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Cubic fixed point in three dimensions: Monte Carlo simulations
of the φ4 model on the simple cubic lattice
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We study the cubic fixed point for N = 3 and 4 by using finite-size scaling applied to data obtained from
Monte Carlo simulations of the N-component φ4 model on the simple cubic lattice. We generalize the idea
of improved models to a two-parameter family of models. The two-parameter space is scanned for the point,
where the amplitudes of the two leading corrections to scaling vanish. To this end, a dimensionless quantity is
introduced that monitors the breaking of the O(N ) invariance. For N = 4, we determine the correction exponents
ω1 = 0.763(24) and ω2 = 0.082(5). In the case of N = 3, we obtain Y4 = 0.0142(6) for the renormalization
group exponent of the cubic perturbation at the O(3)-invariant fixed point, while the correction exponent ω2 =
0.0133(8) at the cubic fixed point. Simulations close to the improved point result in the estimates ν = 0.7202(7)
and η = 0.0371(2) of the critical exponents of the cubic fixed point for N = 4. For N = 3, at the cubic fixed
point, the O(3) symmetry is only mildly broken and the critical exponents differ only by little from those of the
O(3)-invariant fixed point. We find −0.000 01 � ηcubic − ηO(3) � 0.000 07 and νcubic − νO(3) = −0.000 61(10).

DOI: 10.1103/PhysRevB.107.024409

I. INTRODUCTION

The three-dimensional Heisenberg universality class is
supposed to describe the critical behavior of isotropic
magnets, for example, the Curie transition in isotropic ferro-
magnets such as Ni and EuO, and of antiferromagnets such
as RbMnF3 at the Néel transition point. For a more detailed
discussion, see for instance Sec. 5 of [1] or the introduction of
Ref. [2]. The Heisenberg universality class is characterized by
an O(3) symmetry of the order parameter. Due to the crystal
structure, in real systems, one expects that there are weak
interactions that break the O(3) symmetry and possess only
cubic symmetry. Therefore, it is important to study the effect
of such perturbations theoretically. This has been done by
using field-theoretic methods for five decades now. In their
seminal paper on the ε expansion [3], Wilson and Fisher
discuss the problem to the leading order for O(2) symmetry.
Very soon the problem was taken on by various authors gener-
alizing the calculation to O(N ) symmetry with arbitrary N and
extending the calculation to higher orders in the ε expansion.
For example, in 1973, Aharony [4] performed the calculation
to two-loop order. Furthermore, large-N expansions around
decoupled Ising systems were performed. See Ref. [5] and
recently [6].

It is beyond the scope of this paper to give a detailed
account of the progress that has been made over the years.
The development up to and the state of the art in 1999 is nicely
summarized in Ref. [7]. See also Refs. [8,9]. At that time, the
ε expansion had been computed up to five loop [10] and the
expansion in three dimensions fixed up to six loop [7].

Here we like to summarize some basic facts to set the scene
for our numerical study. We follow the book [11]. Similar
discussions can be found in other reviews on the subject.
The reduced Hamiltonian of the φ4 theory with two quartic
couplings in the continuum is given by [see, for example,

Eq. (5.66) of Ref. [11]]

H =
∫

dd x

⎧⎨
⎩1

2

N∑
i=1

[(∂μφi )
2+rφ2

i ]+
N∑

i, j=1

(u+vδi j )φ
2
i φ

2
j

⎫⎬
⎭,

(1)

where φi is a real number. Note that for d = 4 − ε, ε > 0,
and ε small, these φ4 terms are the only relevant perturbations
of the free (or Gaussian) theory. For v = 0 the system is
O(N ) invariant. The question is whether the term that breaks
this invariance is relevant at the O(N )-invariant fixed point.
The qualitative picture already emerges from the leading-
order calculation of the ε expansion. It can be obtained from
the renormalization group (RG) flow on the critical surface
[Eqs. (2)] taken from Eqs. (5.67) and (5.68) of Ref. [11]:

du

dl
= εu − 8(N + 8)u2 − 48uv + · · · ,

dv

dl
= εv − 96uv − 72v2 + · · · , (2)

where l is the logarithm of a length scale. The set of differen-
tial equations (2) has four fixed points [11]:

(i) Gaussian fixed point (u, v) = (0, 0);
(ii) decoupled Ising fixed point (u, v) = (0, ε/72);
(iii) O(N )-invariant fixed point (u, v)=(ε/(8(N+8)), 0);
(iv) cubic fixed point (u, v)=(ε/(24N ), (N−4)ε/(72N )).
The Gaussian and the decoupled Ising fixed points are

always unstable. Whether the O(N ) invariant or the cubic
fixed point is stable depends on N . For N > Nc, the cubic fixed
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FIG. 1. We have numerically integrated the one-loop flow equa-
tions (2) for N = 5 and ε = 1. The fixed points are given as solid
circles. The fixed points are labeled as G (Gaussian), I (decoupled
Ising), H [O(N )-invariant Heisenberg], and C (cubic). Selected RG
trajectories are given by dotted lines. Subsequent dots are separated
by a scale factor of b = 21/8. Hence, the larger the distance between
the dots, the faster the flow. The arrows indicate the direction of the
flow.

point is stable, while for N < Nc it is the O(N )-invariant fixed
point. At one loop, setting ε = 1, Nc = 4. Analyzing higher
orders in the ε expansion, Nc ≈ 3 is obtained. The analysis of
the five-loop ε expansion and the six-loop perturbative series
in three dimensions fixed gives Nc slightly smaller than 3 (see
Refs. [7–9] and references therein). Recently, the ε expansion
has been extended to six loop [12]. Analyzing the result,
the authors find Nc = 2.915(3). In Fig. 1 we give the flow
obtained for N = 5 and Eqs. (2) for ε = 1. The exact RG flows
for N = 3 and 4 should show the same qualitative features.
The O(N )-invariant fixed point has one stable direction, along
the u axis. The corresponding correction exponent is denoted
by ω. The RG exponent related with the unstable direction
is denoted by Y4, where the subscript refers to spin l = 4. At
the cubic fixed point there are two stable directions character-
ized by the correction exponents ω2 < ω1. The choice of the
subscripts follows the literature. RG trajectories starting with
v < 0 run towards ever increasing |v|. Eventually v reaches
values that give first-order transitions in mean field. Hence,
one expects that for any v < 0, the transition is of first order.
A characteristic feature of the flow is that it collapses rather
quickly on a single line, corresponding to the fact that ω,
ω1 � Y4, ω2. For a recent reanalysis of the six-loop ε expan-
sion and a discussion of the relevance in structural transitions
in, for example, perovskites, see Ref. [13].

The result Nc < 3 is supported by the fact that in a
finite-size scaling analysis of Monte Carlo data for the im-
proved φ4 model on the simple cubic lattice the authors
find Y4 = 0.013(4) for N = 3 [14]. The rigorous bound Y4 >

3 − 2.990 56 for N = 3 was recently established by using
the conformal bootstrap (CB) method [15]. Note that in the
introduction of Ref. [15] a nice summary of recent results
obtained by different methods is given.

While it is established now that for N = 3 the cubic fixed
point is the stable one, highly accurate estimates of the crit-

ical exponents, for example, the critical exponent ν of the
correlation length, for the cubic fixed point are missing. The
accuracy of estimates obtained by using field-theoretic meth-
ods does not allow to discriminate between the cubic and
the O(N )-symmetric fixed point in the experimentally rele-
vant case N = 3. Note that for the O(3)-invariant fixed point
the estimates of critical exponents obtained by Monte Carlo
simulations of lattice models (see, for example, Ref. [16])
or the CB method [15] are by one digit more accurate than
those obtained by field-theoretic methods. For a more detailed
discussion see Sec. IX below.

In this work, we provide accurate estimates of critical
exponents for the cubic fixed point for N = 3 and 4. To
this end, we study a lattice version of the Hamiltonian (1)
with two parameters. We generalize the idea of an improved
model to a two-parameter model. The idea to study improved
models to get better precision on universal quantities goes
back to Refs. [17,18]. First studies of improved models using
finite-size scaling (FSS) [19] and Monte Carlo simulations
applied to the three-dimensional Ising universality class are
Refs. [20–23]. For a discussion see, for example, Sec. 2.3 of
the review [1]. For the application to the three-dimensional
Heisenberg universality class, see Refs. [2,14,16,24]. By us-
ing finite-size scaling, one tunes the parameter of the reduced
Hamiltonian such that the amplitude of the leading correction
vanishes. Here in the case of the cubic fixed point, we are
tuning two parameters to eliminate the amplitudes of the two
leading corrections. Since one of the correction exponents is
much smaller than one, improving the reduced Hamiltonian
turns out to be absolutely crucial to get reliable results for the
critical exponents of the cubic fixed point.

In our simulations we consider N = 4 in addition to 3. It is
not of direct experimental relevance. However, here we expect
that the cubic fixed point is well separated from the O(4)-
invariant one, and therefore the conceptual points of our study
can be more easily demonstrated in this case. Furthermore,
our results allow to benchmark field-theoretic methods that
produce estimates for any value of N .

The outline of the paper is the following: In the next sec-
tion we define the model and the observables that we measure.
In Sec. III we discuss the Monte Carlo algorithms that are used
for the simulation. In Sec. IV we summarize the theoretical
predictions for the FSS behavior of dimensionless quantities.
In Sec. V we discuss the simulations and the analysis of the
data for N = 4. For N = 3 we first perform high statistics
simulations at the O(3)-invariant point to improve the accu-
racy of the estimate of the exponent Y4 (see Sec. VI). Next, in
Sec. VI, we discuss simulations for a finite perturbation with
cubic symmetry. We locate the improved model by analyzing
the FSS behavior of dimensionless quantities. Estimates of
the critical exponents η and ν are obtained by analyzing the
FSS behavior of the magnetic susceptibility and the slope of
dimensionless quantities at criticality. Finally, we summarize
our results and compare them with estimates given in the
literature.

II. THE MODEL AND OBSERVABLES

In our study we consider a discretized version of the con-
tinuum Hamiltonian (1) on a simple cubic lattice. We extend
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the reduced Hamiltonian of the φ4 model [see, for example,
Eq. (1) of Ref. [2]] by a term proportional to∑

a

Q4,aaaa( �φ ) =
∑

a

φ4
x,a − 3

N + 2

( �φ 2
x

)2
, (3)

with cubic symmetry, breaking O(N ) invariance

H({ �φ}) = −β
∑
〈xy〉

�φx · �φy +
∑

x

[
�φ 2

x + λ
( �φ 2

x − 1
)2

+ μ

(∑
a

φ 4
x,a − 3

N + 2

( �φ 2
x

)2

)]
, (4)

where �φx is a vector with N real components. The subscript a
denotes the components of the field and { �φ } is the collection
of the fields at all sites x. We label the sites of the simple cubic
lattice by x = (x0, x1, x2), where xi ∈ {1, 2, . . . , Li}. Further-
more, 〈xy〉 denotes a pair of nearest neighbors on the lattice. In
our study, the linear lattice size L = L0 = L1 = L2 is equal in
all three directions throughout. We employ periodic boundary
conditions. The real numbers β, λ, and μ are the parameters
of the model. Note that Q4 is the traceless symmetric combi-
nation of four instances of the field [see, for example, Eq. (7)
of Ref. [14]]

Q4,abcd ( �� ) = �a�b�c�d − 1

N + 4
�� 2(δab�c�d

+ δac�b�d + δad�b�c + δbc�a�d

+ δbd�a�c + δcd�a�b) + 1

(N + 2)(N + 4)

× ( �� 2)2(δabδcd + δacδbd + δadδbc). (5)

The expectation value of
∑

a Q4,aaaa( �φ ) vanishes for an
O(N )-symmetric distribution of �φ. A small perturbation of
the O(N )-symmetric system, μ = 0, only affects scaling fields
with the symmetries corresponding to the cubic symmetry
of the perturbation. See also Eq. (5) of Ref. [15] and the
accompanying discussion.

Note that in the Hamiltonian (4) the components of the
field decouple for λ − 3

N+2μ = 0. Since the term
∑

x
�φ 2

x has
the factor (1 − 2λ) and

∑
x

∑
a φ4

x,a the factor μ = N+2
3 λ in

front, a rescaling of the field φx is needed to match with the
Hamiltonian

H({φ}) = −β̃
∑
〈xy〉

φxφy +
∑

x

[
φ2

x + λ̃
(
φ2

x − 1
)2

]
, (6)

considered for example in Ref. [23], where φx is a real num-
ber. We arrive at the equations

(1 − 2λ) = (1 − 2λ̃) c,
N + 2

3
λ = λ̃ c2 (7)

and hence
6

N + 2
λ̃ c2 + (1 − 2λ̃) c − 1 = 0 (8)

with the solutions

c =
−(1 − 2λ̃) ±

√
(1 − 2λ̃)2 − 24

N+2 λ̃

12
N+2 λ̃

, (9)

where we take the positive solution. Plugging in λ̃∗ ≈ 1.1
[23] we arrive at c = 1.436 475 86 . . . for N = 3. Note that
λ̃∗ denotes the value of λ̃, where leading corrections to
scaling vanish. Hence, we get for the improved decoupled
model λ∗ = 1.361 885 . . . , μ∗ = N+2

3 λ∗ = 2.269 809 . . . , and
β̃c = 0.375 096 6(4) at λ̃ = 1.1 translates to βc = cβ̃c =
0.538 817 2 . . . . For N = 4 we get λ∗ = 1.486 347 . . . , μ∗ =
2.972 695 . . . , and βc = 0.616 626 . . . .

Observables and dimensionless quantities

Dimensionless quantities or phenomenological couplings
play a central role in finite-size scaling. Similar to the study
of O(N )-invariant models we study the Binder cumulant U4,
the ratio of partition functions Za/Zp, and the second moment
correlation length over the linear lattice size ξ2nd/L. Let us
briefly recall the definitions of the observables and dimension-
less quantities that we measure.

The energy of a given field configuration is defined as

E =
∑
〈xy〉

�φx · �φy. (10)

The magnetic susceptibility χ and the second moment corre-
lation length ξ2nd are defined as

χ ≡ 1

V

〈(∑
x

�φx

)2〉
, (11)

where V = L3 and

ξ2nd ≡
√

χ/F − 1

4 sin2 π/L
, (12)

where

F ≡ 1

V

〈∣∣∣∣∣
∑

x

exp

(
i
2πxk

L

)
�φx

∣∣∣∣∣
2〉

(13)

is the Fourier transform of the correlation function at the low-
est nonzero momentum. In our simulations, we have measured
F for the three directions k = 0, 1, 2 and have averaged these
three results.

The Binder cumulant U4 is given by

U4 ≡ 〈( �m2)2〉
〈 �m2〉2

, (14)

where �m = 1
V

∑
x

�φx is the magnetization of a given field
configuration. We also consider the ratio Za/Zp of the partition
function Za of a system with antiperiodic boundary conditions
in one of the three directions and the partition function Zp of
a system with periodic boundary conditions in all directions.
This quantity is computed by using the cluster algorithm. For
a discussion see Appendix A 2 of Ref. [25].

In order to detect the effect of the cubic anisotropy we
study

UC =
〈 ∑

a Q4,aaaa( �m)
〉

〈 �m 2〉2
. (15)

In the following we shall refer to the RG-invariant quantities
UC , U4, Za/Zp, and ξ2nd/L by using the symbol R.
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In our analysis we need the observables as a function of β

in some neighborhood of the simulation point βs. To this end
we have computed the coefficients of the Taylor expansion of
the observables up to the third order. For example, the first
derivative of the expectation value 〈A〉 of an observable A is
given by

∂〈A〉
∂β

= 〈AE〉 − 〈A〉〈E〉. (16)

In the case of decoupled systems λ − N+2
3 μ = 0, we can

express the dimensionless quantities introduced above in
terms of their Ising counterparts. For example,

UC = N − 1

N (N + 2)
(U4,Ising − 3). (17)

Hence, we get for the fixed-point value, which is indicated by
an asterisk,

U ∗
C,DI = [1.603 59(4) − 3]

N − 1

N (N + 2)

= −1.396 41(4)
N − 1

N (N + 2)
(18)

using the result of [26] for U ∗
4,Ising. Furthermore, (Za/Zp)∗DI =

[(Za/Zp)∗Ising]N , U ∗
4,DI = 1

N U ∗
4,Ising + N−1

N , and (ξ2nd/L)∗DI =
(ξ2nd/L)∗Ising, where the subscript DI indicates the decoupled
Ising fixed point.

III. MONTE CARLO ALGORITHM

In previous work (see, for example, Refs. [14,24,27]), we
have simulated the O(N )-invariant φ4 model on the simple cu-
bic lattice. Here, for N = 4, we use the algorithm and C-code
of Ref. [27] with minor modifications, to take into account the
term proportional to μ in the reduced Hamiltonian (4). For
N = 3, we have implemented the algorithm by using AVX
intrinsics to speed up the simulation.

The algorithm used in Ref. [27] is a hybrid of
(i) wall cluster algorithm [22];
(ii) local Metropolis update;
(iii) local over-relaxation update;
(iv) global rotation of the field.
In the case of the wall cluster update, in Ref. [27], we

performed the update for technical reasons componentwise.
This means that in a given update step only the sign of a single
component of the field might change. This way, the value of∑

a Q4,aaaa( �φx ) remains unchanged. Hence, we can take this
part of the C-program from Ref. [27] without any change.
Also, the measurement of Za/Zp, which is integrated into the
wall cluster update, is reused without change.

In the local Metropolis algorithm, we generate a proposal
by

φ′
x,i = φx,i + s(ri − 0.5) (19)

for each component i of the field at the site x. ri is a uniformly
distributed random number in [0,1) and the step size s is tuned
such that the acceptance rate is roughly 50%. Note that for
each component a random number ri is taken. We use the
acceptance probability

Pacc = min[1, exp[−H ({ �φ}′) + H ({ �φ})]]. (20)

The only change compared with the program of Ref. [27] is
that we have to take into account the term μ

∑
a Q4,aaaa( �φx ),

when computing �H ({ �φ}′, { �φ}) = H ({ �φ}′) − H ({ �φ}).
We have implemented over-relaxation updates

�φ ′
x = 2

��x · �φx

��2
x

��x − �φx, (21)

where

��x =
∑
y nn x

�φy, (22)

where
∑

y nn x is the sum over all nearest neighbors y of the
site x. In the case of the O(N )-invariant φ4 model this update
does not change the value of the Hamiltonian and therefore
no accept or reject step is needed. Here, the value of the term
μ

∑
a Q4,aaaa( �φx ) changes under the update, which has to be

taken into account in an accept or reject step (20). This update
has no parameter which can be tuned. The acceptance rate
depends on the parameters of the model. In particular, the
larger μ, the smaller the acceptance rate. It turns out that for
the range of μ studied here the acceptance rate is reasonably
high. For example, for N = 4, for (λ,μ) = (7, 2.64), which
is close to the improved point (λ,μ)∗, we get an acceptance
rate of about 0.77 at the critical point, with little dependence
on the lattice size. In the case of N = 3, the values of μ that
we simulated at are smaller and hence the acceptance rates are
even larger.

In Ref. [27] we use global rotations of the field to com-
pensate for the fact that the cluster update has preferred
directions. The global rotation changes the value of the new
term

∑
x μ

∑
a Q4,aaaa( �φ). Hence, an accept or reject step has

to be introduced. In addition, we introduced a step size for
the global rotation, which is tuned such that the acceptance
rate is very roughly 1

2 . For simplicity we did not perform
a general O(N ) rotation, but used a rotation among two of
the components. It turned out that these global rotations are
useful only for small μ and/or small linear lattice sizes L.
In particular for μ of the order of μ∗, the reduction in the
autocorrelation times, for reasonable lattice sizes, does not
pay off for the computational costs of the rotation. There-
fore, eventually, we skipped this component of the update.
Unfortunately, this leaves us with the potential problem that
the cluster update discussed above only changes the sign of a
given component of the field.

In fact, for lattice sizes L � 32 it turned out to be advan-
tageous to add cluster updates that exchange two components
of the field

φ′
x, j = φx,i, φ′

x,i = φx, j (23)

for i �= j, while the other components stay unchanged. Note
that this update leaves the term

∑
a Q4,aaaa( �φx ) unchanged.

The update can be written as a reflection

�φ′
x = �φx − 2(�r · �φx )�r (24)

with ri = 2−1/2, r j = −2−1/2, and rk = 0 for k �= i, j. The
cluster update can also be performed with an additional
change of the sign:

φ′
x, j = −φx,i, φ′

x,i = −φx, j (25)
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for i �= j, while the other components stay unchanged. For
simplicity, we have implemented this update as single-cluster
update [28]. With probability 1

2 we took either Eq. (23) or
Eq. (25) for a given cluster update.

During the major part of the simulations, we did not mea-
sure autocorrelation times since we performed binning of

the data at run time. In preliminary simulations, where we
performed of the order of 106 update cycles, we stored all
measurement. In the analysis we computed integrated autocor-
relation times for a selection of observables that we studied.

In the case of N = 4 an update and measurement cycle is
given by the following C-code:

over(); rotate(); metro(); for(ic=0;ic<N;ic++) wall_0(ic); measure();
over(); rotate(); metro(); for(ic=0;ic<N;ic++) wall_1(ic); measure();
over(); rotate(); metro(); for(ic=0;ic<N;ic++) wall_2(ic); measure();

Here, over() is a sweep with the over-relaxation update over the lattice. rotate() is the global rotation of the field. For
larger lattices, we have skipped the rotation. metro() is a sweep with the Metropolis update discussed above, followed by
an over-relaxation update at the same site. wall_k(ic) is a wall-cluster update with a plane perpendicular to the k axis. The
component ic of the field is updated. measure() contains the evaluation of the observables discussed above.

In the most recent version of the program, a sequence of single-cluster updates replaces rotate(). The sequence is given by
for(j=0;j<L/8;j++) for(l=0;l<N-1;l++) for(k=l+1;l<N;l++) single(l,k);

where single(l,k) is a single-cluster update, exchanging
the components l and k for the sites within the cluster.

In Table I we give integrated autocorrelation times for the
energy, the magnetic susceptibility χ , and Q4( �m) for (λ,μ) =
(7, 2.64), which is close to (λ,μ)∗, at β = 0.864 075 06,
which is our estimate of βc. We truncated the summation
of the integrated autocorrelation function at tmax = 6τint,E

for all quantities considered. Throughout we performed 106

measurements. Note that adding the single-cluster updates
increases the CPU time needed for one update cycle by about
40%. Hence, already for L = 32 we see an advantage for
adding the single-cluster updates.

In the case of N = 3, we implemented the algorithm by
using the AVX instruction set of x86 CPUs. These were
accessed by using AVX intrinsics. AVX instructions act on
several variables that are packed into 256 bit units in par-
allel. In particular, we used __m256d variables to store four
double-precision floating point numbers. We employed a triv-
ial parallelization, simulating four systems in parallel. Each of
the floating point numbers in a __m256d variable is associated
with one of the four systems that is simulated. This way, we
could speed up the local updates and the measurement of the
observables by a factor somewhat larger than 2. To this end we

TABLE I. Estimates of the integrated autocorrelation time τint of
the energy E , the magnetic susceptibility χ , and Q4( �m) for N = 4, at
(λ, μ) = (7, 2.64) and β = 0.864 075 06. “Single” and “no single”
refer to simulations that have component exchanging single-cluster
updates or not. For a discussion, see the text.

L type tmax τint,E τint,χ τint,Q4

16 No single 30 4.76(5) 3.58(3) 2.37(3)
16 Single 21 3.38(3) 2.30(2) 1.57(1)
32 No single 38 6.16(7) 4.48(5) 3.34(4)
32 Single 26 4.20(4) 2.40(2) 1.63(2)
64 No single 50 8.29(11) 5.65(7) 4.62(7)
64 Single 31 5.09(5) 2.44(2) 1.50(2)
128 No single 68 11.13(17) 7.24(11) 6.11(12)
128 Single 38 6.35(7) 2.51(3) 1.41(2)

reused the random number r (0) that is uniformly distributed in
[0,1) by

r ( j) = frac(r (0) + j/4), (26)

where j = 0, 1, 2, or 3 and frac is the fractional part of a real
number. A discussion on the reuse of random numbers is given
in Appendix A of Ref. [29].

In the case of the cluster algorithm we found no efficient
use of the parallel execution using AVX instruction. There-
fore, we go through the four copies of the field sequentially.
Here, the data layout is a small obstacle. Therefore, the overall
gain obtained by using the parallelization as discussed above
is at the level of about 20%.

Since the overall gain is rather modest compared with a
plain C implementation, we abstain from a detailed discussion
of the implementation. We experimented with the composition
of the update cycle. It turns out that the dependence of the
efficiency on the precise composition is rather flat. Similar to
N = 4, it is clearly advantageous to add cluster updates that
exchange components of the field. The update and measure-
ment cycles used in most of our simulations are similar to
those discussed above for N = 4. Motivated by the speedup
of the local updates by the AVX implementation, however,
the relative number of local over-relaxation updates compared
with the cluster updates is increased.

IV. FINITE-SIZE SCALING

In this section we recall the theoretical basis of the FSS
analysis of dimensionless quantities. In particular, we con-
sider the ratio of partition functions Za/Zp, the second moment
correlation length over the linear lattice size ξ2nd/L, the Binder
cumulant U4, and the quantity UC that quantifies the violation
of the O(N ) symmetry. First we consider the neighborhood
of a single fixed point, being well separated from other fixed
points. In previous work, we discussed the case of a single
correction with a correction exponent ω being clearly smaller
than two. Here we discuss the case of two such corrections
with the exponents ω2 < ω1 < 2, which is the case for the
cubic fixed point.
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This turns out to be sufficient for the analysis of the cubic
fixed point for N = 4. However, for N = 3 it is desirable to
extend the discussion to the neighborhood of two fixed points
that are close to each other.

A. Dimensionless quantities in the neighborhood of a fixed point

Dimensionless quantities Ri, for a given geometry, are
functions of the lattice size L and the parameters β, λ, and μ

of the reduced Hamiltonian. Throughout, we consider a van-
ishing external field h = 0. In the neighborhood of a critical
point, we might also write them as a function of the nonlinear
scaling fields uj and the linear lattice size L:

Ri(β, λ, μ, L) = Ri(ut L
yt , u3Ly3 , u4Ly4 , {u jL

yj }), (27)

where we identify y3 = −ω2 and y4 = −ω1 in the case of the
cubic fixed point. yt = 1/ν is the thermal RG exponent. Note
that y3 > y4 > −1, while we expect, similar as for the O(N )-
invariant models, y j � −2 for j > 4. The nonlinear scaling
fields can be written as (see, for example, Ref. [1], sec. 1.5.7)

ut = t + g11(λ,μ)t2 + O(t3), (28)

where t = β − βc is the reduced temperature, and βc is the
inverse critical temperature. For simplicity, in the definition
of t , we have skipped the normalization 1/βc and took the
opposite sign as usual. The irrelevant scaling fields are

u3 = g13(λ,μ) + g23(λ,μ)t + O(t2) (29)

and

u4 = g14(λ,μ) + g24(λ,μ)t + O(t2). (30)

Now let us expand Ri on the right-hand side of Eq. (27)
around the fixed point u jLyj = 0:

Ri(β, λ, μ, L) = R∗
i +

∑
j

ri, ju jL
yj

+ 1

2

∑
j,k

ri, j,ku jukLyj+yk + · · · , (31)

where j = t, 3, 4, . . . and

ri, j = ∂Ri

∂ (u jLyj )
(32)

and

ri, j,k = ∂2Ri

∂ (u jLyj )∂ (ukLyk )
(33)

at the fixed point. Now putting in the expressions for the
scaling fields u j we arrive at

Ri(βc, λ, μ, L) = R∗
i +

∑
j�3

ri, jg1 j (λ,μ)Lyj + · · · (34)

at the critical temperature. Equation (34) is the basis for the
Ansätze used to fit our data. Note that we have simulated at
βs ≈ βc. In addition to the value of Ri(βs, λ, μ, L), we deter-
mine the Taylor coefficients of the expansion of Ri in (β − βs)
up to the third order. In our fits, we keep Ri(βs, λ, μ, L) on the
left side of the equation, and bring the terms proportional to
(βc − βs)α for α = 1, 2, and 3 to the left. Furthermore, we

ignore the statistical error of the Taylor coefficients. This way,
we can treat βc as a free parameter in the fit.

In order to arrive at an Ansatz that can be used in a fit, we
have to truncate Eq. (34). After a few numerical experiments
we took

Ri(βc, λ, μ, L)

= R∗
i + ri,3u3(λ,μ)Ly3 + 1

2 qi,3[ri,3u3(λ,μ)Ly3 ]2

+ ri,4u4(λ,μ)Ly4 + q(βc, λ, μ, L) (35)

as our standard Ansatz. To simplify the notation, we identify
u j = g1, j here. We set r4,3 = 1 and r3,4 = 1, where i = 3
corresponds to the Binder cumulant U4 and i = 4 to UC . We
have skipped terms that mix u3 and u4 since we simulated
at parameters (λ,μ), where at least one of the scaling fields
has a small amplitude. Below, analyzing the data, we specify
how we parametrize u3 and u4. q(βc, λ, μ, L) contains the
corrections that decay with L−ε , where ε � 2. For Za/Zp, we
assumed that there are only corrections due to the breaking
of the symmetry by the simple cubic lattice. We assume that
the amplitude of this correction does not depend on μ and
λ. As in our previous work, we take ε2 = 2.023 as numerical
value of the exponent. In the case of the other three quantities
there are corrections with the exponent ε1 = 2 − η due to the
analytic background of the magnetic susceptibility. We write
the coefficient of these corrections as linear functions of λ

and μ. In the case of the Binder cumulant U4 and the new
cumulant UC , we do not take into account the correction due
to the breaking of the symmetry by the lattice. We expect
that it is at least partially taken into account by the term with
the exponent ε1. For ξ2nd/L, we expect that there is even a
third correction, and that there are huge cancellations between
the terms. Therefore, we have added in this case a second
correction. We took a constant amplitude and the exponent
ε2 = 2.023. Obviously, this Ansatz suffers from truncation
errors. The effect of these errors can be checked by varying
the range of λ and μ and the linear lattice sizes L that are
taken into account.

B. Two fixed points in close neighborhood

Generically for a perturbation of a conformally invariant
fixed point (see, for example, [30]) one gets

dgi

dl
= yigi − Ckligkgl + · · · , (36)

where yi is the RG exponent of the perturbation, Ckli is a
structure constant, up to a constant factor, set by convention,
and gi a dimensionless coupling. Here we consider a single
relevant perturbation with 0 < y � 1. We get

dg

dl
= yg − Cg2 + O(g3). (37)

Note that the authors of Ref. [13] discuss the same equation
[their Eq. (11)], where y and C are obtained from the analysis
of the six-loop ε expansion. See also Eq. (27) of Ref. [15].
Here y and C are free parameters that are eventually fixed by
fitting numerical data. We assume g to be small and hence
ignore the O(g3) contributions in the following. In addition to
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the fixed point g = 0, there is the fixed point

g∗ = y

C
. (38)

Let us rewrite Eq. (37) by using δ = g − g∗:

dδ

dl
= y(g∗ + δ) − C(g∗ + δ)2 = −yδ − Cδ2. (39)

Hence at the fixed point g = g∗, there is an irrelevant pertur-
bation with RG exponent −y.

With respect to our finite-size scaling study, we vary the
linear lattice size L, while the coupling at the cutoff scale is
given. The differential equation g′ = yg − Cg2 is discussed in
various contexts in the literature and one finds the solution

g = y

C + p exp(−yl )
, (40)

where p is an integration constant. Solving for p, for given g0

at the scale exp(l0), we get

g = g∗

1 + ( g∗
g0

− 1
)

exp(−y[l − l0])
. (41)

The coupling constant g0 should be an analytic function of the
parameters of the model

g0 = r(λ)μ + s(λ)μ2 + · · · . (42)

The dimensionless quantity UC at the critical point is an an-
alytic function of g at the scale proportional to L = exp(l ),
where L is the linear size of the lattice

UC (g) = Ag + Bg2 + · · · . (43)

Taking the leading order in Eqs. (42) and (43) only, we arrive
at

UC (μ, λ, L) = U ∗
C

1 + q
(

μ∗
μ

− 1
)
L−y

, (44)

where U ∗
C = Ag∗ and rμ∗ = g∗. The factor q reflects the un-

certainty of the identification of the length scales. μ∗ and q
might depend on λ.

V. THE SIMULATIONS AND THE ANALYSIS FOR N = 4

First we have simulated the model for N = 4. Here the
O(N ) invariant and the cubic fixed point are better separated
than for N = 3, which should make the analysis of the data
more simple. First we performed simulations for λ = 18.5
at various values of μ. Note that for the O(4)-invariant φ4

model λ∗ = 18.4(9) [27]. Extensive simulations for μ = 0
were performed for λ = 18.5 in Ref. [27]. In the preliminary
stage of the analysis we mainly monitored ŪC , which is UC

at the value of β such that [Za/Zp](β ) = 0.119 11. Note that
(Za/Zp)∗ = 0.119 11(2) for the O(4)-invariant φ4 model on a
L3 torus [27].

The cubic fixed point is identified by ŪC not depending
on the linear lattice size L. We arrived at Ū ∗

C ≈ −0.086 and
μ∗ ≈ 3.5. However, a more detailed analysis of the data
showed that for (λ,μ) = (18.5, 3.5), corrections ∝L−ω1 with
ω1 ≈ 0.8 have a considerable magnitude. Prompted by this
result we started a more general search for (λ,μ)∗, where
both leading and subleading corrections are vanishing. As
preliminary estimate we arrived at (λ,μ)∗ ≈ (7, 2.7).

TABLE II. Amplitudes u3 and u4 of the corrections obtained by
fitting our data for dimensionless quantities for N = 4 for Lmin = 12
by using the Ansatz (35). In the last column, we give the estimate of
βc. Details are discussed in the text.

λ μ u3 u4 βc

2 1.16 −0.00006(12) 0.03235(79) 0.77776644(85)
4 1.9 0.00060(10) 0.01192(32) 0.83415315(38)
6 2.5 −0.00134(10) 0.00244(9) 0.85567074(29)
6 2.93 −0.00996(16) −0.00035(15) 0.84735549(45)
6.5 2.4 0.00311(11) 0.00223(11) 0.86309955(34)
6.5 2.7 −0.00324(10) 0.00037(8) 0.85790473(32)
7 2.2 0.00974(17) 0.00251(18) 0.87097872(53)
7 2.5 0.00287(10) 0.00087(9) 0.86635289(24)
7 2.64 −0.00004(10) 0.00008(7) 0.86407506(17)
7 2.7 −0.00126(10) −0.00030(8) 0.86307673(28)
7 3 −0.00688(12) −0.00205(15) 0.85789401(27)
7.2 2.656 0.00035(10) −0.00028(8) 0.86566530(27)
7.5 2.6 0.00251(10) −0.00034(8) 0.86913520(28)
7.5 2.8 −0.00143(10) −0.00146(9) 0.86598689(39)
7.5 3 −0.00509(11) −0.00262(14) 0.86270900(33)
8 2.43 0.00767(14) −0.00008(11) 0.87542511(43)
8 2.5 0.00615(12) −0.00041(10) 0.87443835(37)
8 2.9 −0.00173(10) −0.00252(11) 0.86849718(33)
18.5 3.5 0.00312(11) −0.00994(26) 0.89931064(30)
18.5 4 −0.00352(10) −0.01173(37) 0.89496905(38)

In particular, to get accurate estimates of the correction
exponents, we simulated at various values of (λ,μ), focusing
on the neighborhood of (λ,μ)∗. The data sets used in our final
analysis, containing 20 different pairs (λ,μ), are summarized
in Table II.

For most of these pairs we simulated the linear lattice sizes
L = 12, 14, 16, 18, 20, 24, 28, 32, 40, 48, and 56. More
and, in particular larger, lattice sizes were added for (λ,μ) =
(18.5, 3.5), (18.5,4), (7,2.64), and (7,3) in order to determine
the critical exponents ν and η. In particular for (λ,μ) =
(7, 2.64), which is close to our final estimate of (λ,μ)∗, we
have simulated in addition L = 6, 7, 8, 9, 10, 11, 13, 15, 64,
72, 80, and 100. For example, for (λ,μ) = (7, 2.64), we per-
formed between 109 and 3×109 measurements for L = 6 up
to 32. Then the statistics is going down with increasing lattice
size. For L = 100, we performed 1.3×108 measurements. In
total, we have used the equivalent of about 22 years of CPU
time on a single core of an AMD EPYCT M 7351P CPU.

A. Dimensionless quantities

First we have analyzed the dimensionless quantities by
using a joint fit of all four quantities that we have measured
and all 20 pairs of (λ,μ). To this end, we used the Ansatz
(35). We used u3(λ,μ) and u4(λ,μ) as free parameters for
each pair (λ,μ).

Already for Lmin = 12 we find an acceptable χ2/DOF =
0.999 corresponding to a p value p = 0.504. In Table II we
give the correction amplitudes u3 and u4 for each (λ,μ), and
the estimate of βc. In the case of u3 and u4 we give the
statistical error for this particular fit only. In Fig. 2 we plot
the estimates of u3 and u4. Note that we avoided values of
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FIG. 2. We plot the estimates of the correction amplitudes
(u3, u4) obtained by fitting our data for dimensionless quantities for
N = 4 and Lmin = 12 with the Ansatz (35). Each data point corre-
sponds to a pair (λ,μ) we simulated at. To keep the figure readable,
we give the values of (λ,μ) only for some data points. The complete
information is given in Table II.

(λ,μ), where both u3 and u4 have a large modulus. This way
we tried to reduce the effect of corrections that contain both
scaling fields u3 and u4.

In order to get the final estimate of βc, the dimensionless
quantities Ri and the correction exponents ω1 and ω2 and their
error, we produced a set of estimates with their respective
statistical error. To this end, we take Ansatz (35) for Lmin = 12
and 16. Furthermore, we extended Ansatz (35) in four differ-
ent ways or skipped one pair of (λ,μ):

(1) adding a term proportional to L−4;
(2) adding a term proportional u3L−ω2 to the third power;
(3) adding a term proportional u4L−ω1 to the second

power;
(4) adding a mixed u3u4L−ω2−ω1 term;
(5) skipping (λ,μ) = (2, 1.16) from the data.
These are all taken at Lmin = 12, giving all χ2/DOF ≈ 1.

We compute the minimum βc,min of βc − error for each pair
(λ,μ) among these different estimates. The same is done for
the maximum βc,max of βc + error. As our final estimate we
take (βc,max + βc,min)/2 and (βc,max − βc,min)/2 as error. The
results are given in the last column of Table II.

In the case of the other quantities we proceed analogously.
We obtain ω2 = 0.082(5), ω1 = 0.763(24) for the correction
exponents. Note that the estimate of ω1 is within errors the
same as ω = 0.755(5) obtained for the O(4)-symmetric fixed
point in Ref. [27]. The value of ω2 is clearly smaller than
Y4 = 0.125(5) obtained in [14], indicating that the approxima-
tion discussed in Sec. IV B is not appropriate for N = 4. Our

results for the dimensionless quantities are given in Table III.
These clearly differ from the O(4)-symmetric counterparts.

Next we consider an Ansatz based on Eq. (35), where the
scaling fields u3 and u4 are parametrized as quadratic func-
tions of λ and μ:

u j = a j,λ,1(λ − λ∗) + a j,μ,1(μ − μ∗) + 1
2 a j,λ,2(λ − λ∗)2

+ 1
2 a j,μ,2(μ − μ∗)2 + a j,λ,μ(λ − λ∗)(μ − μ∗). (45)

In our Ansatz, λ∗, μ∗, and a j,λ,1, a j,μ,1, a j,λ,2, a j,μ,2, and a j,λ,μ

for both values of j are free parameters.
In order to get an acceptable χ2/DOF we had to restrict

the range of λ and μ such that seven or eight pairs (λ,μ)
remained. Since this way data with a large amplitude of u3 and
u4 are excluded, no accurate estimate of ω1 and ω2 is obtained
in the fit. Therefore, we have fixed these to the values obtained
above.

In order to get the final estimate we considered the fol-
lowing Ansätze and data sets: Ansatz (35) for Lmin = 12 and
16 and the Ansatz (35) with a term proportional to L−4 for
Lmin = 12. Using these Ansätze we fitted the data set with
seven or eight pairs (λ,μ). Based on these results, proceeding
as discussed above, we arrive at

(λ,μ)∗ = (7.10(15), 2.642(26)). (46)

Furthermore, get a3,λ,1/a3,μ,1 = −0.180(5), Eq. (45), char-
acterizing the line of vanishing u3 in the neighborhood of
(λ,μ)∗.

Below we compute the exponents yt = 1/ν and η based
on our data for (λ,μ) = (7, 2.64), which is close to (λ,μ)∗.
In order to estimate errors due to residual correction am-
plitudes u3 and u4, we compare with results obtained for
(λ,μ) = (7, 3) and (λ,μ) = (18.5, 3.5) and (18.5,4), respec-
tively. Analyzing our estimates of the correction amplitudes
obtained by using the different Ansätze discussed above, we
find that |u3| should be at least by a factor of 16 smaller for
(λ,μ) = (7, 2.64) than for (λ,μ) = (7, 3). |u4| should be at
least by a factor of 16 smaller for (λ,μ) = (7, 2.64) than for
(λ,μ) = (18.5, 3.5) and (18.5,4).

B. Critical exponents η and ν

Here we focus on the analysis of our data for (λ,μ) =
(7, 2.64), which is close to (λ,μ)∗. In addition, we an-
alyze (λ,μ) = (7, 3), (18.5,3.5), and (18.5,4) in order to
estimate the possible effect of residual corrections at (λ,μ) =
(7, 2.64).

C. η from the FSS behavior of the magnetic susceptibility

We have analyzed our data for the magnetic susceptibility
at (λ,μ) = (7, 2.64) at either Za/Zp = 0.113 495 or ξ2nd/L =

TABLE III. Values of dimensionless quantities for a L3 lattice with periodic boundary conditions for the cubic fixed point for N = 4. For
comparison we give the results obtained in Ref. [27] for the O(4)-symmetric case.

Quantity Za/Zp ξ2nd/L U4 UC

Cubic, N = 4 0.113495(41) 0.56252(11) 1.104522(71) −0.08869(22)
O(4) symm. 0.11911(2) 0.547296(26) 1.094016(12) 0
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FIG. 3. We plot the estimates of η obtained by fitting the data
for the magnetic susceptibility χ at (λ, μ) = (7, 2.64) and N = 4 by
using the Ansätze (47) and (48) versus the minimal lattice size Lmin

that is taken into account. The solid line gives our final estimate,
while the dashed lines indicate our preliminary error estimate. Note
that the values on the x axis are slightly shifted to reduce overlap of
the symbols.

0.562 52. We used the Ansätze

χ̄ = aL2−η + b (47)

or

χ̄ = aL2−η(1 + cL−ε ) + b, (48)

where we have taken either ε = 2.023 or 4. Our results are
plotted in Fig. 3. Our preliminary estimate η = 0.037 10(15)
is chosen such that that all four fits are consistent with the
estimate for some range of Lmin. In order to estimate the
error due to residual correction amplitudes u3 and u4 at
(λ,μ) = (7, 2.64), we have analyzed the magnetic suscep-
tibility at (λ,μ) = (7, 3), (18.5,3.5), and (18.5,4) by using
the same Ansätze as for (λ,μ) = (7, 2.64). In the case of
(λ,μ) = (7, 3), we see a larger spread between the re-
sults for Za/Zp = 0.113 495 and ξ2nd/L = 0.562 52 fixed. For
ξ2nd/L = 0.562 52, using Ansatz (47), we get very similar
results as for (λ,μ) = (7, 2.64). In contrast for Za/Zp =
0.113 495, using Ansatz (47), we get, for example, η =
0.037 53(8) for Lmin = 16.

In the case of (λ,μ) = (18.5, 3.5) and (18.5,4), the es-
timates of η are smaller than those for (λ,μ) = (7, 2.64)
throughout. For example, η = 0.036 61(12) using Ansatz (47)
for Lmin = 20 and (18.5,3.5), fixing Za/Zp = 0.113 495.

Given the discussion on the relative amplitude of the scal-
ing fields above, we enlarge the error to

η = 0.0371(2) (49)

to take into account the possible effect of residual corrections
due to the scaling fields u3 and u4 at (λ,μ) = (7, 2.64). Our
estimate clearly differs from ηO(4) = 0.036 24(8) [27] for the
O(4)-symmetric fixed point.

FIG. 4. We plot the estimates of yt obtained by fitting the slopes
of Za/Zp, ξ2nd/L, U4, and Za/Zp − 0.165UC at Za/Zp = 0.113 495
using the Ansatz (51) with ε = 2.023 versus the minimal lattice size
Lmin that is taken into account. Data for (λ,μ) = (7, 2.64) and N = 4
are analyzed. The dimensionless quantity is given in the legend,
where “mix” refers to Za/Zp − 0.165UC . The solid line gives our
final estimate, while the dashed lines indicate our preliminary error
estimate. Note that the values on the x axis are slightly shifted to
reduce overlap of the symbols.

D. Thermal RG exponent yt = 1/ν from the FSS behavior
of the slopes of phenomenological couplings

The slope of a dimensionless quantity at the critical point
behaves as

Si = ∂Ri

∂β
= aiL

yt

⎛
⎝1 +

∑
j

bi, jL
y j + · · ·

⎞
⎠

+
∑

j

ci, jL
y j + · · · , (50)

where bi,3 and bi,4 vanish for an improved model, while ci,3

and ci,4 are finite.
In order to check the effect of ci,3Ly3 we can construct

linear combinations of dimensionless quantities that do not
depend on u3. To this end we use the results of the previous
section, where we obtained the dependence of Ri on u3. In
particular we have constructed such combinations for either
Za/Zp or ξ2nd/L with UC .

We have computed the slopes of dimensionless quantities
at either ξ2nd/L = 0.562 52 or Za/Zp = 0.113 495. We have
fitted our data with the Ansatz

S̄ = aLyt (1 + cL−ε ), (51)

where we take ε = 2.023, which is the estimate of the ex-
ponent related with the violation of the rotational invariance
by the lattice. As a check, we performed fits with ε = 2 − η,
taking our estimate of η obtained above. The estimates of
yt change only by little. In Fig. 4 we plot the estimates for
Za/Zp = 0.113 495 obtained by fitting the data for (λ,μ) =
(7, 2.64) taking ε = 2.023. As preliminary result we obtain
yt = 1.3898(7). It is chosen such that the estimates obtained
by the fits are covered for all four slopes for some range of
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Lmin. Analyzing the slopes at ξ2nd/L = 0.562 52, we get fully
consistent results.

We have repeated this analysis for (λ,μ) = (7, 3),
(18.5,3.5), and (18.5,4) to see the effect of the corrections
on the estimate of yt . For (λ,μ) = (7, 3) we get essentially
consistent results from the different slopes that we consider.
We get the estimate yt ≈ 1.396 being clearly larger than the
estimate obtained for (λ,μ) = (7, 2.64).

In the case of (18.5,3.5) and (18.5,4) the estimate of yt

obtained from the slope of U4 is clearly larger than that ob-
tained from the slopes of Za/Zp and ξ2nd/L. Likely this is
due to the fact that the effect of a finite scaling field u4 is
different in the different slopes. On top of this, there is a
clear difference between the results of (18.5,3.5) and (18.5,4),
which we attribute to the different sign of u3 for these two
values of (λ,μ). From the slopes of Za/Zp and ξ2nd/L we get
yt ≈ 1.386 and 1.392, respectively.

Given the discussion on the relative amplitude of the scal-
ing fields above, we enlarge the error to

yt = 1.3898(13) (52)

to take into account the possible effect of residual corrections
due to the scaling fields u3 and u4 at (λ,μ) = (7, 2.64).

VI. CRITICAL EXPONENTS Yl FOR O(3) SYMMETRY

We have extended the simulations of Ref. [14] focusing on
N = 3. We make use of the estimate λ∗ = 5.17(11) given in
the Appendix of [16]. Close to λ∗, the inverse critical temper-
ature is estimated as βc(λ = 5.0) = 0.687 561 27(13)[6] and
βc(λ = 5.2) = 0.687 985 21(8)[3].

Here we study the same quantities as in Ref. [14]. We
consider perturbations Pm,l defined by the power m of the
order parameter and the spin representation l of the O(N )

group

Pa1...al
m,l ( ��) = ( �� 2)(m−l )/2Qa1...al

l ( ��), (53)

where Qa1...al
l is a homogeneous polynomial of degree l that is

symmetric and traceless in the l indices. For l = 4, see Eq. (5)
above. We consider correlators of the type

Cl =
∑

a1,a2,...,al

〈∑
x

Qa1,a2,...,al
l ( �φx ) Qa1,a2,...,al

l ( �m)

〉
, (54)

where �M = ∑
x

�φx and �m = �M/| �M|. And in addition

Dl =
∑

a1,a2,...,al

〈∑
x Qa1,a2,...,an

l ( �φx ) Qa1,a2,...,al
l ( �M )

〉
〈 �M 2〉l/2

. (55)

In terms of the angle α between �m and �φx defined by

�φx · �m = | �φx| cos(αx ) (56)

one gets, for example,

C4 =
〈∑

x

| �φx|4
(

cos4 αx − 6

N + 4
cos2 αx

+ 3

(N + 2)(N + 4)

)〉
. (57)

The new simulations were in particular designed for l = 4.
Furthermore, we have added measurements for l = 5 and 6.
We notice that the estimators Cl and Dl become increasingly
noisy with increasing l . This means that integrated autocorre-
lation times τint go to 0.5, while the relative variance increases
as the lattice size L increases. This behavior can be seen
starting from l = 4. Here we try to attenuate the problem by
frequent measurements. To this end, we have implemented lo-
cal updates, in particular, the over-relaxation update efficiently
by using AVX intrinsics (see Sec. III).

The most recent update and measurement cycle is

rotate();

for(i = 0; i<N_cl; i++){cluster(0); cluster(1); cluster(2); }
metro(); measure_ene(); measure_X();

for(i = 0; i<N_ov; i++){over(); measure_X(); }

rotate() is a global rotation of the field φ by a random
O(3) matrix. cluster(i) is a single cluster update of the ith
component of the field. metro() is the local Metropolis up-
date sweeping over the lattice. At each site an over-relaxation
update follows the Metropolis update as second hit. over() is
a sweep with the over-relaxation update. measure_ene() is
the measurement of the energy, Eq. (10). It remains unchanged
under over-relaxation updates. measure_X() is the measure-
ment of the magnetic susceptibility [Eq. (11)] Cl and Dl . In the
most recent simulations, we used N_ov = 20 and N_cl= L/8.
Some of the simulations for L < 30 were performed without
cluster updates.

We performed simulations at λ = 5.2 and β =
0.687 985 21 for the linear lattice sizes L = 6, 7, …, 28,

30, 32, 36, 40, and 48. In Ref. [14] larger lattice sizes have
been simulated. However, to get an accurate estimate of Y4 it
is better to generate high statistics for relatively small lattice
sizes.

In the case of our largest linear lattice size L = 48 we
performed 410 320 000 cycles for four copies of the field,
while for linear lattice sizes up to L ≈ 20 about 2×109 cycles
for four copies of the field are performed. Going from L ≈ 20
up to L = 48 the statistics gradually drops. To check the
effect of λ on our numerical result we performed simulations
at λ = 5 and β = 0.687 561 27 for linear lattice sizes up to
L = 24. In total we have used about the equivalent of 20 years
of CPU time on a single core of an AMD EPYCT M 7351P
CPU.
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FIG. 5. We plot the estimates of Y2 for N = 3 obtained by fitting
our data for C2 and D2 at λ = 5.2 by using the Ansätze (58)–(60).
Note that the values on the x axis are slightly shifted to reduce overlap
of the symbols. The solid line gives the estimate of Ref. [15], while
the dashed lines indicate the error.

Analysis of the data

In Fig. 5 we show our estimates obtained for Y2 by using
the Ansätze

Cl = aLYl , (58)

Cl = aLYl (1 + bL−2+η ), (59)

and

Cl = aLYl (1 + bL−2+η + cL−4), (60)

where the term cL−4 is an ad hoc choice that is justified by
the improved quality of the fits and the fact that for l = 2,
the estimates obtained by using the Ansätze (59) and (60)
are in nice agreement with the result obtained by using the
CB method [15]. Analogous fits are performed for Dl . In
general, the results obtained by fitting Dl and Cl are consistent.
The statistical error is slightly smaller for Cl . Based on fits
with the Ansätze (59) and (60), we take Y2 = 1.790 47(11) as
preliminary estimate.

As a check we reanalyzed our data for λ = 5.2 at β =
0.687 985 21 ± 0.000 000 11, which is our estimate of βc± the
estimate of the error. We find that the estimate of Y2 changes
by about 2×10−5 with some dependence on the type of the
fit and on Lmin. Furthermore, we have replaced ε1 = 2 − η by
ε1 = 2.023. Also here, the results change by about 2×10−5.

Finally, we estimate the effect of residual leading-order
corrections to scaling due to the fact that λ = 5.2 is only
an approximation of λ∗. To this end we have simulated the
linear lattice sizes L = 10, 12, …, 24 at λ = 5.0 and the
estimate of βc, β = 0.687 561 27. We computed the ratios
rl (L) = Cl (L, λ = 5.0)/Cl (L, λ = 5.2). We have fitted these
ratios by using the Ansatz

rl (L) = cLx. (61)

Taking into account all lattice sizes that we simulated for
λ = 5.0 we get x = 0.000 138(22) for l = 2. We assume that
the difference in the numerical estimate in the exponent is

FIG. 6. We plot the estimates of Y4 obtained by fitting our data
for C4 at λ = 5.2 for N = 3 by using the Ansätze (58)–(60). Note
that the values on the x axis are slightly shifted to reduce overlap
of the symbols. The solid line gives our preliminary estimate of Y4,
while the dashed lines indicate the error.

dominated by the difference in the leading correction. Based
on the estimate λ∗ = 5.17(11), we assume as lower bound
λ∗ � 5.06 in our estimate of the error. Taking these different
errors into account we arrive at the final estimate

Y2 = 1.7905(3). (62)

Performing a similar analysis, we arrive at

Y3 = 0.9615(3). (63)

In Fig. 6 we plot results obtained for Y4. As preliminary
estimate we take Y4 = 0.0143(7). Taking into account system-
atic errors as discussed above for l = 2, we arrive at the final
estimate

Y4 = 0.0143(9). (64)

In a similar fashion we arrive at Y5 = −1.04(1) and Y6 =
−2.2(2). We notice that the error rapidly increases with in-
creasing l . For l � 5 alternative approaches are likely more
suitable. See, for example, Refs. [31,32].

In these simulations we also have computed the magnetic
susceptibility χ . Just as a check, we have fitted the data for
λ = 5.2 with the Ansatz

χ = aL2−η + b. (65)

We get an acceptable goodness of the fit starting from
Lmin = 8. Estimates of the exponent are, for example, η =
0.037 935(15), 0.037 890(20), 0.037 881(26), 0.037 894(35),
0.037 864(45), for Lmin = 8, 10, 12, 14, and 16. Starting
from Lmin = 10 these estimates are consistent with η =
0.037 884(102) [15] and η = 0.037 84(5) [16].

VII. SIMULATIONS AND ANALYSIS
OF THE DATA FOR N = 3

We simulated at values of λ that are close to λ∗ = 5.17(11)
of the O(3)-symmetric case μ = 0 [16]. In particular, we
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simulated the model at λ = 5.2, μ = −0.5, −0.3, −0.1, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 using Lmax = 48, 48, 48, 48, 48,
48, 200, 48, 48, 48, respectively. Furthermore, we simulated
at λ = 5, μ = −0.3, −0.1, 0.1, 0.2, 0.25, 0.3, and 0.4, using
Lmax = 96, 48, 48, 48, 100, 200, and 48, respectively, at λ =
4.8, μ = −0.5, −0.3, 0.2, 0.3, 0.4, and 0.5, using Lmax = 64,
48, 48, 200, 48, and 64, respectively, at λ = 4.7, μ = −0.7,
and 0.7 using Lmax = 64, at λ = 4.5, μ = −1.0, −0.5, −0.3,
−0.15, 0.15, 0.25, 0.3, 0.35, 0.5 and 1.0, using Lmax = 64,
32, 32, 32, 32, 32, 32, 32, 32, and 64, respectively, and at
λ = 4.3, μ = −1.0 using Lmax = 64. Here, Lmax is the largest
linear lattice size that we simulated.

For example, for (λ,μ) = (5.0, 0.3), which is close to
(λ,μ)∗ as we shall see below, we simulated the linear lattice
sizes L = 8, 9, …, 16, 18, …, 36, 40, …, 48, 56, 60, 64,
72, 80, 90, 100, 110, 120, 140, and 200. We performed about
2×109 measurements for each lattice size up to L = 24. Then
the number of measurements gradually drops. For example,
we performed 8.6×108, 1.2×108, and 2.1×107 measurements
for L = 48, 100, and 200, respectively. The simulations at
(λ,μ) = (5.0, 0.3) took about the equivalent of 25 years of
CPU time on a single core of an AMD EPYCT M 7351P CPU.
All simulations for μ �= 0 took about the equivalent of 130
years of CPU time on a single core of an AMD EPYCT M

7351P CPU.
In addition we used the data for μ = 0, λ = 5.0 and 5.2,

discussed in Appendix A of Ref. [16]. We have added the lat-
tice sizes L = 32, 48, 56, 64, and 72 for λ = 5.0 and L = 32,
48, 56, 64, 72 and 90 for λ = 5.2 to have a better match with
the lattice sizes simulated for μ �= 0.

Note that here we have simulated also negative values of
μ, where a first-order transition is expected. However, for the
values of μ studied here, the linear lattice size L should be
smaller by several orders than the correlation length at the
transition. Therefore, it is justified to treat the systems as if
they were critical.

A. Dimensionless quantities

As for N = 4, we first analyze the behavior of dimension-
less quantities. In a first series of fits, we use Ansätze, where
we expand around the O(3)-symmetric fixed point. For the
dimensionless quantities Za/Zp, ξ2nd/L, and U4 we take

Ri(βc, λ, μ, L) = R∗
i + ri,4w4(λ,μ)L−ω

+
mmax∑
m=2

ci,mU m
C (βc, λ, μ, L) +

∑
j

ai, jL
−ε j ,

(66)

where ε j � 2. Equation (66) is a standard Ansatz for an-
alyzing dimensionless quantities at μ = 0, augmented by∑mmax

m=2 ci,mU m
C (βc, λ, μ, L). The basic idea of the Ansatz

is that Za/Zp, ξ2nd/L, and U4 behave as Ri(βc, λ, μ, L) =
Ri(βc, λ, 0, L) + O(μ2), while UC = O(μ), due to symmetry.
Hence, R∗

i are the O(3)-symmetric fixed point values. Here
we avoid an explicit parametrization of the RG flow of the
cubic perturbation. Instead, we take it from the dimensionless
quantity UC . In our fits, we chose either mmax = 3, 4, or 5.
The term ri,4w4(λ,μ)L−ω is an approximation based on the
fact that ω1 � Y4, ω2. In the approximation we assume a line

of fixed points, and furthermore that the correction exponent
ω stays constant along this line.

In order to fix the normalization of w4(λ,μ), we set rU4,4 =
1 for the Binder cumulant U4. The choice of subleading cor-
rections depends on the dimensionless quantity. In the case
of Za/Zp we take ε = 2.023, which is an estimate of the
correction exponent related with the violation of rotational
invariance by the lattice. The amplitude aZa/Zp,1 is assumed
to be constant in λ and μ. In the case of ξ2nd/L, we take
two correction terms, one with the correction exponent ε1 =
2 − η, associated with the analytic background of the mag-
netic susceptibility, and, as for Za/Zp, one with the correction
exponent ε2 = 2.023. The amplitude aξ2nd/L,2 is assumed to be
constant in λ and μ. The amplitude aξ2nd/L,1 is parametrized
as linear in λ and quadratic in μ. We experimented with
various dependencies on λ and μ, which however did not
improve the quality of the fit. In the case of U4, we take
one correction term with ε1 = 2 − η. The amplitude aU4,1 is
parametrized as aξ2nd/L,1. As check, we added a second correc-
tion term with ε2 = 2.023 in some of the fits. We performed
fits fixing ω = 0.759, which is the value obtained for the
O(3)-symmetric fixed point [16]. For technical reasons, we
ignore the statistical error of UC (βs, λ, μ, L) and the Taylor
coefficients in (βc − βs). This is justified by the fact that∑mmax

m=2 ci,mUC (βc, λ, μ, L)m assumes only rather small values.
As check, we added a term proportional to L−4 for each
dimensionless quantity, where the amplitudes are constant in
μ and λ. In a first series of fits, we used w4(λ,μ) as a free
parameter for each pair (λ,μ).

Fitting the data for |μ| � 0.5 with the Ansatz (66) and
mmax = 3, we get χ2/DOF = 1.125, 1.076, 1.086, and 1.066
corresponding to p = 0.002, 0.056, 0.057, and 0.13 for Lmin =
12, 16, 20, and 24, respectively. Adding a term proportional
to L−4 for each dimensionless quantity, we get χ2/DOF =
1.061, 1.074, 1.075, and 1.061 corresponding to p = 0.078,
0.062, 0.084, and 0.148 for Lmin = 12, 16, 20, and 24, re-
spectively. Fitting the data for |μ| � 0.7 with the Ansatz (66)
and mmax = 3, the p value is smaller than 0.1 for Lmin < 24,
while for Lmin = 24 we get χ2/DOF = 1.071 corresponding
to p = 0.106. Adding a term proportional to L−4 for each
dimensionless quantity the fits for Lmin < 24 are worse than
those for |μ| � 0.5, while for Lmin = 24 we get χ2/DOF =
1.068 corresponding to p = 0.116.

Fitting the data for |μ| � 1.0 with the Ansatz (66) and
mmax = 3, for Lmin = 24 we get χ2/DOF = 1.471 corre-
sponding to p = 0.000. Adding a term proportional to L−4

for each dimensionless quantity, the quality of the fit does not
improve considerably.

Fitting the data for |μ| � 1.0 with the Ansatz (66) and
mmax = 4, the quality of the fit improves considerably. We get
χ2/DOF = 1.111, 1.065, 1.078, and 1.051, corresponding to
p = 0.004, 0.077, 0.066, and 0.179 for Lmin = 12, 16, 20, and
24, respectively. Adding a term proportional to L−4 for each
dimensionless quantity, we get χ2/DOF = 1.050, 1.063,
1.070, and 1.047, corresponding to p = 0.112, 0.082, 0.087,
and 0.198 for Lmin = 12, 16, 20, and 24, respectively. Going
from mmax = 4 to mmax = 5, taking into account the data with
|μ| � 1.0, the quality of the fits only slightly improves.

We conclude that our approximative Ansatz (66), for our
high statistics data, is at the edge of being acceptable, which in
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TABLE IV. Estimates of the fixed-point values R∗ of dimensionless quantities R at the O(3)-invariant fixed point. These are obtained by
using the Ansatz (66). In the last line we give the final results of Ref. [16] for comparison. For a discussion, see the text.

mmax L−4 Range Lmin (Za/Zp)∗ (ξ2nd/L)∗ U ∗
4

3 No |μ| � 0.5 24 0.194766(13) 0.564036(11) 1.139284(10)
3 Yes |μ| � 0.5 12 0.194753(7) 0.564051(6) 1.139299(6)
4 No |μ| � 1.0 24 0.194761(11) 0.564041(10) 1.139289(9)
4 Yes |μ| � 1.0 12 0.194750(6) 0.564053(5) 1.139300(5)
Ref. [16] 0.19477(2) 0.56404(2) 1.13929(2)

the literature is usually assumed to be the case for 0.1 � p �
0.9. For |μ| � 0.5, mmax = 3 seems to be sufficient, while for
|μ| � 1 at least one more power of UC has to be added.

In Table IV we give a few characteristic results for the
dimensionless quantities obtained by using these fits. These
are consistent with those of Ref. [16]. A more accurate final
result than that given in Ref. [16] can not be obtained.

Next we consider the coefficients ci,m. As final result
we quote numbers that are consistent with four different
fits. First we took mmax = 4 and data for |μ| � 0.7. Using
a correction term proportional to L−4 we took the result
for Lmin = 12, while without this correction the data are
taken for Lmin = 24. The third and fourth fits are analogous,
but for mmax = 5 and data for |μ| � 1.0. We get cZa/Zp,2 =
−0.64(5), cZa/Zp,3 = 2.1(3), cξ2nd/L,2 = 1.34(4), cξ2nd/L,3 =
−3.4(3), cU4,2 = 1.25(3), and cU4,3 = −3.0(3). Coefficients
for m = 4 and 5 have large error bars and vary considerably
among the different fits.

In the approximation used in the fits discussed in this
section, there is an improved line λ∗(μ), where the correc-
tion proportional to L−ω vanishes. We have computed zeros
of w4(λ,μ) for given μ by linear interpolation in λ. Our
final results, which are consistent with the four different fits
used above, are given in Table V. The maximum of λ∗(μ)
is reached for μ = 0. The result for λ∗(0) is consistent with
λ∗ = 5.17(11) obtained in Ref. [16]. λ∗(μ) is almost even in
μ. λ∗(μ) for negative values of μ is slightly smaller than for
the corresponding positive values of μ.

Next we used the parametrization for the correction ampli-
tude

w4(λ,μ) = a(λ − λ∗ − cμ2 − dμ3) [1 + e(λ − 5.0)] (67)

TABLE V. Numerical results for λ∗(μ) for N = 3. For a discus-
sion see the text.

μ λ∗

−0.7 4.53(22)
−0.5 4.78(13)
−0.3 4.97(10)
−0.1 5.08(10)

0.0 5.10(10)
0.1 5.09(10)
0.2 5.04(10)
0.3 4.98(10)
0.4 4.90(10)
0.5 4.81(13)
0.7 4.55(22)

and

w4(λ,μ) = a(λ − λ∗ − cμ2 − dμ3 − eμ4) [1 + f (λ − 5.0)],

(68)

where we have added one term proportional to μ4. We obtain
a similar quality of the fit as above without parametrization of
w4(λ,μ). Also, the differences between the two parametriza-
tions (67) and (68) are minor. Therefore, we abstain from a
detailed discussion. Let us just briefly summarize the results
for the parameters of Eqs. (67) and (68) and the estimate of βc

that we obtain.
To this end, let us discuss the results of four selected fits:
(i) For the Ansatz (66) without a correction of U4 pro-

portional to L−2.023 and no correction proportional to L−4,
mmax = 5, the parametrization (67), |μ| � 1, and Lmin = 24
we get χ2/DOF = 1.052 corresponding to p = 0.168. The
estimates of the parameters are λ∗ = 5.14(4), c = −1.17(17),
and d = 0.07(1).

(ii) For the Ansatz (66) without a correction of U4 propor-
tional to L−2.023, no correction proportional to L−4, mmax =
5, the parametrization (68), |μ| � 1, and Lmin = 24 we get
χ2/DOF = 1.051 corresponding to p = 0.171. The esti-
mates of the parameters are λ∗ = 5.15(4), c = −1.24(18),
d = 0.05(3), and e = 0.07(6).

(iii) For the Ansatz (66) with a correction of U4 propor-
tional to L−2.023, no correction proportional to L−4, mmax =
5, the parametrization (68), |μ| � 1, and Lmin = 16 we get
χ2/DOF = 1.044 corresponding to p = 0.159. The esti-
mates of the parameters are λ∗ = 5.13(6), c = −0.78(7), d =
0.05(1), and e = 0.04(3).

(iv) For the Ansatz (66) without a correction of U4 pro-
portional to L−2.023, but a correction proportional to L−4

for all dimensionless quantities, mmax = 5, the parametriza-
tion (68), |μ| � 1, and Lmin = 12 we get χ2/DOF = 1.041
corresponding to p = 0.156. The estimates of the param-
eters are λ∗ = 5.096(20), c = −0.78(4), d = 0.05(1), and
e = 0.04(2).

In summary, also taking into account fits not explicitly
given above, we find values of λ∗ that are consistent with
λ∗ = 5.17(11) obtained in Ref. [16]. Furthermore, −1.5 �
c � −0.7, where the smaller values of c are correlated with
larger values of λ∗. There is only a small asymmetry in μ,
corresponding to small values of d . These findings are con-
sistent with the results for λ∗(μ), which are summarized in
Table V.

Finally, in Table VI we give the results for βc which are
based on the four fits which are explicitly discussed above.
Given the large number of pairs (λ,μ) we simulated at, we
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TABLE VI. Numerical results for the inverse critical temperature
βc for the pairs of (λ,μ) we simulated at for N = 3. For a discussion,
see the text.

λ μ βc

4.3 −1.00 0.6773490(14)
4.5 −1.00 0.67841424(96)
4.5 −0.50 0.68439865(37)
4.5 −0.30 0.68559135(40)
4.5 −0.15 0.68607863(25)
4.5 0.15 0.68608422(22)
4.5 0.25 0.68581697(32)
4.5 0.30 0.68563593(23)
4.5 0.35 0.68542342(26)
4.5 0.50 0.68460540(23)
4.5 1.00 0.68006803(59)
4.7 −0.70 0.68329292(59)
4.7 0.70 0.68382797(22)
4.8 −0.50 0.68536469(28)
4.8 −0.30 0.68647819(18)
4.8 0.20 0.68682876(15)
4.8 0.30 0.68651908(10)
4.8 0.40 0.68609278(13)
4.8 0.50 0.68555428(13)
5.0 −0.30 0.68698276(13)
5.0 −0.10 0.68749850(13)
5.0 0.00 0.68756126(8)
5.0 0.10 0.68749982(12)
5.0 0.20 0.68731855(11)
5.0 0.25 0.68718435(9)
5.0 0.30 0.68702161(6)
5.0 0.40 0.68661260(11)
5.2 −0.50 0.68640695(35)
5.2 −0.30 0.68742991(35)
5.2 −0.10 0.68792511(14)
5.2 0.00 0.68798524(8)
5.2 0.05 0.68797037(15)
5.2 0.10 0.68792634(12)
5.2 0.20 0.68775221(10)
5.2 0.30 0.68746677(11)
5.2 0.40 0.68707374(14)
5.2 0.50 0.68657694(16)
5.2 0.70 0.68528562(32)

used an automated procedure to obtain the central value and
its error, similar to the analysis for N = 4 above. These results
might be used to bias the analysis of high-temperature (HT)
series expansions or in future Monte Carlo studies of the
model.

1. UC at Za/Zp = 0.194 77

In a complementary analysis we considered UC at Za/Zp =
0.194 77. To get a first impression of its behavior, we plot ŪC

as a function of the linear lattice size L for (λ,μ) = (5.0, 0.2)
and (5.0,0.4) in Fig. 7. We find that ŪC is slowly decreasing
with increasing lattice size for μ = 0.2, while it is increasing
for μ = 0.4. We notice that high statistical accuracy is needed
to detect this behavior. We expect that 0.2 < μ∗ < 0.4. For

FIG. 7. We plot UC at Za/Zp = 0.194 77 versus the linear lattice
size L for λ = 5.0 and N = 3. In the upper part we give numerical
results for μ = 0.4 and in the lower part the estimates for μ = 0.2.

μ < 0, ŪC is positive and it is increasing with increasing
lattice size, throughout.

Let us analyze ŪC quantitatively. We performed joint fits
for different values of μ and a single value of λ, either λ =
4.8, 5.0 or λ = 5.2.

First we performed fits by using the Ansatz (44):

ŪC (μ, λ, L) = Ū ∗
C

1 + q
(

μ∗
μ

− 1
)
L−y

, (69)

where we simply have replaced UC by ŪC . Next, we introduce
a quadratic correction in μ:

ŪC (μ, λ, L) = Ū ∗
C

1 + q
(

μ̄

μ+sμ2 − 1
)
L−y

, (70)

where now

μ∗ =
√

1 + 4μ̄s − 1

2s
(71)

or a correction proportional to L−2+η

ŪC (μ, λ, L) = Ū ∗
C

1 + q
(

μ∗
μ

− 1
)
L−y

(1 + cL−2+η ), (72)

and both types of corrections

ŪC (μ, λ, L) = Ū ∗
C

1 + q
(

μ̄

μ+sμ2 − 1
)
L−y

(1 + cL−2+η ). (73)

We find that acceptable fits can only be obtained by re-
stricting the range of the parameter: |μ| � 0.4. In the case
of λ = 5.0 we get, by using the Ansatz (73), a χ2/DOF =
1.01 for Lmin = 12 and χ2/DOF slightly smaller than one
for larger Lmin. We obtain Ū ∗

C = −0.0176(3), −0.0172(4),
−0.0171(5), −0.0168(6), and −0.0166(7) for Lmin = 12, 14,
16, 18, and 20, respectively. Furthermore, y = 0.0149(3),
0.0146(4), 0.0144(5), 0.0142(5), and 0.0141(6) for the same
values of Lmin as above. Note that y = Y4 = ω2 in the approx-
imation used here. For the fixed-point value of the parameter
μ we get μ∗ = 0.290(6), 0.283(8), 0.283(9), 0.277(11), and
0.273(12).
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Comparing with the results obtained by using the other
Ansätze and λ = 4.8 and 5.2 we arrive at the final results

Y4 = 0.0144(15) (74)

and

Ū ∗
C = −0.017(2). (75)

The error bars are chosen such that the estimates of dif-
ferent acceptable fits are covered. For λ = 5.0 we conclude
μ∗ = 0.28(2). The estimates for λ = 4.8 and 5.2 are the same
within errors. We have repeated the analysis for UC at Za/Zp −
0.64U 2

C + 2.1U 3
C = 0.19477. We arrive at very similar results.

Putting things together, the improved model for the cu-
bic fixed point is given by (λ,μ)∗cubic = (4.99(11), 0.28(2)),
where we obtain the value of λ by interpolating the estimates
for μ = 0.2 and 0.3 given in Table V. We performed fits with
Ansätze that combine Eq. (66) with the Ansätze for UC dis-
cussed in this subsection. The results are fully consistent with
those given above. Therefore, we abstain from a discussion.

2. Generic Ansatz for the dimensionless quantities
in the neighborhood of the cubic fixed point

Finally, we performed fits, similar to the case N = 4, with
a generic Ansatz, not exploiting the vicinity of the O(3)-
symmetric fixed point. In order to get an acceptable χ2/DOF,
using the parametrization (45), the values of (λ,μ) have to be
restricted to a close neighborhood of (λ,μ)∗. Here we only
included data with 0.2 � μ � 0.4 for λ = 4.8, 5.0, and 5.2.
We are aiming at estimates of the fixed-point values of the
dimensional quantities R∗

i and (λ,μ)∗.
First we take ω2 as free parameter in the Ansatz (35),

while we fix ω1 = 0.759 [16]. We get an acceptable goodness
of the fit starting from Lmin = 18. We get ω2 = 0.0150(13),
0.0137(17), 0.0179(23), and 0.021(3) for Lmin = 12, 14, 16,
and 18. Going to larger values of Lmin, the statistical error is
rapidly increasing. Therefore, we performed fits fixing ω2 =
0.0143. In this case, we also get an acceptable goodness of the
fit starting from Lmin = 18. As a check, we also performed fits
using ω2 = 0.013, taking into account possible deviations of
ω2 from Y4 of the O(3)-invariant fixed point.

We arrive at (λ,μ)∗cubic = (4.98(10), 0.30(3)) covering re-
sults for Lmin = 18 up to 24. The differences of results for
ω2 = 0.013 and 0.0143 are clearly smaller than the error bars
quoted. Furthermore, we get

(Za/Zp)∗cubic = 0.194 53(5), (76)

(ξ2nd/L)∗cubic = 0.564 51(7), (77)

U ∗
4,cubic = 1.139 72(6), (78)

U ∗
C,cubic = −0.0181(12) (79)

for the cubic fixed point. Also here, the estimates for Lmin =
18 up to Lmin = 24 are covered and the difference of results
for ω2 = 0.013 and 0.0143 are clearly smaller than the error
bars quoted.

The estimates of (Za/Zp)∗cubic, (ξ2nd/L)∗cubic, and U ∗
4,cubic dif-

fer only slightly from the values for the O(3)-symmetric fixed

point. However, the difference is clearly larger than the error
estimates.

3. Flow equation for UC

Finally, we consider the dimensionless quantity UC it-
self as coupling. In order to stay at criticality we take it at
Za/Zp − 0.64U 2

C + 2.1U 3
C = 0.194 77. Furthermore, we stay,

at the level of our numerical precision, on the line λ∗(μ). We
determine

1

UC

dUC

dl
= dUC

dL
≈ u, (80)

where l = ln L, by fitting the data for fixed (λ,μ) by using the
Ansatz

UC (λ,μ, L) = aLu (81)

for some range Lmin � L � Lmax. As argument of u we take
[UC (Lmin) + UC (Lmax)]/2. The approximation (81) relies on
the fact that UC varies only little in the range of linear lattice
sizes considered. In order to check the effect of subleading
corrections, we consider different ranges Lmin � L � Lmax.
For Lmin = 32 the maximal lattice size Lmax is determined by
the largest lattice size that we have simulated. For Lmin = 16
and 24, we reduce Lmax by the corresponding factor with
respect to Lmin = 32. Finally, we used the Ansatz

UC (λ,μ, L) = aLu (1 + cL−2) (82)

with Lmin = 12 and Lmax given by the largest lattice size
simulated. In our analysis, we took into account the data
for (λ,μ) = (4.3,−1), (4.5,−1), (4.7,−0.7), (4.8,−0.5),
(5.0,−0.3), (5.0,−0.1), (5.2,−0.1), (5.0, 0.1), (5.2, 0.1),
(5.0,0.2), (5.2,0.2), (5.0,0.25), (5.0,0.3), (5.0,0.4), (4.8,0.5),
(4.7,0.7), and (4.5,1.0).

We fit the estimates of u by using the Ansatz

u(UC ) = a + bUC + cU 2
C + dU 3

C (83)

and as a check

u(UC ) = a + bUC + cU 2
C . (84)

It turns out that the Ansatz (84) gives quite large χ2/DOF,
when all data are fitted, while Ansatz (83) results in an ac-
ceptable χ2/DOF. Excluding the data for |μ| = 1, also Ansatz
(84) gives acceptable values of χ2/DOF.

In Fig. 8 we plot the numerical estimates of u(Uc) obtained
by using the Ansatz (82) with Lmin = 12. The line corresponds
to the fit of the data by using the Ansatz (83). The relative error
of the data for |μ| � 0.2 is large. These data contribute little
to the final result.

In Table VII we summarize the numerical results. In ad-
dition to the estimates of the parameters of the Ansätze (83)
and (84) we give the zero U ∗

C of u and the correction exponent
ω2 at this zero. These are computed numerically for the given
estimates of a, b, c, and d .

The results obtained by using the Ansatz (81) with Lmin =
24 and 32 and those obtained by using the Ansatz (82) and
Lmin = 12 are essentially consistent. Fitting u(Uc) by using the
Ansatz (83), the results for a are slightly smaller than by using
the Ansatz (84). Furthermore, the difference a − ω2 is smaller
when fitting by using the Ansatz (84) than for Ansatz (83).
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TABLE VII. Results of fitting u(Uc ) by using the Ansatz (83) or (84). The estimates of u are obtained by using the Ansatz (81) or (82)
using the minimal lattice size Lmin. The corresponding maximal lattice size is given in the text. a, b, c, and d are the parameters of the Ansätze
(83) and (84). If no value for d is given, Ansatz (84) is used. Otherwise, the data are fitted by using the Ansatz (83). U ∗

C is the zero of u that is
computed numerically and ω2 the correction exponent at this zero.

Ansatz Lmin a b c d U ∗
C ω2 a − ω2

(81) 16 0.01558(22) 0.836(6) 2.00(13) −11.9(1.4) −0.0197(3) 0.01463(25) 0.00096(32)
(81) 24 0.01398(41) 0.843(10) 2.64(30) −17.7(2.9) −0.0177(5) 0.01296(46) 0.00102(47)
(81) 32 0.01521(48) 0.826(12) 0.94(16) −0.0188(5) 0.01488(51) 0.00033(53)
(81) 32 0.01429(55) 0.851(14) 2.06(35) −12.2(3.4) −0.0176(6) 0.01352(60) 0.00077(78)
(82) 12 0.01465(30) 0.848(9) 1.20(16) −0.0177(3) 0.01427(33) 0.00038(34)
(82) 12 0.01392(31) 0.850(8) 2.20(20) −10.7(2.1) −0.0172(4) 0.01316(34) 0.00076(43)

Giving preference to the Ansatz (83) and fitting all data, we
arrive at the results Y4 = a = 0.0142(6), ω2 = 0.0133(8), and
U ∗

C = −0.0175(7). Throughout the fits reported in Table VII,
ω2 < Y4, and Y4 − ω2 < 0.0015 in the extreme case, taking
into account the statistical error. The estimates of Y4 and U ∗

C
are consistent with those obtained in previous sections.

B. Critical exponent η

Here we focus on the analysis of our data for (λ,μ) =
(5, 0.3). We analyze the magnetic susceptibility χ at Za/Zp =
0.194 53 or ξ2nd = 0.564 51. We used the Ansätze (47) and
(48) already used for N = 4. Our estimates of η are plotted in
Fig. 9. As our preliminary estimate we take η = 0.037 82(10)
that covers, for some range of Lmin, the results obtained from
all four fits.

In order to estimate the dependence of the result on λ, we
analyze the data for λ = 4.8 and 5.2. Assuming that sublead-
ing corrections to scaling are very similar for these values
of λ we compare fits with small Lmin, where the statistical
error is small. We find, consistently for both Ansätze (47) and
(48) and fixing Za/Zp = 0.194 53 or ξ2nd = 0.564 51 that the
estimates of η for λ = 4.8 are larger by about 0.0001 than for
λ = 5.2. In the analysis of the data for λ = 4.8 and 5.2 smaller
lattices are included than for λ = 5.0. Therefore, the effect of

FIG. 8. We plot u ≈ 1
UC

dUC
dl for N = 3 as a function of Uc. Here

we give the data obtained by using the Ansatz (82) and Lmin = 12.
The line gives the result of the fit with the Ansatz (84).

corrections proportional to L−ω1 should be smaller. Given the
accuracy of λ∗ for the cubic fixed point we arrive at our final
estimate

η = 0.037 82(13). (85)

This estimate is within the errors consistent with that ob-
tained in Ref. [16] for the O(3)-invariant fixed point: ηO(3) =
0.037 84(5). Therefore, assuming that the estimate of η is
monotonic in the scaling field of the cubic perturbation in the
range that we consider here, we do not add an additional error
due to the uncertainty of μ∗.

C. Critical exponent ν

We have analyzed the slopes of dimensionless quan-
tities Za/Zp − 0.64U 2

C + 2.1U 3
C , ξ2nd/L + 1.34U 2

C − 3.4U 3
C ,

and U4 − 1.25U 2
C − 3.0U 3

C at Za/Zp − 0.64U 2
C + 2.1U 3

C =
0.194 77 that stay approximately constant on the line λ∗(μ) at
criticality. Below we denote these quantities by Za/Zp + · · · ,
ξ2nd/L + · · · , and U4 + · · · for simplicity. We performed fits
with the Ansatz (51). The resulting estimates of yt are plot-
ted in Fig. 10. As our preliminary estimate we take yt =
1.406 35(30). In order to estimate the effect of corrections

FIG. 9. We give estimates of η obtained by fitting the data for χ

at (λ, μ) = (5.0, 0.3) and N = 3 by using the Ansätze (47) and (48).
In the legend, for the Ansatz (48), we give the value of the correction
exponent ε. Note that the values on the x axis are slightly shifted to
reduce overlap of the symbols. The solid line gives our preliminary
estimate of ω, while the dashed lines indicate the error.
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FIG. 10. We give estimates of yt obtained by fitting the data for
the slopes of Za/Zp − 0.64U 2

C + 2.1U 3
C , ..., at (λ, μ) = (5.0, 0.3) and

N = 3 by using the Ansatz (51). Note that the values on the x axis are
slightly shifted to reduce overlap of the symbols. The solid line gives
our preliminary estimate of yt and the dashed lines indicate the error.

proportional to L−ω1 , we analyze ratios

rS,i(L) = Sλ=5.2,i(L)

Sλ=4.8,i(L)
, (86)

where i indicates which dimensionless quantity is taken.
We expect that subleading corrections approximately cancel.
Therefore, we analyze these ratios with the simple Ansatz

rS,i(L) = aL�yt . (87)

The estimate for Lmin = 16 is �yt = −0.000 44(10),
−0.000 30(10), and 0.000 21(19) for the slopes of
Za/Zp + · · · , ξ2nd/L + · · · , and U4 + · · · , respectively.
Since the difference in λ is about four times as large as the
uncertainty of λ in (λ,μ)∗, we conclude that the error of yt

due to the uncertainty of λ in (λ,μ)∗ is about 0.0001. Finally,
we analyzed the ratios

rS,i(L) = Sμ=0.3,i(L)

Sμ=0.25,i(L)
(88)

for λ = 5.0. Here we get �yt = 0.000 29(9), 0.000 19(8), and
0.000 22(16) for or Za/Zp + · · · , ξ2nd/L + · · · , and U4 + · · · ,
respectively. Taking the estimate μ∗ = 0.28(2) we arrive at
the final estimate

yt,cubic = 1.406 25(50), (89)

which can be compared with yt,O(3) = 1.4052(2) [16].

D. Difference between critical exponents for the O(3)
invariant and the cubic fixed point

Based on the expectation that corrections to scaling are
similar for the improved models for the O(3) invariant and the
cubic fixed point, we study ratios of magnetic susceptibilities
and slopes at criticality. In addition to (λ,μ)∗ we analyze data
for pairs (λ,μ) that are approximately on the line λ∗(μ). To
stay critical we take the quantities at either Za/Zp − 0.64U 2

C +
2.1U 3

C = 0.194 77 or ξ2nd/L + 1.34U 2
C − 3.4U 3

C = 0.564 04.

FIG. 11. We plot �yt obtained by fitting ratios of slopes for
N = 3 by using the Ansätze (91) and (92) as a function of UC . For
a discussion see the text.

We evaluate ratios of slopes S,

rS,i(L) = Scubic,i(L)

SO(3),i(L)
, (90)

where i indicates which dimensionless quantity is taken. We
analyze these ratios by fitting with the simple Ansatz

rS,i(L) = aLyt,cubic−yt,O(3) (91)

or as check

rS,i(L) = aLyt,cubic−yt,O(3) (1 + cL−2). (92)

In the case of the magnetic susceptibilities we use analogous
Ansätze.

Let us first analyze the magnetic susceptibility. We
only discuss χ at ξ2nd/L + 1.34U 2

C − 3.4U 3
C = 0.564 04 since

the statistical error of χ at ξ2nd/L + 1.34U 2
C − 3.4U 3

C =
0.564 04 is clearly smaller than at Za/Zp − 0.64U 2

C +
2.1U 3

C = 0.194 77. For the ratio of the susceptibility at
(λ,μ) = (5.0, 0.3) and (5.2,0) we get �η = 0.000 04(3) tak-
ing into account both the analogs of the Ansätze (91) and (92).
As a check, we computed the ratio for (λ,μ) = (5.0, 0.3) and
(5.0,0). We get �η = 0.000 02(3).

A �η that is clearly different from zero we only get for
larger values of |μ|. For example, for (λ,μ) = (4.7, 0.7) and
(5.2,0) we get �η = 0.000 24(5) and for (λ,μ) = (4.8,−0.5)
and (λ,μ) = (5.2, 0) we get �η = −0.000 40(5). We regard
the estimates obtained from the susceptibility at (λ,μ) =
(5.0, 0.3) and (5.2,0) or (5.0,0) as bound for the difference
between the cubic and the O(3)-invariant fixed points. There-
fore,

−0.000 01 � ηcubic − ηO(3) � 0.000 07, (93)

which is more strict than the difference of our result (85) and
the estimate of ηO(3) of Ref. [16].

Finally, we study ratios of slopes for (λ,μ) = (5.2, 0) and
several pairs (λ,μ) that approximate λ∗(μ). Our estimates are
given in Fig. 11 as a function of UC , where UC = [UC (Lmax) +
UC (Lmin)]/2, similar to Sec. VII A 3.
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TABLE VIII. Coefficients of �yt = c2U 2
C + c3U 3

C for the slopes
of three different dimensionless quantities for N = 3. For a discus-
sion see the text.

R c2 c3

Za/Zp + · · · 3.90(8) 4.3(1.5)
ξ2nd/L + · · · 4.42(8) 23.6(1.6)
U4 + · · · 3.32(13) −22.2(2.4)

We have fitted the estimates with the Ansatz

�yt = c2U
2

C + c3U
3

C . (94)

The results for the coefficients are given in Table VIII. Plug-
ging in the estimate U ∗

C = −0.0175(7) (Sec. VII A 3), we
arrive at �yt = 0.001 17(13), 0.001 23(13), and 0.001 14(15)
for Za/Zp + · · · , ξ2nd/L + · · · , and U4 + · · · , respectively. As
our final estimate we quote

yt,cubic − yt,O(3) = 0.0012(2), (95)

where the error is dominated by the uncertainty of U ∗
C . This

result translates to

νcubic − νO(3) = −0.000 61(10). (96)

VIII. COMPARISON WITH RESULTS GIVEN
IN THE LITERATURE

In the literature, information on the cubic fixed point stems
mainly from field-theoretic methods. The ε expansion has
been computed up to five loop in Ref. [10] and has recently
been extended to six loop [12]. The perturbative expansion
in d = 3 fixed has been computed up to six loop in Ref. [7].
The numerical values obtained for the critical exponents vary
with the resummation scheme that is used. For example,
the six-loop ε expansion for N = 3 has been resummed in
Ref. [12] by using the Padé approximation and alternatively
by a Padé-Borel-Leroy (PBL) resummation. In Ref. [13] the
resummation scheme of Ref. [33] is used. For a detailed dis-
cussion of these analyses, we refer the reader to the original
work.

In Ref. [6] a large-N expansion around the decoupled Ising
fixed point has been performed on the basis of the CB results
for the Ising universality class (see Ref. [34] and references
therein). The results for critical exponents obtained in Ref. [6]
are

η = 0.036 29 + 0.001 232

N
+ O(N−2) (97)

and

�∗
ε = 1.5874 + 0.0796

N
+ O(N−2), (98)

where ν = 1/(d − �∗
ε ). In Tables IX and XI we give the

numbers obtained from Eqs. (97) and (98) by inserting N = 3
and 4, respectively. Finally, we give the results obtained in this
work.

Let us first discuss the numbers for N = 3 summarized in
Table IX. The estimates of ν obtained from the ε expansion by
different authors are consistent. However, they are too small
compared with our result. They differ from our result by more
than the error that is quoted. The estimates of ν obtained
from the perturbative series in d = 3 fixed are larger than
those obtained from the ε expansion. Still they are too small
compared with ours. The estimate obtained from the large-N
expansion is larger than ours. But one should note that the
deviation is of similar size as that for the ε expansion, which
is quite remarkable given the small value of N .

In the case of η we find that the estimates obtained from
the analysis of the ε expansion are consistent with ours, while
those obtained from the perturbative series in d = 3 fixed
are smaller and the estimate of the error is smaller than the
difference. The results for the correction exponents ω1 and ω2

obtained by different authors are essentially consistent. Within
errors ω1 of the cubic fixed point is the same as ω of the
O(3)-invariant fixed point. For ω1 we have no direct numerical
estimate. Our estimate of ω2 is larger than those obtained by
field-theoretic methods.

In Table X we have selected a few results for the critical
exponents for the O(3)-invariant fixed point. At the level of the
accuracy obtained by field-theoretic methods, the estimates
for the critical exponents for the cubic and the O(N )-invariant
fixed point can not be discriminated for N = 3.

TABLE IX. Estimates of the exponents ν, η, and γ and the correction exponents ω1 and ω2 for the cubic fixed point for d = 3 and N = 3.
Aharony et al. [13] only quote the result for the exponents β and γ (see their Table II). They give β = 0.3669(12). Inserting our results for
ν and η, we arrive at β = ν

2 (d − 2 + η) = 0.3690(2). The asterisk indicates that the Monte Carlo result for γ is obtained by inserting our
numerical estimates of ν and η into γ = ν(2 − η). For a discussion see the text.

Ref. Method ω1 ω2 ν η γ

[39] Five-loop ε exp 0.6997(24) 0.0375(5) 1.3746(20)
[7] Five-loop ε exp 0.799(14) 0.006(4) 0.701(4) 0.0374(22) 1.377(6)
[7] Six-loop d = 3 fix 0.781(4) 0.010(4) 0.706(6) 0.0333(26) 1.390(12)
[8] Six-loop d = 3 fix 0.7833(54) 0.0109(32) 0.7040(40) 0.0327(20) 1.3850(50)
[9] Six-loop d = 3 fix 0.777(9) 0.705(1) 1.387(1)
[12] Six-loop ε exp, PBL 0.799(4) 0.005(5) 0.700(8) 0.036(3) 1.368(12)
[12] Six-loop ε exp, Padé 0.78(11) 0.008(38) 0.703(5) 0.038(4) 1.379(8)
[13] Six-loop ε exp 1.387(9)
[6] Large N 0.7215 0.03671
This work MC 0.0133(8) 0.7111(3) 0.03782(13) 1.3953(6)∗
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TABLE X. Estimates of the exponents ν, η, γ , and Y4 and the correction exponent ω for the Heisenberg fixed point for d = 3 and N = 3.
The asterisk indicates that in the case of Ref. [16], we computed γ = (2 − η)ν by using the values given for ν and η. For a discussion see the
text.

Ref. Method ω Y4 ν η γ

[40] Five-loop ε exp 0.794(18) 0.7045(55) 0.0375(45) 1.3820(90)
[40] d = 3 0.782(13) 0.7073(35) 0.0355(25) 1.3895(50)
[33] Six-loop ε exp 0.795(7) 0.7059(20) 0.0378(5)
[7] Five-loop ε exp 0.003(4)
[7] Six-loop d = 3 0.013(6)
[13] Six-loop ε exp 0.7967(57) 0.0083(15)
[15] CB >0.00944 0.71169(30) 0.037884(102)
[14] MC 0.013(4)
[16] MC 0.759(2) 0.71164(10) 0.03784(5) 1.39635(20)∗

This work MC, Sec. VI 0.0143(9)
This work MC, Sec. VII A 3 0.0142(6)

It is an interesting idea to directly aim at the difference be-
tween the values of critical exponents for the O(3)-symmetric
and the cubic fixed points. Given the fact that the two fixed
points are close in coupling space, one might hope that sys-
tematic errors of the calculation are more or less the same
and cancel when the difference is taken. Such an analysis
of the perturbative expansion in d = 3 fixed is given in the
Appendix of Ref. [35]. The authors find

νcubic − νO(3) = −0.0003(3), (99)

ηcubic − ηO(3) = −0.0001(1), (100)

γcubic − γO(3) = −0.0005(7). (101)

Our estimate νcubic − νO(3) = −0.000 61(10) [Eq. (96)] is
consistent with that of Ref. [35]. In the case of −0.000 01 �
ηcubic − ηO(3) � 0.000 07 [Eq. (93)], we favor the opposite
sign as the authors of Ref. [35].

Starting from the six-loop ε expansion, the authors of
Ref. [13] perform an expansion of the RG flow around the
O(3)-symmetric fixed point to second order. Furthermore,
the authors have computed effective critical exponents, de-
pending on the parameters of this RG flow [see Eqs. (14)
of Ref. [13]]. Plugging in the values of the parameters for
the cubic fixed point, the authors get γcubic = 1.3849(61)
and βcubic = 0.3663(21). These values are virtually identical
with γO(3) = 1.385(4) and βO(3) = 0.3663(12) obtained in
Ref. [33] by using the same resummation scheme. Using the

information given by the authors it is hard to estimate the
error of the difference, which might be much smaller than the
naively propagated one.

One also should note the discussion of Sec. 5 of Ref. [15].
To leading order, the deviation of the exponents of the cubic
fixed point from those of the O(3)-invariant one is propor-
tional to Y4 and the coefficient is given by structure constants
of the O(3)-invariant fixed point. For ν and η, these coeffi-
cients vanish.

There have also been attempts to isolate the cubic fixed
point for N = 3 by using the CB method [36–38]. However,
the candidate that is found has critical exponents and a cor-
rection exponent very different from those discussed here.
Let us discuss the results for N = 4 summarized in Table XI.
Here we see that the estimates of ν obtained by the various
authors are consistent with our result. The estimate obtained
by the large-N expansion is slightly smaller than ours. Note
that for N = 3 it is bigger and the deviation is roughly by a
factor of 4 larger than for N = 4. It is plausible that for N � 5
the large-N expansion gives very accurate results and might
serve as benchmark for the analysis of the ε expansion or the
perturbative expansion in d = 3 fixed. In the case of the expo-
nent η the findings are similar to N = 3. The results obtained
from the ε expansion are consistent with ours, while those
obtained from the perturbative expansion in d = 3 fixed are
too small. The estimate obtained from the large-N expansion
is slightly smaller than ours. The deviation is much smaller
than for N = 3. It is plausible that for N � 5 the deviation of

TABLE XI. Estimates of the exponents ν, η, and γ and the correction exponents ω1 and ω2 for the cubic fixed point for d = 3 and N = 4.
indicates that the Monte Carlo result for γ is obtained by inserting our numerical estimates of ν and η into γ = ν(2 − η). For a discussion see
the text.

Ref. Method ω1 ω2 ν η γ

[39] Five-loop ε exp 0.7225(22) 0.0365(5) 1.4208(30)
[7] Five-loop ε exp 0.790(8) 0.078(4) 0.723(4) 0.0357(18) 1.419(6)
[7] Six-loop d = 3 fix 0.781(44) 0.076(40) 0.714(8) 0.0316(22) 1.405(10)
[8] Six-loop d = 3 fix 0.7887(90) 0.0740(65) 0.7150(50) 0.0316(25) 1.4074(30)
[9] Six-loop d = 3 fix 0.777(2) 0.719(2) 1.416(4)
[6] Large N 0.7180 0.03661
This work MC 0.763(24) 0.082(5) 0.7202(7) 0.0371(2) 1.4137(14)∗
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the large-N expansion from the exact value is at most in the
fifth digit.

The estimates of ω2 are consistent among different authors
and the field-theoretic results are consistent with those ob-
tained here. Our estimate of ω1 is smaller than that obtained
by field-theoretic methods, which also holds in the case of
ω for the O(4)-symmetric fixed point [27]. Within error bars
our estimate of ω1 takes the same value as ω for the O(4)-
symmetric fixed point [27].

In contrast to N = 3, truncating the expansion of the scal-
ing fields of the O(N )-invariant fixed point at second order is
no good approximation. This is seen, for example, by the fact
that Y4 and ω2 clearly differ.

IX. SUMMARY AND CONCLUSIONS

We have studied a φ4 model on the simple cubic lattice,
where the reduced Hamiltonian (4) includes a term that breaks
O(N ) invariance and possesses only cubic symmetry. It has
two parameters λ and μ, where μ controls the breaking of
the O(N ) invariance. Field theory predicts that for N > Nc

the perturbation of the O(N )-invariant fixed point is relevant,
where Nc is slightly smaller than 3. In fact, the recent con-
formal bootstrap study [15] finds the rigorous bound Y4 >

3 − 2.990 56 for the RG exponent of a cubic perturbation for
N = 3. Depending on the sign of the parameter μ, the system
should undergo a first-order phase transition or a continuous
transition governed by the cubic fixed point. For a recent
discussion of the implications for structural transition in per-
ovskites see Ref. [13].

For N = 4 the cubic fixed point is well separated from
the O(4)-symmetric one. Using a finite-size scaling analysis
of dimensionless quantities such as the Binder cumulant U4,
we determine the improved model, characterized by (λ,μ)∗,
where the two leading corrections to scaling vanish. In or-
der to monitor the violation of the O(N ) symmetry the
cumulant UC [Eq. (15)] is introduced. It vanishes for an O(N )-
symmetric distribution of the order parameter. At (λ,μ)∗, we
determine the critical exponents ν and η by using standard
finite-size scaling methods. For N = 4 these are clearly differ-
ent from those of O(4)-symmetric systems. For the correction
exponents we obtain ω1 = 0.763(24) and ω2 = 0.082(5) for
N = 4. One should note that in order to reduce the effect of
corrections proportional to L−ω2 , for example by half, one has
to increase the linear lattice size by the factor 21/ω2 ≈ 4700.
It is clear that in a Monte Carlo study of lattice models,
we can not approach the cubic fixed point by just increas-
ing the linear lattice size L. It is mandatory to eliminate
corrections proportional to L−ω2 by a proper choice of the pa-
rameters! This is even more the case for N = 3, where we find
ω2 = 0.0133(8).

In the experimentally relevant case N = 3, the cubic fixed
point is close to the O(3)-invariant one. This is related to
the fact that the correction and RG exponents ω2 ≈ Y4 =
0.0143(9) have a small modulus. This also implies that there
is a slow RG flow along a line in coupling space. In order
to analyze the behavior of dimensionless quantities, we use
Ansätze that are approximately valid in a region of the pa-

rameter space that includes both the O(3)-symmetric and the
cubic improved models. This allows us to determine a line
λ∗(μ) in the (λ,μ) plane, onto which the RG flow rapidly
collapses.

In order to study the flow of the symmetry-breaking per-
turbation, we focus on the dimensionless quantity UC . Based
on the RG-flow equation to second order, Eq. (37), we obtain
an Ansatz for UC that is a good approximation in a region
of the parameter space that includes both improved models.
We obtain the estimate (λ,μ)∗ = (4.99(11), 0.28(2)), char-
acterizing the improved model for the cubic fixed point.
Estimates of the exponents ν and η of the cubic fixed point
are obtained by analyzing the slopes of dimensionless quan-
tities and the magnetic susceptibility at (λ,μ) = (5.0, 0.3)
and values close by. It turns out that the estimate of η is
the same as that for the O(3)-symmetric fixed point within
errors. In the case of the exponent of the correlation length
the estimate νcubic = 0.7111(3) obtained for the cubic fixed
point is only slightly smaller that that for the O(3)-symmetric
one νO(3) = 0.711 64(10) [16]. Since we have estimated the
error conservatively here, we consider the difference as
significant.

In Sec. VII A 3 we go beyond the second-order approxi-
mation of the RG flow. In the second-order approximation
Y4 = ω2, while in Sec. VII A 3 we find 0 � Y4 − ω2 � 0.0015.
In Sec. VII D we analyze ratios of magnetic susceptibilities
and slopes of dimensionless quantities to get estimates of
the differences of the critical exponents for the cubic and
the O(3)-invariant fixed point. The idea is that subleading
corrections approximately cancel, and the systematic error is
reduced in the difference. In fact, we arrive at −0.000 01 �
ηcubic − ηO(3) � 0.000 07 and νcubic − νO(3) = −0.000 61(10).

The results of this work can be improved by simply in-
creasing the statistics and moderately increasing the linear
lattices sizes. Beyond that, we would like to extend the study
for N = 3 in the following directions:

(i) Study |μ| > 1. In particular, we would like to extend
the flow equation for UC discussed in Sec. VII A 3 to larger
values of |UC |. On the one hand, we like to extend the range
up to the decoupled Ising fixed point and on the other hand
we like to see clear signs of the first-order transition in the
simulation.

(ii) Here we studied finite systems at criticality. It would
be interesting to study the case ξ � L that approximates
the thermodynamic limit in the phases. One could compute
universal amplitude ratios that can be compared with results
obtained in experiments.

(iii) Extending the calculation of RG exponents to a larger
set of operators. In Sec. 5 of Ref. [15] it is discussed that
for example the RG exponent of the rank-2 symmetric tensor
should have a contribution at leading order in Y4, in contrast
to the singlet and vector operators studied here.
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