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Unidirectional magnetic coupling induced by chiral interaction and nonlocal damping
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We show that an interlayer Dzyaloshinskii-Moriya interaction in combination with nonlocal damping gives
rise to unidirectional magnetic coupling. That is, the coupling between two magnetic layers—say, the left and
right layer—is such that the dynamics of the left layer leads to the dynamics of the right layer, but not vice
versa. We discuss the implications of this result for the magnetic susceptibility of a magnetic bilayer, electrically
actuated spin-current transmission, and unidirectional spin-wave packet generation and propagation. Our results
may enable a route towards spin-current and spin-wave diodes and further pave the way to design spintronic
devices via reservoir engineering.
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I. INTRODUCTION

Nonreciprocal transmission of electrical signals lies at the
heart of modern communication technologies. While semi-
conductor diodes, as an example of an electronic component
that underpins such nonreciprocity, have been a mature tech-
nology for several decades, new solutions are being actively
pursued [1,2]. Such research is spurred on by the emergence of
quantum technologies that need to be read out electrically but
should not receive unwanted backaction from their electronic
environment.

Complementary to these developments, spintronics has
sought to control electronic spin currents and, more recently,
spin currents carried by spin waves, i.e., magnons, in mag-
netic insulators [3]. Devices that implement nonreciprocal
spin-wave spin currents have been proposed [4–7]. Most
of these proposals rely on dipolar interactions [8–11] or
Dzyaloshinskii-Moriya interactions (DMIs) [12–16]. Other
proposals involve the coupling of the spin waves to additional
excitations such that the spin waves are endowed with non-
reciprocity. Examples are the coupling of the spin waves to
magnetoelastic, optical, and microwave excitations [17–22].

Most of these proposals have in common that they consider
spin-wave dispersions that are asymmetric in wave vectors.
For example, due to the DMI, spin waves at one particular
frequency have different wave numbers and velocities for
the two different directions. There are therefore spin waves
traveling in both directions. This may be detrimental for
some applications. For example, one would like to shield
quantum-magnonic technologies from spin-current noise [23],
and completely quench the spin-current transmission in one of
the two directions along a wire.

Here, we propose a setup that realizes unidirectional mag-
netic coupling between two magnetic layers or between two
magnetic moments. The ingredients are DMI and dissipative
coupling between the two layers or moments. The dissipative
coupling takes the form of a nonlocal damping and may arise,

for example, from the combined action of spin pumping and
spin transfer. Then, one magnet emits spin current when it
precesses, which is absorbed by the other. The resulting dissi-
pative coupling turns out to, for certain parameters, precisely
cancel the DMI in one direction. As a result, an excitation
of one of the magnets leads to the magnetization dynamics
of the other, but not vice versa. This yields spin-wave propa-
gation that is truly unidirectional: For specific directions and
magnitudes of the external field, all spin waves travel in one
direction only.

II. MINIMAL MODEL

Let us start with the minimal setup that demonstrates
the unidirectional coupling. We first consider two identical
homogeneous magnetic layers that are coupled only by an
interlayer DMI with Dzyaloshinskii vector D [24,25] and by
interlayer spin pumping (see Fig. 1) and then show that the
essential physics also holds when a Heisenberg exchange,
Gilbert damping, and magnetic anisotropy are included. The
magnetization direction in the layers is denoted by mi, where
i ∈ {1, 2} labels the two layers. We also include an external
field H . The magnetic energy is given by

E [m1, m2] = D · (m1 × m2) − μ0MsH · (m1 + m2), (1)

where Ms is the saturation magnetization of both layers and
μ0 is the vacuum susceptibility. The magnetization dynamics
of layer 1 is determined by the Landau-Lifshitz-Gilbert (LLG)
equation

∂m1

∂t
= γ

Ms
m1 × δE

δm1
+ αnlm1 × ∂m2

∂t
, (2)

where γ is the gyromagnetic ratio and αnl characterizes the
strength of the nonlocal damping that in this setup results from
the combination of spin pumping and spin transfer torques,
as described in the Introduction. The equation of motion for
the magnetization dynamics of the second layer is found by
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FIG. 1. Schematic of two magnetic moments coupled by an in-
terlayer DMI and by interlayer spin pumping. The dynamics of
m1 induces the motion of m2, but not vice versa for appropriate
parameters.

interchanging the labels 1 and 2 in the above equation. Work-
ing out the effective fields δE/δmi yields

∂m1

∂t
= γ

Ms
m1 × (m2 × D − μ0MsH ) + αnlm1 × ∂m2

∂t
, (3a)

∂m2

∂t
= γ

Ms
m2 × (D × m1 − μ0MsH ) + αnlm2 × ∂m1

∂t
, (3b)

where the sign difference in the effective-field contribution
from the DMI stems from the asymmetric nature of the DMI.
We show now that depending on the magnitude and direction
of the effective field, this sign difference leads for one of
the layers to cancel the torques due to interlayer DMI and
nonlocal damping. As the cancellation does not occur for the
other layer, and because the DMI and nonlocal damping are
the mechanisms that couple the layers in the model under
consideration, this leads to unidirectional magnetic coupling.

Taking the external field to be much larger than the in-
terlayer DMI, i.e., μ0|H| � |D|/Ms, and taking αnl � 1, we
may replace ∂mi/∂t by −γμ0mi × H on the right-hand sides
of Eqs. (3) because the external field then is the dominant
contribution to the precession frequency. For the field H =
D/αnlμ0Ms, one then finds that

∂m1

∂t
= − γ

αnlMs
m1 × D, (4a)

∂m2

∂t
= 2γ

Ms
m2 × (D × m1) − γ

αnlMs
m2 × D. (4b)

Hence, the coupling between the two magnetic layers is uni-
directional at the field H = D/αnlμ0Ms: The magnetization
dynamics of layer 1 leads to the dynamics of layer 2 as evi-
denced by Eq. (4b), but not vice versa as implied by Eq. (4a).
This one-way coupling is reversed by changing the direction
of the field to −H or the sign of the nonlocal coupling αnl,
which depends on the intrinsic properties of the materials and
the distance between the neighboring spins [26].

III. MAGNETIC SUSCEPTIBILITY

Let us now take into account the Gilbert damping within
the layers, exchange interaction, and magnetic anisotropy and
discuss the influence of the unidirectional coupling on the
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FIG. 2. Magnetic susceptibilities of two magnetic layers as a
function of frequency at different exchange couplings. The resonance
frequencies are located at the peak positions. The parameters are
D/(μ0HMs ) = 0.001, αnl = 0.001, α = 0.002.

magnetic susceptibility. The energy now reads

E [m1, m2] = −Jm1 · m2 + D · (m1 × m2)

−μ0MsH · (m1 + m2) − K

2

(
m2

1,z + m2
2,z

)
, (5)

with the constant K characterizing the strength of the
anisotropy and J the exchange. Here, the anisotropy may
include contributions from spin-orbit coupling and the dipolar
fields. The nonuniform part of the dipolar interaction does not
play a significant role because the magnetization of each layer
is polarized by the strong magnetic fields. We shall focus on
the ferromagnetic coupling (J > 0) without loss of generality.
The LLG equation now becomes

∂m1

∂t
= γ

Ms
m1 × ∂E

∂m1
+ αm1 × ∂m1

∂t

+αnlm1 × ∂m2

∂t
, (6)

with α the Gilbert damping constant of each layer, and where
the equation for the second layer is obtained from the above
by interchanging the labels 1 and 2. Here, the Gilbert damping
includes the contribution from nonlocal damping, magnon-
magnon, and magnon-phonon interactions. In general, it
should be larger than the nonlocal damping to guarantee the
stability of the system [27]. We take the external field in
the same direction as the Dzyaloshinskii vector and D = Dẑ,
H = Hẑ, while μ0MsH, K � D, so that the magnetic layers
are aligned in the ẑ direction. Linearizing the LLG equa-
tion around this direction we write mi = (mi,x, mi,y, 1)T and
keep terms linear in mi,x and mi,y. Writing φi = mi,x − imi,y,
we find, after Fourier transforming to frequency space, that

χ−1(ω)

(
φ1(ω)
φ2(ω)

)
= 0. (7)

To avoid lengthy formulas, we give explicit results below
for the case that J = 0, while plotting the results for J �= 0
in Fig. 2. The susceptibility tensor χi j , or magnon Green’s
function, is given by

χ (ω) = 1[
(1 + iα)ω − ωH )2 − (γ D/Ms)2 − α2

nlω
2
]

×
(

(1 + iα)ω − ωH i(γ D/Ms − αnlω)
−i(γ D/Ms + αnlω) (1 + iα)ω − ωH

)
, (8)
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with ωH = γ (μ0H + K/Ms) the ferromagnetic-resonance
(FMR) frequency of an individual layer. The poles of the
susceptibility determine the FMR frequencies of the coupled
layers and are, for the typical case that α, αnl � 1, given by

ω± = ωr,± − iαωr,±, (9)

with resonance frequency

ωr,± = γ (μ0H + K/Ms ± D/Ms). (10)

When γμ0H = (1 ∓ αnl )D/(αnlMs) − K/Ms ≈ D/(αnlMs) −
K/Ms we have for J = 0 that χ12(ωr,±) = 0 while χ21(ωr,±) �=
0, signaling the nonreciprocal coupling. That is, the excitation
of layer 1 by FMR leads to a response of magnetic layer 2,
while layer 1 does not respond to the excitation of layer 2.
For the opposite direction of field the coupling reverses: The
excitation of layer 2 by FMR leads in that case to a response
of magnetic layer 1, while layer 2 does not respond to the
excitation of layer 1. As is observed from Fig. 2, for finite but
small J � D, the coupling is no longer purely unidirectional
but there is still a large nonreciprocity. For J � D, this non-
reciprocity is washed out.

IV. ELECTRICALLY ACTUATED SPIN-CURRENT
TRANSMISSION

In practice, it may be challenging to excite the individual
layers independently with magnetic fields, which would be
required to probe the susceptibility that is determined above.
The two layers may be more easily probed independently
by spin-current injection/extraction from adjacent contacts.
Therefore, we consider the situation that the two coupled mag-
netic layers are sandwiched between heavy-metal contacts
[see Fig. 3(a)]. In this setup, spin current may be transmitted
between the two contacts through the magnetic layers.

Following the Green’s function formalism developed by
Zheng et al. [28], the spin current from the left (right) lead to
its adjacent magnetic layer is determined by the transmission
function of the hybrid system T12 (T21) given by

Ti j (ω) = Tr[	i(ω)G(+)(ω)	 j (ω)G(−)(ω)]. (11)

Here, G(+)(ω) is the retarded Green’s function for magnons
in contact with the metallic leads that is determined
by Dyson’s equation [G(+)]−1(ω) = χ−1(ω) − 


(+)
1 (ω) −



(+)
2 (ω), where the retarded self-energy h̄


(+)
i (ω) accounts

for the contact with the metallic lead i. These self-energies
are given by

h̄

(+)
1 (ω) = −ih̄α′

1

(
ω 0
0 0

)
, (12)

and

h̄

(+)
2 (ω) = −ih̄α′

2

(
0 0
0 ω

)
. (13)

The rates for spin-current transmission from the heavy metal
adjacent to the magnet i into it, are given by 	i(ω) =
−2 Im[
(+)

i (ω)]/h̄. The couplings α′
i = γ Re[g↑↓

i ]/4πMsdi

are proportional to the real part of the spin-mixing conduc-
tance per area g↑↓

i between the heavy metal and the magnetic
layer i, and further depend on the thickness di of the magnetic

m
1

m
2

Lead LeadFM FM

(a)

(b)

T
ra
n
sm
is
si
o
n

T21(J=0)

T21(J=0.5D)

T21(J=15D)

T12(J=0)

T12(J=0.5D)

T12(J=15D)

0.96 0.98 1.00 1.02 1.04
0.000

0.002

0.004

0.006

0.008

ω/ωH

FIG. 3. (a) Schematic of the system where the two coupled
magnetic layers are sandwiched between two heavy-metal contacts.
(b) Transmission of the hybrid system as a function of frequency.
α′ = 0.0001. Other parameters are the same as those in Fig. 2.

layers. Finally, the advanced Green’s function is G(−)(ω) =
[G(+)]†.

In the analytical results below, we again restrict ourselves
to the case where J = 0 for brevity, leaving the case J �= 0 to
the plots. Using the above ingredients, Eq. (11) is evaluated.
Taking identical contacts so that α′

1 = α′
2 ≡ α′, we find that

T12 = 4(α′)2ω2(γ D/Ms + αnlω)2

|C(ω)|2 , (14)

while

T21 = 4(α′)2ω2(γ D/Ms − αnlω)2

|C(ω)|2 , (15)

with

C(ω) = {ωH − [1 + i(α − αnl + α′)]ω}{ωH − [1

+ i(α + αnl + α′)]ω} − (γ D/Ms)2. (16)

From the expression for C(ω) it is clear that, since
α, αnl, α

′ � 1, the transmission predominantly occurs for
frequencies equal to the resonance frequencies ωr,± from
Eq. (9). Similar to the discussion of the susceptibilities,
we have for fields γμ0H = D/αnl − K/Ms that the trans-
mission T12(ω = D/αnl ) �= 0, while T21(ω = D/αnl ) = 0. As
a result, the spin-current transmission is unidirectional at
these fields. For the linear spin conductances Gi j , given
by Gi j = ∫

h̄ω[−N ′(h̄ω)]Ti j (ω), we also have that G12 �= 0,
while G21 = 0. Here, N (h̄ω) = [eh̄ω/kBT − 1]−1 is the Bose-
Einstein distribution function at thermal energy kBT . For the
opposite direction of the external field we have G12 = 0, while
G21 �= 0. As in the case of the susceptibility discussed in the
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previous section, a finite but small exchange coupling makes
the spin-current transport no longer purely unidirectional,
while maintaining a large nonreciprocity [see Fig. 3(b)].

V. SPIN-WAVE PROPAGATION

Besides the unidirectional coupling of two magnetic layers,
the above results may be generalized to a magnetic multilayer,
or, equivalently, an array of coupled magnetic moments that
are labeled by the index i such that the magnetization direction
of the ith layer is mi. This extension allows us to engineer
unidirectional spin-wave propagation as we shall see below.
We consider the magnetic energy

E [m] =
∑

k

[D · (mk × mk+1) − μ0MsH · mk], (17)

and find—within the same approximations as for our toy
model above—for the magnetization dynamics that

∂mk

∂t
= 2γ

Ms
mk × (D × mk−1) − γ

αnlMs
mk × D, (18)

for the field H = D/αnlμ0Ms. This shows that for these fields
the magnetic excitations travel to the right—corresponding
to increasing index k—only. The direction of this one-way
propagation is reversed by changing the magnetic field to −H
or by changing the sign of the nonlocal damping.

To study how spin waves propagate in an array of coupled
magnetic moments described by the Hamiltonian in Eq. (17),
we start from the ground state mk = (0, 0, 1)T and perturb the
leftmost spin (k = 0) to excite the spin waves. Since the dy-
namics of this spin is not influenced by the other spins for the
field H = D/αnlμ0Ms, its small-amplitude oscillation can be
immediately solved as φ0(t ) = φ0(t = 0) exp(−iω0t − αω0t )
with φk = mk,x − imk,y as used previously. The dynamics of
the spins to the right of this leftmost spin is derived by solving
the LLG equation (18) iteratively, which yields

φk (t ) = φ0(t = 0)e−iω0t e−αω0t

k!
(−2αnlω0t )k, (19)

where k = 0, 1, 2, . . . , N − 1.
To guarantee the stability of the magnetization dynam-

ics, the dissipation matrix of the N-spin system should be
negative-definite, which imposes a constraint on the relative
strength of Gilbert damping and nonlocal damping, i.e., α >

2αnl cos π
N+1 . For an infinitely long chain N → ∞, we have

α > 2αnl. Physically, this means that the local dissipation of
a spin has to be strong enough to dissipate the spin current
pumped by its two neighbors. For a spin chain with a finite
number of spins, α = 2|αnl| is always sufficient to guarantee
the stability of the system. Taking this strength of dissipation
simplifies Eq. (19) to

φk (t ) = φ0(t = 0)e−it/(ατ ) e−t/τ

k!
(−t/τ )k, (20)

where τ−1 = αω0 is the inverse lifetime of the FMR mode.
This spatial-temporal profile of spins is the same as a Pois-
son distribution with both mean and variance equal to σ =
t/τ except for a phase modulation, and it can be further
approximated as a Gaussian wave packet on the timescale

t � τ , i.e.,

φ(z) = φ0(t = 0)e−it/(ατ )

√
2πσ

e− (z−σ )2

2σ . (21)

Such a similarity suggests that any local excitation of the left-
most spin will generate a Gaussian wave packet propagating
along the spin chain. The group velocity of the moving wave
packet is v = a/τ , where a is the distance between the two
neighboring magnetic moments. The width of the wave packet
spreads with time as a

√
t/τ , which resembles the behavior of

a diffusive particle. After a sufficiently long time, the wave
packet will collapse.

On the other hand, the excitation is localized and cannot
propagate when the rightmost spin (k = N − 1) is excited,
because its left neighbor, being in the ground state, has zero
influence on its evolution. These results demonstrate the uni-
directional properties of spin-wave transport in our magnetic
array.

VI. DISCUSSION, CONCLUSION, AND OUTLOOK

We have shown that the ingredients for unidirectional cou-
pling between magnetic layers or moments are that they are
coupled only by DMI and nonlocal damping. While in prac-
tice it may be hard to eliminate other couplings, the DMI and
nonlocal coupling need to be sufficiently larger than the other
couplings to observe unidirectional coupling.

There are several systems that may realize the unidi-
rectional coupling we propose. A first example is that of
two magnetic layers that are coupled by a metallic spacer.
Such a spacer would accommodate nonlocal coupling via
spin pumping and spin transfer. For a spacer that is much
thinner than the spin relaxation length, we find, following
Refs. [29–31], that αnl = γ h̄ Re[g̃↑↓]/4πdMs, with g̃↑↓ the
spin-mixing conductance of the interface between the mag-
netic layers and the spacer, and d the thickness of the magnetic
layers. For simplicity, we took the magnetic layers to have
equal properties. The two magnetic layers may be coupled
by the recently discovered interlayer DMI [24,25], tuning to
a point (as a function of thickness of the spacer) where the
ordinary Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange
coupling is small. We estimate αnl = 4.5 × 10−3 for d =
20 nm, Re[g̃↑↓] = 4.56 × 1014 �−1 m−2, and Ms = 1.92 ×
105 A/m (YIG|Pt). The required magnetic field for unidirec-
tional magnetic coupling falls into the range of 0.9–9.3 T for
the reported values of interlayer DMI [32]. Such a magnitude
of external fields is accessible with the current experimental
techniques [33–35]. Another possible platform for realizing
unidirectional coupling is the system of Fe atoms on top of
a Pt substrate that was demonstrated recently [36] and the
detection of spin waves in a relevant spin chain was also
observed using inelastic electron tunneling spectroscopy [37].
Here, the relative strength of the DMI and exchange is tuned
by the interatomic distance between the Fe atoms. Though not
demonstrated in this experiment, the Pt will mediate nonlocal
coupling between the atoms as well, which may be intuitively
understood as based on the spin pumping and spin transfer
mechanism [38]. Hence, this system may demonstrate the
unidirectional coupling that we proposed.
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Furthermore, our recent results show that the nonlocal
damping between two neighboring spins can be mediated
by a common bath which may be composed of phonons,
electrons, and other carriers [39]. This mechanism is quite
general and thus it is expected that the nonlocal damping is
generically present in any magnetic material and does not
require special tuning, though it may be hard to determine its
strength experimentally. Hence, an attractive implementation
of the unidirectional coupling would be a magnetic material
with spins that are coupled only via DMI, without exchange
interactions. While such a material has to the best of our
knowledge not been discovered yet, it is realized transiently in
experiments with ultrafast laser pulses [40]. Moreover, it has
been predicted that high-frequency laser fields may be used
to manipulate DMI and exchange, even to the point that the
former is nonzero while the latter is zero [41,42].

Possible applications of our results are spin-wave and spin-
current diodes and magnetic sensors, where a weak field
signal can be amplified and transported through the unidi-
rectional coupling to the remote site to be read out without
unwanted backaction. Finally, we remark that the unidirec-
tional magnetic coupling that we propose here may be thought

of as reservoir engineering (cf. Ref. [43]). In our proposal, the
reservoir is made up by the degrees of freedom that give rise to
the nonlocal damping, usually the electrons. We hope that this
perspective may pave the way for further reservoir-engineered
magnetic systems
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