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While spin parity effects, physics crucially depending on whether the spin quantum number S is half-
odd integral or integral, have for decades been a source of new developments for the quantum physics of
antiferromagnetic spin chains, the investigation into their possible ferromagnetic counterparts has remained
largely unchartered, especially in the fully quantum (as opposed to the semiclassical) regime. Here we present
such studies for monoaxial chiral ferromagnetic spin chains. We start by examining magnetization curves for
finite-sized systems, where a magnetic field is applied perpendicular to the helical axis. For half-odd integer S,
the curves feature discontinuous jumps identified as a series of level crossings, each accompanied by a shift of
the crystal momentum k by an amount of π . The corresponding curves for integer valued S are continuous and
exhibit crossover processes. For the latter case, k = 0 throughout. These characteristics are observed numerically
when the strength of the Dzyaloshinskii-Moriya interaction (DMI) D is comparable to or larger than that of
the ferromagnetic exchange interaction J . Solitons are known to be responsible for stepwise changes seen in
magnetization curves in the classical limit. These findings therefore prompt us to revise the notion of a soliton,
for arbitrary S, into a quantum mechanical entity. To unravel this phenomenon at the fully quantum level as is
appropriate to spin chains with small S, we examine in detail special limiting Hamiltonians amenable to rigorous
analysis, consisting of only the DMI and the Zeeman energy. Dubbed the DH model (for S = 1

2 ) and the projected
DH (pDH ) model (for general S), they have a set of 2S conserved quantities, each of which is the number of
solitons of a specific integer-valued height (as measured in the Sz basis), which ranges from 1 to 2S. We discuss
how to determine the exact crystal momentum of the lowest-energy state belonging to a sector with a given set
of the 2S soliton numbers. Combined with energetic considerations, this information enables us to reproduce the
spin parity effect in the magnetization curves. Finally, we show that the ground states of the special models have
substantial numerical overlap with those for generic systems with a finite exchange interaction, suggesting the
same physics to be valid there as well.

DOI: 10.1103/PhysRevB.107.024403

I. INTRODUCTION

It has long been known that an asymmetric exchange in-
teraction, the Dzyaloshinskii-Moriya interaction (DMI) [1,2],
is allowed for pairs of spins bridged with bonds lacking an
inversion center. Within a classical treatment of spins, this
interaction acts in such a way as to twist the relative orien-
tation of the adjacent spin moments. Owing to this feature,
a competition between symmetric exchange interactions and
DMI can induce topologically nontrivial configurations such
as skyrmions [3–8] and chiral solitons [9–15], which will
largely behave as stable, particlelike entities with a fixed chi-
rality. That these emergent particles are very much real was
demonstrated forcefully in the past decade through Lorentz
transmission spectroscopy experiments [7,13], after which an
extensive exploration into their thermodynamics and transport
properties ensued.
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There exist in the literature studies which highlight the
significance of the effect of the DMI on quantum spin systems,
e.g., in coupled spin chains modeling CsCuCl3 [16] and in
S = 1

2 antiferromagnetic spin chains modeling Cu-benzoate
[17,18]. It is also true though that the DMI’s role becomes
somewhat elusive once one opts for a fully quantum mechan-
ical treatment of the magnet, an essential requirement when
S, the spin quantum number, is small. This owes to the fact
that the notion of a classical spin vector breaks down in this
limit, implying that the intuitive understanding deriving from
a (semi)classical picture (valid for sufficiently large S) is no
longer at our disposal.

Some time ago, Braun and Loss performed their pioneer-
ing study on the quantum dynamics of solitons in effectively
one-dimensional nanomagnets in the absence of a DMI [19].
Although emerging out of a nonchiral magnet, chirality turns
out to play an essential role for solitons which are stabilized in
such systems by anisotropic interactions. Using semiclassical
methods while taking the crucial step of keeping track of spin
Berry phases, it was shown how the latter gives rise to spin
parity effects, the dependence of the system’s behavior on the
parity of twice the spin quantum number 2S: the Bloch bands
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formed by solitons exhibit different structures for integer and
half-odd integer S and, as a consequence, tunneling between
opposite chiralities can occur for the half-odd integer S case.
These authors went on to a provide a separate analysis [20]
for S = 1

2 quantum spin chain models (for both ferromagnets
and antiferromagnets) with the same symmetry, where within
Villain’s approximation [21] of projecting to a fixed soliton
number sector, they found results that are consistent with their
semiclassical treatment.

Turning to chiral magnets, a similar semiclassical inves-
tigation was undertaken by Takashima et al. [22] in their
work on skyrmion dynamics in two-dimensional (2D) chiral
ferromagnets, also pointing to a spin parity effect. The ma-
jor conclusion drawn was that the lowest-energy state in the
sector with Ns skyrmions acquires a crystal momentum of
k = (2πSNs,−2πSNs ), i.e., k resides at the zone edge when
SNs is half-integral, while being located at the zone center
when SNs is integer valued. It was further argued that the
same dichotomy manifests itself when one examines the phase
diagram of the system as a function of the applied magnetic
field.

Historically, spin parity effects related to topologically
nontrivial configurations in quantum spin systems came into
focus with the work of Haldane [23,24] on the spectral proper-
ties of antiferromagnetic spin chains. (It is worth mentioning
that relations to the crystal momentum of soliton states [23]
and hedgehog processes [24] were also briefly addressed in
the course of these studies.) The aforementioned body of work
suggests that they can arise in a wider range of systems, often
with intriguing implications.

With the sole exception of antiferromagnetic spin chains
which have been thoroughly scrutinized, it is still largely
unknown, though, what the full structure of the quantum
limit theory and its implications are for most of the problems
mentioned above. This work was motivated largely by the re-
cent advent of the physics of monoaxial chiral ferromagnetic
chains [14,15]. As their analysis to date had mainly been con-
ducted within the (semi)classical micromagnetic framework,
we view the undertaking of its study from a purely quantum
perspective an important and urgent task. This explains the
purpose of this work.

In the following sections we will be dealing with quan-
tum spin chain models of chiral ferromagnets for arbitrary
S. We begin by examining the numerically obtained magne-
tization curves for the cases S = 1

2 , 1, 3
2 , and 2. Previously

the magnetization curves of finite-sized monoaxial spin chains
were calculated in [25] in the classical case, where stepwise
changes appearing in the curves were ascribed to solitons. Our
numerical results for quantum spin chains show a new feature:
a prominent spin parity effect is at play, as detailed in later sec-
tions. With the semiclassical picture for solitons unavailable,
however, it is not immediately apparent why this should be so.
Nor is it obvious what exactly the notion of a soliton becomes
when treated as a quantum mechanical entity. We will show
that much insight into these problems is gained through the
exact study of a limiting case of our full Hamiltonian which
we dub the DH model, wherein only the DMI and the Zeeman
energy are retained. A variant which we will call the projected
DH (pDH) model will prove to be invaluable when we turn to
the S > 1

2 cases. These models allow for a clear and rigorous

understanding of how the observed spin parity effect can be
reproduced in terms of solitons that are well defined in the
quantum limit. While a situation in which the DMI far exceeds
the symmetric exchange interaction is admittedly artificial, we
will provide numerical evidence strongly suggesting that the
DH and pDH models nevertheless capture a generic feature
of chiral spin chains.

Perhaps the best way to recap the foregoing paragraph is
to view the DH and pDH models as parent Hamiltonians,
which generate canonical quantum-soliton states whose exact
properties can be utilized to understand the physics of a whole
family of generic quantum spin chains. Here we are able to
see a parallel structure with the Haldane gap phenomenon
in antiferromagnetic spin chains, where the exactly solvable
Affleck-Kennedy-Lieb-Tasaki (AKLT) model [26,27], act-
ing as the parent Hamiltonian of valence-bond-solid states,
played an instrumental role in our understanding of this im-
portant spin parity effect at the fully quantum level. In the
Appendix, we provide a semiclassical account of our problem.
While this approach is justified in a parameter regime which
is distinct from that of our quantum limit theory, notable
similarities in the arguments and outcomes can be detected.
This again is reminiscent of the situation for the antifer-
romagnetic counterpart, where the dual viewpoints deriving
from the semiclassical theory of Haldane taken together with
the AKLT picture, helped to establish a firmer understand-
ing of the subject. It is worth noting in particular that the
quantum picture owing to AKLT has since proved to be es-
sential in bringing this understanding to new heights, where
the AKLT state was shown to be a prototype of symmetry-
protected topological states [28], as well as a canonical
platform for performing a measurement-based quantum com-
putation [29]. We think that similar developments may
well be in store for chiral ferromagnets and their quantum
solitons.

We list below our main findings:
(i) In the DH model for S = 1

2 , the number of solitons (=
N ) is a good quantum number. A single soliton has a crystal
momentum π at its minimum energy state. The lowest-energy
state of the DH model within the sector of states containing
N solitons has the crystal momentum πN . The need to study
the general S case naturally led us to introduce a variant of the
DH model (pDH model), in which the numbers of solitons (=
Nf ) of height f = 1, 2, . . . , 2S are all good quantum numbers.
Each soliton of height f has the crystal momentum π f at its
minimum energy state, viz., the existence or absence of a π

shift in the crystal momentum depends on the parity of the
height of each soliton.

(ii) Numerical calculations imply that solely the solitons
with maximal height f = 2S contribute to the ground states in
the pDH model for general S. Such energetics, together with
the height parity effect, conspire to cause the spin parity effect
k = 2πSN2S in the ground state of the pDH model.

(iii) For S = 1 (S = 3
2 ), we find a 0.97 (0.91) overlap be-

tween the ground state of the DH model and pDH model
throughout the relevant range of the magnetic field.

(iv) For S = 1
2 (S = 1), we find that probability of states

with one soliton with height 1 (2) in the ground state for the
chiral magnet with J = D is 80% (58%) slightly below the
critical field.
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The remainder of the paper is organized as follows: In the
next section, we explain our model for the monoaxial chiral
magnet. Section III discusses numerical results on the mag-
netization process of finite-sized systems. They will be used
to set the issues to be addressed in later sections. Section IV
focuses on the study of S = 1

2 chiral magnets in the limit
J → 0. We turn to higher S cases in Sec. V. Sections VI
and VII are devoted, respectively, to the chirality of quantum
solitons and the influence of exchange interactions. Taking
stock of what we have learned, in Sec. VIII, we discuss
the implications of the results obtained, offering an intuitive
picture for them and pointing to future problems. We state
our conclusions in Sec. IX. The Appendix discusses how the
semiclassical approach applies to the 1D monoaxial chiral
magnet. To streamline our discussion, some of the more tech-
nical matter are relegated to the Supplemental Material [30],
where readers will find the proofs of various lemmas stated in
Secs. IV and V, and well as detailed calculations that verify
several of the results of these sections.

II. MODEL

In this paper we will be concerned with the ground states of
quantum spin chain models of monoaxial chiral ferromagnets.
Our Hamiltonian in its most complete form reads as

Ĥch =
∑

i

[ − JŜi · Ŝi+1 + D(Ŝi × Ŝi+1)y − HŜz
i + K

(
Ŝy

i

)2]
,

(1)

where the J , D, and H terms each stand for the exchange, the
Dzyaloshinskii-Moriya, and the Zeeman interactions, and the
K term is the single-ion anisotropy. The chiral axis (y axis) is
chosen to coincide with the extent of the spin chain, while the
magnetic field is applied perpendicular to it. We set J , H , D,
K to be non-negative. Much of the discussions to follow will
be devoted to the study of the limit J = K = 0 in Eq. (1). We
will refer to the corresponding Hamiltonian as the DH model:

ĤDH = ĤDM + ĤZ, (2)

in which

ĤDM = D
∑

j

(Ŝ j × Ŝ j+1)y, (3)

ĤZ = −H
∑

j

Ŝz
j . (4)

We choose the number of sites L to be even and impose
periodic boundary conditions throughout this paper. The wave
function of a finite-sized spin chain with L sites will be ex-
pressed in terms of the orthonormal basis |n1, n2, . . . , nL〉 =:
|n〉, where the entries ni = 0, 1, . . . , 2S (i = 1, . . . , L) are
defined through the relation Ŝz

i |n〉 = (S − ni )|n〉. (We caution
the reader that this is therefore not the usual Sz basis.) The
fully polarized state under a large magnetic field (commonly
referred to as the forced ferromagnetic state), for example,
is represented by the vector |00 . . . 00〉. Below, for the sake
of clarity, we will often exemplify general discussions on
basis vectors in terms of specific spin configurations. The
site-translation operator T̂ acts on this basis as T̂ |n〉 = |T (n)〉
where T (n) := (nL, n1, n2, . . . , nL−1). We denote multiple
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FIG. 1. Magnetization curves of finite-sized spin chains for
S = 1

2 , 1, 3
2 , and 2, where we set D/J = 1.

actions of T on n by T l (n) = T [T l−1(n)] for positive integer
l . Consider, as a specific example of a basis vector in this
representation, the state

|00121100012210〉. (5)

When acted on by T̂ , this transforms as

T̂ |00121100012210〉 = |00012110001221〉. (6)

A word on conventions for site indices: appearances of ni

for i /∈ [1, L] below are understood to mean ni′ for i′ ∈ [1, L]
such that |i − i′| ≡ 0 (mod L). For example, n0, n−1, and nL+1

should each read as nL, nL−1, and n1.

III. NUMERICAL RESULTS FOR FINITE-SIZED SYSTEMS

Figures 1 and 2 are numerical results for the magnetization
curve of finite-sized systems for various spin quantum num-
bers (S = 1

2 , 1, 3
2 , 2). They were obtained through the exact

diagonalization of Ĥch. For each S the curves are displayed
for the two cases D = J and D = 50J . As noted earlier the
magnetization curves of finite-sized classical monoaxial spin
chains were calculated in [25]. The magnetizations for S = 1

2
and 3

2 exhibit discontinuities as a function of the magnetic
field. As indicated in the figures, they correspond to level
crossings accompanied by a π shift of the crystal momentum.
The data for S = 1 and 2 show a strikingly different behavior.
They are continuous and exhibit one or several crossovers.
The crystal momentum of the ground state continues to be
zero throughout the entire curve.

Motivated by the observation that the features mentioned
above persist irrespective of the ratio D/J so long as D/J � 1,
we focus in the following two sections on the limiting case
with J = 0 and finite D [i.e., the DH model (2) and its natural
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FIG. 2. Magnetization curves of finite-sized spin chains for S =
1
2 , 1, 3

2 , and 2. Here we have set D/J = 50.

extension to arbitrary S, the projected DH (or pDH , for short)
model, which will appear in Eq. (34)]. Remarkably, it turns
out that with these models, the mechanism underlying the
different behaviors between half-odd integer S and integer
S becomes completely tractable. The effect of a finite J is
discussed in Sec. VII, following an exact analysis of the DH
and pDH models.

IV. S = 1
2 MODEL IN THE LIMIT J → 0 WITH FINITE D

A. Basis and conserved quantities

When a periodic boundary condition is imposed on the DH
model (2) for the case S = 1

2 , one can show that the eigenvalue
of the operator

N̂ =
L∑

i=1

(
1

4
− Ŝz

i Ŝz
i+1

)
(7)

is a conserved quantity. One also sees by experimenting with
specific examples that this operator counts one half the num-
ber of pairs of antiparallel spins occupying adjacent sites. For
example,

N̂ |0001111100〉 = |0001111100〉, (8)

N̂ |0011100110〉 = 2|0011100110〉. (9)

In this section we shall call consecutive entries of “1” in the
sea of “0”’s a soliton. (Extensions of this notion to higher S
cases will be the subject of later sections.) The action of N̂
on states can then be regarded as the counting of the soliton
number. We denote the set of n’s such that N̂ |n〉 = N |n〉
by VN .

To see that Eq. (7) is conserved as announced, we note
that the Zeeman energy and N̂ can both be expressed in
terms of {Ŝz

i } only. The two quantities therefore commute. The
commutativity between N̂ and the remaining DMI can also be
checked by direct calculation as we now show. To this end,
as well as for later discussions, it proves convenient to rewrite
the DMI in the following way:

ĤDM = −D
L∑

i=1

ĥi, (10)

where

ĥi = 1

2

(
Ŝz

i+1 − Ŝz
i−1

)
(Ŝ+

i + Ŝ−
i ), (11)

with Ŝ±
i = Ŝx

i ± iŜy
i . Once written in this form, it becomes

clear that acting on a state |n〉 with ĥi will result in a null
vector unless ni+1 �= ni−1. Situations where this nonvanishing
condition is met are exhausted by the following four cases:

2ĥi| . . . 0
i
01 . . . 〉 = −| . . . 0

i
11 . . . 〉, (12a)

2ĥi| . . . 0
i
11 . . . 〉 = −| . . . 0

i
01 . . . 〉, (12b)

2ĥi| . . . 1
i
00 . . . 〉 = +| . . . 1

i
10 . . . 〉, (12c)

2ĥi| . . . 1
i
10 . . . 〉 = +| . . . 1

i
00 . . . 〉. (12d)

A close inspection of Eqs. (12a)–(12d) reveals that ĥi

generates a nonzero state vector when site i is located at
the boundary between a soliton “1111” and the background
“0000,” in which case the new state has a boundary that has
been shifted by one site to the left [(12a), (12d)] or to the right
[(12b), (12c)]. In all four cases the length of the soliton has
changed while the number of solitons is preserved. The sum
of ĥi [Eq. (10)] therefore commutes with N̂ under a periodic
boundary condition.

B. Finite-size calculation of magnetization and spectrum

The left panel of Fig. 3 depicts the magnetization curve
of finite-sized systems of the spin S = 1

2 DH model. Notice
that, for this model, the ground state is characterized by both
the soliton number N and the crystal momentum, as is made
explicit in this figure. It is seen that the soliton number N
decreases (increases) in a stepwise manner with increasing
(decreasing) magnetic field. The dotted line indicates the
magnetic field at which the single-soliton state N = 1 is the
ground state. The low-energy sector of the energy spectrum
at this value of the magnetic field is shown in the right panel
of Fig. 3. The red dots represent the energy eigenstates with
N = 1, where we see two bands of single-soliton states. Both
bands have their minimum energy at the crystal momentum
k = π . The blue dots form two continua and one isolated
branch. The continua correspond to the scattering states of
two soliton excitations. We attribute the isolated branch to the
two soliton bound states formed by the repulsive interaction
between the solitons. These figures clearly show that the crys-
tal momentum k of the lowest-energy state for the sector with
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FIG. 3. (Left) The magnetization curve of a finite-sized spin
chain for the S = 1

2 DH model with L = 16. In addition to the crystal
momentum k, the eigenvalue N of the ground state is shown. The
dotted line shows the position on the magnetic field axis at which
the N = 1 state (indicated by the red arrow) is the ground state.
(Right) The energy spectrum, i.e., the set of eigenenergy and the
crystal momentum of the system with L = 40. The magnetic field is
fixed at the value H = 0.831|D|, where the N = 1 state is the ground
state. The ground state is indicated by the red arrow. The red and blue
points are the eigenstates for which N = 1 and 2, respectively. The
open green circle is an N = 0 eigenstate.

the soliton number N is given by k = πN . We will provide a
proof of this generic property in the next subsection.

C. Exact results

Theorem 1. Consider those eigenstates of the S = 1
2 DH

model (2) for which the eigenvalue of N̂ is N . The crystal
momentum of the lowest-energy eigenstate is then k = πN .

Definition: Signed basis. We generate a new set of basis
states by multiplying each element |n〉 of the original basis by
the factor (−1)δ(n), where

δ(n) =
L∑

j=1

j(n j+1 − n j + |n j+1 − n j |)/2. (13)

This defines our signed basis. We also define the sign of n by
(−1)δ(n). For instance, the signed basis states corresponding
to Eqs. (8) and (9) are

(−1)3|00
↓
01111100〉, (14)

(−1)2+7|0
↓
01110

↓
0110〉, (15)

as depicted in Fig. 4. We see that δ(n) coincides with the sum
of the site indices of the rightmost entry of “0” (indicated by
arrows) within each segment of the background, i.e., consec-
utive appearances of 0. In the following we will be using the
terminology the site index of a “01” boundary. By this we refer
to the site index of the “0” immediately to the left of a soliton.
Examples of such sites are indicated by arrows in Eqs. (14),
(15), and Fig. 4. As a direct consequence of the definition of
δ(n) given in Eq. (13),

(−1)δ(n) = (−1)δ(T (n))(−1)N . (16)

(− 1)3
0

(− 1)2 + 7

0 0 1 1 1 0 0

0 0 1 0 1 0

1 2 3 4 5 6 7 8 9 10

1 5 8 9 102 4 6 7

1 1

11 1 0

3

FIG. 4. Schematic illustration of the sign (−1)δ(n) for S = 1
2 . The

symbol δ(n) was defined by Eq. (13).

Lemma 1 (Off-diagonal matrix element). The off-diagonal
matrix elements of ĤDH [Eq. (2)] in the signed basis
(−1)δ(n)|n〉 for n ∈ VN are nonpositive.

Proof of Lemma 1. Since the Zeeman interaction is di-
agonal in the signed basis, it suffices to show that in this
basis all off-diagonal elements of ĤDM, defined by Eq. (10),
are nonpositive. The actions of the local Hamiltonian ĥi

[Eqs. (12a)–(12d)] can be summarized as

2ĥi|n〉 = (ni−1 − ni+1)|n̄(i)〉, (17)

where n̄(i) = (n̄(i)
1 n̄(i)

2 . . . n̄(i)
L ) and

n̄(i)
j =

{
n j, j �= i
1 − ni, j = i.

(18)

In Eqs. (12a) and (12b), where ni−1 − ni+1 = −1, the site
indices of the “01” boundary differ by one between n and n̄(i)

and hence δ(n) = δ(n̄(i) ) ± 1. Acting on a signed basis then
results in

2ĥi(−1)δ(n)|n〉 = |ni−1 − ni+1|(−1)δ(n̄(i) )|n̄(i)〉. (19)

Notice that the negative matrix elements of Eqs. (12a) and
(12b) have now acquired a positive sign upon switching to the
signed basis. This can be understood as having come from
the opposite signs that n and n̄ possess. The relation (19)
applies as well to Eqs. (12c) and (12d) since in this case
|ni−1 − ni+1| = ni−1 − ni+1 = 1 and the action of ĥi does not
move the site indices of the “01” boundary, resulting in δ(n) =
δ(n̄). It then follows that the off-diagonal matrix elements of
ĤDM [Eq. (10)] and thus those of ĤDH are nonpositive in the
signed basis. �

We consider the states that belong to Ker(ĤDM), i.e., the
eigenspace of ĤDM for zero energy, and other states sep-
arately. The basis states for which |n〉 ∈ Ker(ĤDM) satisfy
ni = ni+2 for all i ∈ [1, L], which we can confirm by in-
spection of the action of the DMI on the basis states as
discussed in Lemma 1. Those |n〉 satisfying this condition
belong to one of either spaces: V0 = {000 . . . 000, 111 . . . 111}
(the states with N = 0) or VL/2 = {101 . . . 010, 010 . . . 101}
(the states with N = L/2). Note that these are eigenstates of
ĤDH with eigenenergy −H

∑L
j=1(S − n j ). Among these, the

state |00 . . . 00〉 has the lowest energy and is a simultaneous
eigenstate of T̂ and N̂ with the eigenvalues k = 0 and N = 0.
Meanwhile, the states |n〉 /∈ Ker(ĤDM) are the eigenstates of
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(− 1)1 |011000

2ĥ4

(− 1)1 |011100

2ĥ2

(− 1)2 |001100

FIG. 5. Schematic illustration of a one-site translation of a sin-
gle soliton. The underlined three sites indicate those allowing the
outcome of the action of the local Hamiltonian ĥi on the state to be
nonzero.

N̂ with the eigenvalue N ∈ [1, L/2 − 1]. For those states, the
following lemma holds.

Lemma 2 (Irreducibility). For arbitrary pairs of n and n′
belonging to VN with N ∈ [1, L/2 − 1], there exists a positive
integer l such that

(−1)δ(n)+δ(n′ )〈n|(−ĤDH )l |n′〉 > 0. (20)

Although we defer the proof of Lemma 2 to the Supplemental
Material [30], this statement should be intuitively acceptable
when one realizes that Eq. (20) holds if multiple actions
ĥi′ ĥi′′ ĥi′′′ . . . of the local Hamiltonians on state (−1)δ(n)|n〉 can
translate, shorten, and stretch the solitons in the state. Those
operations consist of the one-site shift of the “01” boundary
and “10” boundary, which can be performed by the local
Hamiltonian ĥi as shown in Eqs. (12a)–(12d). Figure 5 shows
an example of translation of a single soliton by the multiple
action of the local Hamiltonians

4ĥ2ĥ4(−1)1|011000〉 = (−1)2|001100〉 + other terms. (21)

The first (the second) step in Fig. 5 demonstrates a process
where the soliton is stretched (shortened). See the Supplemen-
tal Material [30] for a proof.

Proof of Theorem 1. When N ∈ [1, L/2 − 1], it follows
from Lemmas 1 and 2 and the Perron-Frobenius theorem
[31] that (1) the lowest-energy eigenstate of ĤDH within each
eigenspace of N̂ is nondegenerate, and (2) the state vector
|Emin,N 〉 of the lowest-energy state is spanned by the signed
basis, where all coefficients are positive, i.e.,

|Emin,N 〉 =
∑
n∈VN

a(n)(−1)δ(n)|n〉, (22)

with a(n) > 0. Note that the sum over n encompasses all N
soliton basis states. For N = 1, e.g., we can write |Emin,1〉 in
the form

|Emin,1〉 = a1(−1)1|010000〉 + a2(−1)2|001000〉 + · · ·
+ b1(−1)1|011000〉 + b2(−1)2|001100〉 + · · ·
+ · · · (23)

with ai, bi . . . > 0. Owing to the nondegeneracy of |Emin,N 〉, it
is an eigenstate of the site-translation operator T̂ and thus

|a(n)| = |a(T (n))|, (24)

which leads to a(n) = a(T (n)) because of the condition
a(∀n ∈ VN ) > 0. We can thus rewrite Eq. (22) as

|Emin,N 〉 = a(n)((−1)δ(n)|n〉 + (−1)δ(T (n))|T (n)〉 + · · · )

+ · · ·
= a(n)(−1)δ(n)(|n〉 + (−1)N |T (n)〉 + · · · )

+ · · · . (25)

From the the final expression of the above equation, we see
that

T̂ |Emin,N 〉 = (−1)N |Emin,N 〉 (26)

for N ∈ [1, L/2 − 1]. We have already shown that this relation
holds for N = 0 and the states with N = L/2 cannot be the
ground state. This concludes our proof. �

V. HIGHER S MODEL IN THE LIMIT J → 0
WITH FINITE D

A. Soliton numbers with various heights
and the projected DH model

For S > 1
2 , i.e., when S = 1, 3

2 , 2 . . . , the DH model has no
conserved quantity. However, we have found through finite-
sized diagonalization studies that slightly below the critical
field, a large weight within the ground-state wave function is
dominated by those basis states which can be interpreted as
higher spin versions of single solitons. As an example, we
display in Eq. (27) a partial list of such dominant states for
the case of S = 1:

|00200000〉,
|00120000〉,
|00210000〉,
|00122000〉,
|02210000〉,
|00211000〉,

... . (27)

To fully characterize the wider variety of spatial structures that
a soliton can exhibit in the higher S cases, we incorporate a
set of 2S operators N̂1, . . . , N̂2S which count the number of
solitons of various heights,

N̂2S =
L∑

i=1

∑
a< f

P̂(S−a)
i−1 P̂(S− f )

i , f = 2S (28)

and

N̂ f =
L∑

i=1

⎛
⎝∑

a< f

P̂(S−a)
i−1 −

∑
b> f

P̂(S−b)
i+1

⎞
⎠P̂(S− f )

i , 1 � f < 2S.

(29)

In the above we made use of the projection operator

P̂(S−m)
i =

∏
m′∈[0,1,...,2S]/{m}

(
Ŝz

i − S + m′)/(m′ − m), (30)
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where it is understood that the product over m′ values excludes
the case m′ = m. When acted on a basis vector, this operator
yields

P̂(S−m)
i |n1n2 . . . nL〉 = δni,m|n1n2 . . . nL〉. (31)

To familiarize ourselves with how the operators appearing in
Eqs. (28) and (29) work, it is useful to look into examples
of simultaneous eigenstates of multiple N̂ f ’s. We denote the
eigenvalue of N̂ f by Nf , and begin with the case S = 1. The
states shown in Eq. (27) are those for which (N1, N2) = (0, 1).
Following we provide examples of states with a different set
of (N1, N2) values

|00000000〉, (N1, N2) = (0, 0), (32a)

|11111111〉, (N1, N2) = (0, 0), (32b)

|22222222〉, (N1, N2) = (0, 0), (32c)

|00100000〉, (N1, N2) = (1, 0), (32d)

|00111111〉, (N1, N2) = (1, 0), (32e)

|00100211〉, (N1, N2) = (1, 1), (32f)

|00100110〉, (N1, N2) = (2, 0), (32g)

|01200210〉, (N1, N2) = (0, 2), (32h)

|11121111〉, (N1, N2) = (−1, 1), (32i)

|11212211〉, (N1, N2) = (−2, 2). (32j)

The states taken up in Eqs. (32a)–(32c) contain no solitons.
Inspection of Eqs. (27) and Eqs. (32d)–(32h) reveals that for
these cases, N1 (N2) represents the number of segments con-
sisting of consecutive 1’s (2’s) and forming a local maximum.
Finally, Eqs. (32i) and (32j) show that negative N1 represents
the number of segments made up of consecutive 1’s which
form a local minimum.

We next turn to examples of states for S = 3
2 :

|00100000〉, (N1, N2, N3) = (1, 0, 0), (33a)

|01211000〉, (N1, N2, N3) = (0, 1, 0), (33b)

|01123100〉, (N1, N2, N3) = (0, 0, 1), (33c)

|01310230〉, (N1, N2, N3) = (0, 0, 2), (33d)

|11131111〉, (N1, N2, N3) = (−1, 0, 1), (33e)

|22232222〉, (N1, N2, N3) = (0,−1, 1). (33f)

Equations (33a) and (33b) serve to illustrate that
(N1, N2, 0) for S = 3

2 coincides with the state with (N1, N2)
for S = 1. Meanwhile from Eqs. (33c) and (33d) we see that
for examples like these, N3 gives the number of segments
made up of consecutive 3’s, forming a local maximum. Equa-
tions (33e) and (33f) tell us that a negative N1 (N2) counts
the number of segments consisting of consecutive 1’s (2’s),
each forming a local minimum. Based on these observations,
we regard a positive Nf as indicating the number of solitons of

H / |D|
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 (N�,N�)=(0,2)

L=8
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L=12

H / |D|

FIG. 6. Left panel: Magnetization curves for the two S = 1 mod-
els ĤDH and Ĥp. The system size is set at L = 8. The crystal
momentum in the ground state is always zero for both models. The
number of solitons Nf of heights f = 1, 2 present in the ground state
|gp〉 for Ĥp is also shown. Right panel: Overlap |〈gp|gDH 〉| between
the ground states |gp〉, |gDH 〉 for the two models for the system sizes
L = 8, 10, 12. The magnetic field lies in the range H/D = 1.32–1.44,
where single-soliton states of maximal height (=2) dominate the
ground state of ĤDH . The inset of the right panel is a blowup of the
vertical axis.

height (amplitude) f , and negative Nf the number of valleys of
depth f .

To make further progress, we shall assume that the es-
sential properties of the ground state, such as its crystal
momentum, remain intact even if we truncate the matrix el-
ements in the Hamiltonian ĤDH connecting sectors belonging
to different eigenvalue sets N1, . . . , N2S . Before going further
we will first provide a numerical check on the plausibility of
this working assumption.

Let P̂({Nf }) then be the projection operator into the
eigenspace with N1, . . . , N2S . We introduce the truncated
Hamiltonian

Ĥp =
∑

N1,...,N2S

P̂({Nf })ĤDH P̂({Nf }), (34)

which we shall call the projected DH (pDH) model. Figures 6
and 7 are numerical results for finite-sized systems for the
cases S = 1, 3

2 , and demonstrate that the series of states con-
taining solitons of maximal height, which can be categorized
as (N1, N2) = (0, Ns ) and (N1, N2, N3) = (0, 0, Ns ) with Ns =
0, 1, 2, . . . dominate over other states in the magnetization
process in the DH model. This explains why the basic features
of the magnetization curves for ĤDH are similar to those for
Ĥp. We have confirmed that the overlaps between the ground
states for ĤDH and Ĥp slightly below their respective critical
fields are larger than 97% for S = 1, and larger than 91% for
S = 3

2 .
Having thus seen that it is reasonable for our purpose to

work with Ĥp, we turn to its spectral properties that can be
established in a rigorous manner.

B. Exact results

Theorem 2 (Height parity effect). The lowest-energy eigen-
state of the pDH Hamiltonian Ĥp [Eq. (34)], within the
sector where the eigenvalues of the operators N̂1, N̂2, . . . , N̂2S
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S=3/2
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FIG. 7. Left panel: Magnetization curves for S = 3
2 ĤDH and

Ĥp for finite-sized systems with L = 8. The crystal momentum in
the ground state changes by ±π accompanying the discontinuous
changes in the magnetization. The number of solitons Nf of heights
f = 1, 2 present in the ground state |gp〉 for Ĥp is also shown. Right
panel: Overlap |〈gp|gDH 〉| between the ground states |gp〉, |gDH 〉 for
the two models for S = 1 with L = 8, 10, 12 for the magnetic field in
the range of H/D = 1.86–2.00, where the single-soliton states with
maximum height (=3 for S = 3

2 ) dominate the ground state of ĤDH .
The inset of the right panel is a blowup of the vertical axis.

are N1, N2, . . . , N2S , respectively, has the crystal momentum
k = π

∑2S
f =1 f Nf .

As a consequence of this theorem, we find the following.
Corollary 1 (Spin parity effect). The lowest-energy

eigenstate of the pDH Hamiltonian Ĥp, within the sector
where the eigenvalues of the operators N̂1, N̂2, . . . , N̂2S are
0, 0, . . . , N2S , respectively, has the crystal momentum k =
2πSN2S .

This corollary, encompassing Theorem 1 which is specific
to S = 1

2 , and its higher S generalizations, will later be seen
to be of direct relevance in understanding the magnetization
behavior of the models discussed in this paper. As with Theo-
rem 1, a crucial part of proving Theorem 2 consists in finding a
signed basis such that the off-diagonal matrix element of Ĥp is
nonpositive. For that purpose we introduce a unitary operator

Û := exp

⎡
⎣iπ

L∑
j=1

2S∑
f =1

2S− f∑
a=0

j f P̂(S−a)
j P̂(S−a− f )

j+1

⎤
⎦. (35)

We observe that the projection operator P̂(S−m)
j as defined

in Eq. (30), and therefore the unitary operator Û , can be
expressed solely in terms of {Ŝz

i }.
Thus, the basis vectors |n〉 are eigenvectors of Û , where

it is clear from the definition (35) that the corresponding
eigenvalues are sign factors dependent on n. One can verify
that this dependence can be written explicitly in the following
form:

Û |n〉 = (−1)δ(n)|n〉, (36)

where δ(n) was defined back in Eq. (13) when dealing with
the S = 1

2 case. We note that the integer ni which appears
in Eq. (13) now takes the values {0, 1, 2, . . . , 2S}. Figure 8
shows examples of δ(n) for higher S.

We also introduce the notation V ({Nf }) as the set of n
such that |n〉 is a simultaneous eigenvector of N̂1, . . . , N̂2S

with eigenvalue N1, . . . , N2S . We also denote by Vμ({Nf }) the

FIG. 8. Schematic illustration of the sign (−1)δ(n) for S = 1 (up-
per panel) and S = 3

2 (lower panel). The symbol δ(n) was defined by
Eq. (13).

subset of V ({Nf }) in which the Hamiltonian Ĥp is irreducible.
The index μ runs from 1 to �({Vμ{Nf }}μ), which is the number
of irreducible subspaces in V ({Nf }). We denote the dimension
of Vμ({Nf }) by d (Vμ({Nf })).

The proof of Theorem 2 relies on the following four lem-
mas.

Lemma 3 (Sign of translated basis states).

(−1)δ(n) = (−1)δ(T (n))(−1)
∑2S

f =1 f Nf , (37)

which is a generalization of Eq. (16) to higher S.
The proof of Lemma 3 will be given after Lemma 6 is

stated.
Lemma 4 (Off-diagonal matrix element). In the signed

basis, the off-diagonal matrix elements are nonpositive, i.e.,

(−1)δ(n′ )+δ(n)〈n′|Ĥp|n〉 � 0, (38)

which is a generalization of Lemma 1 to higher S.
The proof of Lemma 4 will be given after Lemma 6 is

stated.
Lemma 5 [Kernel of Ĥp(H = 0)]. Let us denote by Ĥp0

the Hamiltonian Ĥp(H = 0). Among the states in Ker(Ĥp0),
the state |00 . . . 00〉 has the lowest energy and is a simultane-
ous eigenstate of T̂ and N̂ with k = 0 and N1 = N2 = · · · =
N2S = 0.

The proof of Lemma 5 will be given after Lemma 6 is
stated.

Lemma 6 (Irreducibility). When |n〉 ∈ Vμ({Nf }) with
d (Vμ({Nf })) > 1, |T (n)〉 ∈ Vμ({Nf }), i.e., there is a positive
integer l such that

〈n|(Ĥp)l |T (n)〉 �= 0. (39)

We defer the proof of Lemma 6 to the Supplemental
Material [30].

Proof of Lemma 3. We begin by observing that the site-
translation operator T̂ commutes with N̂ f for f = 1, . . . , 2S
under the periodic boundary condition ŜL+1 = Ŝ1, because
the site translation does not change the numbers and heights
(depths) of solitons (valleys). A straightforward calculation
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shows that T̂ is transformed via a unitary operator as

Û T̂ = exp

⎛
⎝iπ

2S∑
f =1

f N̂ f

⎞
⎠T̂ Û . (40)

The derivation of Eq. (40) is deferred to the Supplemental
Material [30]. Using the definition of |T (n)〉 and taking into
account the sign in Eq. (37), we see that

Û T̂ |n〉 = (−1)δ(T (n))|T (n)〉 (41)

can be rewritten as

Û T̂ |n〉 = exp

⎛
⎝iπ

2S∑
f =1

f N̂ f

⎞
⎠T̂ Û |n〉︸︷︷︸

(−1)δ(n)|n〉

= (−1)δ(n) exp

⎛
⎝iπ

2S∑
f =1

f N̂ f

⎞
⎠T̂ |n〉

= (−1)δ(n)T̂ exp

⎛
⎝iπ

2S∑
f =1

f N̂ f

⎞
⎠|n〉

= (−1)δ(n)+∑2S
f =1 f Nf T̂ |n〉

= (−1)δ(n)+∑2S
f =1 f Nf |T (n)〉. (42)

Equating the right-hand side of Eq. (41) with the expression
given in the last line of Eq. (42), we arrive at Eq. (37). �

Proof of Lemma 4. Let us start by recasting the Hamiltonian
of Eq. (34) into a form more suitable for the present discus-
sion. Consider restricting the local Hamiltonian to the Hilbert
space spanned by |n〉 satisfying

min(ni−1, ni+1) � ni � max(ni−1, ni+1). (43)

The numbers {N̂ f }2S
f =1 are then conserved. In contrast,

ĥi changes the height of a soliton with a peak at i if
max(ni−1, ni+1) < ni. Likewise, when ni < min(ni−1, ni+1),
ĥi changes the depth of its valley whose lowest point resides at
site i. Introduce a projection operator onto the space satisfying
(43) as

P̂i =
2S∑

a=0

2S∑
b=0

P̂(S−a)
i−1 P̂(S−b)

i+1

⎛
⎝ max(a,b)∑

k=min(a,b)

P̂(S−k)
i

⎞
⎠. (44)

In terms of P̂i, Ĥp can be rewritten as

Ĥp = −H
L∑

i=1

Ŝz
i − D

2

L∑
i=1

P̂iĥiP̂i, (45)

where ĥi was defined by Eq. (11). The summand in the second
term in the right-hand side is further rewritten as

P̂iĥiP̂i = 2
2S∑

a=0

2S∑
b=0

(a − b)Ŝx
i (a, b)P̂(S−a)

i−1 P̂(S−b)
i+1 , (46)

with

Ŝx
i (a, b) :=

⎛
⎝ max(a,b)∑

k=min(a,b)

P̂(S−k)
i

⎞
⎠Ŝx

i

⎛
⎝ max(a,b)∑

k′=min(a,b)

P̂(S−k′ )
i

⎞
⎠. (47)

Under the unitary transformation

Ĥ′
p := ÛĤpÛ

†, (48)

our Hamiltonian Ĥp becomes

Ĥ′
p = −H

L∑
i=1

Ŝz
i − D

L∑
i=1

ĥ′
i, (49)

where

ĥ′
i =

2S∑
a=0

2S∑
b=0

(a − b)Û Ŝx
i (a, b)P̂(S−a)

i−1 P̂(S−b)
i+1 Û † (50)

=
2S∑

a=0

2S∑
b=0

|a − b|Ŝx
i (a, b)P̂(S−a)

i−1 P̂(S−b)
i+1 . (51)

Details on how the first line of the above equation, Eq. (50),
leads to the second, Eq. (51), is provided in the Supplemental
Material [30]. Noting that Ŝx

i (a, b) is the product of projection
operators and Ŝx

i leads to

〈n′|Ĥ′
p|n〉 � 0, for n �= n′. (52)

Using this relation, we find that

(−1)δ(n′ )+δ(n)〈n′|Ĥp|n〉 = 〈n′|ÛĤpÛ
†|n〉

= 〈n′|Ĥ′
p|n〉 � 0. (53)

�
Proof of Lemma 5. The set of the states |n〉 ∈ Vμ({Nf })

with d (Vμ({Nf })) = 1 forms the basis of Ker(Ĥp0). Each basis
vector |n〉 is an eigenstate of the Zeeman energy. The fully
polarized state |00 . . . 00〉 has the lowest Zeeman energy and
thus is the lowest-energy state in Ker(Ĥp0). �

Proof of Theorem 2. This proof is similar to that for The-
orem 1, and proceeds by replacing (−1)N by (−1)

∑2S
f =1 f Nf in

Eqs. (16), (25), and (26).
Proof. When the ground state is given by |00 . . . 00〉, The-

orem 2 holds (Lemma 5). According to Lemma 5, other |n〉s
belonging to Vμ({Nf }) with d (Vμ({Nf })) = 1 cannot be the
ground state. We thus focus on the case where the ground
state is spanned by |n〉 with n belonging to Vμ({Nf }) for which
d (Vμ({Nf })) > 1.

When Nf �= 0 for a certain f , it follows from Lemmas 4
and 6 and the Perron-Frobenius theorem [31] that the lowest-
energy eigenstate of Ĥp for each eigenspace consisting of n ∈
Vμ({Nf }) is nondegenerate and the state vector |Emin,{Nf },μ〉 is
spanned by the signed basis where all coefficients are positive,
i.e.,

|Emin,{Nf },μ〉 =
∑

n∈Vμ({Nf })

a(n)(−1)δ(n)|n〉, (54)

with a(n) > 0. From the nondegeneracy of |Emin,N 〉, it is an
eigenstate of the site-translation operator T̂ and thus

|a(n)| = |a(T (n))|, (55)
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which leads to a(n) = a(T (n)) because a(∀n ∈ VN ) > 0. We
can thus rewrite Eq. (54) as

|Emin,{Nf },μ〉
= a(n)((−1)δ(n)|n〉 + (−1)δ(T (n))|T (n)〉 + · · · )

+ · · · (56)

= a(n)(−1)δ(n)(|n〉 + (−1)
∑2S

f =1 f Nf |T (n)〉 + · · · )

+ · · · . (57)

This implies that

T̂ |Emin,{Nf },μ〉 = (−1)
∑2S

f =1 f Nf |Emin,{Nf },μ〉. (58)

�

VI. CHIRALITY OF QUANTUM SOLITONS

Up to now we have not explicitly addressed the role that
chirality plays in our problem. Let us define the chirality of a
state by

ch =
〈∑

j

(Ŝ j × Ŝ j+1)y

〉
= 1

D
〈ĤDM〉 (59)

in analogy with [32]. We can then readily show

ch < 0, when D > 0 (60a)

ch > 0, when D < 0 (60b)

to be true in the lowest-energy state in any given irreducible
space Vμ({Nf }) with dμ({Nf }) �= 1. To establish Eq. (60a), we
observe that

ch = 1

D
〈Emin,{Nf },μ|ĤDM|Emin,{Nf },μ〉

= 1

D

∑
n,n′∈Vμ({Nf })

〈n|ĤDM|n′〉(−1)δ(n)+δ(n′ )︸ ︷︷ ︸
<0

a(n)a(n′)︸ ︷︷ ︸
>0

< 0, (61)

with the use of Eq. (22) and Theorem 2. Equation (60b) can
likewise be verified. In the previous sections, we have always
assumed that D > 0. Taking the choice D < 0 requires us to
replace δ(n) with

δ(−)(n) =
∑
j=1

j(nL− j − nL+1− j + |nL− j − nL+1− j |)/2 (62)

and Eq. (22) with

|Emin,N 〉 =
∑
n∈VN

a(n)(−1)δ
(−) (n)|n〉. (63)

Equation (62) is obtained by replacing n j with nL+1− j in
Eq. (13). Examples of the signed basis for D < 0 are shown
in Fig. 9.

VII. EFFECT OF EXCHANGE INTERACTIONS

Among the exchange interactions in Ĥch, the presence of
the Ising term −J

∑
i Ŝz

i Ŝz
i+1 is immaterial to our argument in

(−1)2
0

(−1)5+ 1

0 0 1 1 1 0 0

0 0 1 0 1 0

10 9 8 7 6 5 4 3 2 1

10 6 3 2 19 7 45

1 1

11 1 0

8

(− 1)6+ 3 + 2
0

(− 1)�*2+ 5* 1+ 1* 2

0 0 1 0 0 2 1 0 0

0 0 0 3 1 0 0 1 2 0
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10 9 6 3 2 18 7 5 4

5

FIG. 9. Examples of signed basis for negative D. The upper two
panels represent basis states for S = 1

2 corresponding to those shown

in Fig. 4. The sign (−1)δ
(−) (n) uses δ(−)(n) defined in Eq. (63).

The lower two panels represent basis states for S = 1 and 3
2 , which

correspond to the figures shown in Fig. 8. The numbers underneath
the figures represent L − j where j is the site index.

the previous section in the sense that it commutes with N̂ and
it is diagonal in the basis {|n〉}. The XY term −J

∑
i(Ŝ

x
i Ŝx

i+1 +
Ŝy

i Ŝy
i+1) = ĤXY, in contrast, does not conserve N̂ , e.g.,

ĤXY|011100〉 = −J

2
(|101100〉 + |011010〉), (64)

for S = 1
2 . Equation (64) represents the matrix elements be-

tween N = 1 and 2. The ground state of Ĥch is thus given
by a linear combination of states with different numbers of
solitons.

We examine numerically to what extent the single-soliton
basis (the set of eigenstates of N̂ with N = 1) accounts for the
ground-state wave function of Ĥch. We set J = D. Slightly
below the critical field, and for site numbers up to L = 20
for S = 1

2 (L = 16 for S = 1), we find that 80% (58%) of
the weight of the exact ground state |g〉 of Ĥch is made up
of states belonging to the single-soliton basis. Details of this
examination are shown in Fig. 10, where for the S = 1

2 case,
the weight of the one-soliton state within the ground state of
Ĥch, i.e., 〈g|P̂(N1 = 1)|g〉 is displayed as a function of 1/L
in the left panel. Likewise, for S = 1 (right panel), we have
evaluated the corresponding weight 〈g|P̂(N1 = 0, N2 = 1)|g〉.
We take these results to be a strong indication that the physical
picture derived rigorously in the J = 0 limit continues to be
valid qualitatively even when J is comparable to D.
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(N

�=
1)

S=1/2 S=1

(N
�=

0,
 N

�=
1)J=D J=D

FIG. 10. Size dependence of the weight of the one-soliton states
in the ground state of Ĥch for J = D and S = 1

2 (left panel) and S = 1
(right panel). The magnetic field is set at H/D = 0.29 (H/D = 0.5)
for S = 1

2 (S = 1). The insets of both panels magnify the vertical
axis.

VIII. DISCUSSIONS

In the preceding, we established that in the pDH models
for arbitrary S, a soliton whose height is f has a crystal
momentum of π f in its lowest-energy state. More generally,
we verified in a rigorous manner that the lowest-energy state
belonging to the sector (N1, . . . , N2S ), where Nf (1 � f � 2S)
is the number of solitons of amplitude f present in this state,
has the crystal momentum k = π

∑
f f Nf . We have termed

our finding the height parity effect. To demonstrate the power
of this result, we note that it immediately rules out a spin
parity effect for a spin wave, which is identified with a soliton
of height f = 1 and length 1: the crystal momentum of this
state is k = π irrespective of the value of S.

Numerical calculations show that only solitons with the
maximal height f = 2S contribute to the ground state of the
pDH model. This implies that the height parity effect for the
ground state of this model is k = 2πSN2S , which is precisely
the observed spin parity effect.

The magnetization processes of the pDH models for each
S consist of successive level crossings from a N2S-soliton
state to a (N2S − 1)-soliton state. For half-integer S, each level
crossing is protected by the soliton number (which changes by
�N2S = −1) and the crystal momentum (which changes by
�k = π ) while it is protected only by the soliton number for
integer S. Switching on the exchange interaction, the soliton
numbers are no longer conserved quantities and thus the level
crossing for integer S turns into a crossover, while it remains
protected by a π shift in the momentum for half-integer S up
to a certain magnitude of exchange interaction J . Although
this threshold value of J is unknown, our numerical results for
magnetization curves and the relative weight of one-soliton
state in the ground state for S = 1

2 and 1 implies that the spin
parity effect in monoaxial chiral magnets with J/D � 1 is well
captured by the properties of quantum solitons developed in
this study.

We should caution the reader, though, that determining
whether a spin parity effect is present as well in monoaxial
chiral magnets with a small S and J � D, as is typical in
existing magnets, will require further investigations. If such
an effect is indeed verified in systems belonging to the “solid-
state” limit J � D, it is premature with the information at
hand to claim that its underlying mechanism, along with the

proper characterization and definition of a quantum soliton,
is the same as those described in this paper, which are valid
under the condition J � D.

That said, it is nevertheless interesting to compare notes
with the semiclassical approach, which is considered to work
at large S and in the wide-soliton regime J > D. This method
is described in some detail in the Appendix. The salient points
are (1) the recovery of the spin parity effect k = 2πS, and (2)
a gauge structure inherent to the effective action which can be
viewed as roughly corresponding to the signed basis argument
of the main text. While these analogies certainly appear to
point to universal aspects which arise for deeper topological
reasons that hold irrespective of the specific regime of interest,
a firmer understanding on this point remains to be established.

Experimental realizations of the limit D � J in non-solid-
state settings is another direction worth pursuing. In particular,
the S = 1

2 DH model, if realized, will serve as an ideal plat-
form for studying the quantum dynamics of solitons. On this
front we mention that a proposal has recently been made
to realize a system equivalent to this model using Rydberg
atoms [33].

Among other apparently significant issues that remain is
a thorough investigation into possible spin parity effects for
general S from a purely quantum approach for the following
systems: antiferromagnetic chiral magnets in 1D [34] and 2D,
2D chiral ferromagnets accommodating skyrmions [22,35],
and nonchiral magnets with stable solitons arising from an
Ising anisotropy [19]. We hope that this work will inspire
activities in this direction that will go a long way toward
painting a coherent picture for spin parity effects in quantum
magnets.

IX. SUMMARY

In summary, we have numerically verified and subse-
quently tracked down the mechanism responsible for a spin
parity effect which is present in the ground state of a monoax-
ial chiral ferromagnet spin chain.

Our study started with a numerical evaluation of the mag-
netization curve for finite-sized systems falling within the
regime J � D. For half-odd integer S, the curve consists
of level crossings accompanied by a jump of the crystal
momentum by the amount π . The behavior is very different
when S is integral: the curve is continuous, features crossover
events, and the ground state’s crystal momentum remains zero
throughout.

To get a handle on this problem, we constructed a limiting-
case Hamiltonian, the S = 1

2 DH model, where the soliton
number is a conserved quantity. We established rigorously
that the lowest-energy state with N solitons has the crystal
momentum πN .

Encouraged by this result, we constructed a natural gen-
eralization of the DH model to arbitrary S, the pDH model
(which reduces to the former when S = 1

2 ). Quantum solitons
in the Sz basis, of integer-valued heights ranging from 1 to 2S,
are all conserved quantities of this model. Let Nf be the num-
bers of height- f solitons that are present in a given state. We
showed rigorously that the lowest-energy state within the sec-
tor (N1, . . . , N2S ) possesses the crystal momentum π

∑
f f Nf

(the height parity effect). The spin parity effect k = 2πSN2S ,
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which is realized in the ground state of this model, follows
from the height parity effect when all Nf ’s are zero with the
sole exception of N2S .

The pDH model thus allows for an interpretation of the
spin parity effect which governs its magnetization process
in terms of sharply defined quantum solitons. It also serves
to provide a physical picture for the same effect which is
observed in the more general model of a monoaxial chiral
ferromagnet with a finite J when J/D � 1. We have confirmed
numerically that the picture derived from the pDH model
holds up in this regime.
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APPENDIX: THE SEMICLASSICAL APPROACH

In this Appendix we record for completeness what a semi-
classical treatment using the spin coherent state path integral,
which is valid at large S and under the condition J > D,
says about the quantum mechanical features of solitons that
we have discussed in the main text. Much of what follows
borrows heavily from the work of Braun and Loss [19] on the
quantum dynamics of solitons in nonchiral magnets. Differ-
ences that arise in the chiral counterpart will be highlighted
as they appear. As mentioned in the main text (see Sec. VIII),
it must be stressed that extrapolating the results of a semi-
classical analysis to the regime relevant to this paper is not
straightforward. Still, the reader will notice interesting par-
allels between the two approaches, which we believe is well
worth appreciating.

1. Long-wavelength effective action

We take up the same Hamiltonian as in the main text:

H = −J
∑
〈i j〉

Si · S j − h
∑

j

Sz
j + K

∑
j

(
Sy

j

)2

−
∑
〈i j〉

Dŷ · Si × S j . (A1)

where J, K > 0. In this Appendix we will choose to align the
spin chain with the y axis.

In the following we will work in Euclidean space-time and
put h̄ = 1. The spin coherent state path integral approach then
consists of writing each spin vector as c-numbered entities
S j = Sn j where n2

j = 1, and studying the action

S[{n j (τ, x)}] = SBP +
∫

dτ H. (A2)

FIG. 11. Spherical coordinate and geometry used in the text.

The first term SBP records the spin Berry phase, i.e.,

SBP =
∑

j

iSω[n j (τ )]

=
∑

j

iS[1 − cos θ j (τ )]∂τφ j (τ ), (A3)

where ω[n j (τ )] is the solid angle traced out on the unit sphere
by the vector n j (τ ) in the course of its imaginary-time evo-
lution. In the second line we have introduced the spherical
coordinates (θ, φ) via

nx = sin θ sin φ, ny = cos θ, nz = sin θ cos φ.

See Fig. 11 for the definitions of θ and φ.
Below we take the continuum limit and seek the low-

energy effective action for our system. Assume that K � J .
Since we then expect ny(τ, y), the hard-axis component of n
to be sufficiently small compared to the portion lying within
the easy (zx) plane, it suffices to employ the parametrization
θ = π/2 − δθ , and ignore the periodic nature of the angular
variable δθ . The 2π periodicity of φ, on the other hand, is
essential for keeping track of solitons and will be retained. We
now expand each term in the Hamiltonian H up to quadratic
order in δθ . Collecting δθ -related contributions, we have

Lδθ = KS2

a
(δθ )2 + JS2

2a
(∂yδθ )2 − i

S

a
(∂τφ)δθ.

The notation a stands for the lattice constant. The last term on
the right comes from the Berry phase action SBP. Focusing
on the long-wavelength regime where only Fourier modes

satisfying ky � 1 �
√

K
J are incorporated, we can readily

integrate over the δθ fluctuations in Lδθ , which leaves us with
a new term S

4Ka (∂τφ)2. [Physically this can be understood by
noting that since, from (A3), ny is canonically conjugate to
φ, the hard-axis anisotropy term ∼n2

y can be traded for the
kinetic energy related to the dynamics of φ, i.e., ∼φ̇2.] On
combining with the remaining terms, we arrive at an effective
action Seff [φ(τ, x)] = ∫

dτ dx Leff , where

Leff = i
S

a
∂τφ + JS2

2a

[
1

cs
2

(∂τφ)2 + (∂yφ)2

]

−DS2

a
∂yφ − hS

a2
cos φ, (A4)

and cs = √
KJSa.
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This is a chiral variant of the quantum sine-Gordon action.
As we will shortly see, the first entry on the right-hand side,
descending from SBP, is a topological term which is ultimately
responsible for the occurrence of the spin parity effect of
soliton excitations as viewed in this semiclassical language.

2. Soliton collective coordinates

We proceed to extract from (A4) information pertaining
to the soliton dynamics. We will focus for simplicity on the
one-soliton sector, though similar analysis carries through
for more complex situations. We begin by observing that
the Euler-Lagrange equation which follows from Seff is the
quantum sine-Gordon equation

1

c2
s

φττ − φyy = M2 sin φ, M2 = h

JSa
, (A5)

where subscripts stand for derivatives. Static soliton and anti-
soliton solutions of height 2π can be written explicitly as

φ0(y) = ±4 tan−1 eM(y−Y ), (A6)

as can easily be verified by direct inspection. The letter Y
in the above stands for the center coordinate of the soliton.
While the DM term, being a total derivative, does not enter
into the equation of motion (A5), it plays the important role of
selecting out the energetically favorable sign in (A6), which in
the present convention is positive. (One needs to incorporate
it explicitly though when incommensurability effects set in at
lower magnetic fields.)

We are now ready to promote the soliton’s position Y to a
dynamical collective coordinate Y (τ ). Plugging the configu-
ration φ0[y − Y (τ )] into (A4), we find

SY [Y (τ )] =
∫

dτ

[
−i

2πS

a
Ẏ + 1

2M̃
Ẏ 2

]
, (A7)

where M̃ = a
8JS2M . Here we have assumed a soliton of height

2π , or equivalently a configuration for which the winding
number Q ≡ 1

2π

∫ ∞
−∞ dy ∂yφ0 is unity. The generalization to

arbitrary Q is straightforward, where, in particular the first
term on the right is simply multiplied by that integer. This
is formally equivalent to the action of a charged point particle,
with the first term representing the coupling between the par-
ticle and a (Berry) gauge field. We will see in a moment that
this coupling term, despite it being a total derivative, is abso-
lutely crucial for arriving at the correct quantum mechanical
features.

It is natural to expect that the soliton, now viewed as a
quantum mechanical particle hopping through the spin chain,
also experiences an effective periodic potential V (y) with
the property V (y + a) = V (y), which imprints the underlying
lattice structure on the dynamics and thus renders the soliton
to form Bloch bands. We refer the reader to Braun and Loss
[19] for an explicit evaluation of this potential, which can be
carried out, e.g., by treating intersite tunneling events in an
instanton gas approximation. The corresponding Hamiltonian
which takes these three terms into account is

H = 1

M̃

(
P̂Y − 2πS

a

)2

+ V (Y ), (A8)

with P̂Y the momentum operator conjugate to Y . It is clear
from this form that the lowest-energy state in the one-soliton
sector carries a crystal momentum of psol = 2πS

a , reproducing
the findings of the main text.

Having seen how the spin Berry phase has made its way
into the expression for psol, it is instructive to perform at this
point a sanity check: recall that for the Berry phase action
(A3) we made use of the so-called north-pole gauge, in which
the Dirac string goes through the south pole. We could have
equally well opted to use the south-pole gauge, where SBP =∑

j iS[−1 − cos θ j (τ )]∂τφ j (τ ). Repeating the whole proce-
dure for the latter, we find that the value of psol merely shifts
by 2π

a , thereby demonstrating the gauge independence of the
result. The lesson to be learned then, as emphasized early on
by Haldane [37], is that retaining the full expression for the
solid angle ω (whatever choice of gauge one makes) is crucial
for safely extracting information on the crystal momenta of a
ferromagnet.

As a final note before proceeding, we remark that we could
have foreseen the value of the crystal momentum determined
in this section, once we have chosen to focus on a 2π soliton:
we adopt for this purpose Haldane’s semiclassical theory [37]
mentioned above, which states that if a snapshot configura-
tion n(y) of a 1D ferrromagnet obeying a periodic boundary
condition subtends a solid angle ω[n(y)], that state carries the
crystal momentum S

a ω. As ω = 2π for a 2π soliton, this rela-
tion reproduces the result psol = 2πS

a . (We should also mention
that the identification of the crystal momentum of a soliton
in its lowest-energy state, with the Berry phase associated
with the snapshot spin configuration, appears in several of the
earlier work on chiral ferromagnetic spin chains [14,38,39].
Implications to spin parity effects or to the magnetization
process, however, are not considered there.)

3. Effect of magnetic fluctuations

The foregoing basically followed from a treatment at the
saddle-point level, and as such needs to be submitted to a
stability analysis against quantum fluctuations, i.e., the effects
of spin wave fluctuations ϕ around the moving rigid-soliton
configuration φ0:

φ(τ, y) = φ0[y − Y (τ )] + ϕ(y − Y (τ ), τ ). (A9)

As this is not directly related to the spin parity effect, we once
again refer the interested reader to Braun and Loss [19,40] for
the relevant technical details, and merely state the outcomes
of this analysis. (An alternative method based on Dirac’s
formalism for constrained quantum theory can be found in the
review article of Kishine and Ovchinikov [14].) An expansion
to second order in the spin wave fluctuation yields the spin
wave dispersion

εk = JS2

2a
(k2 + M2), (A10)

where one sees that a mass has been induced by the Zeeman
field. Meanwhile, a coupling between soliton coordinate Y
and the spin wave ϕ enters the action at the same order, which
can lead to damping (memory) effects as well as a renormal-
ization of the soliton’s rest mass. The former is found to have
a characteristic decay time τ = 1

2
√

Kh
which, if sufficiently
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smaller than the timescale on which Ẏ changes, is negligible.
The latter is of the order of O(1/S), which in the semiclassical
regime should also be small.

4. Implications

A remark on the behavior of the magnetization curve in
light of the semiclassical effective theory is in order. The
Hamiltonian (A8) implies that the introduction of an addi-
tional 2π kink into the system, i.e., a process for which
δQ = 1, is accompanied by a change in the crystal momentum
by the amount

δPY = 2πS

a
δQ = 2πS.

Thus, for half-integer S, momentum conservation prohibits
tunneling between configurations differing in Q by one. This
will result in level crossing. In contrast to this, tunneling and
hence level repulsion can occur when S is integral. The same
conclusion also follows from a path integral point of view.
The kink insertion is a singular space-time process (a phase
slip). Consider two different space-time patterns in which
such events occur, the second one centered at a plaquette (in
the y vs τ plane) immediately to the right of the first. These
two events each enter the path integral with Feynman weights
e−SEvent1 and e−SEvent2 , differing only by the phase e−i2πS , and
thereby canceling out when S is half-integral. Since such
pairwise cancellation occurs generically, one concludes that
phase slips do not contribute to the partition function.

The spin Berry phase’s influence on soliton dynamics can
be modulated by the addition of a longitudinal component
(i.e., along the chain) to the external magnetic field [19,39].
For the problem at hand, this will have the effect of contin-
uously changing the crystal momentum in proportion to the
superimposed field. At special values of the latter (ideally
there are 2S + 1 such values), the magnetization process in
the half-odd integer S case (as a function of the transverse
field) is expected to mimic the behavior of an integer S spin
chain in the absence of the longitudinal field. The manner in
which the spin parity effect is in principle controllable using
an external parameter is reminiscent of what happens in anti-
ferromagnetic chains, when one introduces (and continuously
varies the strength of) a bond-alternating component to the
nearest-neighbor exchange interaction [41,42].

Finally, we recall that recognizing the global structure in-
herent to the ground-state wave function was the key that
led us to some of the central conclusions of the main text.
This prompts us to briefly recapitulate the discussions of the
preceding paragraphs from the vantage point of wave-function
properties. To this end we note that it is possible to envisage a
continuum counterpart [43] for the “signed basis” expansion
of the ground state’s state vector that was discussed in the
main text:

|�〉 =
∫

Dφ(y)e−iS
∫ dy

a φ(y)|φ(y)〉〈φ(y)|�〉

≡
∫

Dφ(y)e−iS
∫ dy

a φ(y)�[φ(y)]|φ(y)〉. (A11)

The phase factor e−iS
∫ dy

a φ(y) is the continuum analog of the
all-important kink-counting sign factor (−1)2S

∑
kink jkink , where

jkink is the lattice site at the left end of a soliton. (The anal-
ogy becomes more transparent upon rewriting this factor as
eiS

∫ dy
a yφ′(y).) Meanwhile, the wave functional �[φ(y)] corre-

sponds to the positive-sign expansion coefficients, and should
have the property that it can be chosen to be real and nodeless,
and exhibit the lattice periodicity �[φ(y + a)] = �[φ(y)].
The crystal momentum associated with this state can then
be obtained as follows. Writing the generator of a one-site
translation as T̂ , and in addition defining

�̃[φ(y)] ≡ e−iS
∫ dy

a φ(y)�[φ(y)], (A12)

we have

T̂ �̃[φ(y)] = �̃[φ(y − a)]

= �̃[φ(y)] × eiS
∫ dy

a {φ(y)−φ(y−a)}

� �̃[φ(y)] × eiS
∫

dy(∂yφ)

= �̃[φ(y)] × ei2πSN , N : soliton number.

The resemblance with how the lattice wave function trans-
forms under translation is apparent. To see how this relates to
the semiclassical theory (A4), we first write its Hamiltonian
for the case where the topological term is absent. This reads
as

Heff =
∫

dy

[
a2K

S
π̂2

φ + JS2

2a
(∂yφ)2 − DS2

a
∂yφ − hS

a2
cos φ

]
.

(A13)

Here we have used the notation π̂φ (y) ≡ −i δ
δφ(y) . Let us

call the ground-state wave functional for this Hamiltonian
�[φ(x)]. As there are no topological terms which act on
the solitons as Aharonov-Bohm–type fluxes, we expect that
�[φ(x)] can be chosen to be real, is nodeless, and respects
the lattice translation symmetry [44]. Upon reintroducing the
topological term, the momentum π̂φ entering the first term on
the right-hand side of the above equation receives the shift
π̂φ → π̂φ + S

a . Since this shift is of the form of a coupling
of a charged matter to a gauge field, it is straightforward to
see that the wave functional accordingly “gauge transforms”
into e−iS

∫ dy
a φ(y)�[φ(y)]. The same conclusion is reached by

formally expressing the ground-state wave functional as a
constrained path integral, i.e., �[φ(y)] ∝ ∫

Dφ(τ, y)e−Seff [φ],
where one takes the sum over paths in Euclidean space-time
such that the configuration at the terminal imaginary time
(which is taken to be sufficiently large) always ends up as
φ[y]. In this approach the phase factor e−iS

∫ dy
a φ(y) derives

from a boundary contribution of the topological term which is
generated at the end of the imaginary-time axis. (This method
is valid provided there is an energy gap between a unique
ground state and the excited states [45,46].)

To seek the counterpart of the height parity effect and the
DH and pDH models in the semiclassical/field-theoretical
framework, as well as to undertake a quest for spin parity
effects at much lower magnetic fields where incommensura-
bility effects need to be incorporated, are interesting problems
that we leave for the future.
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