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Topological magnetic structures in MnGe: Neutron diffraction and symmetry analysis
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From new neutron powder diffraction experiments on the chiral cubic (P213) magnet manganese germanide
(MnGe), we analyze all of the possible crystal symmetry-allowed magnetic superstructures that are determined
successfully from the data. The incommensurate propagation vectors k of the magnetic structure are found
to be aligned with the [100] cubic axes, and correspond to a magnetic periodicity of about 30 Å at 1.8 K.
Several maximal crystallographic symmetry magnetic structures are found to fit the data equally well and are
presented. These include topologically nontrivial magnetic hedgehog and “skyrmion” structures in multi-k cubic
or orthorhombic 3+3 and orthorhombic 3+2 dimensional magnetic superspace groups respectively, with either
potentially responsible for topological Hall effect. The presence of orthorhombic distortions in the space group
P212121 caused by the transition to the magnetically ordered state does not favor the cubic magnetic hedgehog
structure, and leave both orthorhombic hedgehog and skyrmion models as equal candidates for the magnetic
structures. We also report on a combined mechanochemical and solid-state chemical route to synthesize MnGe
at ambient pressures and moderate temperatures, and compare with samples obtained by the traditional high
pressure synthesis.
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I. INTRODUCTION

Topologically nontrivial magnetic structures attract con-
siderable interest because they can lead to new interesting
phenomena like the topological Hall effect (THE), which
can be potentially useful for spintronic applications [1]. Such
structures are realized in the presence of more than one prop-
agation vector of the magnetic structure. These propagation
vectors should be symmetry related and reasonably small, so
the magnetic textures based on the discrete localized magnetic
moments are nanoscopically large. Typical examples are cubic
MnSi [2] or tetragonal CeAlGe [3] with periodicity lengths of
order 200 and 70 Å, and respectively hosting a lattice of mag-
netic particlelike objects called skyrmions or merons. In the

latter case, the specific symmetry adapted magnetic structure
in the magnetic superspace group (MSSG) was determined
by neutron diffraction. In both cases the topological effects
are revealed under external magnetic fields, but there is a
fundamental difference in the field evolution of the magnetic
order. In CeAlGe there is no principal change in the mag-
netic structure, but in MnSi there seems to be an interesting
change in the magnetic symmetry under the magnetic field
as demonstrated from small angle neutron scattering SANS
observations of the skyrmion structure [2].

One more interesting example is cubic MnGe with a mag-
netic periodicity of about 30 Å, which is suggested to display
a topologically nontrivial ground state proposed in Refs. [4–8]
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on the basis of SANS and electrical resistivity data. How-
ever, only a few wide-angle neutron diffraction studies are
available, such as Refs. [4,9]. The magnetic structure was
determined to be of a helical type with a propagation vector
k = (0, 0, δ) in an orthorhombic symmetry P212121 [9]. This
was the first neutron diffraction work, where the intensities
of many magnetic and structural Bragg peaks were analyzed,
and it was suggested that the onset of the magnetic order
coincides with a symmetry lowering. It was found that the
magnetic modulation length falls with decreasing temperature
and the structure possibly locks into a commensurate one
below 30 K [9]. From a further study of MnGe by mag-
netic measurements, Mössbauer spectroscopy, and neutron
diffraction [10] it was suggested that the zero field ground
state at ambient pressure is a multidomain state consisting
of helical domains with random orientations rather than a
three-dimensional multi-k lattice. By combining resistivity,
ac susceptibility, and neutron diffraction measurements un-
der high pressure, Ref. [11] showed that the helical order
in MnGe transforms around 6 GPa from a high-spin to a
low-spin state, recalling the weak ferromagnetism of MnSi at
ambient pressure. The presence of several different magnetic-
field-induced phases in MnGe was found from isothermal ac
susceptibility experiments [12] presenting similarities with
those in the isostructural compounds MnSi and FeGe but with
a much broader existence range of the A phase in the (B, T )
domain. In Ref. [13], using small-angle neutron scattering and
a high-resolution method, the so-called MIEZE spectroscopy,
it was shown that the proliferation of long-wavelength gapless
spin fluctuations, concomitant with a continuous evolution of
the helical correlation length, appear upon cooling below the
Néel temperature TN = 170 K. These fluctuations disappear at
Tcom = 32(5) K when the helical period becomes commensu-
rate with the lattice. This dynamic behavior was in agreement
with a previous local probe μSR study of MnGe [14] where
an inhomogeneous fluctuating chiral phase was found to set
in with increasing temperature, characterized by two well-
separated frequency ranges which coexist in the sample over
a large temperature range below TN .

In the context of determining the ground state magnetic
structure of MnGe from scattering experiments, we think
that a discrimination between a one-k modulated structure
and multi-k topological magnetic structures is very difficult
if not impossible from powder diffraction experiments due
to the magnetic twin domains expected for the one-k struc-
ture. In some cases multi-k structures can be identified from
the presence of specific higher order modulation harmonics
in diffraction experiments [3]. Strong evidence in favor of
different topological spin textures, such as skyrmion- and
hedgehog-lattice states, come from high-field transport mea-
surements as demonstrated in the series of chiral magnets
MnSi1−xGex [15,16]. Spin-polarized scanning tunneling mi-
croscopy, which is a direct space technique, was used to study
surface magnetism in thin films of MnGe [17], revealing a
variety of textures that are correlated to the atomic-scale struc-
ture. In contrast to bulk, the high spatial resolution images
indicate three helical stripe domains and associated heli-
magnetic domain walls. Most notably, the hedgehog lattices
parallel to the {100} atomic lattices were directly observed
in MnGe also in real space using high-resolution Lorentz

transmission electron microscopy, simultaneously with un-
derlying atomic-lattice fringes [18]. The inconsistency in the
observed magnetic structures may stem from sample depen-
dence. The formation of an ultrashort-period magnetic struc-
ture in MnGe cannot be explained by the conventional model
based on Dzyaloshinskii-Moriya interaction [15,19,20]. In
particular, recent theoretical studies [21–24] have revealed
crucial roles of magnetic frustration and/or higher-order ex-
change interactions mediated by conduction electrons in the
formation of short-period topological spin structures, includ-
ing the case of MnGe [25–27]. Under this assumption, the
magnetic structure would be highly dependent on the elec-
tronic state and would be therefore sensitive to crystallinity,
compositional changes, strain, and pressure; this is indeed
supported by the observation of transitions among distinct
topological spin crystals in MnSi1−xGex [15].

The motivation for the present work is to apply a state-
of-the-art analysis of all possible magnetic superstructures
allowed by the crystal symmetry in manganese germanide
(MnGe) that are consistent with neutron diffraction data. The
solution [9–11] based on the single arm of the propagation
vector k seems to provide a good fit of the data, but is not
actually unique. In addition, it cannot account for possible
topological magnetic states. Here we present and analyze so-
lutions compatible with our powder neutron diffraction data,
starting from maximal crystallographic symmetry magnetic
structures for one k vector (3D+1), three k vectors (3D+3),
and two k vectors (3D+2) in 3D+n dimensional magnetic
superspace groups (MSSG). The 3D+3 structure allows for
topological hedgehog-type magnetic configurations consistent
with those proposed in Ref. [5].

While single crystals of MnGe are not possible to grow at
present in sizes suitable for neutron diffraction, we point out
that if such single crystals were available, resolving between
single-k and multi-k structures is still challenging due to the
inevitable existence of magnetic twin domains. Even powder
samples of MnGe have been hitherto difficult to synthesise
due to the necessity for high-pressure and temperature condi-
tions. We have found a route of sample synthesis at ambient
pressure conditions and present it here as well.

II. SAMPLE SYNTHESIS AND EXPERIMENTAL DETAILS

Cubic phases of monogermanides CoGe, RhGe, and MnGe
with the B20-type structure are thermodynamically metastable
under ambient conditions and can be synthesized at high pres-
sures up to 8 GPa [28,29]. One of our present samples, labeled
as MnGe−F (∼2 g) was prepared by high pressure synthesis
similarly as described in [5] and the batch consisted of nine
samples, each made by individual high pressure syntheses.
Here we have also undertaken a route to stabilize MnGe at
ambient pressures. The sample labeled MnGe−1 was pre-
pared from the elements by a combined mechanochemical and
solid-state route at ambient pressure. All preparations were
performed in a He-filled glove box (MBraun, O2 and H2O
less than 1 ppm). A stoichiometric mixture (1.5 g) of metal-
lic Mn (over 99.9%, purified from surface oxide in HNO3)
and Ge (over 99.9% purity) was treated mechanochemically
(100 rpm, 5 min premilling, +2 min cooling, 2 cycles,
600 rpm, 5 min milling, +5 min cooling, 10 cycles) in a

024410-2



TOPOLOGICAL MAGNETIC STRUCTURES IN MnGe: … PHYSICAL REVIEW B 107, 024410 (2023)

Pulverisette p-7 ball-mill (Fritsch, Germany). The obtained
powder was pressed into a pellet, flame sealed in an evacu-
ated quartz ampoule, and annealed at 400 ◦C for 2 days. The
laboratory powder x-ray diffraction of the sample has shown
a presence of the main phase (MnGe) with a pronounced
amount of impurity phases [starting elements (Mn, Ge) and
some intermediate phases]. The sample was thus retreated
mechanochemically again (800 rpm, 5 min milling, +5 min
cooling, 10 cycles) and no impurity phases were detected with
powder XRD.

Neutron powder diffraction experiments on both sam-
ples were carried out at the SINQ spallation source at
the Paul Scherrer Institute (Switzerland) using the high-
resolution diffractometer for thermal neutrons HRPT [30]
using wavelengths λ = 1.494 and 2.45 Å and different modes
of operation: high intensity (HI) for magnetic diffraction,
medium resolution (MR), and high resolution (HR) with res-
olutions δd/d > 1.8 × 10−3, >1.3 × 10−3, and >0.9 × 10−3,
respectively, achieved by the primary white beam collimations
40′, 12′, and 6′ [30]. The intensities in the MR and HR modes
are significantly smaller, amounting to 30% and 7% of the HI
mode, but their use allowed us to resolve the fine details of the
crystal structure. The determination of the crystal and mag-
netic structure parameters were done using the FULLPROF [31]
program, with the use of its internal tables for neutron scat-
tering lengths. The symmetry analysis was performed using
ISODISTORT from the ISOTROPY software [32,33] and some
software tools of the Bilbao crystallographic server such as
MVISUALIZE [34,35].

III. CRYSTAL STRUCTURE AND MICROSTRUCTURE

The crystal structures in both samples are well refined in
the cubic space group P213 (No. 198) with the following
structure parameters at 1.8 K. Both atoms are in 4a po-
sitions (x, x, x), with xGe = 0.15678(17), xMn = 0.8620(4),
lattice constant a = 4.7782(4) Å for MnGe−1, and xGe =
0.1568(2), xMn = 0.8639(5), a = 4.7805(2) Å for MnGe−F.
The illustrations of the refinement quality are shown in Fig. 1.
The coherently scattering domains (or crystalline sizes) are
relatively small for the MnGe−1 sample, amounting to L =
150 Å. One can see this effect by inspection as diffraction
peak broadening. In the MnGe−F sample the peaks are nar-
row, implying large (>2000 Å) crystalline sizes. The small
crystallines in the MnGe−1 sample are thus apparently due
to the synthesis technique. We point out that the upturn of the
intensity profile (Fig. 1) towards 2θ → 0 is due to the short
range magnetic correlations, and not due to the instrumental
background.

On cooling below TN we observe additional Bragg peak
broadening in the MnGe−F sample due to the microstrain
effect δa/a, caused by either the distribution of the lattice
constant size a over different crystallines or crystal domain
or due to a lowering of the symmetry below cubic. Due to
the high resolution and large Q range at HRPT, we can dis-
tinguish between the effect of microstrains and the finite size
effects. We also performed the measurements using HR and
MR modes of HRPT to better determine the origin of the peak
broadening effect. We further made two comparative fits of
MR and HR data sets: First at 2 K in the cubic model with
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FIG. 1. The Rietveld refinement pattern and difference plot of
the neutron diffraction data for the samples MnGe−1 (top) and
MnGe−F (bottom) at T = 300 K measured at HRPT with the wave-
length λ = 2.45 Å. The rows of ticks show the Bragg peak positions.
The difference between observed and calculated intensities is shown
by the dotted blue line. The peak intensities in the MnGe−F sample
are larger due to narrower Bragg peaks.

microstrains and second in the orthorhombic space subgroup
P212121 (No. 19) with the microstrains fixed to those refined
from the 300 K pattern with all structure parameters and
crystal metric released. The average microstrain in the cubic
model amounted to 4.7 × 10−4 and 1.8 × 10−4 at T = 2 and
300 K, respectively. The HR mode allows us to unambigu-
ously determine a preference for the orthorhombic symmetry.
In addition to an overall improvement of the well conver-
gent fit in the P212121 model, one can see the asymmetric
shoulders and the peak width misfit in the cubic model for
Bragg peaks located in the two-theta region of the highest
resolution, as shown in Fig. 2. The diffraction peak (320)
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FIG. 2. Fragment of the Rietveld refinement pattern and differ-
ence plot of the neutron diffraction data measured in HR mode at
HRPT with the wavelength λ = 2.45 Å at T = 1.8 K. The upper
plots are the fits in the parent cubic space group P213 with micros-
train broadening. The bottom plots are for fits refinements done in the
orthorhombic space group P212121. The left Bragg peak is (222) and
is not split in both groups. One can see the shoulder of the right-hand
side peak (320) that is not possible to rationalize in the cubic group.
The rows of ticks show the Bragg peak positions. The difference
between observed and calculated intensities is shown by the dotted
blue line.

has a clearly visible shoulder towards high angle, which is
ideally fit by the orthorhombic peak splitting. The Bragg peak
(222) is not split in both groups, but it is badly fit in the cubic
model with microstrains due to wrong peak width. The fit of
the combined MR and HR data sets using both wavelengths
in the orthorhombic subgroup converged with the follow-
ing structure parameters—Ge (4a): [0.1549(6), 0.1581(8),
0.1569(8)], Mn (4a): [0.861(1) 0.865(1), 0.862(1)], and the
cell parameters a, b, c = 4.7776(1), 4.7823(1), 4.7854(1) Å.
We note that the use of the HR mode was crucial for

FIG. 3. Neutron powder diffraction pattern showing the differ-
ence between data measured with sample MnGe−1 at T = 1.8 and
300 K, with wavelength λ = 2.45 Å. The inset shows the zoom in
the large 2θ region with the same x axis. The solid line shows the
result of the fit to the magnetic model in 3D+1 MSSG. The row of
vertical ticks marks the the positions (hkl’s) of the magnetic Bragg
peaks. The difference between observed and calculated intensities is
shown by the dotted blue line. See the text for details.

finding the orthorhombic distortions. This is due to the
fortunate circumstance that the instrumental resolution at
the position of the (320) peak at 2θ = 135 deg (for λ =
2.45 Å) is 50% higher than in MR mode, allowing us
to distinguish peak broadening from peak splitting. Natu-
rally the splitting is present in many Bragg peaks, but not
so explicitly asymmetric as in the above mentioned peak.
Since the magnetic structure models (as is discussed in
Sec. IV B) for three propagation vectors allow also the rhom-
bohedral crystal structure subgroup R3 (No. 146), we have
also considered this structure model, which gives rise to
the splitting of the cubic peaks as well. Contrary to the or-
thorhombic model, the R3 crystal metrics fail to describe the
experimental peak shapes and thus the rhombohedral solution
can be excluded (some details and the illustration of the fit
quality are shown in Fig. SM2 [36]).

IV. MAGNETIC STRUCTURE DETERMINATION
AND DISCUSSIONS

The magnetic diffraction patterns are hallmarked by a
very large first diffraction peak, this being the so called zero
satellite (0, 0, 0) ± (0, b, 0). Remarkably, they are even more
intense than the nuclear Bragg peaks. In contrast, the majority
of the other magnetic peaks at larger scattering angles have
relatively small intensities, as one can see in Figs. 3 and 4.
For this reason, difference patterns, i.e., the difference be-
tween patterns taken at base and paramagnetic temperatures,
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FIG. 4. Neutron powder diffraction pattern showing the differ-
ence between data measured with sample MnGe−F at T = 1.8 and
300 K, with wavelength λ = 2.45 Å. The inset shows the zoom in
the large 2θ region with the same x axis. The solid line shows the
result of the fit to the magnetic model in 3D+1 MSSG. The row of
vertical ticks marks the the positions (hkl’s) of the magnetic Bragg
peaks. The difference between observed and calculated intensities is
shown by the dotted blue line. See the text for details.

were used to solve and refine the magnetic structure. Such
difference patterns contain purely magnetic scattering and are
free of possible systematic uncertainties due to the fitting
of large crystal structure Bragg peaks, background, impuri-
ties, etc. There are two difficulties that make the subtraction
of patterns not completely straightforward, namely the high
magnetic transition temperature and thermal variation of the
crystal structure results in a substantial difference in the lattice
constant a, and the presence of strong short range scatter-
ing just above the Nèel temperature TN � 170 K. We used
the paramagnetic pattern measured at highest temperature
300 K, where the short range ordering effects are smallest.
To compensate for the difference in the lattice constants at
the different temperatures, for the refinement of the 300 K
pattern we fixed the crystal metric to the value determined at
base temperature, fitting instead for the neutron wavelength.
Then we recalibrated the diffraction pattern at 300 K with
the refined wavelength before performing the subtraction, thus
resulting in a very good difference pattern.

We have further tried to estimate the magnetic short range
correlation length at T = 300 K from the low angle scattering
(Fig. 1) for the MnGe−F sample, which is mainly from the
tail of the diffuse magnetic Bragg peak. We subtracted the
direct beam contribution which amounts to a maximum 20%
of the diffuse intensity at two theta 2θ > 4◦ and performed
the fit to a pseudo-Voigt function in the range between 4 and

20 deg. The full-width half-maximum (FWHM) and the peak
position were refined to be 6.2 and 2.7 deg, respectively. The
peak position corresponds to the propagation vector length
k = 0.093 r.l.u., which is in good agreement with its value
of 0.11 at 160 K (the length k substantially falls as the tem-
perature approaches TN ) [9]. The peak broadening and the
position correspond to a correlation length and modulation
period of about L � 20 Å and tmag � 50 Å, respectively. It
is interesting to compare these values with the ones for the
long range ordering at base temperature 2 K, which are about
L � 520 and 30 Å, respectively.

A. Model free Le Bail fit

The identification of the magnetic propagation vectors
was done using the so called Le Bail fitting, where all
peak intensities are refined separately without any struc-
ture model, thus allowing a straightforward determination
of the the propagation vectors k and the crystal metrics.
Both samples display the same type of propagation [0, b, 0],
which is the delta point DT of the Brillouin zone (BZ) (here
we use the internationally established nomenclature for the
irreducible representations (irreps) labels and magnetic super-
space groups (MSSG) [32,34]). The refined values amounted
to b = 0.17395(5) and 0.16498(3) in reciprocal lattice units
for the MnGe−1 and MnGe−F samples, respectively. All
peaks in the difference magnetic patterns could be indexed
with the single propagation vector [0, b, 0]. One can use any
of three nonequivalent k vectors for the indexing; here we use
the y direction in accord with the established nomenclature.
The total number of independent reflections is 36, with 16
among them scattering at nondegenerate scattering angles in
two theta.

B. Symmetry analysis and magnetic models

The parent space group P213 (No. 198) has two irreps
for the delta point DT (0, b, 0) of the BZ. The irrep mDT1
does not describe the data at all, because it predicts zero
intensity for the most intense first magnetic Bragg peak. So
the solution is irrep mDT2, which results in three maximal
symmetry MSSG. According to the cubic symmetry we have
three models based on a single arm (3+1), two arms (3+2),
and three arms (3+3) of the propagation vector star. In each
model the Mn atom remains unsplit and retains the single (4a)
position.

First we consider the two most symmetric magnetic
models based on one (3+1) and three (3+3) arms of the
propagation vector. The single k-vector model corresponds
to the MSSG 19.1.9.1.m26.2 P2_12_12_1.1′(0b0)0s0s,
whereas for the 3+3 model, MSSG is 198.3.206.1.m10.2
P2_13.1′(a,0,0)00s(0,a,0)00s(0,0,a)00s. Both MSSGs allow
six free parameters describing the amplitudes of cosine
and sine components for x, y, and z components of the
magnetic moment. To avoid ambiguity in the description of
the magnetic configuration in a MSSG [36],1 below we list

1Depending on the basis transformation from the parent group and
propagation vector choice one can have different symmetry oper-
ators. They are listed in the Supplemental Material together with
magnetic crystallographic information files (mcif).
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explicitly the 3D-symmetry operators, the Mn coordinates,
and the formulas for the magnetic moments. In the 3+1
model the internal coordinate is x4 = (k1 · X), where X
is the fractional coordinate of the respective Mn atom in
position X, and k1 = (0, b, 0) is the propagation vector.
In crystallographic notation, one usually uses sine and
cosine components of the magnetic moment propagation and
x4, x5, x6 internal coordinates. Here, for brevity, we use a
cosine modulation with the amplitudes m and phases α, and
the reduced spacial coordinate ỹ = 2πx4. Formula (1) shows
the explicit form of the modulation for four Mn moments. The
moment components are surrounded by square brackets for
each Mn site from one to four. Note that the relations between
the signs of m and α for the different Mn positions are dictated
by the magnetic symmetry. The notation for the positions
is the following: Mn1 x, y, z (0.8616, 0.8616, 0.8616),
Mn2 −x + 1/2,−y, z + 1/2 (0.6384, 0.1384, 0.3616), Mn3
−x, y + 1/2,−z + 1/2 (0.13840, 0.3616, 0.6384), Mn4
x + 1/2,−y + 1/2,−z (0.3616, 0.6384, 0.1384):

M1[m1 cos(ỹ + α1), m2 cos(ỹ + α2), m3 cos(ỹ + α3)],

M2[m1 cos(ỹ − α1), m2 cos(ỹ − α2),−m3 cos(ỹ − α3)],

M3[m1 cos(ỹ + α1),−m2 cos(ỹ + α2), m3 cos(ỹ + α3)],

M4[m1 cos(ỹ − α1),−m2 cos(ỹ − α2),−m3 cos(ỹ − α3)].
(1)

The 3+3 model has six independent parameters as well. The
internal coordinates are x4 = (k1 · X), x5 = (k2 · X), and x6 =
(k3 · X) where X is the fractional coordinate of the respective
Mn atom, k1 = (0, b, 0), k2 = (0, 0, b), and k3 = (b, 0, 0).
The reduced spacial coordinates are ỹ = 2πx4, z̃ = 2πx5, and
x̃ = 2πx6. Formula (2) shows the explicit form of the modu-
lation for the four Mn moments. In spite of the fact that there
are three independent k vectors, the amplitudes and phases on
different arms are constrained by the high cubic symmetry:

M1[m1 cos(ỹ + α1) + m3 cos(z̃ + α3) + m2 cos(x̃ + α2),

m2 cos(ỹ + α2) + m1 cos(z̃ + α1) + m3 cos(x̃ + α3),

m3 cos(ỹ + α3) + m2 cos(z̃ + α2) + m1 cos(x̃ + α1)],

M2[m1 cos(ỹ − α1) + m3 cos(z̃ + α3) − m2 cos(x̃ − α2),

m2 cos(ỹ − α2) + m1 cos(z̃ + α1) − m3 cos(x̃ − α3),

− m3 cos(ỹ − α3) − m2 cos(z̃ + α2) + m1 cos(x̃ − α1)],

M3[m1 cos(ỹ + α1) − m3 cos(z̃ − α3) + m2 cos(x̃ − α2),

− m2 cos(ỹ + α2) + m1 cos(z̃ − α1) − m3 cos(x̃ − α3),

m3 cos(ỹ + α3) − m2 cos(z̃ − α2) + m1 cos(x̃ − α1)],

M4[m1 cos(ỹ − α1) − m3 cos(z̃ − α3) − m2 cos(x̃ + α2),

− m2 cos(ỹ − α2) + m1 cos(z̃ − α1) + m3 cos(x̃ + α3),

− m3 cos(ỹ − α3) + m2 cos(z̃ − α2) + m1 cos(x̃ + α1)].
(2)

The 3+2 model is based on two arms of the
propagation vector star with MSSG 19.2.29.2.m26.3
P2_12_12_1.1′(0,b1,0)000s(0,0,g2)000s and has the same
orthorhombic symmetry as the 3+1 model. In contrast to
the 6 independent parameters for the 3+1 model however,
the 3+2 model allows for 12 independent parameters,

because the moments propagating by different arms are not
symmetry related. The internal coordinates are x4 = (k1 · X),
x5 = (k2 · X), where X is the fractional coordinate of the
respective Mn atom, k1 = (0, b, 0) and k2 = (b, 0, 0).
Formula (3) shows the explicit form of modulation for the
four Mn moments. Note that the magnetic configuration based
only on the first arm k1 is identical to the one given by the
3+1 model (1). This model is interesting because, as we show
below, it allows skyrmion type of magnetic structure. We
label the structure as the skyrmion type, following Ref. [5],
because it is propagating in 2D plane to distinguish it from the
cubic hedgehog structure. As we show below, the skyrmion
structure hosts the particlelike objects that can be identified
as merons and antimerons:

M1 = [m1 cos(ỹ + α1) + m4 cos(x̃ + α4),

m2 cos(ỹ + α2) + m5 cos(x̃ + α5),

m3 cos(ỹ + α3) + m6 cos(x̃ + α6)],

M2 = [m1 cos(ỹ − α1) − m4 cos(x̃ − α4),

m2 cos(ỹ − α2) − m5 cos(x̃ − α5),

− m3 cos(ỹ − α3) + m6 cos(x̃ − α6)],

M3 = [m1 cos(ỹ + α1) + m4 cos(x̃ − α4),

− m2 cos(ỹ + α2) − m5 cos(x̃ − α5),

m3 cos(ỹ + α3) + m6 cos(x̃ − α6)],

M4 = [m1 cos(ỹ − α1) − m4 cos(x̃ + α4),

− m2 cos(ỹ − α2) + m5 cos(x̃ + α5),

− m3 cos(ỹ − α3) + m6 cos(x̃ + α6)]. (3)

Finally, we present two 3+3 models with the symme-
try lower than cubic, both having 18 independent pa-
rameters, because the moments propagating by different
arms are not symmetry related, similar to the above 3+2
model. The model 3+3O with MSSG 19.3.95.4.m26.4
P2_12_12_1.1′(a1,0,0)000s(0,b2,0)000s(0,0,g3)000s has the
same orthorhombic symmetry as the 3+1 and 3+2 mod-
els. In the 3+3O orthorhombic model the modulations
along three directions ỹ, z̃, and x̃ in formula (2) are no
longer symmetry related, but the 3+3 model given by
(2) is a valid partial solution of this less symmetric sub-
group of the 3+3 cubic MSSG. The second 3+3 subgroup
is MSSG 146.3.185.3.m11.2 R3.1′(a,b,g)0s(-a-b,a,g)0s(b,-a-
b,g)0s. This rhombohedral magnetic model can be excluded
from consideration because the high resolution diffraction
patterns are not compatible with the rhombohedral distortions
as discussed previously in Sec. III.

C. A note on a continuous limit of the magnetic structure
for the different MSSG

The magnetic structure is defined on the discrete set of
points r j given by the positions of atoms in the crystal lat-
tice. In the case of an incommensurate structure, the size
and direction of the atomic magnetic moments related by the
propagation k vector are proportional to cos(k · r j ), and in
the limit of k → 0 one can approximate the distribution of
the magnetization density to be spatially continuous. How-
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ever, there is a principal difficulty in the realization of the
continuous limit related to the crystallographic symmetries.
In general, due to the specific space group symmetry one
has several atoms in the primitive unit cell (except when the
multiplicity is 1). The spins of these atoms are related to
each other by crystallographic operators like rotations by the
large crystallographic angles, such as 180, 120, 90, or 60 deg.
So even in the limit of k → 0 we might have a finite (not
going to zero) angle between the spins of neighboring atoms.
These rotations can be compensated to some extent by the
irrep matrices in some cases. In the present case we have four
atoms related by 180 deg rotations along x, y, and z axis, but
the mDT2-irrep matrices are constructed so that the moments
are rotated back for some specific moments directions. For in-
stance, for the 3+3 model, and for only nonzero m1 and small
α1, the rotations are practically compensated, as seen from
formula (2). However, if α1 = π/2, then the x component
changes direction to be opposite between neighboring Mn
atoms, thus making a continuous limit of k → 0 impossible.

Interestingly, the constraints that we have by symmetry in
the 3+3 cubic MSSG, and the partly symmetry related con-
straints we can apply in the 3+2 orthorhombic MSSG, allow
the hedgehog-type and skyrmion-type structures, respectively.
Both structures are compatible with the continuous limit.

For the 3+3 model, if we put m1 = m3 = 1, α3 = π/2,
and the other parameters to zero, then we get the following
components of magnetization:

(mx, my, mz ) = (cos y − sin z, cos z − sin x,− sin y + cos x).

(4)

With this parametrization the 180 deg rotations are completely
compensated by the phases, as one can see from formula (2),
leaving only changes in the moment given by propagation
vectors. We denote this structure as 3+3 hedgehog and it is
similar to one proposed in Ref. [5].

For the orthorhombic 3+2 model, one can choose m1 =
m3 = m5 = m6 = 1 and α3 = α5 = π/2 in (3) and also have
the compensation of the rotations between neighboring mo-
ments, leading to the following skyrmionlike magnetization:

(mx, my, mz ) = (cos y,− sin x,− sin y + cos x). (5)

In the strict sense, the absence of the continuous limit in the
general case of high symmetry space groups is contradictory
to the notion of topological nontriviality. One can think that
the conduction electrons following the local magnetization
adiabatically contribute to a continuous distribution of the
magnetization M(r). However, then the functional form of
M(r) between the rotated moments is nonharmonical. To get
the possibility that in the general case all four Mn moments
follow the same cosine and sine modulations, one should
remove all symmetry restrictions imposed by the crystal
symmetry. For the 3+3 magnetic structure this will lead us
to the lowest symmetry triclinic MSSG group 1.3.1.1.m2.2
P1.1′(a1,b1,g1)0s(a2,b2,g2)00(a3,b3,g3)00 with 18 free pa-
rameters: three cosine and three sine components [or three
amplitudes m and three phases α in formula (2)] for each
k vector. Technically, in formula (2) it is necessary to keep
the same amplitudes and phases separate for each component
propagating as x̃, ỹ, and z̃ without constraints between them.

The expressions for Mn2, Mn3, and Mn4 should be identical
to the one for Mn1.

D. Experimentally confirmed magnetic structures

First, using the FULLPROF program, we have performed
a simulated annealing (SA) minimization [31,37] of the full
diffraction profile, containing 36 magnetic Bragg peaks for
the models described in the previous sections. A SA search
starts from random values of the free parameters and we have
repeated the search more than several hundred times. The
reliability profile factors Rp (in percents) for the solutions
came in the ranges 2.44–2.5, 2.46–2.56, and 2.45–2.46 for
the 3+1, 3+3, and 3+2 magnetic models, respectively. The
searches converged to one or two solutions for the 3+1 and
3+3 models, respectively, in the ranges of Rp shown above.
Finally the result of the SA search was refined further using a
usual least-square Rietveld refinement of the powder diffrac-
tion pattern. The goodnesses of final fits were similar to those
from Le Bail fitting which had chi-square χ2 � 4, implying
that there is no room for further improvement.

The results of the fits are summarized in Tables I and II.
The very strong zero satellite with a difficult to handle asym-
metric peak shape provides the main contribution to the
chi-square χ2. This peak is important for the data analysis, but
if we exclude it from the fit, then the χ2 falls from 5 to about
1, implying that all fits given in the tables are very good.

For the 3+1 model the SA search finds two types of
models: an amplitude modulated (AM) structure and an
approximately helically modulated structure (helix) with in-
significantly slightly larger Rp. They are both listed in Table I.
The helix model has large moment components perpendic-
ular to the propagation vector [0, b, 0] with cosine and sine
modulations, whereas the AM structure does not have a sine
contribution for the respective perpendicular component. The
models after SA have a redundant number of parameters but
we present them for the completeness to show the largest
components of the moments. The quality of fits is illustrated in
Figs. 3 and 4, where the experimental and calculated diffrac-
tion patterns are shown. In Table I we show the three minimal
3+1 models that fit equally well the data: (i) with cosine
and sine component along the same x axis (AM-x), (ii) with
cosine modulations along both x and z axes (AM-xz), and (iii)
the helical modulation structure. The helix structure has only
one parameter and has a similar goodness of fit for the AM
structures. Note that the modulation amplitude for the helical
model is naturally about

√
2-times smaller due to the constant

moment structure. For the comparison between models it is
better to use χ2 than the conventional R-Bragg because the
latter does not take into account experimental error bars, and
due to the presence of the very strong zero satellite might be
slightly misleading. In any case, the R factors are very good,
being 0.5% for the MnGe−F sample. The illustrations of the
magnetic structures are shown in Fig. SM3 [36].

For the 3+3 model, the SA search converges to the single
hedgehog-type structure described in Sec. IV C. The results of
the SA search and subsequent conventional Rietveld fits are
shown in Table II. In the final least-square fit we restricted the
components along x and z axis to be the same, leaving only
a single fit parameter mxs = −mzc. The hedgehog structure is
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TABLE I. Magnetic structure parameters for MnGe for the different 3+1 models explained in Sec. IV D. mjc, mjs, j = x, y, z are
conventional crystallographic cosine and sine amplitudes of moment modulation along respective x, y, z axes. These amplitudes correspond in
pairs, respectively, to mj cos(α j ), −mj sin(α j ), j = 1, 2, 3 for mj and α j in formula (1). M is the total amplitude of the modulation. (F) and (1)
denote samples MnGe−F and MnGe−1, respectively. The goodness of fit [31] is also given for each model, R factors are in percents.

Model mxc, mxs, μB myc, mys, μB mzc, mzs, μB M, μB

3+1 (F) SA AM −2.5641, −0.1082 0.2967, 0.0480 −0.4383, −0.0729

3+1 (F) SA helix −2.1362, −0.3394 0.1484, 0.0380 −0.3210, 1.4200

3+1 (F) AM-x 2.566(3), 0.33(6) 0, 0 0, 0 2.587(8)

Rwp, Rexp, χ
2, RB 3.64, 1.63, 5.01, 0.580

3+1 (F) AM-xz 2.566(3), 0 0, 0 0.48(6), 0 2.61(1)

Rwp, Rexp, χ
2, RB 3.63, 1.63, 4.97, 0.574

3+1 (F) helix 1.814(2), 0 0. 0 0, −1.814(2) 1.814(2)

Rwp, Rexp, χ
2, RB 3.67, 1.63, 5.08, 0.625

3+1 (1) AM-xz 2.328(3), 0 0, 0 0.33(26), 0 2.35(4)

Rwp, Rexp, χ
2, RB 7.59, 3.37, 5.07, 2.22

truly continuous in the limit of k → 0 with the magnetization
distribution given by formula (4). In addition to the most
symmetric hedgehog model, we present two solutions which
fit the data equally well: (i) with the components along x and
(ii) with cosine component along x and components along z,
denoted in the same way as for the 3+1 case. This 3+3 model
has the highest possible cubic symmetry and fits the data with
the similar goodness of fit as the 3+1 model. As discussed
in Sec. IV C, these solutions are quasicontinuous, because the
crystallographic rotations are practically compensated for the
sets of parameters found to fit the data well.

According to the refined magnetic structures, the magnetic
moments propagate along all three cubic axes, thus creating a
rather complicated distribution that is difficult to illustrate in

all three dimensions. In Figs. 5 and 6 we attempt to present
several views of the hedgehog structure on the microscopic
lattice. Figure SM4 [36] shows the first 15 × 15 × 15 unit
cells in projection along (111) and (100) cubic axes, nicely
demonstrating sixfold and fourfold textures.

The 3+2 model can definitely fit the data because Eqs. (3)
for the first arm of the propagation vector star are identical
to the 3+1 model. The SA search for the 3+2 model with
12 independent parameters finds several solutions that have
the same goodness in Rp. Among them there is the minimal
most symmetric skyrmion model corresponding to formula
(5). The results of the fit are given in Table II. The second
arm parameters are constrained to the first arm as explained in
Sec. IV C. The magnetic structure is illustrated in Fig. 7 and

TABLE II. Magnetic structure parameters for MnGe for the different 3+3 and 3+2 models explained in Sec. IV D. See caption of Table I
for details. The total moment amplitude, which is a sum over all k-vector components, is

√
6 and 2 times larger than the component given

for a single k-vector for hedgehog and skyrmion structures, respectively. For the 3+2 structure, m5 and m6, are not given, because they are
constrained to be equal to m1 with phases α5 = π/2, α6 = 0 in formula (3).

Model mxc, mxs, μB myc, mys, μB mzc, mzs, μB M, μB

3+3 (F) SA −0.8616, −0.0217 0.0028, 0.0711 0.1653, 1.2014

3+3 (F) hedgehog 1.048(1), 0 0, 0 0, −1.048(1) 2.567(3)

Rwp, Rexp, χ
2, RB 3.67, 1.63, 5.08, 0.634

3+3 (1) hedgehog 0.950(1), 0 0, 0 0, −0.950(1) 2.327(3)

Rwp, Rexp, χ
2, RB 7.60, 3.37, 5.07, 2.22

3+3 (1) x 1.344(2), 0.14(12) 0, 0 0, 0 2.328(3)

Rwp, Rexp, χ
2, RB 7.60, 3.37, 5.07, 2.17

3+3 (F) xz 1.42(5), 0 0, 0 0.28(3), 0.41(2) 2.56(6)

Rwp, Rexp, χ
2, RB 3.62, 1.63, 4.95, 0.589

3+3 (F) x 1.481(2), 0.19(3) 0, 0 0, 0 2.58(3)

Rwp, Rexp, χ
2, RB 3.64, 1.63, 5.01, 0.569

3+2 (F) skyrmion 1.283(1), 0 0, 0 0, −1.283(1) 2.566(2)

Rwp, Rexp, χ
2, RB 3.67, 1.63, 5.08 , 0.643
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FIG. 5. Magnetic structure in the 3+3 hedgehog cubic model.
4 × 4 × 1 and 4 × 4 × 4 unit cells are shown in the projection ap-
proximately along the (001) axis. See Table II for the parameters of
the structure.

hosts the particlelike objects that can be identified as merons
and antimerons (see Sec. V).

Both the hedgehog 3+3 cubic model and the 3+2 model
fit the data equally well. However, as shown above in Sec. III,
the crystal structure is orthorhombic with the space group
P212121. The hedgehog structure is orthorhombically dis-
torted and corresponds to the 3+3O model with a partial
symmetric solution given by the 3+3 cubic group. The beauty
of the cubic solution is that the hedgehog configuration of the
magnetic moments is dictated by the maximal symmetry. For
the 3+3O model the moment amplitudes for all four atoms

FIG. 6. Magnetic structure in the 3+3 cubic hedgehog model.
11 × 11 × 1 unit cells, corresponding to approximately 2 × 2 mag-
netic cells, are shown in the projection along the (001) axis for the z
layers indicated in the figure. The Mx, My components in the xy plane
are the vector lengths, Mz component is shown by color. See Table II
for the parameters of the structure.

propagating along each arm are still fixed by the symmetry
in the same way as in the 3+3 model, but the symmetry
relations between the arms are lost due to the lack of the
threefold axis. The orthorhombic distortions are very small,

FIG. 7. Magnetic structure in the 3+2 orthorhombic skyrmion
model. First 11 × 11 × 1 unit cells, corresponding to approximately
2 × 2 magnetic cells, are shown in the projection along the (001)
axis. The Mx, My components in the xy plane are the vector lengths,
Mz component is shown by color. See Table II for the parameters of
the structure.
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FIG. 8. Density of topological charge w(x, y) calculated using formula (6) for the magnetic structure in the orthorhombic 3+2 model given
by formula (5) (to avoid singularities the coefficient for cosine of the z component was chosen to be 1.0001) with a ferromagnetic component
along the z axis mf = 0.02, 0.2, 0.5, 1, 1.5, 1.9, 2.0, 2.1. One modulation period between −π/4 · · · 2π − π/4 is shown, corresponding to
about 6 unit cells in Fig. 7. Each peak carries topological charge Q = −1/2 for infinitely small mf . The total topological charge per cell is
Q = −1 for mf � 2 and Q = 0 for mf > 2.

and any deviations of the magnetic structure from the cubic
model are not possible to resolve experimentally. Due to the
difference in the lattice constants, the modulation periods of
the hedgehog structure will be different as well, with a relative
difference in periods of 0.1% and 0.16% along the b and c
axes with respect to the a axis following the crystal metrics
determined in Sec. III. In view of the fact that the deviations
from cubic metrics are so small, the cubic model might be
still a good approximation for the exchange interactions in this
system. Independent evidence for the 3+3 hedgehog structure
comes from the high-resolution Lorentz transmission electron
microscopy [18] and the SANS studies on single-crystalline
MnGe thick films [7,8].

Both 3k-cubic hedgehog and 2k-orthorhombic skyrmion
structures can be responsible for the topological Hall effect
observed in MnGe [4,5] and should be thus preferred over
the simple one-k helical structure. We like to point out that
the topological structures are partial solutions in the indicated
MSSG, whereas the general solutions do not have continuous
limit structures. The hedgehog and skyrmion structures can
be viewed as a sum of three or two helical single-k structures,
resulting in modulated structures with a nonconstant magnetic
moment.

V. TOPOLOGICAL CHARGES OF MAGNETIC
STRUCTURES

In the continuous limit of the 3+2 model for k → 0
one can readily calculate the density of the topological

index as

w(x, y) = 1

4π

(
n ·

[
∂n
∂x

× ∂n
∂y

])
, (6)

where n = m/|m|, and m(x, y) are the functions for the
magnetic moment components given by formula (5). In zero
field there are two singularities per magnetic cell located at
coordinates (0, 3π

2 ) and (π,π
2 ), where all three components

of the magnetization n become zero. To avoid singularities
in calculations and visualizations the coefficient of the co-
sine for z component was chosen to be 1.0001 instead of
1. The maxima and minima of w(x, y) look like localized
particlelike objects with topological charge Q = ±1/2, where
Q = ∫

w(x, y)dxdy. In an infinitesimally small magnetic field
along the z axis (ferromagnetic ±m f component added to
the z component of magnetization) each peak acquires the
same charge Q = ∓1/2, as shown in Fig. 8 making in total
a skyrmionlike charge Q = ∓1 per unit cell. But the funda-
mental magnetic objects themselves are not skyrmions, but
merons. The total charge maintains an integer value Q = −1
until m f reaches the critical value mc = 2, above which the
total charge becomes abruptly zero. The magnetic structure
is not yet fully ferromagnetically (FM) polarized, but since
the antiferromagnetic amplitude is M = 2 the moment values
are always larger than zero. Figure 8 illustrates the evolution
of w(x, y) as a function of field. Interestingly, at intermediate
field m f = 1.0 the sharp minima change to a smoother dis-
tribution of density and then closer to the limit there is only
one peak carrying most of the charge Q = −1. In the FM
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polarized state there are some sharp features like at m f = 2.1,
but the total charge is Q = 0. For the field directed away
from the z axis, the upper field m f , when the charge becomes
zero, is smaller than mc = 2. A simple powder averaging of
the critical field mc, above which the charge Q is zero, gives
〈mc〉 = 1.6.

This is an oversimplified toy model, because it does not
assume any fundamental change in the magnetic structure
over the full range of the magnetic field up to FM saturation
state—we only add a FM component to the rigid magnetic
configuration. Such a simple approach appeared to work in the
case of small external magnetic fields in the range where the
THE was observed in CeAlGe [3]. In a more realistic model
one can consider canting of the moments toward the field,
but since only the normalized magnetization is used for the
calculation of charge density (so that only the direction is im-
portant), we think that the toy model may capture qualitative
aspects of the field-dependent behavior. At high fields the sat-
urated magnetic moment should be approximately the square
averaged AF moment which is

√
2 times smaller than the AF

moment amplitude equal to 2 for the magnetization given by
formula (5). The experimentally determined magnetic mo-
ment amplitude shown in Table II is mc = 2.57 μB, which
corresponds to the average moment 1.81 μB, the same value as
for the constant moment helical structure (Table I). We present
the evolution of the net topological charge to demonstrate the
qualitative effect of the field on topological charge density
w(x, y) and that for this type of structure the topological
properties might persist up to FM saturation. This is indeed
in accordance with the fact that the THE was observed up
to the magnetic fields that saturate the magnetic moment to
0–1.9 μB per Mn atom [4] measured with the sample from the
same batch. We note that the topological charge Q can have
values Q = ±1, depending on the orientation of m f . Since the
THE is observed in the powder sample, any sensitivity to the
sign of Q is not evident.

For the hedgehog structure given by formula (4) the
topological properties should also vanish in the ferromagnetic
state which is achieved when the ferromagnetic component
is larger than the amplitude

√
6. The experimental value

of the amplitude for the 3+3 structure is the same as for
the 3+2 one at 2.56 μB, implying the same FM saturation
moment as for the meronlike (skyrmion) structure. The
topological object can be visualized as shown in Fig. 9. It
shows a magnetization distribution in a cube with edges
π/2 around the center π/4, π/4, π/4, where all components
of the magnetization become zero. The total solid angle
spanned on the six cube faces gives Q = −1 in 4π units,
similar to the skyrmion charge. There are eight objects
like this in the magnetic unit cell for the parametrization
given by formula (4) with the following positions (in units
π/4) and charges Q: (−3,−3,−3),+1; (−3,−1, 3),−1;
(−1,−1, 3),+1; (−1, 3,−3),−1; (1, 1, 1),−1;
(1, 3,−1),+1; (3,−3,−1),−1; (3,−1, 1),+1. The
locations of these objects in the unit cell are illustrated
in Fig. SM5 [36]. The trajectories of these objects in the
magnetic field (called monopoles and antimonopoles of an
emergent electromagnetic field) and their relation to the
THE were calculated using a realistic Hamiltonian with
contributions from both the spin-orbit and spin-charge

FIG. 9. Fragment of magnetization distribution for the cubic 3+3
hedgehog model given by (4) in a cube with the edge π/2 around the
center π/4, π/4, π/4, where all magnetisation components become
zero. The total solid angle spanned on the cube faces is Q = −1 in
4π units. The color indicates the size of the magnetization.

couplings [38]. Electric transport for three-dimensional
skyrmion/monopole crystals was theoretically studied
in [39].

VI. CONCLUSIONS

We have synthesized cubic monogermanide MnGe by
several techniques and studied its crystal and magnetic
structures by powder neutron diffraction. The propagation
vectors of the magnetic structure are aligned with the
[100] cubic axes and correspond to a length of magnetic
modulation of about 30 Å. We have found several
maximal crystallographic symmetry magnetic structures
that fit our diffraction data equally well. Among them
there are two topological structures realized in the
six-dimensional cubic magnetic superspace group (MSSG)
198.3.206.1.m10.2 P2_13.1′(a,0,0)00s(0,a,0)00s(0,0,a)00s
and a five-dimensional orthorhombic one 19.2.29.2.m26.3
P2_12_12_1.1′(0,b1,0)000s(0,0,g2)000s. The cubic structure
is of the hedgehog type, whereby the magnetization
spatially modulates along all three dimensions, while
the orthorhombic one hosts meronlike objects located in
a two-dimensional plane with total topological charge
|Q| = 1 per magnetic cell in an infinitesimally small field
with the total modulation amplitudes 2.6 μB. From the
high resolution diffraction data we have found that the
crystal structure is orthorhombic with small orthorhombic
strain less than 0.16%. The hedgehog magnetic structure
is thus slightly distorted and in general might have more
degrees of freedom in the subgroup MSSG 19.3.95.4.m26.4
P2_12_12_1.1′(a1,0,0)000s(0,b2,0)000s(0,0,g3)000s. Both
3k-cubic hedgehog and 2k-orthorhombic meron structures
can account for the topological Hall effect observed earlier
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in MnGe and should be preferable over the simple single-k
helical structure. The latter has been identified as MSSG
19.1.9.1.m26.2 P2_12_12_1.1′(0b0)0s0s and can have a
constant moment helical configuration.

We also report on a combined mechanochemical and solid-
state route to synthesize MnGe at ambient pressures and
moderate temperatures, in addition to the traditional high
pressure synthesis. The samples synthesized using this ap-
proach have relatively small crystalline sizes of about 150 Å.
Nonetheless, the magnetic structures are the same with

similar parameters as for the sample made by high pressure
synthesis.
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