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Domain-wall skyrmions in chiral magnets
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Domain-wall skyrmions are skyrmions trapped inside a domain wall. We investigate domain-wall skyrmions
in chiral magnets using a fully analytic approach. Treating the Dzyaloshinskii-Moriya (DM) interaction perturba-
tively, we construct the low-energy effective theory of a magnetic domain wall in an O(3) sigma model with the
DM interaction and an easy-axis potential term, yielding a sine-Gordon model. We then construct domain-wall
skyrmions as sine-Gordon solitons along the domain wall. We also construct domain-wall skyrmions on top of
a pair of a domain wall and an anti-domain wall. One characteristic feature of domain-wall skyrmions is that
both skyrmions and antiskyrmions are equally stable inside the domain wall, unlike the bulk in which only one
of them is stable.
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I. INTRODUCTION

Skyrmions are topological solitons proposed by Skyrme as
a model of nuclei [1]. They have been shown to be the baryons
of large-Nc quantum chromodynamics (QCD) [2] and have
been studied extensively [3]. Recently, there has been great in-
terest in magnetic skyrmions [4], which are two-dimensional
analogs of skyrmions in chiral magnets, from both fundamen-
tal and applied sciences, since they were realized in chiral
magnets with the Dzyaloshinskii-Moriya (DM) interaction
[5] in laboratory experiments [6] and have been proposed as
information carriers in ultradense memory and logic devices
with low energy consumption [7]. In a certain parameter re-
gion of chiral magnets, a chiral soliton lattice is the ground
state [8] where the energy of a single soliton is negative,
and one-dimensional modulated states have lower energy than
skyrmions. In another parameter region, the ground state is a
lattice of skyrmions in which the energy of a single skyrmion
becomes negative [9]. Finally, there are ferromagnetic regions
of the phase diagram where skyrmions appear as positive
energy solitons above the ferromagnetic ground state. In ad-
dition, isolated skyrmions are also experimentally observable
[10]. Another recent development is observations of skyrmion
tubes in three-dimensional (3D) materials [11].

On the other hand, when there is an easy-axis potential
term, magnetic domain walls have also been studied for a long
time, in particular for their application to magnetic memories
[12,13]. It is thus natural to expect, by combining these two
objects, that there should be potential applications in con-
structing further useful nanodevices, such as the domain-wall
racetrack memory proposal [12] which has been extended to a
proposal using skyrmions [14]. As such a composite object,

*calum.ross@ucl.ac.uk
†nitta@phys-h.keio.ac.jp

“domain-wall skyrmions” have been proposed in quantum
field theory [15]1 and have been recently observed experimen-
tally in chiral magnets [17–19] (see also Ref. [20]). A first
step at treating chiral magnetic domain walls theoretically is
given in Refs. [21,22]. In fact, a sine-Gordon-type model of
the domain-wall effective energy was first derived in Ref. [22],
where a different starting point is taken to that considered
here. Composite objects like domain-wall skyrmions also oc-
cur as vortex sheets in 3He [23] and in quantum Hall systems
[24].

In quantum field theory, domain-wall skyrmions can be
described by sine-Gordon kink configurations on top of a
domain wall or anti-domain wall [15]: when skyrmions are ab-
sorbed into a domain wall, they become sine-Gordon solitons
(see Ref. [25] for subsequent studies and Ref. [26] for earlier
related works). More precisely, a domain wall in an O(3)
sigma model with an easy-axis potential term V = m2(1 − n2

3)
possesses the moduli space (collective coordinates) R × S1

[27]. Then, the low-energy effective theory describing the
low-energy dynamics of the domain wall can be constructed
by the so-called moduli approximation [28], yielding a non-
linear sigma model with the target space R × S1 in this case.
When there is a second anisotropy term involving n1, in ad-
dition to the aforementioned potential term V in the O(3)
model, it induces a sine-Gordon potential on the S1 part
in the domain-wall effective theory. Then, the domain-wall
skyrmion can be expressed as a sine-Gordon soliton in the
domain-wall effective theory [15]. In the absence of the sec-
ond anisotropy n1, the skyrmion is diluted along the domain
wall and eventually disappears, once it is absorbed into the
domain wall. In quantum field theory, domain-wall skyrmions

1Originally the term “domain-wall skyrmions” was first introduced
in Ref. [16] in which Yang-Mills instantons become 3D skyrmions
inside a domain wall.
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are generalized in various directions.2 On the other hand,
originally skyrmions were proposed as a model of nuclei and
live in three spatial dimensions [1]. In this dimensionality,
domain-wall skyrmions are 3D skyrmions absorbed into a
domain wall, in which they become two-dimensional (2D)
skyrmions (lumps) [34] (see also Ref. [35] for similar config-
urations). Higher-dimensional domain-wall skyrmions were
further proposed [36]. Such domain-wall skyrmions play a
key role in understanding relations between topological soli-
tons in quantum field theory as proposed in Ref. [37].

In this paper, we study, in a fully analytic way, domain-
wall skyrmions in chiral magnets described by an O(3) sigma
model with a DM interaction and an easy-axis potential term.
Working in a small coupling regime for the DM term, we
construct a domain-wall effective theory and find that it is a
sine-Gordon model with the DM term supplying the potential,
even in the absence of the second anisotropy term for n1.
We then construct domain-wall skyrmions as sine-Gordon
solitons in terms of the domain-wall effective theory. We also
construct domain-wall skyrmions on top of a pair of a domain
wall and an anti-domain wall, and a domain-wall skyrmion
lattice. We find that that both skyrmions and antiskyrmions
are equally stable inside the domain wall, in contrast to the
bulk where only either of them is stable. The analytic method
proposed in this paper should be useful for further studies of
domain-wall skyrmions and proposing possible applications
to nanotechnology.

This paper is organized as follows. In Sec. II, we give our
model and discuss the Derrick scaling argument [38] for sta-
bility of topological solitons in chiral magnets. In Sec. III, we
construct the low-energy effective action of a single domain
wall and present the domain-wall skyrmion solutions as well
as a configuration where a lattice of sine-Gordon kinks is
placed on top of a domain wall. Section IV is devoted to a
summary and discussion.

II. THE MODEL

In this section, we describe the model that we consider in
this paper and apply the Derrick scaling argument to chiral
magnets.

A. Energy functionals

The static energy of a chiral magnet is described by an
energy functional in terms of the magnetization vector field
�n = (n1, n2, n3) : R2 → S2, a normalized three-vector. Con-
sidering a specific model where there is both a DM term and

2Some generalizations in field theory are the following: It was
generalized to the CPN−1 model in Ref. [29], where CPN−1 =
SU (N )/[SU (N − 1) × U (1)] is a complex projective space of com-
plex dimension N − 1. The CPN−1 model also admits skyrmions due
to π2[CPN−1] � Z, and N − 1 parallel domain walls in the presence
of a suitable potential term as a generalization of the easy-axis
potential [30]. Then, domain-wall skyrmions in the CPN−1 model are
U (1)N−1 coupled sine-Gordon solitons inside CPN−1 domain walls
[29]. It was also shown in Refs. [31] that skyrmions in the Grassman-
nian sigma model become non-Abelian sine-Gordon solitons [32]
inside a non-Abelian domain wall [16,33].

an easy-axis anisotropy term in the z direction leads to an O(3)
model:

E = 1
2∇�n · ∇�n + κ �n · (∇−α × �n) + m2

(
1 − n2

3

)
. (1)

The rotated gradient ∇−α with α ∈ (0, 2π ] shows that we have
a one-parameter family of models as discussed in Ref. [39].
Changing α changes the type of DM term with α = 0 corre-
sponding to a Bloch DM term and α = π

2 a Néel DM term.
A convenient representation of the energy uses a complex

stereographic coordinate u ∈ C related to the magnetization
vector field through u = n1+in2

1+n3
. In this coordinate, the static

energy can be rewritten in the form of the CP1 model as

E [u] = 2
∫

d2x

[ |∇u|2 + 2κIm(eiα[∂zu + u2∂zū]) + 2m2|u|2
(1 + |u|2)2

]

= EH + EDM + E0, (2)

EH = 2
∫

d2x
|∇u|2

(1 + |u|2)2
, (3)

EDM = 2
∫

d2x
2κIm(eiα[∂zu + u2∂zū])

(1 + |u|2)2
, (4)

E0 = 2
∫

d2x
2m2|u|2

(1 + |u|2)2
, (5)

where EH is the Heisenberg, or Dirichlet, term in the energy
involving two derivatives, EDM is the DM interaction term,
and E0 is the anisotropy term.

In terms of minimizing the energy, it is well known that the
three terms in Eq. (2) all want different things: The Heisenberg
term wants the magnetization vector field to align at nearby
points, the potential term is easy-axis anisotropy and so wants
the magnetization to point in the third direction �n = ±ê3, and
finally the DM term wants the magnetization vector to twist
with the nature of the twist determined by the material param-
eter α. In particular as pointed out in Ref. [39] when α = 0
the DM is of Bloch type and describes materials supporting
Bloch-type skyrmions, while α = π

2 gives a Néel-type DM
term and describes materials supporting Néel-type skyrmions.

B. Stability and Derrick scaling

Given a static energy functional such as Eq. (2), it is natu-
ral to ask if energy-minimizing solutions exist. The standard
approach is to use a Derrick scaling argument [3, 38] to show
that static solutions exist. This scaling argument is naturally
dimension dependent and here we want to keep track of both
the two-dimensional and one-dimensional (1D) cases, rele-
vant for skyrmions and domain walls, respectively.

Let uλ = u(λx) be a scaled field and then treat the 1D and
2D cases separately.

One-dimensional case. In one dimension, the DM term is
scale invariant since it involves one integral and one deriva-
tive, while the potential and Heisenberg terms scale oppositely
to each other:

E [uλ] = λEH [u] + EDM[u] + λ−1E0[u]. (6)
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There are stable static solutions if this has a stationary point
as a function of λ, in other words, when dE

dλ
|λ=1 = 0. This

happens when

EH [u] = E0[u]. (7)

Thus, the DM term is not needed for stable domain-wall
solutions to exist.

Two-dimensional case. In this case the Heisenberg term is
scale invariant and the energy scales as

E [uλ] = EH [u] + λ−1EDM[u] + λ−2E0[u]. (8)

Here dE
dλ

|λ=1 = 0 implies that

EDM = −2E0, (9)

which is possible since the DM term can give a negative con-
tribution to the energy. Due to the chirality of the DM term, for
a given material either skyrmions or antiskyrmions will have
negative DM energy. The other will have positive DM energy
and is thus unstable. So either skyrmions or antiskyrmions are
stable in a given material but the other is unstable.3

III. DOMAIN-WALL SKYRMIONS FROM LOW-ENERGY
EFFECTIVE THEORY

A. Domain-wall solutions in the absence of the DM term

From Refs. [15,27] it is known that in the absence of the
DM term there are static domain-wall solutions. Using the
stereographic coordinate u, the domain-wall and anti-domain-

wall configurations are

udw = em(x1−X )+iϕ, uadw = e−m(x1−X )+iϕ, (10)

with X and ϕ moduli parameters corresponding to translation
and phase of the wall, respectively. Both of these solutions
have the same energy when κ = 0; the energy is the domain-
wall tension,

E [udw] = |T | =
∣∣∣∣∣m

2

[
1 − |u|2
1 + |u|2

]x=+∞

x=−∞

∣∣∣∣∣ = m. (11)

By using the moduli approximation [28], we promote the
moduli X, ϕ fields on the wall to be functions of the coordi-
nates orthogonal to the wall; for our two-dimensional model
this is the x2 direction. From Ref. [15], the effective energy
along the domain wall for the Heisenberg and anisotropy
terms is

Eeff = 1

2m
(m2∂2X∂2X + ∂2ϕ∂2ϕ), (12)

where a constant term −m has been subtracted from the effec-
tive energy.

B. Effective energy for small κ and kinks solutions

Turning on a small DM term perturbatively, κ < 1, we can
still take the domain-wall and anti-domain-wall solutions as
valid configurations and we can consider fluctuations in X and
ϕ around the domain-wall and anti-domain-wall solutions.
Substituting in the (anti-)domain-wall profile from Eq. (10)
to the DM term in Eq. (4), it becomes

EDM[u] =
∫ ∞

−∞
dx1

[
2κ

(1 + |u|2)2
|u|

(
±m sin(ϕ + α) ∓ m∂2X cos(ϕ + α) − d

dx2
(cos(ϕ + α))

)

+ 2κ

(1 + |u|2)2
|u|3

(
±m sin(ϕ + α) ∓ m∂2X cos(ϕ + α) + d

dx2
(cos(ϕ + α))

)]
. (13)

The two integrals are the same,∫ ∞

−∞

|u|3
(1 + |u|2)2 dx1 = π

4m
=

∫ ∞

−∞

|u|
(1 + |u|2)2 dx1, (14)

which means that the boundary terms in the effective energy
cancel and the contribution due to the DM term is

EDM = ±πκ[sin (ϕ + α) − (∂2X ) cos (ϕ + α)]. (15)

Adding this to the known effective energy from Ref. [15] gives

Eeff = 1

2m
(m2∂2X∂2X + ∂2ϕ∂2ϕ ± κ̃[sin(ϕ + α)

− ∂2X cos(ϕ + α)]) (16)

with κ̃ = 2mπκ .

3An exception to this is the solvable model of Ref. [39] where
both skyrmion, Q = −1, and antiskyrmion, Q = 1, configurations
are explicitly constructed. The resolution is that in the solvable model
the Q = 1 configurations are not true antiskyrmions, but rather a
superposition of a skyrmion and two antiskyrmions, which is stable.

This derivation is for a domain wall perpendicular to the
x1 direction. However, if the domain wall is instead perpen-
dicular to x̃ = x1 cos θ + x2 sin θ then the (anti-)domain-wall
solution becomes

u = e±m(x̃−X )+iϕ, (17)

and the only term which changes is the DM term, where
ϕ → ϕ + θ . Thus, the effective energy density along the (anti-
)domain wall is

E[udw] = 1

2m

[
(∂2X )2 + (∂2ϕ)2 ± κ̃ sin(α + θ + ϕ)

± 2
κ̃

m
∂2X cos(α + θ + ϕ)

]
. (18)

When the translation modulus is constant, ∂2X = 0, the
domain wall is straight, and this reduces to the sine-Gordon
model,

E[udw] = 1

2m
[(∂2ϕ)2 ± κ̃ sin(α + θ + ϕ)], (19)
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FIG. 1. The energy density and magnetization plots for a domain wall with a kink on it. For simplicity we have chosen κ̃ = 1
5 , α = θ =

X = c = 0, to give a kink centered at zero on the domain wall.

with potential term U (ϕ) = ±κ̃ sin(α + θ + ϕ). This sine-
Gordon-type expression for the effective energy on the
domain wall was also found in Ref. [22], where a different
starting point was taken. There the authors started from the
domain-wall solution of the critically coupled model [39]
which contains both an anisotropy and a Zeeman term, and
then considered an x2-dependent phase.

We said above that the value of α dictates the type of
DM term. It also differentiates between Bloch- and Néel-type
domain walls; this is because the value of α determines the
ground state of the effective energy in Eq. (18).

The kink solutions are found by solving the first-order
equation

dϕ

dx2
= ±

√
U (ϕ) + C0 (20)

when C0 = κ̃ is the first integral of the system, if we think
of x2 as the analog of the time coordinate. A derivation of
this equation and its solutions is given in Appendix A. The
kink and antikink solutions are phase-shifted versions of the
familiar sine-Gordon kinks:

ϕ = 4 arctan
(

e±
√

κ̃
2 x2

)
− α − θ − π

2
(21)

on udw, and

ϕ = 4 arctan
(

e±
√

κ̃
2 x2

)
− α − θ + π

2
(22)

on uadw. The energy density and magnetization for a kink on
a domain wall are shown in Fig. 1.

TABLE I. The topological charges for the four basic combina-
tions of domain-wall skyrmions.

Kink Antikink

Domain wall Q = 1 Q = −1
Anti-domain wall Q = −1 Q = 1

The topological charges (skyrmion numbers) are given in
Table I. The topological charges are computed from

Q[u] = i

2π

∫
∂1u∂2ū − ∂2u∂1ū

(1 + |u|2)2
d2x, (23)

and for a domain-wall skyrmion this becomes

Q[u] =
{

k for a domain wall
−k for an anti-domain wall, (24)

with k the winding number of the sine-Gordon kink. Since
in the chiral magnets literature the Q = −1 configuration is
known as a skyrmion we should call an antikink on a domain
wall a domain-wall skyrmion.

One of the remarkable features of the domain-wall
skyrmions is that both skyrmion and antiskyrmion are stable
on the domain wall, unlike in the bulk where only either
skyrmions or antiskyrmions are stable and the others are un-
stable. This fact can be understood from the Derrick scaling
argument since both the domain wall and kink are separately
stable configurations for their respective energies. However,
we need to be careful when applying a Derrick scaling argu-
ment here. An x1-dependent configuration such as a domain
wall will have infinite energy when considered within a 2D
configuration as it only varies in one of the directions. We
have avoided this difficulty here by considering the domain
wall in one dimension, applying the scaling argument, then
integrating over x1 to find the effective energy for X (x2), ϕ(x2)
and applying the scaling argument for x2 here.

We can also ask about the stability of a domain-wall
skyrmion versus the stability of a skyrmion and a domain wall
as separate objects. One way to compare these is to consider
a superposition of a skyrmion and a domain wall and ask how
they interact: For example, is there an attractive force between
them where we would expect them to merge into a domain-
wall skyrmion, or is there a repulsive force where we expect
them to stay as separate objects? To study this analytically
we consider a well-separated configuration of a skyrmion and
a domain wall; this is so we can approximate the skyrmion
configuration by its far-field profile. Then we can appeal to the
results of Ref. [26] where the interaction of domain walls and
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FIG. 2. Schematic figures of superpositions of skyrmions and domain walls to demonstrate the relative orientation; these are plotted for
θ = α = 0. The upper figure is an anti-domain-wall skyrmion superposition while the lower figure is a skyrmion domain-wall superposition.
In these schematics the cross signifies a downward-pointing magnetization n3 = −1 while the circle with a dot in the middle signals an
upward-pointing arrow n3 = 1, e.g., one that is pointing out of the page. There are two further pictures that could be made where the skyrmion
is on the opposite side of the domain wall; these also showcase an attractive interaction between the skyrmion and the domain wall.

skyrmions was studied and it was found that it is the relative
orientation which is important for deciding if they attract or
repel. In Ref. [26] the relative phase is a pseudo-zero mode;
here it is fixed by the DM term. The complex functions for the
domain wall and skyrmion fields are

u(a)dw = e±m(x̃−X )+i(−α−θ∓ π
2 ), (25)

usk = tan

(
f (r)

2

)
ei(ϑ−α− π

2 ), (26)

where f (r) = 1√
r
K1(mr) is far-field profile function of the

skyrmion given in terms of the modified Bessel function [9],
and ϑ is the plane polar angle centered at the center of the
skyrmion. Looking at the superposition

usup = u(a)dw + usk, (27)

we see that the relative phase is fixed as π , due to the pres-
ence of the DM interaction; i.e., the domain wall and the
skyrmion have opposite orientation and are thus expected
to attract one another. The same is true for an anti-domain
wall and a skyrmion. This argument is only valid when the
configurations are well separated, but as the relative phases
are fixed the type of interaction is not expected to change.
To fully understand what happens when the domain wall
and the skyrmion are close together would require a full
numerical study. This gives further evidence that domain-wall

skyrmions and domain-wall antiskyrmions should be stable
as a skyrmion is attracted to both the domain wall and the
anti-domain wall. Schematic figures showing the relative ori-
entation of an anti-domain wall and a skyrmion are shown in
Fig. 2.

More generally we can consider higher-energy solutions
with a spiral on a domain wall or anti-domain wall. The
derivation of these spiral solutions is given in Appendix B,
and the energy density for a spiral (sine-Gordon lattice) on a
domain wall and a plot of the corresponding magnetization
is given in Fig. 3. The spiral configurations are described
in terms of the elliptic modulus k2 = 2κ̃

C0+κ̃
, where C0 is the

conserved first integral of Eq. (A1). These spirals on domain-
wall configurations have topological charge Q = ±k, where
k is the number of domain walls in the spiral, and they
have a higher energy than the single-domain-wall skyrmion.
These spiral configurations are sometimes known as the chi-
ral soliton lattice [8], since they can be viewed as a lattice
configuration of sine-Gordon kinks.

C. Superposition configurations

For “well-separated” domain-wall–anti-domain-wall pairs,
we can consider the configuration

udw-adw = e−m(x−X1 )+iϕ1 + em(x−X2 )+iϕ2 . (28)
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FIG. 3. Left: Energy density of a spiral configuration with κ̃ = 1
5 . Right: A magnetization plot of the k = 99998

100000 spiral on a domain wall.
Comparing the magnetization plot in Fig. 1 we see that the spiral involves multiple kinks along the domain wall.

The case of constant phases ϕ1 = ϕ2 + π was considered in
the absence of a DM term in Ref. [40]. For well-separated
domain walls, |X2 − X1| 
 1

m , this superposition is a valid
configuration, assuming also that X2 > X1.

There are two separations that we can vary: one is R =
X2 − X1, the separation between the domain wall and the anti-
domain wall; the other is when ϕi is a kink or antikink and we
can vary the x2 separation of the kink positions. Computing
how the energy of this superposition varies with the separation
of the domain wall and the anti-domain wall we see that this
replicates the expected result that the domain wall and anti-
domain wall have an attractive interaction. See Fig. 4 for a
plot of the energy of the superposition against the domain-wall
separation R.

Turning to the question of how the energy density varies
with the x2 separation of the kinks, we do not get such clear
results. The energy density and a magnetization plot for the

case of a kink centered at x2 = −2 on the domain wall and an
antikink centered at x2 = 2 on the anti-domain wall is shown
in Fig. 5. As we can vary the relative positions of the center
of the kink along the walls, we can compute the energy and
find that there is no change. This suggests that the kinks can
be thought of as being free to move along the wall. More
sophisticated numerical studies are needed to show if they are
actually free or if the interaction is just very small.

IV. SUMMARY AND OUTLOOK

In this work, we have studied the effective energy of
straight domain walls in chiral magnets and explored its re-
lationship to the sine-Gordon model. This extends the work of
Ref. [15] on domain-wall skyrmions by including a DM term.
The advantage of this is that the domain-wall effective energy
becomes the sine-Gordon model without need of the extra

FIG. 4. The energy for the superposition against the domain-wall separation for the case of m = 1.
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FIG. 5. The energy density and magnetization plots for the domain-wall–anti-domain-wall superposition of Eq. (28) with X1 = 0, X2 = 10,
ϕ1 (ϕ2) is a kink (antikink) centered at x2 = ±2.

anisotropy term used in Ref. [15]. We have found that both
skyrmions and antiskyrmions are stable on the domain wall,
in contrast to the bulk where only either skyrmions or anti-
skyrmions are stable and the others are unstable. We also have
constructed a domain-wall skyrmion lattice. We then have
considered superpositions of domain walls and anti-domain
walls with kinks on each of them and found that these kinks
are approximately free.

When addressing the question of stability we have used
the results of Ref. [26]. These apply to baby skyrmions where
there is a Skyrme term in the energy rather than a DM term;
however, the linearized equations of motion are the same. So
the well-separated superposition of a skyrmion and a domain
wall is the same in a chiral magnet as in the baby Skyrme
model. Care does need to be taken as the baby Skyrme model
has second-order time dynamics, while the time dynamics of
a chiral ferromagnet are governed by the Landau-Lifshitz-
Gilbert (LLG) equation. Thus, to completely understand the
interactions between a domain wall and a skyrmion requires
a full numerical study using LLG dynamics. However, the
results of Ref. [26] tell us that the interaction energy must be
negative, which corresponds to an attractive interaction.

It is known that an applied electric field deflects a free
skyrmion [41]; thus it can be expected that a suitably high
electric field will overcome the attractive interaction between
the skyrmion and the domain wall and cause them to separate.
Fully understanding the effect of an applied electric field
would require a full numerical study of the LLG equation for
this system.

Possible applications to nanodevices will be the most im-
portant future problem. For instance, the position of a domain
wall can be fixed by pinning on impurities. Then, the domain
wall may play the role of a guide or a rail for skyrmions. The
fact that both skyrmions and antiskyrmions are stable on the
domain wall may be useful. As a store of skyrmions, one can
reserve either skyrmions or antiskyrmions on the domain wall,
which is impossible in the bulk outside the domain wall. For
instance, if we put both skyrmions and antiskyrmions, they
can pair-annihilate each other. Along the domain wall one can
avoid pair annihilation since the sine-Gordon model is known

to admit a breather solution in which a soliton and antisoliton
pair oscillates without annihilation. As for another applica-
tion, a junction of multiple domain walls may be useful.

As already pointed out in Ref. [15], domain-wall
skyrmions are equivalent to Josephson vortices in a Joseph-
son junction of two superconductors. In this case, the
difference between phases of two superconductors yields a
dynamical degree of freedom which is described by the sine-
Gordon model [42]. These Josephson vortices are nothing
but Abrikosov vortices in superconductors. Therefore, tech-
nologies developed in Josephson vortices can be imported to
domain-wall skyrmions in magnets.

On the more theoretical side, the O(3) model is equivalent
to the CP1 model, which can be generalized to the CPN−1

model, admitting CPN−1 skyrmions. The CPN−1 model with
a potential term that is a generalization of the easy-axis poten-
tial also admits N parallel domain walls [30]. With a potential
term generalizing the second isotropy term, CPN−1 skyrmions
become U (1)N−1 coupled sine-Gordon solitons inside domain
walls [29]. On the other hand, CPN−1 skyrmions were also
discussed in a CPN−1 model with a generalized DM term [43].
Thus, the CPN−1 model with the generalized DM term and a
generalized easy-axis potential should admit CPN−1 domain-
wall skyrmions. A junction of domain walls can also stably
exist in the CPN−1 model with a more general extension
of the easy-axis potential [44]. Domain-wall skyrmions on a
domain-wall junction should be useful for nanotechnology.
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APPENDIX A: DERIVATION OF THE KINK SOLUTIONS

To derive the kink solutions recall that for a one-
dimensional problem there is a conserved first integral of
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motion (
dϕ

dx2

)2

− U (ϕ) = C0 = const. (A1)

This first integral reduces to the first-order equation

dϕ

dx2
= ±

√
U (ϕ) + C0. (A2)

Here U (ϕ) = ±κ̃[sin(ϕ + α) − ∂2X cos(ϕ + α)] is the poten-
tial energy piece of the effective energy. Focusing on the

case of a kink on a domain wall with nonconstant translation
modulus, ∂2X = γ , when the translation modulus is linear in
x2 the potential is

U (ϕ) = κ̃[sin(ϕ + α) − γ cos(ϕ + α)]

= κ̃ (1 −
√

1 + γ 2 sin(ϕ + α + θ − δ)), (A3)

with tan δ = γ . If the constant C0 is taken to be C0 =
κ̃ (

√
1 + γ 2 − 1) the first-order equation becomes

dϕ

dx2
=

√
κ̃ (1 −

√
1 + γ 2 sin(ϕ + α + θ − δ)) + κ̃ (

√
1 + γ 2 − 1)

=
√

κ̃
√

1 + γ 2(1 − sin(ϕ + α + θ − δ)). (A4)

This is solved by making the substitution � = ϕ + α + θ −
δ − π

2 and then directly integrating

d�√
1 − cos �

= ±
√

κ̃
√

1 + γ 2dx2, (A5)

to give a kink or antikink depending on the ± centered at x2 =
c:

� = 4 arctan

(
exp

(
±(x2 − c)

√
κ̃

2

√
1 + γ 2

))
. (A6)

For the anti-domain wall, the only change is that the π
2 is

added rather than subtracted when going from ϕ to �.

APPENDIX B: DERIVATION OF
THE MULTIKINK SOLUTIONS

The single kink is not the only solution for the
sine-Gordon model. If we return to the first-order

equation

dϕ

dx2
= ±

√
U (ϕ) + C0, (B1)

then there are more general spiral solutions. To see these take

� = α + θ + ϕ ± π

2
, (B2)

as above. The first-order equation then becomes

d�

dx2
= ±√

C0 + κ̃

√
1 − k2 cos2

(
�

2

)
, (B3)

where k2 = 2κ̃
C0+κ̃

is the elliptic modulus. This has a solution
in terms of the elliptic Jacobi amplitude as

� = ±am

(√
C0 + κ̃

2
x2, k

)
− π. (B4)
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