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Monte Carlo studies of noncollinear magnetic phases in multiferroic Cu2OSeO3
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Monte Carlo simulations based on a first-principles-derived Hamiltonian are conducted to study the finite-
temperature properties of chiral-lattice multiferroic insulator Cu2OSeO3. The use of this numerical technique (i)
reveals basic features of the phase diagram as a function of temperature and external magnetic field, including
the long-range helical phase at low temperature and zero magnetic field and the skyrmion lattice phase, in which
skyrmions are arranged in a two-dimensional hexagonal lattice, and (ii) leads to the discovery of an overlooked
vortex lattice phase in a narrow pocket of the phase diagram near the fluctuations’ disordered-helical phase
transition. The scheme also provides strong numerical evidence that the transition to a helical state in Cu2OSeO3

is of first order driven by critical fluctuations.
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I. INTRODUCTION

In recent years, there has been a surge in interest in topo-
logical spin textures due to their potential role as a building
block in new spintronic devices [1]. A direct result of their
topological stability is their robustness against continuous me-
chanical deformations and defects. An example of topological
spin textures is skyrmions, which first emerged as a solution
of the nonlinear field in the context of dense nuclear matter
[2]. They are characterized by a topological invariant, which
describes the local configuration of how the vector field whirls
in the plan. This topological invariant categorizes the equiva-
lent spin configurations in the case of magnetic systems [3].
The magnetic skyrmions were predicted to exist within mag-
nets with relevant Dzyalonshinskii-Moriya interaction (DMI)
[4,5]. They were first discovered in the noncentrosymmetric
cubic B20 metallic chiral magnet MnSi [6], in other B20
crystals as FeGe [7], Fe1−xCoxSi [8] both in bulk material and
thin films [9], and also in other material with noncentrosym-
metric crystal structures like β-Mn type Co-Zn-Mn alloys
[10]. These topologically nontrivial spin configurations called
skyrmions can be described as circular spin textures with spin
up on the edge of the circle and spin down in the center. There
is in between a smooth transition with topological features.
Others such as copper oxide selenite Cu2OSeO3 that crystal-
lize in the cubic space group P213 exhibit the same features
of the B20 magnets [11]. However, this crystal is the only
insulator in this family of chiral magnets that displays a multi-
ferroic behavior with a magnetoelectric coupling [12,13]; this
may give rise to the ferroelectric counterpart topological soli-
tons and also the manipulation of skyrmions with an electric
field [14].

The skyrmion lattice phase (SkL), in which the skyrmions
are arranged in a two-dimensional hexagonal lattice, exists
in a narrow pocket of magnetic field and temperature phase
diagram near the paramagnetic-helical state phase transition
temperature Tc. The helical state phase in Cu2OSeO3 is known
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to exist in a more extensive range of temperature-field (T-B)
phase diagram [15]. The helical phase corresponds to a non-
collinear magnetization pattern, in which spins are arranged
in a periodic spiral. The helical phase arises from the com-
petition between the collinear Heisenberg interaction and the
noncollinear DMI. In the presence of Zeeman interaction, this
competition may create in some conditions multiple helimag-
netic states that overlap and create other spin textures like
vortex lattices found recently in a centrosymmetric magnet
GdRu2Si2 [16], hedgehog lattices, or skyrmion lattices [17].
The SkL is considered as the overlapping of three different
helices with noncollinear and coplanar directions. The further
contributions of thermal fluctuations stabilize the SkL and
the ratio of Heisenberg exchange and DMI can determine the
lattice constant of SkL and the size of skyrmions. The strength
of both interactions does not depend on temperature; thus
skyrmions’ size and lattice constant are uniform on the whole
lattice.

In the past years, there have been few attempts to model
the behavior of Cu2OSeO3 with atomistic approaches. Jan-
son et al. [18] attempted to reproduce the phase diagram
with micromagnetic simulations which are fundamentally
constrained by the continuum formulation [19,20]. Belemuk
et al. [21] used artificial effective Hamiltonian parameters
to model the high-pressure behavior of the phase transition
in helical magnets. In this work, we investigate the helical
phase and the SkL using the effective Hamiltonian method,
which is parametrized using ab initio density functional the-
ory (DFT) calculations. The resulting effective Hamiltonian
is solved with Monte Carlo simulations. This approach is a
purely atomistic attempt to reproduce the experimental phase
diagram and gives us insight into the microscopic mechanism
of creation and stability of the different magnetic phases and
spin textures in multiferroic Cu2OSeO3.

II. EFFECTIVE HAMILTONIAN

The system’s equilibrium properties at finite temperatures
can be determined from the total energy, which is a function
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FIG. 1. Crystal structure of copper oxide selenite Cu2OSeO3:
dark blue for copper, red for oxygen, and green for selenium. Mag-
netic atoms in the system: light blue for copper atoms I (CuI ) and
dark blue for copper atoms II (CuII ).

of the atomic spins. The aim here is to build a parametrized
Hamiltonian, which is totally ab initio with no experimental
or empirical inputs.

The first term in our magnetic effective Hamiltonian is the
Heisenberg interaction

EH ({S}) =
∑

i< j

Ji jSi · S j . (1)

EH ({S}) is the energy contribution of collinear magnetic inter-
action at the atomic level. This interaction, in general, tends
to make the spins align in the same direction [either ferro-
magnetic (FM) or antiferromagnetic (AF)]; in the case of the
multiferroic Cu2OSeO3, the localized spin S = 1

2 originates
from the unpaired electron in the 3d shell and the copper ions
Cu2+ make a network of tetrahedra made of four ions at each
corner with two sites CuI and CuII with a ratio of 1 : 3, as
shown in Fig. 1. This network of copper ions and tetrahedra
gives rise to five types of Heisenberg exchanges, each related
to a type of interaction:

EH ({S}) =
∑

i< j

[
JFM
w SII

i · SII
j + JAF

s SI
i · SII

j + JFM
s SII

i · SII
j

+ JAF
w SI

i · SII
j + JAF

O SI
i · SII

j

]
. (2)

JFM
w (JFM

s ) is the weak (strong) ferromagnetic interaction
between copper (CuII ) atoms, JAF

s (JAF
w ) is the strong anti-

ferromagnetic interaction (weak) between copper (CuII and
CuI ) atoms, and JAF

O is the only superexchange interaction
(long-range coupling mediated by the bridging oxo ligand)
that is comparable to previous ones.

The second term, which is a crucial ingredient in observing
the noncollinear spin textures in magnetic materials, is the
DMI, which is the antisymmetric exchange that prevents the

spins from aligning in the same direction; this interaction
arises from spin-orbit coupling and is written as

EDMI ({S}) =
∑

i< j

Di j · Si × S j . (3)

The same analysis goes for DMI, where we have five different
vectors related to the Heisenberg exchange constant. These
vectors give rise to the noncollinear magnetic textures (such
as helical, conical, and skyrmion lattice states):

EDMI ({S}) =
∑

i< j

[
DFM

w · SII
i × SII

j + DAF
s · SI

i × SII
j

+ DFM
s · SII

i × SII
j + DAF

w · SI
i

× SII
j + DAF

O · SI
i × SII

j

]
. (4)

The last term is the Zeeman energy that describes the
potential energy of the interaction between the spins and the
applied external magnetic field Bext,

EZeeman({S}) =
∑

i

gS
μB

h̄
Si · Bext, (5)

where gS is the Landé g factor (gS = 2) and μB is the Bohr
magneton.

The total energy based on this Hamiltonian which includes
all previous interactions is used as the energy to minimize
in Monte Carlo simulations, in order to compute the finite
temperature properties.

III. COMPUTATIONAL DETAILS

A. DFT calculations

The first-principles density functional theory calculations
were performed using the Vienna Ab initio Simulation Pack-
age (VASP) [22] for geometrical structure optimization and to
calculate the Heisenberg exchange, DMI constants with the
four energies states method [23,24].

The electronic wave function adopts a plane-wave basis
and the pseudopotentials adopt the projector augmented-wave
method (PAW), with generalized gradient approximation of
Perdew, Burke, and Ernzernhof (GGA-PBE) [25] used as
the exchange-correlation functional. For 3d orbitals of Cu
atoms, a GGA + U correction is used within Dudarev’s for-
mulation [26] to treat the strong correlation properties of 3d
electrons with U (on-site Coulomb repulsion energy) and J
(Hund exchange parameter) set, respectively, to 7.5 eV and
0.98 eV [27]; the spin-orbit coupling parameter was turned on
for the case of DMI. The plane-wave cutoff energy is set to
520 eV. The sampling of the Brillouin zone is done using a
4 × 4 × 4 �-centered k mesh with the Monkhorst-Pack
scheme.

B. Monte Carlo simulations

For our system’s study at finite temperatures, we have
performed Monte Carlo simulations that compute the change
in total energy as the configuration of spins’ changes. We
solve the effective Hamiltonian using the Monte Carlo sim-
ulations, which rely on the Metropolis-Hastings algorithm
[28,29] inside an L × L × L = NL cubic supercell with pe-
riodic boundary conditions, where NL designate the total
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TABLE I. Microscopic magnetic model parameters from DFT four states energy-mapping calculations: the columns respectively designate
the interaction type, the type of atoms involved, the involved atoms (ρi, ρ j ), distance between atoms, the Heisenberg exchange, DMI vector,
and the ratio between DMI and Heisenberg exchange. The atomic positions for all involved atoms are listed in the Supplemental Material. J
and D parameters are normalized with respect to the DFT obtained value S = 0.73.

Interactions Atoms (ρi, ρ j ) di j = |ri − r j | (Å) Ji j (K) Di j (K) δ = |Di j |
|Ji j |

JFM
w , DFM

w CuII -CuII (ρ8, ρ7) 3.011 −27.57 (−2.53, −3.85, 0.201) 0.167

JAF
s , DAF

s CuI -CuII (ρ12, ρ6) 3.067 146.76 (−3.596, 13.88, 9.75) 0.118

JFM
s , DFM

s CuII -CuII (ρ1, ρ8) 3.226 −60.00 (4.573, 8.15,4.473) 0.173

JAF
w , DAF

w CuI -CuII (ρ12, ρ13) 3.336 16.84 (−9.53, 8.06, 6.84) 0.845

JAF
O , DAF

O CuI -CuII (ρ16, ρ3) 6.396 30.57 (−0.55, 4.26, −3.88) 0.189

number of magnetic unit cells and each magnetic unit cell
contains 16 spins. In order to decrease computation time, GPU
parallel programing is employed. The magnetic Hamiltonian
includes only short-range interactions, so a parallel checker-
board type algorithm is used [30] (see the Supplemental
Material [31]).

The trial moves in our case consist of updating the spin
vector direction (constant norm), which changes the total en-
ergy. For L = 84, which corresponds to Na ∼ 107 atoms, each
Monte Carlo sweep (MCS) takes about 0.93 s on our cluster
workstation. The total number of MCS is chosen to be 5 × 107

for every temperature step, with half of these sweeps used for
thermalization and the other half for extracting equilibrium
properties. This process is done by decreasing the temperature
in small steps (annealing) to get well-converged results.

IV. RESULTS AND DISCUSSION

The crucial parameters in forming magnetic textures such
as helical structure and magnetic skyrmions in Cu2OSeO3 are
the magnetic interactions. We evaluate the Heisenberg inter-
action and DMI using the four-state energy-mapping method
[23,24]. The results reveal two energy scales for exchange
constants; for both ferromagnetic and antiferromagnetic ex-
changes, there is weak and strong interaction and an important
superexchange (long-range) antiferromagnetic compared to
weak interactions. Table I presents all the values for the five
different exchanges and the corresponding DMI vectors. We
observe that the ratio of DMI over Heisenberg constant δ,
which is usually smaller than 0.05 [5], is between 0.11 and
0.20 and an enormous ratio of 0.84 in the case of the weak
antiferromagnetic exchange JAF

w , DAF
w . The immense ratio re-

veals the existence of a very strong DMI in our system, which
is a necessary condition in the creation of magnetic textures
and, in particular, magnetic skyrmions. We have compared
our results with Janson et al. [18] starting with the exchange
constants; we report a difference between the Heisenberg
exchange in this paper and their results. The ratios between
the DMI and Heisenberg interaction were smaller than 0.10,
except for the weak antiferromagnetic exchange, where it is at
the order of 0.58. The small ratios could be the origin of the
absence of noncollinear spin textures when using their results
as input parameters of our effective Hamiltonian. We have
also compared our results with a previous study by Yang et al.
[32] and find them to be consistent.

We also show that, using Monte Carlo simulations and the
previous constants as parameters of effective Hamiltonian, the
existence of a helical state at zero field characterized with
a propagation vector ||qH|| = 0.008 (Å−1), the helical state
has a periodicity along [11̄0] direction [11] with a wavelength
λH � 78.4 nm, and is shown to exist in all of the temper-
ature range below TH � 37.5 K, which delimits the helical
phase from the fluctuations disordered phase. This value is
lower than the critical temperature Tc � 42.5 of the ordered
phase to the paramagnetic phase where its experimental value
is T expt

c � 58 K [15]. The discrepancy between the reported
critical temperature and experimental one is due to the use of
lattice constant of paramagnetic phase as lattice parameter in
the range of temperatures of the field polarized phase (helical
and SkL), which correspond to a 2 GPa applied hydrostatic
pressure on the crystal which affects the magnetic exchange
constant Tc(P) = Tc(0)(1 − P/Pc) [33]. To explore those non-
collinear phases we calculated the spin structure factor F(q),
which is defined as the Fourier transform of the spin distribu-
tion. Figure 2(a) shows the logarithm of spin structure factor
for our system at 35 K, where we find two spots corresponding
to qH and −qH, while Fig. 2(b) shows the spatial distribution
of the spins in helical phase in a (001) layer; this feature has
been proven experimentally with the exception in the reported
wavelength λ

expt
H � 61.6 ± 4.5 nm [15], which is due to the

same argument as Tc.
We also report that, for the heat capacity, we have the

same peak and shoulder feature near Tc found in experimental
results in MnSi and Cu2OSeO3 [34]. Figure 3 shows the
feature where the shoulder is toward high temperatures. We
emphasize that this is the first atomistic study with the ab
initio inputs that reproduce this behavior. Belemuk et al. [21]
show the same features with Monte Carlo simulation but with
artificial inputs for Heisenberg exchange and DMI in the ef-
fective magnetic Hamiltonian. The first peak (which is field
dependent) around TH � 37 K for zero field is a characteristic
of a first-order phase transition between the fluctuation-
disordered regime (FD) and helical state, as was discovered
experimentally by Chauhan et al. [35]. The second peak (the
shoulder) at T � Tc ∼ 42.5 K delimits the FD region from the
uncorrelated paramagnetic region. Janoscheck et al. [36]
showed that the phase transition in a helimagnet of the B20
family (MnSi) displays a fluctuation-induced first-order phase
transition that follows a Brazovskii mechanism [37]. To ex-
plore the induced first-order phase transition mechanism, we
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FIG. 2. (a) Logarithm of the square of spin structure factor
[log10(|F|2)], where |F|2 is summed along the [001] direction at 35 K
and zero magnetic field, and (b) real space spin configuration in
Cu2OSeO3 (001) slice in the helical phase. The z component and
the in-plane orientations of the spins are illustrated by the color bar
and colored arrows, respectively.

calculated the inverse of correlation length κ = 2π
ξ

for tem-
perature above TH . There are several scenarios if the inverse
Ginzburg length of the system κG satisfies the condition κG <

κDM for T > TH , where κDM = ||qH ||; the system undergoes a
first-order transition that follows a Brazovskii mechanism. In
this mechanism, the strongly interacting fluctuations suppress
the mean-field transition temperature TMF . On the other hand,
if κG > κDM the mechanism governing the induced phase
transition can be described within the Wilson-Fisher renor-
malization group [38]. The latter mechanism is what governs
the induced transition in Cu2OSeO3, as previously confirmed
by Živković et al. [39]. The fit of the magnetic susceptibility
with the Brazovskii Eq. (8) [36], where η = κGi

κDM
, gives a value

of η > 1, which means that in our system κG > κDM ,

χ|T >Tc = χ0

1 + η2Z (T )
, (6)
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FIG. 3. (a) Heat capacity for multiple values of magnetic fields;
the second-order phase transition is independent of magnetic fields,
whereas the first-order phase transition is field dependent, where
lines are guides to the eye. (b) The distribution of the spin Fourier
component along (11̄0) direction across the transition TH : solid line
is TH − 0.25 K, dashed-dotted line is TH + 0.25 K, and dashed line
is TH + 2 K. The transition from double peak distribution into single
peak is a signature of first-order phase transition.

Z (T ) = [τ + (1 − τ 3 + √
1 − 2τ 3)1/3]2

21/3[1 − τ 3 + √
1 − 2τ 3]1/3

, (7)

τ = T − TMF

T0
. (8)

Far from the transition, T � Tc, the fluctuations have a mean-
field ferromagnetlike behavior as seen in Fig. 4(c). In our case,
as the temperature approaches Tc from high temperatures, κ <

κG, we enter the strongly interacting fluctuations regime that
suppresses the transition temperature before the fluctuations’
interactions acquire an isotropic chiral behavior. This can be
seen from the spreading of propagation vectors in q space
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(b)

� [001]

(c)

FIG. 4. Evolution of the spin structure factor in the first Bril-
louin zone (BZ) above Tc: (a) at Tc + 0.5 K, it shows isotropic
chiral strongly interacting fluctuations, (b) the spreading of propa-
gation vector on a sphere at Tc + 3 K, indicating strongly interacting
fluctuations, and (c) at T � Tc exhibiting ferromagnetic fluctuation
behavior where the fluctuation spectrum spreads over the whole BZ.

on a sphere as seen in Figs. 4(a) and 4(b). In this region,
the inverse correlation length satisfies κ � κDM . However,
these results remain indecisive since they rely on fitting the
magnetic susceptibility with the Brazovskii equation to get
the parameter η. Further study is required to directly extract
the Ginzburg length and correlation length to fully understand
the mechanism that induces the first-order phase transition.

The region between the helimagnetic transition and para-
magnetic transition (between the first order and second
order transition, TH < T < Tc) is denoted as the fluctuation-
disordered phase. In order to explore the nature of this phase,
we study the evolution of the norm of the propagation vector
as a function of temperature in the region TH < T < Tc. We
observe that the propagation vector related to the helical state

(a)

� [111]

(b)

FIG. 5. (a) Logarithm of the square of the spin structure factor
[log10(|F|2)], where |F|2 is summed along the [111] direction at
35 K and 40 mT [111] magnetic field. Pixels on the corners of the
image correspond to |q| � 0.1. (b) Real space spin configuration in
Cu2OSeO3 (111) slice at the 35 K and 40 mT [111] magnetic field,
which shows the skyrmion lattice. The z component and the in-plane
orientations of the spins are illustrated by the color bar and colored
arrows, respectively.

is increasing in the norm, which indicates that the helical state
periodicity is getting smaller to adapt to the supercell size,
which in turn shows that the FD is an incommensurate phase.
As the temperature increases, we observe spread over the
Brillouin zone until we get a spherelike shape as in Fig. 4(a).
The existence of an incommensurate phase along the FD
phase, encapsulated by the commensurate phase (ferrimag-
netic phase) and paramagnetic phase, indicates the existence
of a Lifshitz point (LP) [40] at the border of these three phases.

Furthermore, in the case of an applied 40 mT magnetic
field along (111) direction, we observe a skyrmion lattice
phase in a range of temperature between 42.25 K and 34 K,
which is characterized by three noncollinear propagation vec-
tors: q1

SkL = 1
84 [2̄11], q2

SkL = 1
84 [12̄1], and q3

SkL = 1
84 [112̄].

Figure 5(a) shows the projection of the spin structure factor
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FIG. 6. Phase diagram of various magnetic orders in Cu2OSeO3:
SkL, skyrmion lattice; VL, vortex lattice; FD, fluctuation disor-
dered; TCP, tricritical point; LP, Lifshitz point. The logarithm of the
magnetic susceptibility, the specific heat, and spin structure factor
patterns at different temperatures and magnetic fields are used to
calculate the borders of the phases.

in this case on the (111) plan, which shows a sixfold pat-
tern, the six spots corresponding to qi

SkL and −qi
SkL with i ∈

{1, 2, 3}; these three noncollinear vectors are coplanar since
det(q1

SkL, q2
SkL, q3

SkL) = 0, which is a necessary condition for
having a skyrmion lattice; otherwise, the three vectors would
characterize a hedgehog lattice phase [41]. Figure 5(b) shows
the skyrmions’ lattice in real space.

To understand the mechanism of the creation of SkL, we
performed a series of low magnetic field calculations, lead-
ing to the magnetic field-temperature phase diagram shown
in Fig. 6 and, as predicted by the present scheme, seven
phases exist within this range; five are well known, namely
the helical, conical, SkL, paramagnetic, and ferrimagnetic
(field polarised) phases. Moreover, we have two other phases;
the first of them is between the helical phase and the SkL
(at 15 mT), where a double noncollinear q pattern is cre-
ated, indicating the existence of an intermediate vortex lattice
(half skyrmions or merons). This prediction is yet to be con-
firmed experimentally. The last phase is previously mentioned
where there is a dominance of fluctuation in the fluctuation-

disordered regime. The phase diagram shows a tricritical point
at the crossing between the conical, FD phase, and ferrimag-
netic phase, as previously shown experimentally [35].

The vortex lattice phase is found to exist in a very tiny
pocket near TH , and between Bext of stable helical phase and
stable SkL, and has never been suggested as a possible ground
state of Cu2OSeO3. The existence of the vortex lattice phase
implies that the transition from helical state to SkL undergoes
a step-by-step transition in terms of the topological invariant
by passing from the topologically trivial single q state to a
double q state characterized with a half-integer invariant to a
triple q state with an integer invariant.

V. CONCLUSION

We have developed a first-principle approach to study the
magnetic phases and finite-temperature properties of multi-
ferroic chiral magnet copper oxide selenite Cu2OSeO3. We
constructed an effective Hamiltonian with all the magnetic
interactions; the parameters of this Hamiltonian were de-
termined via density functional theory calculations with U
correction (DFT + U ). The Monte Carlo simulation gives us
insight into the finite-temperature properties of Cu2OSeO3.
We have obtained the same experimental head and shoulder
peak signature of heat capacity found in Cu2OSeO3 and B20
magnets in general. We have found a very narrow pocket of
temperature and magnetic field where the magnetic skyrmion
lattice phase is stabilized in agreement with experimental
observations and a stabilized magnetic helical phase at zero
or small field under the critical temperature Tc. Our calcula-
tion also predicts the existence of a vortex lattice phase at a
tiny region near TH , between the helical phase and the SkL
phase. This approach may be further enriched with the same
ferroelectric Hamiltonian approach by Zhong, Vanderbilt, and
Rabe [42] to study the multiferroic behavior of Cu2OSeO3, to
understand the origin of magnetoelectric coupling, and also to
study the topological defects in ferroic materials.
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