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Topological magnons on the triangular kagome lattice
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We present the topology of magnons on the triangular kagome lattice (TKL) by calculating its Berry
curvature, Chern number, and edge states. In addition to the ferromagnetic state, the TKL hosts ferrimagnetic
ground state as its two sublattices can couple with each other either ferromagnetically or antiferromagnetically.
Using Holstein-Primakoff (HP) boson theory and Green’s function approach, we find that the TKL has a rich
topological band structure with added high Chern numbers compared with the kagome and honeycomb lattices.
The magnon edge current allows a convenient calculation of thermal Hall coefficients and the orbital angular
momentum gives correlation to the Einstein–de Haas effect. We apply the calculations to the TKL and derive
the topological gyromagnetic ratio showing a nonzero Einstein–de Haas effect in the zero-temperature limit.
Our results render the TKL as a potential platform for quantum magnonics applications including high-precision
mechanical sensors and information transmission.
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I. INTRODUCTION

The discovery of gyromagnetism [1], the interconversion
between spin and mechanical rotational motions, revealed that
the origin of magnetism was the intrinsic angular momen-
tum of electrons. By determining the gyromagnetic ratio [2],
the Einstein–de Haas (EdH) effect provides a more accurate
measurement of the rotational motion rather than electron-
spin resonance or ferromagnetic resonance [3]. Recent studies
show that circularly polarized phonons can absorb the angular
momentum of the spin system, which provide an atomistic
picture of the EdH effect [4]. Indicating the transfer between a
magnetic moment and a macroscopic mechanical rotation, the
EdH technique attracts increasing attention and has important
consequences in the fields of quantum thermal transport [5],
nano-magneto-mechanical systems [6–9], spintronics [10],
magnonics [11], and ultrafast magnetism [12,13].

As the bosonic analog of the electron system, the orbital
motions of magnons are driven by the Berry curvature in mo-
mentum space from the topological band structure [14–17].
These orbital motions cause the thermal Hall effect arising
from the edge current of magnons. It has been observed ex-
perimentally in a number of three-dimensional ferromagnetic
pyrochlores (Lu2V2O7, Ho2V2O7, and In2Mn2O7) [18,19].
According to the linear response theory, there is a reduced
angular momentum generated by the orbital motion of the
magnon [20,21]. The reduced angular momentum per unit
cell consists of two components, the edge current and the
self-rotation, and is related to the EdH effect [22]. We ap-
ply the calculation of angular momentum on various lattices
finding that the triangular kagome lattice (TKL) has a larger
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response than the kagome and honeycomb lattices both in
the thermal Hall effect and the EdH effect. Our calculations
are applicable to the magnon transport theory which makes
remarkable progress in coding and processing information
[23] due to the small dissipation significantly reducing the
energy consumption [24,25].

Distinct from the ordinary bipartite lattices, the TKL with
nine spins in the unit cell can produce magnetic long-range
order in both ferro- and ferrimagnetic states [26–30]. It is
worthwhile to study the topological properties of magnons
and related effects for these ordered states on the TKL which
has been realized experimentally in a two-dimensional metal
organic framework halide series, Cu9X2(cpa)6 (X = F, Cl, Br;
cpa = anion of 2-carboxypentonic acid) [31,32]. It is best
described as a spin frustrated TKL on a layered metal organic
framework formed by inserting an extra set of triangles inside
of the kagome triangles [33,34]. With an odd number of spins
in the unit cell, the TKL gives rise to three times the unit cell
of the kagome lattice [35], and hence a new platform to ex-
plore topological magnon effects. The Dzyaloshinskii-Moriya
(DM) interaction induces a fictitious magnetic flux and leads
to the existence of nonzero Berry curvature. With different
Heisenberg exchange couplings, the nonzero DM interaction
on the TKL induces a rich phase diagram accompanied by the
topologically protected gapless edge modes. As the inversion
symmetry breaking can eliminate the degeneracy of energy
bands, the TKL provides a promising avenue for realizing
exotic quantum phenomena [36,37], magnon thermal devices
[38,39], and magnon mechanical devices [22].

In this work, we theoretically study the topological magnon
excitations on the TKL proposing effective realizations for
both the thermal Hall effect and the EdH effect. We track
the corresponding density of states (DOS) of edge states
by using the real-space Green’s function. The thermal Hall
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conductance behavior κxy provides useful insights of the
magnon transport as it can detect the charge-neutral quasi-
particles that would not directly couple to electromagnetic
probes. The EdH physics is properly captured by the thermal
dependence of the gyromagnetic ratio as a function of the
different material parameters. This behavior is inherited from
the topology of the magnon bulk bands and further confirms
the sign change behavior of thermal Hall response. Through
estimating the gyromagnetism, we find that the TKL has a
larger EdH response than the kagome and honeycomb lattices.

This paper is organized as follows. In Sec. II we introduce
the model (Sec. II A) and present the equations for spin-wave
Hamiltonians using the spin-wave theory and HP boson the-
ory. Chern number and thermal Hall conductance are defined
in Sec. II C. Then, we present edge state geometry, the formal-
ism of Green’s function (Sec. II B), and angular momentum
expressions (Sec. II D). In Sec. III we present our results
on topological energy bands (Sec. III A), density of states
(Sec. III B), thermal Hall effect (Sec. III C), and finally we
discuss the Einstein–de Haas effect of our results (Sec. III D).
In Sec. IV we discuss and conclude our findings.

II. MODEL AND METHODS

A. Triangular kagome spin model

To present the method of approach in a concrete back-
ground we consider a Heisenberg model on the TKL with nine
spins in the unit cell, where the total Hamiltonian is given by

H = H0 +HDM +HK +HB. (1)

Our model Hamiltonian contains the nearest-neighbor Heisen-
berg exchange interactions, where theH0 is

H0 = −Ja

∑
〈mn〉

Sm · Sn − Jb

∑
〈mn〉

Sm · Sn, (2)

and Ja, Jb are two types of the nearest-neighbor exchange
couplings within the sublattice � (A trimers indicated with red
sites) and ∇ (B trimers indicated with green sites) as shown
in Fig. 1. The HDM term represents the nearest-neighbor DM
interaction which is usually dominant perturbative anisotropy
to the Heisenberg exchange interactions. Therefore, it could
be considered as

HDM =
∑
〈mn〉

Dmn · (Sm × Sn). (3)

Here we introduce the anisotropy term and the Zeeman term
to have the magnetic order even at finite temperature based on
the Mermin-Wagner theorem [40,41]. The anisotropy term is
given by

HK = −K
∑
〈m〉

(
Sz

m

)2
, (4)

where K is the easy-axis anisotropy along the z axis. And the
external Zeeman magnetic field term is given by

HB = −h
∑
〈m〉

Sz
m, (5)

where h = gμBB, B is the external magnetic field.

FIG. 1. Schematics of the TKL with shaded regions that repre-
sent the unit cell. a1, a2 are basis vectors of the primitive unit cell
and the arrows within the single triangular blocks indicate the config-
urations of the DM-induced flux, highlighted by black solid arrows.
The red arrows are A sites and others are B sites. (a) Ferromagnetic
ground state with Ja > 0 and Jb > 0. (b) Ferrimagnetic ground state
with Ja > 0 and Jb <0.

The TKL has a ferromagnetic ground state for Ja > 0
and Jb > 0 in Fig. 1(a), while a ferrimagnetic ground state
for Ja > 0 and Jb < 0 is shown in Fig. 1(b). Here we use
the Holstein-Primakoff (HP) representation to study the mag-
netic excitations for the ordered states. The original spin
Hamiltonian can be mapped to a bosonic tight-binding model
following the HP transformation:

S+
m = Sx

m + iSy
m =

√
2S − α

†
mαmαm,

S−
m = Sx

m − iSy
m = α†

m

√
2S − α

†
mαm,

Sz
m = S − α†

mαm, (6)

where α†
m (αm) is the bosonic magnon creation (annihi-

lation) operator at site m. Within the approximation of√
2S − α

†
mαm → √

2S, the Hamiltonian has the form

H = −
[ ∑

〈mn〉a

(Ja + iνmnD)Sα†
mαn +

∑
〈mn〉b

(Jb + iνmnD)Sα†
mαn

+ H.c.

]
+ (2K + h)

∑
〈m〉

α†
mαm + E0, (7)

where D is the z component of the nearest-neighbor DM
interaction, E0 is ground state energy, and νmn = ±1 corre-
sponding to the direction of DM interaction. Subsequently, we
perform the Fourier transformation using the definition

α
†
k = 1√

N

∑
m

eik·Rmα†
m. (8)

Thus, in the reciprocal space the Hamiltonian is given by

H =
∑

k

ψ
†
k H (k)ψk, (9)
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where ψ
†
k = (α†

1,k, α
†
2,k, α

†
3,k, α

†
4,k, α

†
5,k, α

†
6,k, α

†
7,k, α

†
8,k, α

†
9,k ).

The spin-wave Hamiltonian matrix is

S

⎡
⎢⎣

E1I3×3 Ak Bk

A†
k Ck 03×3

B†
k 03×3 Dk

⎤
⎥⎦, (10)

matrix Ak is⎡
⎣−γ1e−ik·a1 −γ1e−ik·a2 0

−γ1eik·a1 0 −γ1eik·(a1−a2 )

0 −γ1eik·a2 −γ1eik·(−a1+a2 )

⎤
⎦, (11)

matrix Bk is⎡
⎣ −γ1eik·a1 −γ1eik·a2 0

−γ1e−ik·a1 0 −γ1eik·(−a1+a2 )

0 −γ1e−ik·a2 −γ1eik·(a1−a2 )

⎤
⎦, (12)

matrix Ck is⎡
⎣ E2 −γ2eik·(a1−a2 ) −γ2e−ik·a2

−γ2eik·(−a1+a2 ) E2 −γ2e−ik·a1

−γ2eik·a2 −γ2eik·a1 E2

⎤
⎦, (13)

and matrix Dk is⎡
⎣ E2 −γ2eik·(−a1+a2 ) −γ2eik·a2

−γ2eik·(a1−a2 ) E2 −γ2eik·a1

−γ2e−ik·a2 −γ2e−ik·a1 E2

⎤
⎦, (14)

where E1 = 4Jb + 2K + h, E2 = 2Ja + 2Jb + 2K + h, γ1 =
Jb + iνmnD, and γ2 = Ja + iνmnD. The lattice vectors are
given by a1 = 1

4 (1, 0)a and a2 = 1
8 (−1,

√
3)a with the lattice

constant chosen as a = 0.1 nm. The energy bands obtained via
diagonalizing the bilinear spin-wave Hamiltonian are shown
in Fig. 4.

B. Green’s functions in a ribbon sample

For a nontrivial topology of the bulk band structure, the
edge states of the TKL appear in the DM-induced gaps for
this ribbon sample. Due to the bulk-edge correspondence,
the topological chiral gapless edge modes are related to the
nonzero Chern numbers. We rewrite the Hamiltonian in the
(x, ky) space as our ribbon sample is expanded to an open
boundary condition along the x direction and a periodic
boundary condition along the y direction

α
†
kx = 1√

Ny

∑
m

eikRm·eyα†
mx, (15)

where x can run from i1 to 9(W − 1) + i1 (i1 =
{1, 2, 3, 4, 5, 6, 7, 8, 9}) and W denotes the number of
periodic one-dimensional chains along the x direction. We
replace ky by k. The formalism for calculating the band
structure of the ribbon geometry is a 9W × 9W matrix-form
Hamiltonian which is given by

H =
∑

k

ϕ
†
k H (k)ϕk, (16)

where ϕ
†
k = (α†

i1,k
, α

†
i1+1,k, . . . , α

†
9(W −1)+i1,k

) in the open

boundary condition α
†
0,k|0〉 = α

†
9W +1,k|0〉 = 0. The

FIG. 2. The TKL ribbon with periodic boundary condition along
y axis and open boundary condition along the x axis. The ribbon has
W periodic one-dimensional chains; the numbers nearing sites are x
indices.

Hamiltonian matrix can be written as

H (k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

G(k) F (k)† 0 · · · 0

F (k) G(k) F (k)† . . .
...

0 F (k) . . .
. . . 0

...
. . .

. . .
. . . F (k)†

0 · · · 0 F (k) G(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (17)

where G(k) and F (k) are 9 × 9 matrices with G(k)ii =
E0 (i = {1, 2, 3}), G(k)ii = E1 (i = {4, 5, 6, 7, 8, 9}),
G(k)i j = G(k)†

ji, G(k)14 = G(k)27 = −γ1e−ika3 , G(k)15 =
G(k)29=G(k)38=F (k)36= − γ1e−(1/2)ika3 , G(k)17=G(k)24=
− γ1eika3 , G(k)18=G(k)26=G(k)39=F (k)35= − γ1e(1/2)ika3 ,
G(k)45 = G(k)79 = −γ2e(1/2)ika3 , G(k)46 = G(k)78 =
−γ2e−(1/2)ika3 , G(k)56 = −γ2e−ika3 , G(k)89 = −γ2eika3 ,
G(k)i j = 0 (otherwise), F (k)i j = 0 (otherwise), a3 = 0.25a.
We choose W = 20 to ensure that the results are convergent
with W . There are mainly two types of edges for the TKL:
the zigzag edge and the armchair edge. In our case, we
choose the armchair edge because the high-symmetry points
K and K ′ in the Brillouin zone overlap with each other along
the ky direction [42]. Thus, the top and bottom edges are
perpendicular to the x direction shown in Fig. 2.

For the purpose of calculating transport properties of
magnons, we introduce the retarded and advanced Green’s
functions

GR(r, r′) =
∑
k,n

α
†
k,n(r′)αk,n(r)

ε + iη − H
, GA(r, r′) = [GR(r, r′)]†,

(18)

where η is a positive infinitesimal, ε is the excitation energy,
and r and r′ represent excitation and response, respectively.
The spectral representation of the Green’s function can be
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FIG. 3. Berry curvature of magnon bands with Ja = 0.5, Jb = 1, and D = 0.3. The (a), (b), (c), (d), (e), (f), (g), (h), and (i) figures corre-
spond to the first, second, third, fourth, fifth, sixth, seventh, eighth, and ninth bands (from lower to higher), respectively. The Chern numbers
are given by {1, 0, 0, 2, −2, −1, 0, 1, −1}.

written as [43]

A =
∑
k,n

αk,n(r)α†
k,n(r′)

2η

(ε − H )2 + η2
. (19)

And the DOS can also be defined as

ρ(ε) =
∑
k,n

αk,nα
†
k,nδ(ε − H ) = h̄Tr(A)

2π
. (20)

With the above Green’s functions, we can calculate the spec-
tral function and the DOS of this ribbon sample. Both of them
reflect the magnetic and topological properties of the TKL,
which can solidify our proposal for the thermal Hall effect
and the EdH effect.

C. Berry curvature and thermal Hall conductance

In our model, nontrivial band topology can be character-
ized by a nonzero Berry curvature defined via the eigenstates
of the system [44]. And a nontrivial band topology arises
only when the system exhibits the nontrivial gap and edge
state modes in the spin-wave excitation spectra. In the case
of two-dimensional noninteracting magnons, generally topo-
logical invariant like Chern number denotes the topological
nature of reciprocal space. We calculate the Berry connection
in the reciprocal space of the TKL as

Aλ
n = i〈ψλ|∇kn |ψλ〉, (21)

with |ψλ〉 being a normalized wave function of the λth Bloch
band such that H (k)|ψλ〉 = Eλ(k)|ψλ〉. The Berry connection
is not a gauge invariant quantity but the Berry curvature is
gauge invariant. The form of Berry curvature is given by

�λk = i
∑
n �=λ

[〈λ|∇kH (k)|n〉 × 〈n|∇kH (k)|λ〉]z

(Eλ − En)2
. (22)

The associated Chern number assigned to the nth band is
defined by

Cn = 1

2π

∫
BZ

d2k �nk. (23)

The Chern number is always a quantized integer in the Bril-
louin zone. When the gap between two bands is finite but very
small, in general the Berry curvature is mostly concentrated
around the point of direct gap between the bands. We show
the Berry curvature of magnon bands in Fig. 3 with D = 0.3,
Ja = 0.5, and Jb = 1.

Being charge neutral particles, magnons are not affected
by external electric field and conventional electric field driven
Hall effect cannot be observed directly. Based on the semi-
classical theory, the thermal gradient along the topological
magnon system would drive a transverse magnon current
known as the thermal Hall effect. In our TKL system, the
transverse current is understood as a consequence of the pres-
ence of chiral edge states induced by the DM interaction.
We calculate the thermal Hall conductivity κxy by the Kubo
formula. It can be expressed as a weighted summation of the
Berry curvature [20,45]

κxy = − k2
BT

4π2h̄a

∑
n,k

c2[ρ(εnk)]�nk, (24)

where kB is the Boltzmann constant, T is the temperature, and
ρ(εnk) = [eεnk/kBT − 1]−1 is the Bose function. We choose the
lattice constant a = 0.1 nm as the typical layer spacing for
practical calculation. The c2(x) is defined as

c2 = (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2Li2(−x), (25)

where Li2(x) is the polylogarithmic function. Considering the
thermal fluctuation, we calculate the deviation of sublattice
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FIG. 4. The magnon bands of the TKL with various DM interactions. The Dirac points are located at the K point ( 2
3 π , − 2

3 π ) and the K ′

point (− 2
3 π , 2

3 π ) in the first Brillouin zone. The parameters of ferromagnetic coupling with K = 0.1, h = 0.1: (a) Ja = 0.5, Jb = 1, D = 0.
(b) Ja = 0.5, Jb = 1, D = 0.1. (c) Ja = 0.5, Jb = 1, D = 0.2. (d) Ja = 0.5, Jb = 1, D = 0.3. The parameters of ferrimagnetic ground state with
K = 0.1, h = 0.1 are set as (e) Ja = 0.2, Jb = −1, D = 0. (f) Ja = 0.2, Jb = −1, D = 0.1.

magnetization from the saturation value

�m = S − 〈
Sz

m

〉 = 〈α†
mαm〉 =

∑
n,k

ρ(εnk), (26)

where the Curie temperature Tc is determined by �m (Tc) =
S.

D. Angular momentum and gyromagnetic ratio

There are correction terms to the thermal Hall conductivity
in the linear response theory, by noting that the temperature
gradient is not a dynamical force but a statistical force. Thus,
the transport coefficients for magnons consist of the deviations
of a particle density operator and the current operators. The
current operators are expressed in terms of the reduced orbital
angular momentum of magnons

ledge = 2kB

4π2h̄
2Im

∑
n,k

〈
∂ψn

∂kx

∣∣∣∣T c1[ρ(εnk)] − ρ(εnk)εnk

kB

∣∣∣∣∂ψn

∂ky

〉
,

(27)

where c1(x) = (1 + x) ln(1 + x) − x ln x is another weight
function. In addition, the magnon wave packet carries an ad-
ditional self-rotation motion originating from Berry curvature
[20,21]

lself = 2kB

4π2h̄
2Im

∑
n,k

〈
∂ψn

∂kx

∣∣∣∣ρ(εnk)

2kB
(εnk − H )

∣∣∣∣∂ψn

∂ky

〉
. (28)

We calculate the total angular momentum per unit cell by
summing the edge current and the self-rotation

Ltot = m∗(ledge + lself ), (29)

where Ltot represents the total angular momentum. Within the
low-temperature approximation, the mass of the magnon can
be approximated as the effective mass m∗ at the � point of the
first band. Thus, the gyromagnetic ratio of magnons can be
expressed as

γm = γeLtot

h̄�m
, (30)

where the γe is given by 2me/(ge), g is the Landé factor, and
e and me are the charge and mass of the electron, respectively.
Then we define a differential gyromagnetic ratio response
γ ∗

m as

γ ∗
m =

(
∂Ltot/∂T

∂�m/∂T

)
h

. (31)

Different from the electron systems, the gyromagnetic ratio
response of topological magnons cannot be measured simply
in experiment, but from a response to a temperature change.

III. RESULTS

A. Topological magnon bands

Here we target the ferrromagnetic and ferrimagnetic
ground states of the TKL. As shown in Fig. 4, the DM in-
teraction which breaks the time-reversal symmetry can open
the gap at the Dirac points. Thus, we study the topological
magnon bands on the TKL and take |Jb| as the unit of energy
while Ja = 0.5, Jb = 1, K = 0.1, and h = 0.1. For ferromag-
netic Jb, we consider the DM value at D = 0, 0.1, 0.2, and
0.3 while the numerical solutions of the energies at the high-
symmetry point � are given in Table I.

The Dirac points are located at the K point ( 2
3π , − 2

3π ) and
the K ′ point (− 2

3π , 2
3π ) in the first Brillouin zone. Hence, we

also calculate the numerical solutions of the high-symmetry
point K in Table II while K ′ is equivalent. Additionally, for
Ja = 1, Jb = 1 the top band becomes threefold degenerate. As
an analog of a spin-orbit interaction in electronic topologi-
cal insulators, DM interactions can introduce nonzero Berry

TABLE I. Energy of each band at � point with Ja = 0.5, Jb = 1.

D Energy (from lower to higher)

0 {0.30, 2.30, 2.61, 2.61, 3.80, 3.80, 5.49, 5.49, 6.30}
0.1 {0.30, 2.30, 2.47, 2.75, 3.63, 3.97, 5.18, 5.80, 6.30}
0.2 {0.30, 2.30, 2.32, 2.86, 3.45, 4.15, 4.89, 6.13, 6.30}
0.3 {0.30, 2.16, 2.30, 2.94, 3.28, 4.32, 4.64, 6.30, 6.53}
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TABLE II. Energy of each band at K point with Ja = 0.5, Jb = 1.

D Energy (from lower to higher)

0 {0.96, 0.96, 2.62, 3.55, 3.55, 3.80, 5.49, 5.89, 5.89}
0.1 {0.93, 0.99, 2.61, 3.47, 3.61, 3.75, 5.54, 5.77, 6.04}
0.2 {0.90, 1.01, 2.61, 3.36, 3.61, 3.65, 5.68, 5.68, 6.20}
0.3 {0.86, 1.04, 2.61, 3.24, 3.42, 3.67, 5.61, 5.87, 6.29}

curvature and change the Chern numbers of some magnon
bands. In Table III, we numerically check the Chern numbers
of different magnon bands, which can distinguish various
topological phases.

If Ja > 0 and Jb < 0, the ground state is the ferrimagnetic
state and a small DM interaction can change the band struc-
ture significantly. From our calculations the antiferromagnetic
coupling is unfavorable for energy band topology. Here we
choose the DM value at D = 0, 0.1 for antiferromagnetic cou-
pling with Ja = 0.2, Jb = −1, K = 0.1, and h = 0.1. In this
case, the bands resemble three copies of magnon bands on the
kagome lattice ferromagnet with a flat band and three disper-
sive Dirac magnon bands in each copy as shown in Figs. 4(e)
and 4(f) [46]. For nonzero DM interaction, the magnon bands
are separated by a finite energy gap proportional to the DM
interaction in all the parameter regions [47,48]. And the Chern
numbers are shown in Table IV.

The Berry curvature and the Chern number can be posi-
tive or negative. Both of them become zero when we adjust
some of the nine bands to topologically trivial phases, and the
summation of Chern numbers for all bands is always zero.

B. Armchair edge states

According to the bulk-edge correspondence, the summa-
tion of Chern numbers up to the jth band is equal to the
number of pairs of edge states in the gap. We calculate the
bulk-edge energy spectrum which corresponds to the surface
property of the ribbon sample. The gapless edge states and
the DOS are shown in Fig. 5. We choose a 9 × 20 lattice and
introduce the Green’s functions to calculate the armchair edge
states of our ribbon sample. The emerging peaks of the DOS
are dependent on the topological band structure. We expect to
derive the value of the Chern number for each distinct band
from the edge state pattern itself.

As a result, the dispersion of armchair edge states in the
one-dimensional Brillouin zone is shown in Fig. 5 with Ja =
0.5, Jb = 1, K = 0.1, h = 0.1, and D = 0.3. We also calculate
the DOS of a two-dimensional TKL system with ferrimag-
netic ground state for Ja = 0.2, Jb = −1, K = 0.1, h = 0.1,
and D = 0.05. It can be written as a sum of Dirac-δ functions

TABLE III. Chern numbers with Ja = 0.5, Jb = 1.

D Chern number of each band (from lower to higher)

0 {0, 0, 0, 0, 0, 0, 0, 0, 0}
0.1 {−1, 1, −1, 2, 0,−1, 1, 0, −1}
0.2 {−1, 1, −1, 2, −2, 1, 0, 1, −1}
0.3 {−1, 0, 0, 2,−2, 1, −1, 0, 1}

TABLE IV. Chern numbers with Ja = 0.2, Jb = −1.

D Chern number of each band (from lower to higher)

0 {0, 0, 0, 0, 0, 0, 0, 0, 0}
0.1 {1, 0, −1, −1, 2, −1, −1, 0, 1}

FIG. 5. Magnon density of states with energy bands on the TKL.
(a) The magnon band structure and DOS corresponding to topologi-
cal edge states for a TKL ribbon (Ja = 0.5, Jb = 1, K = 0.1, h = 0.1,
and D = 0.3). The dispersions of the edge states in gaps are shown
by red curves. (b) The magnon band structure and DOS of the TKL
in ferrimagnetic state with Ja = 0.2, Jb = −1, K = 0.1, h = 0.1, and
D = 0.05.
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FIG. 6. Low-temperature thermal Hall conductivity on the TKL.
In ferromagnetic coupling the DM interactions are −0.1, −0.2, −0.3
with Ja = 0.5, Jb = 1, K = 0.1, and h = 0.1, respectively. For an-
tiferromagnetical couplings between sublattices A and B, the DM
interaction is −0.1 with Ja = 0.2, Jb = −1, K = 0.1, and h = 0.1.

with energies corresponding to the set of eigenvalues of the
Hamiltonian. The appearance of edge modes leads to nonzero
DOS in each DM-induced gap. And the DOS is no longer
symmetric about the Dirac point. The topological structure
of energy bands is described by the magnon transport of
armchair edge states and the corresponding DOS.

C. Thermal Hall effect

Thermal Hall effect is a key experimental signature to
detect the magnon transport arising from the edge current of
topological excitations. The DM-induced Berry curvature acts
as an effective magnetic field that deflects the propagation
of magnons in the system. The nonzero Chern numbers are
associated with topological chiral gapless edge modes which
appear in the DM-induced gaps. And the nontrivial topology
of the Berry curvature leads to magnon edge states which
carry a transverse heat current upon the application of a lon-
gitudinal temperature gradient. Unlike electrons the magnons
have no charge and the rotation is not due to “Lorentz force.”
Thus, the DM interaction plays the role of an effective mag-
netic field by altering the propagation of magnons in the
system [49].

The plot of κxy(T ) vs T/|Jb| is displayed with different
DM interactions, respectively, in Fig. 6. We take h = 0.1
and K = 0.1 for both ferromagnetic state and ferrimagnetic
state. Because of the opposite Berry curvatures of the higher
magnon bands, the κxy(T ) for D = −0.1 changes its sign upon
raising the temperature. We observe that the thermal Hall
conductivity decreases with the emergence of antiferromag-
netic coupling. Especially when the magnon is excited to the
energy band possessing a high Chern number, the κxy can be
effectively changed with a positive peak at low temperatures
followed by a long negative tail in the high-temperature re-
gion.

As shown in Fig. 6, we also calculate the thermal Hall con-
ductivity coefficients from HP theory with D = −0.2,−0.3.
The values keep increasing upon raising the temperature and
have not reached saturation at the phase transition points.
At low temperature and weak field, the lowest-lying magnon
band dominates thermal transport. The thermal Hall conduc-
tivity vanishes at zero temperature as there are no thermal

TABLE V. Peak and convergence values of thermal Hall conduc-
tivity for different parameters.

Parameters Peak value Convergence value

Ja = 0.2, Jb = −1, D = −0.1 0.124 −0.030
Ja = 0.5, Jb = 1, D = −0.1 0.091 −0.050
Ja = 0.5, Jb = 1, D = −0.2 0.301
Ja = 0.5, Jb = 1, D = −0.3 0.832

excitations and becomes negative (κxy < 0) due to the fact that
c2(x) > 0. At high temperature, higher-energy bands carrying
opposite Berry flux contribute significantly and a strong Zee-
man field diminishes the thermal population difference among
the bands by creating a large gap for all the bands. These
behaviors of κxy are inherited from the topology of the bulk
magnon bands [49,50]. The peak values and convergence val-
ues of thermal Hall conductivity for the different parameters
on the TKL are listed in Table V.

It is noted that the energy bands with high Chern numbers
have large weights in the calculation of thermal Hall effect
and the dominant contribution comes from the Dirac points
K (K ′). With the enhancement of DM interaction, the bands
with high Chern numbers appear. Thus, both the sign change
and the peak vanish in all the parameter regions and κxy

increases significantly. In real materials, the Curie temperature
can be increased significantly due to the presence of single-ion
anisotropies, interlayer couplings, and so on. Here we show
the results of thermal Hall conductivity on the TKL in a
large temperature range to illustrate the behaviors of κxy for
different parameters.

D. Einstein–de Haaseffect

The Einstein–de Haas effect is the ultimate macroscopic
manifestation originating from a subtle microscopic exchange
of spin angular momentum [51]. According to the linear re-
sponse theory, the magnon wave packet undergoes two types
of orbital motions and the total angular momentum is defined
as the summation of these two types of rotational motions. We

FIG. 7. Temperature dependence of the topological gyromag-
netic ratio γm on the TKL. The gyromagnetic ratio contributions,
compared to the electronic value, for individual topological edge
current, self-rotation of the magnon wave packet, and the total an-
gular momentum contribution to γm are shown. Parameter choices
are D = 0.1, 0.3 with Ja = 0.5, Jb = 1, K = 0.1, and h = 0.1.
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TABLE VI. Curie temperature Tc/|Jb| for different parameters.

Lattice Parameter field Tc/|Jb|
TKL Ja = 0.5, Jb = 1, D = −0.1, K = 0.1 0.884
TKL Ja = 0.5, Jb = 1, D = −0.2, K = 0.1 0.878
TKL Ja = 0.5, Jb = 1, D = −0.3, K = 0.1 0.867
TKL Ja = 0.2, Jb = −1, D = −0.1, K = 0.1 0.816

define the gyromagnetic ratio as the angular momentum di-
vided by the magnetic moment of magnons, which is related to
the magnetization change of the system. Each magnon mode
can be excited or annihilated and has its own gyromagnetic
response. In Fig. 7, we calculate the transport properties from
the gyromagnetic ratio, finding that the self-rotation motion
and the edge current on the TKL are opposite in directions.
However, the self-rotation has a larger part in the negative
region, which results in a negative value of the total angular
momentum in all temperature regions. Especially in the zero-
temperature limit, the self-rotation motion of the TKL has a
finite response at the � point which sets it apart from the other
usual lattice candidates that have been explored before.

Our results infer that the total gyromagnetic contribution
increases significantly at first and reaches a peak value at
about T = 0.20|Jb|. The value stabilizes when it approaches
the Curie temperature Tc. Since the Tc is in the ballpark
of |Jb|, the HP representation is valid until T � T ∗ (T ∗ ∼
0.5|Jb|), providing a quantitative description of the thermal
Hall conductivity and the gyromagnetic ratio in the tempera-
ture range [0, T ∗]. Above T ∗, the results obtained from the HP
representation illustrate the trends that one would expect from
a more accurate calculation. Since the relevant topological
features of the EdH response happen in the ballpark of T =
0.2|Jb|, the HP representation is enough to describe them. The
Curie temperatures for the TKL are listed in the Table VI. To
further analyze the physical content of Fig. 7, we compare
the gyromagnetic ratio of the TKL system with respect to the
kagome lattice system. We show the results of our calculation
in Fig. 8. The γm/γe shown in Fig. 8(a) represents the tempera-

ture variation of the topological gyromagnetic ratio compared
to the electronic value. As the γ ∗

e is equal to γe for electrons,
the γ ∗

m/γ ∗
e can be simplified as γ ∗

m/γe. Hence, the differential
gyromagnetic ratio is renormalized from the γm response.
From our calculations we find that the ferrimagnetic frustrated
structure suppresses the band topology by reducing the γm/γe

and γ ∗
m/γe. Considering the differential gyromagnetic ratio

response, the magnon system also has a peak value before
descending as seen in Fig. 8(b). Thus, there is an optimal
temperature of the differential gyromagnetic ratio at which the
magnon insulator will have the strongest response.

In Stewart’s apparatus, the EdH effect was observed from
the amount of the transient angular momentum change. This
experimental setup can be explored to measure the differential
gyromagnetic ratio via being exposed to an external heat bath
with a temperature gradient [52]. From an experimental point
of view, there is an optimal temperature zone in which our the-
ory can be tested well. The values of optimal temperature for
various TKL systems are all around T = 0.20|Jb|. Addition-
ally, the anisotropy and external magnetic field can enhance
the EdH effect; for instance, the peak of γ ∗

m/γe reaches 0.223
for the ferromagnetic TKL with D = −0.3, Ja = 0.5, Jb = 1,
K = 0.1, and h = 0.1. Our formalism, analytical approach,
and eventual conclusions will hold not only for the TKL
system, but also for a wider variety of ferrimagnetic systems.

IV. CONCLUSIONS

In summary, we have investigated the topological magnons
on the TKL, which can give detectable results on the thermal
Hall conductance and the Einstein–de Haas effect. In the
presence of armchair edges for a ribbon sample, we find that
the nonzero summation of Chern numbers for different bands
below the gap leads to a magnon current transport along the ky

direction of this gap [46,53]. By using the real-space Green’s
function approach, we have studied the armchair edge modes
to calculate the DOS in our sample. Theoretical and exper-
imental studies have shown that thermal Hall conductance
can have a sign change as temperature or magnetic field is
varied [54]. Our results show that the sign change behaviors

FIG. 8. Comparison of the Einstein–de Haas effect response on the TKL and kagome lattice. (a) The gyromagnetic ratio variation with
temperature is shown. Parameter choices on the kagome lattice are J = Jb = 1, D = −0.1, and h = 0.3. Parameter choices on the TKL with
K = 0.1 and h = 0.1 are D = −0.1, −0.2, −0.3 for Ja = 0.5, Jb = 1, and D = −0.1 for Ja = 0.2, Jb = −1. (b) The differential gyromagnetic
ratio response is shown. Parameter choices are the same as before.

024408-8



TOPOLOGICAL MAGNONS ON THE TRIANGULAR KAGOME … PHYSICAL REVIEW B 107, 024408 (2023)

emerge on the TKL when the topological features are reduced
by the antiferromagnetic coupling. At the Curie temperature,
the thermal Hall conductivities are always convergent for all
selected parameters. We further find that there is a peak for
the thermal Hall conductance when the low magnon bands
dominate and the peak vanishes when the DM interaction is
strong enough. The influence of a nonzero Berry curvature and
its underlying topological identity is preserved even though
the lattice structure changes.

We show the calculations for the EdH effect of topologi-
cal magnons for both the ferro- and ferrimagnetic states and
propose that the TKL is a suitable lattice for the observation
of the EdH effect. Especially in the low-temperature region,
the magnon description is more effective. Comparing with the
traditional kagome and honeycomb lattices, this compound
lattice has a better topological magnon structure with added
high Chern numbers to produce stronger EdH effect. We
investigate the angular momentum for topological edge cur-
rent and self-rotation originating from the Berry curvature in
momentum space. These two angular momentum components
with opposite signs offset each other, but the self-rotation has
a larger part which ensures that the total angular momen-
tum contribution has a nonzero value. The EdH effect is a
macroscopic mechanical manifestation caused by the angular
momentum conservation principle and can be detected by a
mechanical experimental setup [22,52].

We have studied various TKL systems with different
coupling parameters to explore the topological magnon exci-

tations, the thermal Hall effect [55], and the EdH effect. In
real materials, the observed results are influenced by other
kinds of effects, but these may not be a concern for systems
in which topological magnons already dominate the thermal
Hall effect and the EdH effect. The TKL structure has been
found in Cu9X2(cpa)6 (X = F, Cl, Br; cpa = anion of 2-
carboxypentonic acid) which has tunable magnetic couplings
[56]. The thermal Hall effect of spin excitations arises in
the usual way via the breaking of inversion symmetry of the
lattice by a nearest-neighbor DM interaction [57]. It is also
possible to realize the TKL in cold atom systems and higher-
order topology of magnons [58,59]. Our study provides a new
vision to realize the thermal Hall effect and the EdH effect.
The thermal Hall effect that arises from the edge current of
magnons is useful to control the magnon transport; then the
EdH effect can produce a potential mechanical effect which
has potential applications in quantum informatics and topo-
logical magnon spintronics [12].
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