnetic flux. We compare
our prediction for the magnitude of the VME in superfluid 4He
to prior estimates of this effect.
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The claim that superfluid vortices carry magnetic flux
might seem surprising. After all, the parallel statement for
superconductors holds because the superconducting order pa-
rameter is electrically charged, implying that the superflow
around a vortex necessarily produces an azimuthal elec-
tric current and generates magnetic flux. In contrast, the
defining feature of superfluids is that the superfluid order
parameter is electrically neutral, so why should a superfluid
vortex carry any magnetic flux? For superfluids whose order
parameters have nonvanishing spin or orbital angular mo-
mentum, standard orbital or spin-orbit interaction terms drive
the appearance of magnetic flux [38,39]. But for superfluids
associated with scalar order parameters, it is far less obvious
why vortices should carry any magnetic flux.

We first discuss the underlying phenomena which produce
the dominant contribution to the VME, and other EM prop-
erties, in dilute scalar superfluids, following Kosevich [10].
We then present a more general effective field theory (EFT)
analysis of the problem. One key result is that the effective
Lagrangian of a generic scalar superfluid contains an operator
proportional to ω · B, coupling the fluid vorticity ω ≡ ∇ × u
to the magnetic field B. This term leads to magnetic fields
localized on superfluid vortices.

A dimensionless diluteness parameter γ ≡ 2πna3 will or-
ganize contributions in our EFT analysis, where n is the
particle density and a characterizes the physical size of the
particles comprising the fluid. (For comparison, for close-
packed hard spheres of radius a, γ ≈ 1.11.) However, there
are multiple measures of particle size, which can differ signifi-
cantly. For neutral spinless atoms, which are our focus, certain
phenomena are sensitive to the s-wave scattering length as

while other properties are characterized by the van der Waals
radius avdW or related measures. For the electromagnetic ef-
fects we focus on here, the most relevant measure of atomic
size is the charge radius of the atom, defined as the square root
of 〈r2〉 ≡ (Ze)−1

∫
d3r |ρ(r)| r2, with Ze the nuclear charge

and ρ(r) the total charge density of the atom. In much of
the rest of this paper we will denote the charge radius by
a = 〈r2〉1/2, and use this definition of atomic size to define
our EFT parameter γ . In systems of spinless bosons which
can be described by EFTs without fine-tuning, these various
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different measures of particle size will typically be compa-
rable in size and so when, e.g., our expansion parameter is
tiny (γ = 2πna3 � 1) so will be other measures of diluteness
such as 2πna3

vdW. In less dilute systems, or systems whose
EFT description involves fine-tuning, the differences between
alternative measures of the particle size can yield sizable
differences in the associated diluteness parameters. We will
discuss this issue further at the end of the paper in the context
of superfluid 4He. Our EFT analysis will be under full theoret-
ical control for sufficiently dilute scalar superfluids, while in
nondilute systems such as liquid 4He the EFT approach may
be used to estimate the magnitude of the VME.

II. UNDERLYING PHYSICS

Following Kosevich [10], the charge density of any spher-
ically symmetric neutral atom may be expressed as the
Laplacian of a radial function with rapid falloff. The Fourier
transformed charge density of such an atom has the long
wavelength form ρ̃(k) = Zea2k2/6 + O(k4), with −e the
electron charge and a the above-defined charge radius. This
implies that one may write ρ(r) = −∇2( Zea2

6 f (r)) where
f (r) is a rapidly decreasing spherically symmetric function
which integrates to unity, or in other words a smeared-out
3D delta function. For hydrogen, a = √

3 aB and f (r) =
(2π )−1a−3

B (1+aB/|r|) e−2|r|/aB with aB the Bohr radius. Con-
sequently, every atom generates an electrostatic potential
proportional to this smeared-out delta function. For an ar-
bitrary collection of widely separated identical atoms at
positions {xi}, the net electrostatic potential is thus

�(x) = Ze a2

6ε0

∑
i

f (x−xi ) 	 Ze a2

6ε0
n(x) . (1)

The last form, with n(x) the number density of atoms, is valid
whenever the potential is to be integrated against functions
slowly varying on the scale of a, so that the atomic scale
details of f (x) are irrelevant.

The electric field experienced by a test charge is −∇�. An
inhomogeneous density distribution which is averaged over
a region of size λ 
 n−1/3 
 a induces a polarization P =
1
6 Ze a2 ∇n. This phenomenon has been termed flexoelectricity
(see, for example, Ref. [9].) If the medium is moving with
some velocity v (small compared to the speed of light c),
relativistic invariance of electromagnetism implies that there
will be a magnetization M = P × v.

A superfluid vortex directly embodies the above phenom-
ena. For a minimal circulation vortex, the superfluid velocity
field v = (h̄/M ) θ̂/r, with r the distance from the vortex core
and M the condensing particle mass. 1 This leads to a total

1The fluid flow velocity v(r) = j(r)/n(r), with j the particle num-
ber current density and n the particle number density. In a mean
field treatment of a vortex, the radial dependence of n(r) cancels
that of r|j(r)|, leaving |v| ∝ 1/r even inside the vortex core, down
to the limit of validity of the mean field treatment set by scale of the
interparticle spacing.

magnetic flux

�B ≡ μ0

∫
d� · M = Zα λC a2	n

2

3
�0, (2)

where α ≡ e2/(4πε0 h̄c) is the fine structure constant, λC ≡
2π h̄/(Mc) is the Compton wavelength of the fluid particles,
	n ≡ n̄ − n(0) is the difference of the average particle density
n̄ and the reduced density n(0) at the vortex center, and �0 ≡
π h̄/e is the usual magnetic flux quantum.

III. EFFECTIVE FIELD THEORY

There are further mechanisms which can generate nonva-
nishing magnetic flux in superfluid vortices, including van
der Waals induced polarization in the presence of nonuniform
density, and inertial effects in accelerating (or rotating) sys-
tems. These mechanisms have been discussed and analyzed
in various ways in Refs. [8–35]. In dilute systems these other
mechanisms lead to effects suppressed by additional factors
of the small parameters na3 and/or me/M relative to the flex-
oelectric mechanism described above. But to be confident one
has not neglected some subtle yet important physical effect,
it is very helpful to treat the problem systematically, without
the need to consider individual microscopic mechanisms in
isolation. This is the raison d’être of the effective field theory
approach.

Consider a translation-invariant system of scalar (S = L =
0) electrically neutral nonrelativistic bosons of mass M inter-
acting via short-range interactions. In addition to a conserved
particle number, we assume that the interactions are also par-
ity and time reversal invariant. If the system is dilute, meaning
that γ � 1, then the effects of interactions can be systemati-
cally characterized using effective field theory (EFT).

A complex scalar field φ serves as a boson annihilation
operator, with the U (1) particle number symmetry acting as
φ → eiαφ. The electric and magnetic fields are related to the
electromagnetic potentials A0 ≡ �/c and A in the usual man-
ner, E = −∇� − ∂t A and B = ∇ × A. On the low energy
scales of interest, we assume that the only relevant degrees
of freedom are those described by the complex scalar field
φ together with the electromagnetic field. Consequently, an
action built from local gauge-invariant combinations of these
fields can provide an effective description of the system.

Since our goal is to understand EM effects, it will be
helpful to take into account the constraints of Lorentz
invariance within our nonrelativistic EFT. To the order
to which we will work, it is sufficient to demand
that our EFT be invariant under linearized Lorentz
transformations representing boosts by some velocity
v � c. Such transformations act on the fields as φ(x, t ) →
e−iMv·x φ(x′, t ′), E(x, t ) → E(x′, t ′) + v × B(x′, t ′), and
B(x, t ) → B(x′, t ′) − v × E(x′, t ′)/c2, where x′ ≡ x + v t
and t ′ ≡ t + v · x/c2.

Although the particles (atoms) created by φ† are neu-
tral, they contain charged constituents and interact with EM
fields through nonminimal couplings. To enable a systematic
treatment we initially assume that the system is dilute, and
subsequently discuss implications when extrapolating to a
denser fluid like liquid helium. Under these assumptions, the
most general effective action will contain a sum of all local
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terms, consistent with our symmetries, built from φ, E, and B
and their spatial derivatives. The result may be expressed as

S = Sφ + SEM + Sφ, EM , (3)

where Sφ and SEM contain the free kinetic terms plus self-
interactions of the scalar and EM fields, respectively, while
Sφ, EM describes the couplings between these fields. The EFT
[Eq. (3)], correctly constructed, will reproduce physics on
sufficiently large spatial and time scales. Taking units where
h̄ = ε0 = 1, the spatial scales described by the EFT must
be large compared to the atomic size a, or equivalently for
spatial momenta small compared to the EFT breakdown scale
� ∼ a−1. The time scales described by the EFT must be large
compared to the inverse of the energy scale min(E�, Ebind ),
where E� ≡ �2/M is the kinetic energy associated with mo-
mentum � and Ebind ≡ e2�/(4π ) is the atomic binding scale.
Physically, of course, E� is smaller than Ebind by a factor of
m/M ∼ 10−4, where m is the electron mass.

To compare the importance of different terms, we define
the scaling dimensions of coordinates and fields as follows:

[x] = 1/Q, [t] = M/Q2, [φ] = Q3/2, (4a)

[E] = [cB] = M−1/2 Q5/2, [e2] = [c] = Q/M , (4b)

where Q is a characteristic momentum scale. Since S is di-
mensionless, every term in the Lagrange density must have
dimensions of Q5/M. It is helpful to write each term in the
effective Lagrangian in the form ci �

αi
i Eβi

i Oi, where ci is an
O(1) dimensionless coefficient, Oi is some combination of
fields and their derivatives, �i and Ei are the natural ultraviolet
(UV) momentum and energy scales associated with the partic-
ular term in question, and the exponents αi and βi characterize
the sensitivity of the process described by Oi to the UV spatial
momentum and energy scales. For all of the terms that we
discuss below, �i = 1/a ≡ � and Ei is either E� or Ebind.

The part of the action only involving the neutral bosons has
the form

Sφ =
∫

dt d3x

[
φ†

(
i∂t + μ + ∇2

2M

)
φ − f4 a

M
|φ|4 + · · ·

]
.

(5)
Here μ is chemical potential for particle number, and the
coefficient f4 in the quartic self-interaction term is a dimen-
sionless O(1) low-energy parameter which is determined by
demanding that the quartic interaction correctly reproduce
two-particle s-wave scattering. As previously mentioned in
the introduction, without fine-tuning the s-wave scattering
length as, the van der Waals radius avdW and the charge radius
a will generically be roughly comparable in size.

The ellipsis in Eq. (5) represents additional terms involv-
ing explicit derivatives and/or higher powers of φ, whose
coefficients must contain additional powers of a (or 1/�) to
achieve the correct dimensions. Such higher order terms not
explicitly shown in Eq. (5) have negligibly small effects on
the long-distance physics in the limit 2πna3 � 1, making the
properties of dilute systems of bosons systematically calcula-
ble using the EFT, see, e.g. Ref. [37].

The kinetic terms of the EM fields are contained in SEM,
which takes the form

SEM = 1
2

∫
dt d3x (E2 − c2B2 + · · · ). (6)

The ellipsis represents self-interactions of the EM fields in-
duced by radiative effects.

To construct interaction terms coupling φ to the EM fields,
let j ≡ i

2M ((∇φ†)φ − φ†∇φ) denote the conserved particle
number current density and n ≡ φ†φ the particle number den-
sity. We also define the density gradient ρ ≡ ∇n and vorticity
ω ≡ ∇ × j. The operators ρ and ω will play roles analogous to
electric and magnetic dipole moment densities, respectively.
The fields E and ρ are parity odd while B, ω, and φ are parity
even. Under time reversal, B and ω are odd, E and ρ are even,
and φ ↔ φ†.

Now we can discuss the leading interaction terms in Sφ, EM.
For our purposes, it will suffice to write out all symmetry-
allowed terms with two powers of the scalar field, up to two
powers of the EM fields, and at most two spatial derivatives.
There are three such terms,2

Sφ, EM =
∫

dt d3x

[
b e a2 (ρ · E + ω · B)

+ 1

2
cE a3 (n E2 − 2 j · (E × B))

− 1

2
cM e4a3

(
n B2 − 2

c2
j · (E × B)

)
+ · · ·

]
, (7)

where the ellipsis stands for terms with higher powers of fields
and/or explicit time or space derivatives. Note that terms
proportional to ρ · B, ω · E, and n E · B are ruled out by our
discrete symmetries.

We have organized the terms appearing in interaction ac-
tion Eq. (7) so that each line is invariant under linearized
Lorentz boosts, up to residuals suppressed by quadratic com-
binations of boost velocity over c and/or field time derivatives
over Mc2 (such residual terms may be canceled by systemat-
ically adding yet higher order terms to the action). Imposing
boost invariance reduces the set of independent dimension-
less parameters (or “low-energy constants”) characterizing the
EFT, at this order, to three: b, cE , and cM , all of which will
generically be O(1) unless the interactions in the underlying
microscopic theory are deliberately fine-tuned.3

2One could eliminate the b term by performing the electro-
magnetic field redefinition, A0 → A0 + 1

2 b ea2φ†φ/(1 + cE a3n) and
A → A + 1

2 b ea2j/(c2 + cMe4a3n), but this would change the phys-
ical meaning of the E and B fields in an unhelpful manner while
not, of course, affecting any observable effects. We prefer to use the
standard electric and magnetic fields, and hence choose to work with
the action Eq. (7) in which the b term appears explicitly.

3If the interactions were to preserve a discrete symmetry S which
flips the EM potentials � → −� and A → −A while leaving the
neutral scalar φ unchanged, then b = 0. Such a putative symmetry
is not charge conjugation, which would also conjugate φ, and is not
a symmetry of the nonrelativistic action [Eq. (5)]. But if the field
φ represents some composite particle built from oppositely-charged
but otherwise identical constituents, then S would correspond to a
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The factors of e and a shown explicitly in the above three
terms of Sφ,EM serve to render the coefficients b, cE , and
cM dimensionless. But since e2/c and e2Ma are dimension-
less combinations, these factors are not solely determined
by dimensional analysis. The given prefactors correspond to
the statement that the relevant UV energy scale for these
EM interaction terms is Ebind. (Equivalently, these factors are
also determined by noting that, in a homogeneous medium at
rest, these interaction terms should be unaffected by sending
c → ∞ and M → ∞.)

The cE and cB terms in Sφ,EM, which are quadratic in
EM fields, characterize the dielectric and diamagnetic lin-
ear response of the medium, so that ε/ε0 = 1 + cE a3 n̄ and
μ0/μ = 1 + cM (e2/c)2a3 n̄. We will show that the b term
generates the rotation-induced polarization and magnetization
effects described in the introduction.

IV. MAGNETIC STRUCTURE OF ROTATING
SUPERFLUIDS

The b term of Sφ,EM, which is linear in E and B, vanishes
in any homogeneous, nonrotating system, but generates novel
effects in inhomogeneous systems such as, in particular, low
temperature superfluids with vortices. To show this, we first
consider a nonrotating zero-temperature system described by
the EFT [Eq. (3)], with repulsive self-interactions and a chem-
ical potential driving boson condensation, f4 > 0 and μ > 0.
The field φ acquires a nonvanishing expectation value with
squared magnitude

φ̄2 ≡ |〈φ〉|2 = Mμ

2 a f4
, (8)

to leading order in the EFT expansion. This indicates a super-
fluid state with spontaneously broken U (1) particle number
symmetry. In dilute superfluids, φ̄2 is close to (but less than)
the total particle density n̄ = 〈n〉 in the interacting ground
state.

Rotating a superfluid sample induces a nonzero super-
flow from variation in the condensate phase vs ≡ js/|〈φ〉|2 =
−∇(arg〈φ〉)/M, where one should remember that in a rotating
system 〈φ〉 can depend on position. Vortices are characterized
by a quantized circulation arising from nontrivial winding of
the phase, C ≡ ∮

d� · vs(x) = 2πν/M, where ν ∈ Z. Equiv-
alently, the vorticity ω is nonzero, with surface integrals of
vorticity counting the number of vortices piercing the surface,∫
S d� · ω = (2π/M ) ν.

Due to the ω · B interaction term of the EFT, nonvanishing
vorticity acts as a bias which drives a shift in the magnetic
field minimizing the energy. Indeed, we can write bea2 ω ·
B = bea2[(∇ × ω) · A − ∇ · (ω × A)]. Integrating this term
over some volume V with boundary S ≡ ∂V gives

∫
V JV ·

A + ∫
S JS · A, with JV ≡ bea2(∇ × ω), JS ≡ bea2 ω × n̂,

charged constituent permutation and could in principle be a sym-
metry of the long-distance EFT (3). However, in physical systems of
interest there is, of course, no such symmetry interchanging electrons
and ions. Therefore the b term is not symmetry forbidden, and one
should expect the coefficient b to be O(1); we show this explicitly in
a toy model calculation in the Supplementary Materials.

and n̂ an outward normal to the boundary. This shows that
in a rotating sample with boundary S , there is a volume
EM current density JV proportional to the curl of vorticity
plus a surface EM current density JS directly proportional to
vorticity.

V. ANALYSIS OF VME

A straight superfluid vortex with minimal winding is
a field configuration of the form 〈φ(x)〉 = φ̄ f (r)eiθ , using
cylindrical coordinates x = (r, θ, z) centered on and aligned
with the vortex. Configurations with nonminimal winding
in simply-connected regions typically resemble lattices built
from minimal-winding vortices. The radial function f (r) is
determined, to leading order in density, by solving the classi-
cal equations of motion. It varies smoothly from 0 to 1 as r
ranges from 0 to ∞, with asymptotics f (r) ∼ r/ζ as r → 0
and f (r) ∼ 1 − ξ 2/r2 as r → ∞. Here ξ ≡ (4Mμ)−1/2 =
a(8 f4n̄ a3)−1/2 is the “healing length” of the condensate. In
the low-density limit the core size ζ is proportional to ξ , with
g ≡ ξ/ζ = 0.412(4).

The vorticity of a minimal vortex is given by ω =
2h̄φ̄2 ẑ f (r) f ′(r)/(Mr), and its curl gives

JV = −2h̄bea2φ̄2

M

(
f (r) f ′(r)

r

)′
θ̂ . (9)

Since ω falls as O(r−5) at large r, the surface current
j is negligible. A straightforward application of Ampère’s
law gives the magnetic field associated to a single minimal
vortex, Bs(x) = 2μ0 h̄ b e a2φ̄2

M
f (r) f ′ (r)

r ẑ . The magnitude of Bs

approaches 2μ0 h̄ be a2φ̄2/(Mζ 2) at the center of the vortex,
and falls as O(r−4) at large distance. The resulting magnetic
flux is

�ν=1
B = 2πμ0 h̄ φ̄2 b e a2

M
. (10)

At least to this order in the EFT analysis, the magnetic flux
is completely independent of the internal structure of the
superfluid vortex. More generally, any configuration with the
topology of a superfluid vortex will necessarily carry a non-
vanishing magnetic flux. A configuration of ν well-separated
vortices will have total flux which is just ν times the minimal
value [Eq. (10)].

Comparing our EFT result [Eq. (10)] and the result
[Eq. (2)] of our earlier discussion based on the flexoelectric
effect, one sees that the two expressions (for dilute systems
where 	n ≈ n̄) coincide when the undetermined O(1) EFT
coefficient b has the explicit value

b = Z/6 . (11)

VI. OUTLOOK

Numerical estimates suggest that the VME may be exper-
imentally observable. First, consider a superfluid composed
of bosonic atoms with atomic number A, so that me/M =
5.4 × 10−4A−1. Expressing the flux carried by a unit-winding
superfluid vortex in terms of the superconducting flux quan-
tum �0 = π h̄/e and the Bohr radius aB = h̄/(αmec) (with
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fine structure constant α ≡ e2/(4πε0h̄c) ≈ 1/137), we have

�B

�0
= 8π α2 b n̄ a2aB

me

M

= 7.2 × 10−7 b

A

(aB

a

)
(n̄ a3). (12)

Note that we have replaced a factor of φ̄2 by n̄. The difference
between these quantities is suppressed by a positive power of
n̄a3, and we have only worked to leading order in n̄a3, so at
the level of precision of our analysis we would not be justified
in making a distinction between φ̄2 and n̄.

To maximize the magnetic flux carried by a vortex and
make experimental detection of the VME easier, we now
estimate the size of the VME in nondilute superfluids. The
paradigmatic example of a nondilute spin-0 superfluid is su-
perfluid Helium-4. The helium charge radius a ≈ 1.1 aB =
0.58 Å (see, e.g., p. 325 in Ref. [40])4 and the van der Waals
radius avdW ≈ 1.4 Å [42]. The 4He dimer binding energy is
measured to be 151.9 ± 13.3 neV [43,44], corresponding to
a very large s-wave scattering length as ≈ 83 Å. The large
hierarchy between the s-wave scattering length as and other
measures of helium atom size indicates that any EFT de-
scription of helium would need to involve fine-tuning of the
quartic interaction strength. We emphasize that the resulting
EFT would accurately describe phenomena at distances which
are either large or small compared to the scattering length as,
as long as relevant distances are large compared to the charge
radius a (or avdW), and so long as the diluteness parameters
2π n̄a3

vdW, 2π n̄a3 are both sufficiently small.
However, the particle density of superfluid 4He is n̄ ≈

0.022 Å−3 [45], which leads to a charge radius based dilute-
ness parameter γ ≈ 0.03, while the somewhat larger van der
Waals radius of helium gives an O(1) value for the corre-
sponding diluteness parameter 2π n̄a3

vdW ≈ 0.4. This indicates
that superfluid helium cannot be viewed as highly dilute, and
so applying our EFT results to helium necessarily involves an
extrapolation with considerable uncertainty.

Inserting the values above into Eq. (12), and setting Z = 2
so that b ≈ 1/3, leads to the estimate

�B

�0
≈ 2 × 10−10 . (Superfluid Helium). (13)

This estimate, based on an extrapolation of results from our
dilute system analysis, should be conservatively viewed as
subject to an order of magnitude theoretical uncertainty. Nev-
ertheless, our result for the magnetic flux of a superfluid 4He
vortex is two orders of magnitude larger than the earlier pre-
diction of Ref. [16]. The primary reason for the discrepancy is
that Ref. [16] assumed that the flexoelectric effect arises pri-
marily from Van der Waals interactions between atoms, rather

4This value is from a Dirac-Fock calculation of ground state he-
lium. A more accurate multi-configuration calculation [41] produces
a value of 〈r〉 for helium which is only 0.2% larger than the corre-
sponding Dirac-Fock value, so the result of Ref. [40] for the helium
charge radius is surely accurate to 1% or better. Physically, it is clear
that the charge radius of ground state Z = 2 helium must be smaller
than the hydrogenic value of

√
3 aB.

than just the nonuniform spatial distribution of the individual
atoms. Our EFT analysis gives a systematic demonstration
that the latter physics drives the leading-order vortex magnetic
effect, at least in a limit where systematic analytic calculations
are possible.

One plausible approach to experimentally measuring the
magnetic properties of 4He superfluid vortices would involve
using SQUIDs (superconducting quantum interference de-
vices) to detect the vortex magnetic flux. Quantum-limited
SQUIDs of radius 1 μm and a noise in the range of ∼45 ×
10−9 �0/

√
Hz were reported in Ref. [46]. Using a SQUID

with this performance in an experiment with a measurement
time of several days should enable one to measure directly the
vortex magnetic effect from a single superfluid 4He vortex.

ACKNOWLEDGMENTS

We are grateful to F. Burnell for discussions and collabo-
ration at the beginning of this project, and thank A. Kamenev,
M. Pospelov, S. I. Shevchenko, B. Shkolovskii, M. Shifman,
and B. Spivak for discussions, as well as J. Kas and J. Rehr
for directing us to useful helium structure calculations. We
also thank A. Andreev, B. Svistunov, G. Volovik, and an
anonymous referee for drawing our attention to an error in an
earlier version of this paper, and acknowledge support from
U. Minn (A.C.), Grant No. DE-SC0011637 (L.G.Y.) and the
DOE Nuclear Physics Quantum Horizons Program through
the Early Career Award No. DE-SC0021892 (S.S.).

APPENDIX: MICROSCOPIC TOY MODEL

We consider a microscopic toy model describing neutral
atoms comprised of oppositely charged constituents, which at
low energies is described by an effective field theory analo-
gous to (7). The discussion here supports the more general
power-counting arguments we used to determine the combi-
nations of scales appearing in the EFT describing the leading
electromagnetic interactions of neutral atomic superfluids.

Suppose that a neutral atom field φ represents a bound
state of a positively charged heavy nucleus of mass m+ and
a single electron of mass m−, described by the fields φ+ and
φ− respectively. For our purposes the statistics of the charged
particles are irrelevant, and we take them to be bosons for
simplicity. The corresponding Lagrangian is given by

L = − 1

4
F 2 + φ†

(
i∂t − 2μ + ∇2

2M

)
φ

+
∑
±

φ
†
±

(
i∂t − μ ∓ eA0 + (∇ ∓ ie

c A)2

2m±

)
φ±

− ε(φ φ
†
+φ

†
− + φ†φ+φ−) , (A1)

where M = m+ + m− and μ is the chemical potential for the
single U (1) global symmetry under which φ+, φ− have charge
1 and φ has charge 2. The ε coupling reflects the microscopic
picture of the neutral atom as a bound state of charged con-
stituents, see e.g. Ref. [47] for a more general discussion of
this sort of approach in EFT. We will use Eq. (A1) to evaluate
the amplitude for scattering of bound states due to a classical
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Ψ Ψ

φ+

φ−

φ φ

φ+

φ−

FIG. 1. One-loop diagrams with and without an explicit φ field. The dashed line represents Coulomb exchange, and the double line �

represents the result of taking all Coulomb ladder diagrams into account to produce the neutral external states. The top and bottom solid lines
denote φ+ and φ− respectively.

external electromagnetic field, and match the result to the
same amplitude as computed in the EFT in Eq. (7).

To begin, we observe that the ε coupling relates the atomic
bound state φ to its constituents φ+ and φ−, and can be
understood as a contact interaction which approximates the
re-summed ladder of Coulomb exchanges between φ+ and φ−.
This means that ε can be related to the microscopic parameters
a, e, m−, m+.

As depicted in Fig. 1, in the microscopic theory the basic
bubble self-energy diagram is approximately

∼
∫ 4∏

i=1

d4xi〈�p′ |φ†
+(x3)φ†

−(x4)
e2δ(t4 − t3)

4π |x4 − x3| iG−
4,2iG+

3,1

× e2δ(t2 − t1)

4π |x2 − x1|φ+(x1)φ−(x2)|�p〉 , (A2)

where

G±
i, j =

∫
d4k

(2π )4

e−ik·(xi−x j )

k0 − k2

2m±
+ μ + iε

(A3)

are the non-relativistic propagators for φ±. To get the ampli-
tude we are interested in, we need to contract the external legs,
taking into account that the external states are bound states
rather than free particle states. This can be done by writing

φ+(x1)φ−(x2)|�p〉 = e−ip0tφp(R1) e−iEbtψ (r1), (A4)

where R1 = m+x1+m−x2

m++m−
and r1 = x2 − x1 are the center of

mass and relative coordinates of the particles φ±, p0 and p
are the energy and momentum of the center of mass, and Eb is
the binding energy. The center of mass motion is described by
a plane wave φp(R1) = eip·R1 . For the motion with respect to

the relative coordinates, we use the S-wave Coulomb bound
state wave function of size a, ψ (r1) ∼ 1

a3/2 e−|r1|/a. Analogous
forms hold for the final state contraction. The contraction with
the external bound states introduces a screening length a for
the Coulomb interaction. Matching the momentum space loop
integral to the analogous result in the low energy effective
theory amounts to identifying

ε2 ←→ α2c2

a3

1((
k − mr

m+
p
)2 + a−2

)2 , (A5)

where k is the loop momentum and mr = m+m−/(m+ + m−)
is the reduced mass. The loop integral arising from Eq. (A2) is
dominated by momentum of the order of the external momen-
tum, so in the Coulomb propagators we can expand in both p2

and k2 and we obtain the relation

ε2 ≈ α2c2a ≈ 1

m2−a
. (A6)

where to get to the final expression of the right we took
m− � m+.

We now evaluate the amplitude for scattering of neu-
tral bound states in a classical EM field, see Fig. 2. More
specifically, we expand the S-matrix element in the external
momenta and concentrate on the leading non-zero contri-
butions, corresponding to the leading terms in the effective
Lagrangian (7). It suffices to consider scattering from a static
electric field,

S f i = (−i)3eε2
∫

d4x1d4x2d4x3〈i|

× [φ†(x2)iG+
2,3iG+

3,1iG−
2,1A0(x3)φ(x1)]| f 〉 − (+ ↔ −) .

(A7)

φ φ

φ+

φ−

φ φ

φ+

φ−

FIG. 2. One-loop diagrams giving rise to the couplings between E, B and ρ,ω defined in Eq. (7). The bold line denotes φ and the top and
bottom solid lines denote φ+ and φ− respectively.
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The initial and final states are single-particle φ states with
momenta p and p′. Expanding in the external momenta, the
leading contribution to the amplitude is

A ∼ eε2 	m

m+m−

(
mr

p0 + 2μ

)3/2

(p − p′)2A0(p′ − p) , (A8)

where 	m = m+ − m−. In the case of interest m− � m+, and
to leading order in the momentum expansion we can let p0 =

Eb = − 1
2m−a2 equal the binding energy. Furthermore, since the

chemical potential μ is suppressed relative to Eb by a factor
of m−/m+, we obtain the final expression

A ∼ ea2 (p′ − p)2A0(p′ − p), (A9)

neglecting O(m−/m+) corrections and using Eq. (A6). This
coincides with the same scattering amplitude as computed
using the effective field theory in Eq. (7) with an O(1) value
for the coefficient b.
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