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First-principles calculation of anomalous Hall and Nernst conductivity by local Berry phase
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We implemented a finite-difference algorithm for computing anomalous Hall and Nernst conductivity. Based
on the expression to evaluate the Berry curvature in an insulating system [J. Phys. Soc. Jpn. 74, 1674 (2005)], we
extended the methods to a metallic system. We calculated anomalous Hall conductivity and Nernst conductivity
in a two-dimensional ferromagnetic material FeCl2 and three-dimensional ferromagnetic transition-metals bcc-
Fe, hcp-Co, and fcc-Ni. Our results are comparable to previously reported results computed by the Kubo formula
or Wannier representation. To evaluate anomalous Nernst coefficients, the detailed Fermi-energy dependence of
the anomalous Hall conductivity is required. The present method will open an efficient thermoelectric material
design based on the high-throughput first-principles screening.
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I. INTRODUCTION

Anomalous Hall effect (AHE) shows Hall conductivity
induced by broken time-reversal symmetry based on sponta-
neous magnetization [1,2]. AHE has an extrinsic mechanism,
which originates from impurities [3,4] and an intrinsic mech-
anism induced by the Berry curvature [5–7]. The Berry
curvature is a gauge invariant due to the topology of the
electron wave function, and AHE occurs in simple ferro-
magnetic materials and materials with spin chirality [8,9].
Therefore, the relation between anomalous Hall conductivity
and magnetic structure in materials is nontrivial. In an insu-
lating system, AHE has attracted much research attention as a
topological effect because it is quantized as a Chern number,
which is a topological invariant [10,11].

Anomalous Nernst effect (ANE), which originates from
AHE has attracted renewed interest. ANE generates a trans-
verse voltage from a longitudinal temperature gradient due to
a transverse electric conductivity through the AHE [2,7,12].
It can be utilized in developing energy-harvesting technology
which may provide a simple lateral structure, higher flexi-
bility, and lower production cost [13,14]. Experimental and
theoretical studies of ANE have been reported in various
magnetic materials [15–41]. Among them, theoretical work
predicted large AHE and ANE in the Skyrmion crystal, which
has a spin chirality [20,23]. In addition, topological mag-
nets, such as Mn3Sn [21,22,37], Co2MnGa [25,27,33], Fe3X
(X = Al, Ga) [30,31], Co3Sn2S2 [26,28,34], and UCoAl [38]
are particularly interesting due to their large ANE signal and
characteristic low-energy electronics structure including Weyl
points.
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Anomalous Nernst conductivity (transverse thermoelectric
conductivity), which indicates anomalous Nernst thermoelec-
tric conversion efficiency can be evaluated from the chemical
potential dependence of anomalous Hall conductivity. The
intrinsic component of anomalous Hall conductivity σxy can
be obtained from the Berry curvature �n(k) as [6,10]

σxy(μ) = e2

h

N∑
n

∫
dk2

2π
�nz(k) f (εnk − μ). (1)

Here, N, e, h, f , εnk, and μ are the electron occupation
number, elementary charge, Planck constant, Fermi-Dirac
distribution function, band energy with the band index n,
wave-vector k, and Fermi energy, respectively. The Berry
curvature �n(k) is given as

�n(k) = ∇ × An, (2)

An(k) = −i〈un(k)|∇k|un(k)〉, (3)

where An and un(k) are the Berry connection and the peri-
odic part of the Bloch states, respectively. In an insulating
system, Eq. (1) should be quantized, and it can be described
as follows: σxy(μ) = (e2/h)C (C = 0,±1,±2, . . .). Here, the
integer C is the “Chern number.” Anomalous Nernst con-
ductivity αxy can be calculated from the chemical potential
dependence of σxy as follows [42]:

αxy(μ, T ) = 1

e

∫
dε σxy(ε)

∣∣∣∣
T =0

ε − μ

T

(
− ∂ f (μ)

∂ε

)
. (4)

An efficient and simple method to evaluate the chemical
potential dependence of σxy is required for the design of ther-
moelectric materials based on high-throughput first-principles
screening. Previous studies were mainly performed by eval-
uating the off-diagonal Hall conductivities with Wannier
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representation [43–45] or the Kubo formula [46–48]. The
former method was implemented in postw90 which is the
postprocessing code for the WANNIER90 code [49] and has
been widely used in conjunction with many first-principles
electronic structure packages. However, some empirical and
technical procedures, such as choice of bases and energy
window range are required to construct Wannier functions,
which are material dependent. In addition, the Wannier rep-
resentation and the Kubo formula have numerical instability
due to the k-space Dirac monopole [43].

In this paper, we introduce an efficient method for calcu-
lating anomalous Hall conductivity σxy and anomalous Nernst
conductivity αxy. We apply the finite-differences expression
for Berry curvature [50–52] to metallic systems. One of the
method advantages is that σxy and αxy can be calculated
without the construction of Wannier functions demanding
the technical or empirical procedure. We implemented our
proposed method in the OPENMX code [53], a first-principles
calculation package as a post processing code. To confirm the
consistency on our proposed method, we calculate σxy and αxy

in two-dimensional ferromagnet FeCl2 and three-dimensional
ferromagnetic transition metals (bcc-Fe, hcp-Co, and fcc-Ni)
as a practice. Calculation results successfully reproduced the
previous reported ones [32,43,46,47,54,55] obtained from the
Kubo formula [46] and Wannier representations [43,44]. Our
proposed method will open efficient thermoelectric materials
design based on high-throughput first-principles screening.
The source code and input files are publicly available on
GitHub [56].

II. METHODS

First, we explain a method of computing σxy in an two-
dimensional insulating system, which was proposed by T.
Fukui, Y. Hatsugai, and H. Suzuki [50] and T. Fukui and Y.
Hatsugai [51].

Let us consider the wave-vector k at the lattice point on
the two-dimensional rectangular Brillouin zone and define
its grid interval as δkx and δky along the x and y directions,
respectively. The extension to the general lattice system is
straightforward. The N×N overlap matrix on the Brillouin
zone is defined as follows:

(Mk,k+δk )mn = 〈um(k)|un(k + δk)〉, (5)

and a U (1) link variable is defined as follows:

U N
δk(k) = det Mk,k+δk. (6)

The non-Abelian Berry curvature �N (k) on the discretized
Brillouin zone [50] can be computed using Uδk(k) as a Berry
flux and a local Berry phase [57],

F N (k) = Im ln U N
δkx

(k)U N
δky

(k + δkx )

×[
U N

δkx
(k + δky)

]−1[
U N

δky
(k)

]−1

= Im ln U N
δkx

(k)U N
δky

(k + δkx )

×U N
−δkx

(k + δkx + δky)U N
−δky

(k + δky), (7)

where δkx = δkxx̂ and δky = δkyŷ [58]. The Berry flux is de-
fined as F N (k) = �N

z (k)δkxδky. The value of F N (k) varies in

the range of −π � F N (k) < π because Im ln is an operation
to take the argument of a complex number. This Berry flux
takes ±π if a plaquette includes a single Dirac point [7,59].
To compute the Berry flux F , we carried out the contour
integration at four wave numbers on the vertices of a plaquette
as shown in Fig. 1(a). The anomalous Hall conductivity, σxy in
the insulating system is computed by obtaining the Berry flux
on the Brillouin zone F N (k),

σxy(μ) = e2

h

1

2π

∑
k

F N (k) = e2

h
C. (8)

For computing Eq. (7), the matrix size of U must be equal
to that in another vertex, i.e., the all occupied number N on
vertices of a plaquette must be equal. Therefore, this method
can apply only in the insulating system which all occupation
numbers N on the vertices of a plaquette are equal.

Next, we expanded the Fukui-Hatsugai-Suzuki method to
metallic system. As shown in Fig. 1(b), we consider the case
in which any band intersects the Fermi energy.

(i) In the case of occupation numbers N’s on four vertices
of a plaquette are equal, we can compute the Berry flux simi-
larly to the case of an insulating system. As shown in Fig. 1(c),
we can compute U on each plaquette and obtain Berry flux F .

(ii) In the case that even one occupation number N is
different from one of the plaquette, we approximate the Berry
flux F by computing the average. Figure 1(d) illustrates the
approximation concept for determining the average F . For
example, in the case where the occupation numbers on four
vertexes are N1, N2, N3, and N4, we can obtain the four Berry
fluxes F N1 (k), F N2 (k), F N3 (k), and F N4 (k) which are calcu-
lated assuming that the all occupation numbers on the four
vertices are N1, N2, N3, and N4. The approximated Berry flux
F̄ on this plaquette is approximated by the following equation:

F̄ (k) � 1

4
[F N1 (k) + F N2 (k) + F N3 (k) + F N4 (k)]. (9)

Through this approximation, we can compute F̄ (k) on all
plaquettes, and we can obtain σxy as

σxy(μ) = e2

h

∑
k

F̄ (k). (10)

Confirming the convergence of the above approximation, we
compared it with another approximation using the minimum
occupation number in Appendix A.

In the case of a three-dimensional simple cubic system,
σxy’s are defined on each kz. Thus, σxy in a bulk system is
computed by the average along the kz direction as follows:

σxy(μ) = 1

Nkz

∑
kz

σxy(μ, kz ). (11)

Here, Nkz is the mesh number along the kz direction. Through
this, σxy in a three-dimensional system can be computed by
applying our method on each kz.

To evaluate αxy, one need to calculate the μ dependence
of σxy. If one set the maximum occupation number N = Nmax

corresponding to a chemical potential discussed, one can com-
pute the chemical potential dependence of σxy by computing

024404-2
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FIG. 1. (a) Computing σxy in an insulating system. (b) Fermi energy intersecting energy bands. (c) Carrying out contour integration on
each plaquette. Except for the plaquette intersecting the Fermi surface, Berry curvature can be computed the same as an insulating system
because the occupation numbers N on four vertexes are equal to one another. (d) The schematic of an approximation in computing the Berry
curvature on the plaquette intersecting the Fermi surface. Assuming occupation numbers on four vertices are equal, one can take the average
of the computed Berry curvature.

the overlap matrices once for Nmax in Eq. (5). If μ is changed,
it is only necessary to recalculate the determinant with N �
Nmax in Eq. (6) from the overlap matrices with N = Nmax

prepared in advance. Because the computational cost of (6)
is much smaller than that of Eq. (5), it is possible to calculate
αxy efficiently. This efficiency is shown in Appendix B.

III. COMPUTATIONAL CONDITION

We conducted first-principles calculations based on the
noncollinear density functional theory (DFT) based using the

OPENMX code [53]. DFT calculations were performed through
the exchange-correlation functional within the generalized
gradient approximation [60] and norm-conserving pseudopo-
tentials [61]. The wave functions were expanded by a linear
combination of multiple pseudoatomic orbitals [62,63]. The
spin-orbit interaction was included by using total-angular-
momentum-dependent pseudopotentials [64]. For FeCl2, the
cutoff energy for a charge density of 500 Ry, a k-point sam-
pling of 20×20×1, and lattice constant of 3.475 Å were used.
A set of pseudoatomic orbital basis functions was specified
as Fe6.0S-s2p3d3 f 1 and Cl7.0-s3p3d2, where 6.0 and 7.0
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FIG. 2. (a) Crystal structure of FeCl2. (b) k-mesh dependence of the σxy at the Fermi energy. (c) Band structure of FeCl2. (d) Chemical
potential dependence of the σxy and αxy. Blue and red solid line points correspond to the present calculation results and results obtained from
WANNIER90, respectively. The high-symmetry points are 	(0, 0, 0), M(1/2, 0, 0), and K(1/3, 1/3, 0).

are the cutoff radii (in bohrs) of each element, respectively.
S stands for a soft pseudopotential, and the integers after s,
p, d , and f indicates the radial multiplicity of each angular
momentum component. These computational conditions are
the same as those reported previously study [32]. For bcc-Fe,
the cutoff energy for a charge density of 300 Ry, a k-point
sampling of 36×36×36, and lattice constant of 2.87 Å were
used. A set of pseudoatomic orbital basis functions was spec-
ified as Fe6.0S-s3p3d3 f 1. For details of hcp-Co and fcc-Ni,
see Appendix C.

IV. RESULTS AND DISCUSSION

A. Two-dimensional ferromagnetic FeCl2

Here, our method is applied for the two-dimensional ferro-
magnetic FeCl2, which has a simple electronic structure and
a large ANE [32]. Figure 2(a) shows the schematic crystal
structure of FeCl2, where six Cl atoms connect each Fe atom.
This material is known as a ferromagnetic two-dimensional
material with half-metallicity [32,65,66].

Figure 2(b) shows the k-mesh dependence of σxy at the
Fermi energy. We found that σxy converged to 0.14 (e2/h)
with a 200×200 k-mesh, and its value converged within about
10% with a 100×100 k-mesh. This convergence with a small
number of k-mesh is similar to the previous first-principles
calculation [67]. Compared to the results of WANNIER90, our
proposed method exhibit a very small difference less than
0.014 (e2/h) where the k-mesh is greater than 200×200 at
the Fermi energy. One of the factors for this convergence is
that the ratio of the plaquette number with the approximation
of Eq. (9), decreased from 12% to 3% whereas the k-mesh
increased from 50×50 to 200×200.

Next, we confirm the chemical potential dependence of
the σxy and αxy. Figure 2(c) shows the electronic band struc-
ture for FeCl2. A simple band structure without degenerate
points near the Fermi energy is noticeable in this case.
Figure 2(d) shows the chemical potential dependence of the
σxy at 0 K and αxy at 100 K. The k-mesh of 200×200×1
were used for both calculations. Our calculation results [blue
solid line in Fig. 2(d)] reproduce completely those obtained
from the Wannier representations. Table I shows the mean
absolute error of σxy with respect to μ, and we confirmed
convergence with increasing k-mesh. Therefore, we conclude

that our method can reproduce the results obtained from
the Wannier representations in a simple electronic structure
case.

B. Three-dimensional ferromagnetic materials

Next, let us perform our method in a three-dimensional fer-
romagnetic system. We calculated the σxy and αxy for bcc-Fe,
hcp-Co, and fcc-Ni as a typical example. Here, we focused
on bcc-Fe (Fig. 3(a) [68]) (for hcp-Co and fcc-Ni, see Ap-
pendix C). In Table II, we compared the σxy for bcc-Fe at the
Fermi energy for the present paper with a previous study. We
can see that our calculation results converge to approximately
σxy � 750 S/cm as similarly reported in the previous theoret-
ical calculation.

Figure 3(b) shows the k-mesh dependence of the σxy at
the Fermi energy. The σxy converged with, at least, the k-
mesh of 200×200×200, and its value converged within about
10% with 100×100×100 k-mesh. Compared to the results
of WANNIER90, our proposed method exhibits a very small
difference less than 6 S/cm, where the k-mesh is finer than
400×400×400 at the Fermi energy. One of the factors for this
convergence is that the ratio of the plaquette number with the
approximation of Eq. (9), decreased from 22% to 3% whereas
the k-mesh increased from 100×100×100 to 700×700×700.
We can conclude that our method could reproduce the σxy at a
specific chemical potential.

Finally, we discuss the chemical potential dependence
of the σxy and αxy for bcc-Fe. Table III shows the mean
absolute error of σxy with respect to μ. Compared to the
two-dimensional system, the convergence of the chemical

TABLE I. Mean absolute error of σxy with respect to μ in FeCl2.
The errors were estimated as the difference from converged k-mesh
200×200. The energy range is −0.5 to 0.5 eV. “Min.” means min-
imum occupation number. For details, see Appendix A in the main
text.

k-mesh Error (e2/h) Error (e2/h)
Eq. (9) Min.

50×50 0.043 0.067
100×100 0.012 0.047
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FIG. 3. (a) Crystal structure of bcc-Fe. (b) k-mesh dependence of the σxy at the Fermi energy. (c) Band structure of bcc-Fe. (d) Chemical
potential dependence of the σxy and αxy. Blue and red solid line points correspond to the present calculation results and results obtained from
WANNIER90, respectively. The high-symmetry points are 	(0, 0, 0), H(1/2, −1/2, 1/2), N(0, 0, 1/2), and P(1/4, 1/4, 1/4).

potential dependence of σxy with increasing k-mesh is slower
than two-dimensional results. Figures 3(c) and 3(d) show
the band structure of bcc-Fe and the chemical potential de-
pendence of the σxy at 0 K and αxy at 100 K, respectively.
Compared to the two-dimensional system, the correspondence
of σxy between our method and the Wannier representation
is slightly lowered at the specific energy region from −1.0
to −0.5 eV. This numerical error may originate from an
entangled or degenerate electronic structure because the bcc-
Fe system has many degenerate points stemming from point
nodes [69]. However, due to the smearing of the Fermi-
Dirac distribution function, this inconsistency decreases as
the temperature increases. In fact, as shown in Fig. 3, it
shows that our αxy of bcc-Fe at 100 K results are almost
consistent with those calculated by WANNIER90. We safely
conclude that our method has enough accuracy for evaluating
αxy in a finite temperature. At low temperature, it is difficult
to obtain αxy, and we can improve it by using smeared σxy

(see Appendix D).

V. CONCLUSION

In this paper, we expanded the Fukui-Hatsugai-Suzuki
method to a metallic system to improve the efficiency in
calculation of σxy and αxy in magnetic materials. Calculating
an average of the Berry flux on the all k-mesh plaquette

TABLE II. Comparison of this paper and previous ones for the
σxy in bcc-Fe.

Refs. σxy (S/cm)

Yao et al. [46] 751
Wang et al. [43] 756.76
Lee et al. [47] 750
Exp. [70] 1032
This paper (100×100×100) 770
This paper (200×200×200) 788
This paper (300×300×300) 782
This paper (400×400×400) 786
This paper (500×500×500) 785
This paper (600×600×600) 790
This paper (700×700×700) 788

with respect to each vertex, makes it possible to estimate
σxy in partially occupied cases. We also demonstrated the
calculations of σxy and αxy by using this method in a
typical two-dimensional ferromagnetic material FeCl2 and
three-dimensional magnetic transition-metal bcc-Fe, hcp-Co,
and fcc-Ni. The σxy in FeCl2 with a simple band struc-
ture completely reproduced the calculation results obtained
from the Wannier representation and exhibited fast conver-
sion with a rough k-mesh. Whereas, in three-dimensional
transition-metal cases, the consistency is slightly dropped in a
specific energy range because of a complicated band structure;
however, we find a good agreement for anomalous Nernst con-
ductivity at a finite temperature. The present paper will give
us a more efficient calculation method for the AHE and ANE
without some technical and empirical procedures, such as
those constructing Wannier functions. High-throughput first-
principles screening based on this method will be a useful tool
for thermoelectric materials design.
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The k-mesh of 200×200 was used.

Information Technology Center, The University of Tokyo.
Crystal structures were drawn by VESTA [68].

APPENDIX A: APPROXIMATION ON BERRY
FLUX ON THE FERMI SURFACE

To check the validity of the method computing Berry flux
F with Eq. (9), we calculated F as the case of minimum
occupation number in the plaquettes, i.e., F = F min(N1–N4 ).
Figure 4 shows the error of σxy compared to the result of WAN-
NIER90 for two-dimensional FeCl2. The result using Eq. (9) is
more convergent than the result using the minimum occupa-
tion number. For example, at the chemical potential μ = 0 eV,
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FIG. 5. Computational time of our method and postw90 in the
WANNIER90 package for the FeCl2 system with 100×100 k-point
mesh and the bcc-Fe system with 100×100×100 k-point mesh.
Note that the computational time of postw90 does not include that
consumed by “wannierization.”
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FIG. 6. Chemical potential dependence of σxy for (a) hcp-Co, and
(b) fcc-Ni. Blue-solid, green-dashed, and red-dot lines correspond to
the k-mesh of 100×100×100, 300×300×300, and 500×500×500,
respectively.

the minimum occupation case has the error 
AHC =
0.044 (e2/h) whereas the result of Eq. (9) has the error

AHC = 0.014 (e2/h).

APPENDIX B: COMPUTATIONAL TIME
OF MULTIPLE FERMI LEVELS

We compared computational times of our proposed method
with postw90 in the WANNIER90 package for the FeCl2 sys-
tem to validate the efficiency of our method. We performed
calculations of FeCl2 and bcc-Fe cases with eight nodes of
a supercomputer with AMD EPYC 7702 [2.0 GHz (64 core)
×2] and measured the computational times with the flat MPI
including the 1024 and 256 MPI processes, respectively. To
get the chemical potential dependence of σxy, calculations
of scanning the chemical potential (i.e., Fermi level) are
demanded. In this comparison of computationl times, we
considered the scanning calculations as practical cases. As
shown in Fig. 5, for both FeCl2 and bcc-Fe, the required
computational times were shorter than postw90 for all the
cases with respect to the number of scans of the Fermi level.
Therefore, we can conclude that our method is more efficient
than postw90.

APPENDIX C: ANOMALOUS HALL CONDUCTIVITY
FOR hcp-Co AND fcc-Ni

We also calculated the σxy for ferromagnetic hcp-Co and
fcc-Ni. For fcc-Ni, the cutoff energy for a charge density
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of 300 Ry, a k-point sampling of 32×32×32, and lattice
constant of a = 3.56 Å were used. A set of pseudoatomic
orbital basis functions was specified as Ni6.0-s3p2d2 f 1. For
hcp-Co, the cutoff energy for a charge density of 300 Ry, a

k-point sampling of 24×24×18, lattice constant of a = 2.50,
and c = 4.07 Å were used. A set of pseudoatomic orbital basis
functions was specified as Co6.0-s3p2d2 f 1. Figure 6 shows
the chemical potential dependence of σxy for hcp-Co and fcc-
Ni. We found that the results converged for a k-point mesh
of 300×300×300. Our calculation results well reproduce the
previous studies [54,55].

APPENDIX D: SMEARING EFFECT
AT LOW TEMPERATURE

Generally, a quite computational cost is required to
obtain the convergence value of σxy and αxy at low tem-
peratures. Smearing for σxy and αxy could be a promising
method to reduce that computational cost. Figure 7(a)
shows the chemical potential dependence of σxy for FeCl2.
The red dot and black solid line represent σxy calculated
with the k-point mesh of 50×50 and 200×200, respectively.
The blue dot represents smeared σxy with calculated with
a k-point mesh of 50×50. We performed smearing σxy at
smearing temperature Ts by using the Fermi-Dirac function
f (ε, Ts) as

σ̃ Ts
xy (μ) =

∫
dε

(
−∂ f (ε, μ, Ts)

∂ε

)
σxy(ε), (D1)

and the integration is performed by the trapezoidal rule. We
can see that spiky peaks are reduced in σ̃ Ts

xy (μ). We obtained
αxy using σ̃xy as

αxy(μ, T ) = 1

e

∫
dεσ̃ Ts

xy (ε)
ε − μ

T

(
−∂ f (μ)

∂ε

)
. (D2)

We also calculated αxy as shown in Fig. 7(b). αxy calculated
with a k-point mesh of 50×50 shows oscillation along with
chemical potential due to the numerical convergence of σxy. In
contrast, the oscillation is suppressed by using σ̃ Ts

xy (μ). Using
σ̃ Ts

xy , we can improve the convergence of αxy.
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