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In a recent paper [Phys. Rev. Lett. 129, 120601 (2022)], we have shown that the dynamics of interfaces, in the
symmetry-broken phase of the two-dimensional ferromagnetic quantum Ising model, displays a robust form of
ergodicity breaking. In this paper, we elaborate more on the issue. First, we discuss two classes of initial states on
the square lattice, the dynamics of which is driven by complementary terms in the effective Hamiltonian and may
be solved exactly: (a) Strips of consecutive neighboring spins aligned in the opposite direction of the surrounding
spins and (b) a large class of initial states, characterized by the presence of a well-defined “smooth” interface
separating two infinitely extended regions with oppositely aligned spins. The evolution of the latter states can be
mapped onto that of an effective one-dimensional fermionic chain, which is integrable in the infinite-coupling
limit. In this case, deep connections with noteworthy results in mathematics emerge, as well as with similar
problems in classical statistical physics. We present a detailed analysis of the evolution of these interfaces
both on the lattice and in a suitable continuum limit, including the interface fluctuations and the dynamics of
entanglement entropy. Second, we provide analytical and numerical evidence supporting the conclusion that the
observed nonergodicity—arising from Stark localization of the effective fermionic excitations—persists away
from the infinite-Ising-coupling limit, and we highlight the presence of a timescale T ~ ¢! for the decay of a
region of large linear size L. The implications of our work for the classic problem of the decay of a false vacuum
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are also discussed.
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I. INTRODUCTION

The dynamical nucleation of a region of true vacuum
in a sea of false vacuum is a classic problem in statistical
mechanics [1-3]. Most of the progress, however, has been
achieved in the context of stochastic dynamics so far, since the
unitary quantum dynamics constitutes a significant challenge.
Stochastic dynamics often provides an adequate description
of equilibrium condensed matter systems, such as magnets
or crystal-liquid mixtures, due to the continuous influence
of noisy environmental degrees of freedom, which act like
a bath at a well-defined temperature. Nevertheless, there are
situations in which one cannot neglect the unitary nature of
the quantum dynamical evolution from a pure initial state.
This is the case, for instance, in a cosmological setting:
The problem was studied long ago by Kobzarev, Okun and
Voloshin [4], and then by Coleman and Callan [5-7], finding
also applications in inflationary models of the universe [8].
In addition, unitary evolution plays a crucial role in recent
experiments with ultracold matter, which make it possible
to investigate analoguous false-vacuum-decay phenomena in
coherent quantum many-body systems, where the nucleation
is driven by quantum rather than thermal fluctuations (see,
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e.g., Ref. [9] for a recent experiment in this direction). Finally,
there are quantum optimization algorithms [10-12], which are
designed to find the ground state of a classical Ising model (a
computationally NP-hard task), but can incur in several dy-
namical drawbacks associated to classical or quantum effects
[13—15]. One can only expect that, in the near future, quantum
simulators will allow finely controlled explorations of this
physics using table-top experiments, allowing the observation
of more counter-intuitive effects of coherent quantum dynam-
ics.

With these motivations in mind, and following Ref. [16],
here we set to study the unitary evolution of nucleated vacuum
bubbles in the two-dimensional (2d) ferromagnetic quan-
tum Ising model with longitudinal and transverse fields of
strengths / and g, respectively. These vacuum bubbles cor-
respond, to a first approximation, to regions on the lattice
with a certain spin orientation, surrounded by a sea of spins
with opposite orientation. We find that the limit of large Ising
coupling J > |h|, |g| is amenable to several simplifications:
This is due to the emergence of a constraint on the length
of the interface, which separates the regions of opposite spin
alignment in the initial state.

In this context, we address the issue of Hilbert space
fragmentation, recently investigated in Refs. [17,18], and
elaborate on the effective Hamiltonian governing the dy-
namics. Such effective Hamiltonian further simplifies, and
becomes amenable of analytical treatment, when restricted
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to two classes of initial states. The first is defined by the
presence of a strip of aligned consecutive spins, running along
one of the principal axes of the square lattice; the second,
by an infinitely long “smooth” interface separating regions
with oppositely aligned spins. The dynamics of the latter
can be mapped onto a one-dimensional chain of fermions,
which becomes integrable for / — oo. The integrability of
this effective model is responsible for ergodicity breaking: We
will show, for example, that the corner of a large bubble melts
and reconstructs itself periodically in time, with period o
1/]h|. The same periodic dynamics generically characterizes
an initially smooth profile, the evolution of which turns out to
take a particularly simple form in a suitable continuum limit,
which we discuss in detail. The proposed mapping on the
fermionic chain allows us to study also interface fluctuations
and the evolution of the entanglement entropy for an infinitely
extended right-angled corner. In addition, we will also unveil
surprising connections with classic mathematical results, con-
cerning the limiting shape of random Young diagrams, as well
as with similar problems in classical statistical physics.

Based on the mapping, we can trace back the observed
ergodicity breaking in the dynamics of the interface in 2d
to the Wannier-Stark localization of the single-particle eigen-
states of the dual fermionic theory. Surprisingly, we find that,
even moving away from the limit / — oo in a perturbation
theory in g/J < 1, the emerging many-particle eigenstates
of the resulting perturbative Hamiltonian are Stark many-
body localized (MBL) [19,20]: Thus, they display the typical
MBL phenomenology [21-25], which carries over to the
2d quantum Ising model. As several works have questioned
the existence of MBL in more than one spatial dimen-
sion [26,27] (even in the disordered version of the model
studied here [28]), the present case provides a valuable ex-
ample of a mechanism by which the nonergodic dynamics
of a one-dimensional model renders the dynamics of the
dual two-dimensional model nonergodic. Moreover, the phe-
nomenology observed here reminds of the confinement that
takes place in 1d [29,30].

It is interesting to remark also that the 2d quantum Ising
model displays strong stability of magnetic domains even
when, in the absence of external fields, a Floquet dynamics
is considered, characterized by imperfect stroboscopic single-
spin kicks [31]. Therefore the interest in this model is renewed
also by the possibility of probing different mechanisms for the
breakdown of ergodicity, even if disorder-induced MBL is not
present.

The discussion of the dynamics of an infinitely extended
smooth interface (separating two semi-infinite domains) can
be used as a starting point to investigate the case of finite
but large “bubbles” of one phase, surrounded by the other.
In truth, this was the original motivation of the work, being
it related to the problem of the decay of a false vacuum. In
particular, we discuss and estimate the relevant timescales
which are involved in the possible “melting” of the bubble, the
complete description of which is however beyond the scope of
the present work.

The rest of the presentation is organized as follows. In
Sec. II, we briefly introduce the Ising model, discussing how
it reduces to a so-called “PXP” model in the limit of strong
coupling (Sec. II A), for which Hilbert space fragmentation

is expected to occur (Sec. II B). In Sec. III, we focus on the
dynamics of the model in the infinite-coupling limit. In par-
ticular, in Sec. III A, we study striplike initial configurations,
while in Sec. III B, we consider more generic initial states,
characterized by the presence of a smooth and infinite inter-
face separating spins with opposite orientation. In Sec. IIIC,
we describe the continuum limit of the latter, and the con-
nections with a semiclassical limit for the single-particle
dynamics. In Sec. IV, we focus on a subset of initial configu-
rations belonging to the general class discussed in Sec. [II B,
i.e., a corner-shaped interface: In Sec. IV A, we determine
the average shape of such interface during the dynamics,
while in Sec. IV B we study its fluctuations. In Sec. IV C, we
focus on the time evolution of the entanglement, discussing
the computation of the entanglement entropy. In Sec. IV D,
we show the connection between the unitary dynamics of
the interface of a corner and some known results concern-
ing the phenomenon of Plancherel measure concentration in
random Young diagrams. Moving to Sec. V, we discuss how
the emergent integrability can be broken, either in a domain
of finite size (Sec. V A) or when the ferromagnetic coupling
is no longer assumed to be infinitely large (Secs. VB and
V C), giving also a comparison between the lattice and the
field theoretic dynamics of false vacuum bubbles (Sec. V D).
Finally, in Sec. VI, we present our conclusions and outlook.

Part of the work presented here was briefly reported in
Ref. [16].

II. THE MODEL

As anticipated in the Introduction, we are interested in the
dynamics of the quantum Ising model on a two-dimensional
square lattice. The Hamiltonian reads

Hy = —JZaqu—gZUf—hZUf, €))
(i) i i

where o;"** are Pauli matrices acting on a lattice site i € Z?,
(ij) indicates the restriction of the sum to nearest neighbors,
g and h are the strength of the transverse and longitudinal
magnetic fields, respectively, and J > 0 is the ferromagnetic
coupling. We set g > 0, while we let & take both positive and
negative values: The sign of h, indeed, will be relevant in
Sec. VB.

In thermal equilibrium at temperature 7, this model
displays a quantum phase transition at 7 =0 and h =0,
belonging to the universality class of the classical 3d Ising
model: Upon decreasing g below a critical value g, it passes
from a quantum paramagnet to a quantum ferromagnet,
characterized by two degenerate, magnetized ground states
spontaneously breaking the Z, symmetry. Upon increasing
T, the ferromagnetic phase survives up to a finite critical
temperature 7, (depending on g and J), since the energetic cost
of creating domains with reversed magnetization increases
upon increasing their perimeter (as entailed by Peierls’ argu-
ment). At g =0, the model becomes the 2d classical Ising
model, therefore displaying the corresponding critical proper-
ties. These critical properties also characterize the transition
occurring on the line of thermal critical points, which joins
the classical model at g =0 to the quantum critical point
at T = 0. The longitudinal field & # O breaks explicitly the
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Z, symmetry of the two possible ground states, lifting their
degeneracy. Accordingly, the model at 7 = 0 and g < g, un-
dergoes a first-order quantum phase transition as h crosses
0. As discussed in the Introduction, one expects that highly
nonequilibrium false vacuum states exhibit a slow decay,
through the nucleation of bubbles of characteristic size related
to the inverse decay rate. With this background motivation in
mind, below we will be interested in the fate of such bubbles,
and more generally of interfaces, under the subsequent, coher-
ent unitary evolution.

Studying the dynamics of 2d interacting models constitutes
a priori a formidable task: Numerical methods are limited
to very small system sizes or very short times. In addition,
analytical tools are restricted to near-equilibrium conditions,
or generally involve uncontrolled approximations, as dynam-
ical mean-field theory [32] or kinetic equations [33]. Despite
these shortcomings, insight can be obtained from suitable
limits. While the extreme paramagnetic regime J < |h|, g
reduces to a set of weakly interacting “magnonic” excitations,
the strongly-coupled ferromagnetic regime J > |h|, g retains
great part of the interacting nature of the problem. It is the pur-
pose of this work to show that, in such strong-coupling limit,
there exists a relevant class of highly excited, nonthermal
initial states, the dynamics of which is amenable of analyt-
ical treatment. In particular, in the next sections, we show
that the formal limit J/ — oo of infinitely strong ferromag-
netic coupling actually renders a highly nontrivial constrained
dynamical problem, characterized by a fragmented Hilbert
space.

A. Constrained dynamics in the strong-coupling limit

Starting from this section, and throughout this work, we
will consider the strong-coupling limit J >> ||, g. In prac-
tice, we start by formally taking J = 400, while later on in
Sec. VB, we will relax this assumption. In this limit, it is
particularly convenient to study the problem in the basis of
the eigenstates ), 1/)); of o7 at each lattice site i, with
of|M)i=11)i and of||); = —||);. At the leading order in
J, the model is actually diagonal (i.e., classical) in this basis
and, up to a constant, the energy of each of these eigenstates
is given by 2JI, where [ is the number of distinct pairs of
neighboring spins with opposite orientation. Accordingly, the
Hilbert space H at infinite coupling is fragmented into dy-
namically independent sectors with 7 = D, M, each sector
‘H,; being identified by [ [16,17]. Being J = 400, in fact, no
transitions are actually allowed from a state in #; to one in
‘Hy, unless [ = I’, since the energy difference between them
would be infinite. Note that, equivalently, / measures the total
length of the domain walls which are present on the lattice,
separating the regions with spins o = +1 from those with
of = —1. Accordingly, in the limit J — oo, dynamical con-
straints emerge, in the form of a perimeter constraint on the
bubbles of spins aligned along the same direction. Stated more
formally, the domain-wall length operator

D==% " (1-0i0}), 2)
(i.J)

is exactly conserved by Hjs in the J — oo limit.

As a consequence of the perimeter constraint, the dynam-
ics of the model can be effectively studied by focusing on
each sector ‘H,; separately, thereby reducing significantly the
complexity of the problem. Let us start by determining the
reduced Hamiltonian in H; by elementary reasoning. Since
the total domain-wall length must be conserved, the only spins
that can be flipped by the term o g in Eq. (1) are those that
just displace an existing domain wall. In practice, these spins
are characterized by having two neighbors up (1) and two
neighbors down (), such that their flipping does not change
the number of distinct pairs of neighboring spins with opposite
orientation, i.e., the length of the domain wall in the associated
plaquettes. Considering the (4x3)/2 possible configurations
of the four spins Li/Ri/Ui/Di which satisfy this constraint
and are, respectively, left/right/above/below a site i € Z2
with a certain spin orientation, one easily gets convinced
that the only allowed transitions are those generated by the
following reduced Hamiltonian:

z |
Hpxp = —h Z 9 — & Z(PljiPlgio'iXPRiPl#i + PPy} PPy
i i

I pl T pt I pt _xpt pl
+ P iFy07 PriPy; + B P07 PriPG;

1 L
+ Pﬂipéigixpliipéi + Pf,-PSiOfPé,»PJ,»), 3)

where we introduced the projectors
1 -0}

2

PT = 1+Uiz

— , -
P 5 =IMaltl. B=

=)l @

The term o< i in Eq. (1), being diagonal in o7, is instead
unaffected. One can recognize that Eq. (3) has the structure
of a so-called PXP Hamiltonian [34].

The elementary procedure outlined above can be viewed as
the first step of a systematic elimination, from a Hamiltonian
with large energy gaps, of highly nonresonant transitions. This
is formally implemented by an order-by-order unitary trans-
formation known as Schrieffer-Wolff transformation [35].
In Sec. VB, we will be concerned with the possible addi-
tional contributions to Eq. (3) due to higher-order corrections
o).

We stress here that the constrained Hamiltonian in Eq. (3)
is actually similar to the one describing strongly interacting
Rydberg atom arrays [36,37]. In this case, each spin-1/2
describes a trapped neutral atom, which can be in either its
ground state (|) or in a highly excited Rydberg state (1).
The basic model Hamiltonian that describes a lattice of such
strongly interacting atoms reads [36]

HRdeAZn[-FQZO’[X-FZVUn,’Hj, (5)
i i ij

where n; = (1 4 07)/2 counts the local number of atoms ex-
cited to the Rydberg state while the interaction V;; is very
strong for neighboring sites and it decays rapidly as the dis-
tance |i — j| increases. Upon rearranging the various terms,
Eq. (5) may be viewed as a 2d quantum Ising model; the
strong coupling V;;, however, couples here to the operator n;n;
rather than to o7of. When this nearest-neighbor interaction
becomes larger than all the other energy scales— as it happens
in the so-called regime of Rydberg blockade—its dynamics is
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FIG. 1. (a) Example of a “convex” (in the sense defined in
Sec. V A) bubble of “up” spins (1= M) in a sea of “down” spins
(J=0). Here each spin is represented by the surrounding square
plaquette in the dual lattice. The side of a plaquette separating
neighboring spins with the same or opposite orientation is marked
in black or red, respectively, the latter corresponding to a portion
of a domain wall. (b) Example of transitions allowed at the leading
order in the coupling J, i.e., due to the term o g in Hpxp, see Eq. (7).
Flipping the central spin makes the part highlighted in red of the
domain wall move, in the corresponding plaquette, as represented
in the figure. The remaining possible moves (not displayed) are
obtained by considering all the configurations of the central spin and
its neighbors, with the constraint that two neighbors are up and two
down.

described by an effective constrained Hamiltonian,
A
0 Z I pl _xpl pl
Hgyq = > Z o +Q Z P iPrio) PriPG;s (6)
i i

which is obtained from Eq. (5) by setting V;; — oo for neigh-
boring atoms (ij) and V;; = 0 otherwise. In this case, pairs of
neighboring excited atoms are completely frozen, and an atom
can flip only if all its four neighbors are in the ground state,
which is expressed by the last term in Eq. (6). The Hamil-
tonian in Eq. (3), instead, imposes a different form of the
constraint, which implements the local perimeter-conserving
motion of domain walls. It is interesting to note, however, that
the two constraints differ only by a strong longitudinal field
term, which can be adjusted to transform one into the other.
Specifically, by identifying V = —4J, it is sufficient to take
a single-atom energy level detuning A = 2J + & to obtain
the Ising model (1) and hence, in the regime of the Rydberg
blockade, the effective Hamiltonian in Eq. (3).!

The Hamiltonian in Eq. (3) can be alternatively written via
a shorthand notation, which describes graphically the transi-
tions induced on the part of domain wall (in red) existing in
the square plaquette surrounding a spin (i.e., the dual lattice),
due to its allowed flipping (see also Fig. 1):

prp = —hZUf

K2

- QZ ()l + 1) e (I + 12)ail 1] + Heee).

(N
Here, the transitions due to the coupling g are apparent:
Either a domain wall corner is moved across the diagonal of

"'We note, however, that this might be problematic at experimental
level, as the Rydberg interactions are very sensitive to the precise
position of the trapped atoms, resulting in unwanted noisy fluctu-
ations of the longitudinal field. We thank Hannes Pichler for this
clarification (private communication).

a plaquette (T = _Jor L S 71) or two parallel segments of
the domain wall are recombined across opposite sides of the
plaquette (— = | ). These moves guarantee the conservation
of the domain wall length.

B. Hilbert space fragmentation

The convenient notation of Eq. (7) makes it possible to
analyze the fate of the dynamics of large portions of the 2d
lattice in various cases. For instance, consider multiple, distant
spins oriented up, i.e., with 0* = 41, embedded in a sea of
oppositely aligned spins, with 0* = —1. This configuration
is fully frozen, as no allowed transition can shift any of the
domain walls. Thus all of these states are eigenstates of the
constrained Hamiltonian (7). This simple example—easily
generalizable to many others [17]—shows that individual sec-
tors H; are, in general, further heavily fragmented. More
formally, one can introduce the notion of Krylov subspace of
a state |Y): By definition, it is the subspace of H spanned
by the set of vectors (1o, HIvo), H? o), ...}, where H
is the Hamiltonian of the system. With this definition, one
recognizes that the Krylov sector of a state |{) € H; may
not coincide with the full H;, but instead represent a finer
shattering. A detailed study of the Krylov sectors of the model
under consideration was presented in Ref. [18]; in this work,
instead, we will be concerned mainly with the dynamical
effects of the fragmentation on some physically relevant states.
This is what we set out to study in the next section.

III. INFINITE-COUPLING DYNAMICS FOR STRIPS
AND SMOOTH DOMAIN WALLS

In the previous section, we have argued that, in the limit
of large J, the dynamics of the 2d quantum Ising model
simplifies significantly, because of the presence of emergent
constraints. Here, we show that this simplification is really
substantial in some particular cases, as it leads to simple
one-dimensional effective models.

From Eq. (7), one can see that the first two terms
(M)ii{dl + Hec. and )i (7 + H.c.) correspond to the trans-

lation of a domain wall, while the last one (—)ii{l || + H.c.)
cuts two nearby portions of domain wall into two halves and
recombines those belonging to different portions. If the initial
condition has a geometry that allows only one of the two types
of transitions, then it is possible to gain further analytical
control on the dynamics. In particular, we show in Sec. IIT A
that initial conditions consisting of a thin, pseudo-1d domain
are only affected by interface-recombining moves. This allows
us to make a connection with 1d PXP and confining Ising
models. In Sec. III B, instead, we show that if the 2d lattice
is cut by a single, Lipschitz-continuous interface (this notion
will be clarified further below), then its dynamics can be
studied via an effective 1d model of noninteracting fermions
in a linear potential. Its emergent integrability allows us to
predict the 2d evolution exactly, and to describe precisely how
ergodicity is broken.

A. Striplike configurations

In this section, we consider a class of initial configurations
that are essentially one-dimensional. As it was also pointed
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out in Ref. [17], for this type of states it is possible to es-
tablish an explicit connection with 1d PXP models. We show
here that, when the initial configuration |Wy) has no overlap
with scarred states,” it is possible to calculate the asymptotic
magnetization of the bubble.

We focus on an initial condition consisting of a linear strip
of L consecutive down spins (), along one of the princi-
pal lattice axes, surrounded by up spins (1). In the Krylov
sector of this configuration (see Sec. II B above), and in the
absence of longitudinal magnetic field (i.e., for 7 = 0), the
PXP Hamiltonian (3) reduces to the one-dimensional PXP
Hamiltonian familiar from tilted bosonic traps [38], one-
dimensional Rydberg-blockaded arrays [39], or dimer models
[40]. Indeed, due to the perimeter constraint, neither the spins
outside the initial strip nor those at its two ends can be flipped
by Hpxp; accordingly, the only dynamical degrees of freedom
are the internal spins initially set to be down. This reduces the
full, 2d dynamics to an effectively 1d dynamics.

For convenience, we label the accessible basis states by the
corresponding 1d configuration of the spins in the strip; the
initial state |Wy) is therefore denoted by [Wo) = | || ... |).
Assuming for the moment # = 0, the Hamiltonian (3) reduces
to

L-1

Hexp 1o = —¢ ) _ P 07P},,, ®
=

as the spins above and below the strip are fixed to be up.
Above, we are also taking into account that the first and last
spin of the strip cannot be flipped.

Because of the constraints, not all 1d configurations are
dynamically accessible: For example, those containing two
or more consecutive spins up are not. This implies that the
spins adjacent to a spin up are down, and that completely
fragmented configurations consist of singlets or pairs of spins
down, separated by single spins up, see Fig. 2(a). Denoting
by [ the number of spins which are reversed compared to the
initial configuration, the number C(L, [) of accessible basis
states in the strip of length L satisfies the recursion relation
(see also Appendix A)

ClL,)=CL-1,)+CL-2,1-1), C)]

which has solution
L—1-1
CL, )= / ) (10)

once the initial condition C(L,0) = 1 for all L is enforced.
The maximum number [,x of spins that can be flipped
satisfying the perimeter constraint is

b = | E22 11
max-’rT—‘» ( )

2Quantum many body scars denote special eigenstates of the spec-
trum that does not satisfy the eigenstate thermalization hypothesis.
This means that the expectation values of observables evaluated on
such states does not attain the thermal value, even if their energy
density corresponds to infinite temperature states.

(a) L1 [1 11 [1 1]
(T IT T ITTTITIT T IT T 7T ]
b 2]
—0.41
0.6
— mean
—0.8+ —_— m22(33)
max-min
—1.01

1 4 7 0 13 16 19 22
x

FIG. 2. (a) The top row represents the initial state of the strip
|Wy); the middle row shows an example of configuration which
can be dynamically reached from |Wy); the bottom row displays a
completely fragmented configuration. (b) Magnetization along the
strip of panel (a) at long times. The comparison between the analyt-
ical prediction (my,(x) = (m.(x)), in red, corresponding to Eq. (13))
and the numerical results for the magnetization is reported. The
numerical analysis is performed by unitarily evolving the initial
state. The plot shows the minimum and maximum magnetization
for 5000 <t < 10000 (shaded gray area) and the magnetization
for + = 10000 (black). One can see a good agreement between the
numerical simulations and the analytical prediction, showing that the
classical sampling introduced in the text is effective in describing the
infinite-temperature magnetization.

and the total number of accessible configurations is therefore
given by

Imax

Fo=) CL.D, (12)

=0

i.e., by the Lth Fibonacci number [41].

It is worth recalling that PXP Hamiltonians exhibit quan-
tum many-body scars [34], i.e., particular eigenstates that
violate the eigenstate thermalization hypothesis [42,43]. The
number of such eigenstates increases only algebraically upon
increasing the system size, making them very rare in the
many-body spectrum. However, they profoundly affect the
dynamical properties of particular initial configurations: For
instance, the Néel state |Z,) = || 111 ...) exhibits remark-
able long-lived revivals, as discovered in early experimental
explorations [44]. While it has become clear that these non-
thermal eigenstates slowly disappear in the large-size limit
of the PXP model, their ultimate origin is presently unclear,
despite significant research efforts, and is the subject of an
active ongoing debate [45]. On the other hand, the initial
state |\Wy), we consider here is not significantly affected by
quantum many-body scars [34,45]. Accordingly, it is expected
that the magnetization profile along the chain at long times
is compatible with an assumption of ergodicity, i.e., that all
allowed configurations (having the same expectation value of
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the energy) will be occupied with uniform probability. Under
this assumption, the long-time average magnetization (m (j))
atposition j = 1, ..., L along the strip of length L is expected
to be given by

FrjFj

(mp(j)) =2 F

-1, (13)

as detailed in Appendix A. The explicit expression of the
Fibonacci numbers [41],

SO 1
26 — 1

in terms of the golden ratio ¢ = (1 + \/5)/2, allows us to
determine the resulting magnetization profile (m.(j)). We
compare it with numerical simulations for short strips in
Fig. 2, showing fairly good agreement with the assumption
of ergodicity. The magnetization, as expected, is fixed at the
boundaries of the strip, due to the fact that fluctuations cannot
occur there, while its absolute values decreases upon moving
away from the boundaries. In particular, the value (#1100 puik) Of
the magnetization (my(j)) in the middle of an infinitely long
strip can be easily obtained by taking first the limit L — oo
and then j — oo in Eq. (13), finding (see Appendix A)

2 1
(Moo, buik) 26— 1o 1 75 (15)
where we used Eq. (14). The (alternating-sign) approach
of (Moo(j)) to (Moo puik) UPON increasing j turns out to be
exponential, with a rather short characteristic length &, =
—1/In|1 — ¢~ '| ~ 1.04. The derivation of this fact is pro-
vided again in Appendix A, see Eq. (A2).

The solution presented above applies to the case of a single
strip of reversed spins running along one of the principle
lattice axes. In the presence of more than one strip (possibly
having different orientations), the same results apply to each
strip separately as long as the spins belonging to two different
strips do not have a common nearest neighbor. In fact, in case
they have one, a change of its orientation might cause the
interfaces of the two strips to merge and, due to the resulting
shape, the term IM)ii (| +])i (1l + H.c. in the effective
Hamiltonian (7) would contribute to the dynamics as well. In
particular, it is easy to realize that the initial condition |Wy)
discussed above is dynamically connected with the configura-
tion consisting of the largest rectangular “envelope,” which
contains all initial strips with at least one common nearest
neighbor. While the dynamics in this case turns out to be
highly nontrivial, in Sec. IV we will focus on what happens
to one of the corners of this rectangular envelope when it is
sufficiently extended.

We conclude this section by noting that what we have done,
essentially, was to compute local observables in the infinite-
temperature ensemble within the Krylov sector of the initial
configuration |Wy), instead of computing the expectation val-
ues on |Wy(7)). The two procedures are equivalent, since the
initial state |\Wy) lies in the middle of the spectrum (and thus

FIG. 3. Graphical representation of the mapping from the 2d
Lipschitz interface to the 1d fermionic chain. Moving from left to
right, each downward segment corresponds to an empty site on the
chain, while an occupied site is associated to each upward line. For
completeness notice that, in doing the projection, the lattice spacing
on the chain is reduced by a factor /2 compared to the original one
on the 24 lattice.

is an infinite-temperature state),> and the 1d PXP model is
ergodic [34,45].

B. Smooth domain walls on the lattice

In the previous section, we considered striplike initial con-
figurations, the dynamics of which involved only the operators
|=){ I + H.c. of Eq. (7), i.e., only domain-wall-breaking tran-
sitions. We now turn to a different family of initial states for
which, instead, the only involved operators are I) (T + Hec.

or [M){J| + H.c.: Thus, solely domain-wall-moving transi-
tions are generated.

For later convenience, let us rotate by a 7 /4 angle with
respect to the vertical and horizontal directions the square
lattice on which the model is defined, such that the lattice
axes are oriented along the diagonals of the quadrants of the
standard coordinate system, as shown in Fig. 3. Then, let us
consider an interface separating a domain of spins up (1= )

from one of spins down (+= L)), highlighted in red in Fig. 3.
We require that such an interface varies only slowly, so that
it can be thought of as the graph of a function in the rotated
frame, see Fig. 3. More precisely, the interface profile u(x)
should be described by a quantum superposition of functions
Wo : Z — Z, which are Lipschitz-continuous on the lattice,
ie.,

[o(x) — oM < |x —yl, Vx,y € Z. (16)

Let us remark that, since only the operators L) (T + Hec.

or [7){J| + H.c. of the Hamiltonian in Eq. (7) act on these
configurations, the Krylov sector of a Lipschitz state contains
only Lipschitz states. Accordingly, the unitary dynamics start-
ing from such configurations involves only Lipschitz states
and their superpositions, and cannot generate kinks or over-
hangs of the interface. Two-dimensional initial states of this

3That |W,) lies in the middle of the spectrum follows from the fact
that, first, it holds (Wy|H |W¥,) = 0; and second, that the spectrum is
symmetric around zero (Hpxp,14 commutes with the space reflection
operator /, and anticommutes with the spectral reflection operator
C= ]_[j o} [121]).

024306-6



INTERFACE DYNAMICS IN THE TWO-DIMENSIONAL ...

PHYSICAL REVIEW B 107, 024306 (2023)

type, other than being rather generic in the context of interface
dynamics, are interesting because they can be alternatively de-
scribed as states of a corresponding one-dimensional system.
The mapping simply consists in associating to each downward
segment of the interface an empty site on the 1d chain, and
to each upward segment a site occupied by a particle (see
Fig. 3), following the interface line from left to right. In
practice, this mapping amounts at a differentiation: In fact,
one associates an empty (respectively occupied) site if the
domain-wall derivative is negative (respectively positive). As
a consequence, the interface profile p(x) can be reconstructed
by “integrating” the density profile n(x) on the chain [46—49]:

Z [2n(y) — 1] + const. a17)

y<x

ux) =

The mapping described above works also in a classical
setting, where a fluctuating interface induces on the 1d parti-
cles an effective dynamics, as the simple exclusion processes
[50-52] (more on this at the beginning of Sec. IV). In the
quantum setting, the statistics of the particles plays a funda-
mental role. For the case under consideration—i.e., the 2d
quantum Ising model—these particles have to be hard-core
bosons, because at most one particle can be present at a
lattice site, and those at different sites commute. Applying a
Jordan-Wigner transformation, these hard-core bosons can be
equivalently represented as fermions. From now on we will
adopt this more convenient representation.

Having set up the mapping between the accessible basis
states of the two systems, we can proceed to determine the
1d Hamiltonian on the chain, corresponding to the 2d PXP
Hamiltonian (7). With a bit of reasoning, one notices that each
allowed spin flip in 2d (which induces one of the transitions
v = " in the interface of Fig. 3) corresponds to a fermion
hop along the chain. At the same time, in the presence of
the longitudinal magnetic field & # 0, each spin flip in 2d
contributes with a F2h energy difference depending on the
corresponding upward/downward direction of the domain-
wall transition \» = 7, and therefore every fermion hop
must be accompanied by the same energy change. This is
achieved by introducing a linear potential in the 1d Hamilto-
nian such that a particle jumping to the right (respectively left)
gains (respectively loses) an energy 2A. The same procedure
applied to off-diagonal elements fixes the hopping term of the
chain, leading to the fermionic Hamiltonian

Hp=—g) (¥ +He)+20 ) xyiv,  (18)

defined up to a constant related to the choice of the origin
of x.

Equation (18) is the well-known Wannier-Stark Hamilto-
nian [53]. It is diagonalized by the unitary transformation

b= Jem (¥ ). (19)
xeZ
where y := g/h and J,(z) is the Bessel function of the first
kind, yielding

Hg gig =20 Y mb},b,, (20)

meZ

The energy spectrum is thus given by a set of equally spaced
levels E,, = 2hm, insensitive to g. We anticipate that this fea-
ture will be important in the discussion about nonergodicity,
further below in Secs. VB and V C.

In terms of the functions introduced above we are now able
to predict the dynamics of any Lipschitz initial state |\Vy). In
fact, such a state can be expressed as

(W) = [ [wi10) @1
k

on the chain, where the sequence {x;};cz contains the sites
occupied at + = 0 and |0) is the vacuum of the 1d chain. The
time evolution of the operators b,, is simply given by b,,(¢) =
by (0)e=% and thus

Yelt) = Y Ty ) yom(y)e 2 1, (0)

m,y

‘ (22)
= Y eI (@)Y (0),
where we introduced
W = 2|y sin(ht)] = 2‘ % sin(ht)|, 23)

and used the completeness relation of the Bessel functions,
Eq. (B8). Similarly, by using the previous expression and by
calculating some Wick contractions, one can determine the
evolution of the average of the density n(x, ) = ¥ (t)¥(t),

ie.,
ZZJXk W)

X Jomy (¥ Wy (y )e 2D

Z JE_ (o), (24)

(n(x, 1)) =

where we used the property in Eq. (B4), and defined the
averages over the initial state

(-++) = (Wol - - - [Wo). (25)

As discussed above, (n(x, t)) corresponds to the average slope
of the quantum-fluctuating interface in the original 2d system,
and therefore describes its evolution.* Moreover, the expres-
sion for (n(x,t)) in Eq. (24) clearly shows that the dynamics
in the cases & = 0 and & # 0 are simply connected by the min-
imal substitution 2g|¢| — w; (and that the latter, in particular,
is independent of the sign of k).

Equation (24), and its dependence on time via @,
[Eq. (23)], imply that the dynamics on the chain—and there-
fore the full 2d dynamics—is periodic with period m/|h|:
This is due to the Bloch oscillations [53], which localize each
fermion near its initial position x;. In fact, J f _(w)inEq. (24)

decays exponentially fast upon increasing |x — x| beyond wy,

“It is interesting to note that, by time-reversal symmetry, Eq. (24)
can also be interpreted as the total probability of finding a single
particle starting at x at time O, in the subset of positions {x;} at
time ?.
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and therefore each fermion, during the evolution, explores a
region of space of amplitude (in units of the lattice spacing)

£~ |g/h|. (26)

This perfect localization is a feature of the J/ = +oc limit, and
of the presence of a nonzero longitudinal field 2 which makes
w; a periodic function of time. If, instead, # — 0, one finds
that w, = 2g|t|. Accordingly, the dynamics of the 1d system
becomes ballistic, as the underlying fermionic excitations are
free to move. Note that the presence of / induces periodicity
in the time evolution already at the level of Eq. (22), which is
the solution of the Heisenberg equation for v,. We emphasize
again that such periodicity is both due to the external field &
and the presence of the lattice. In Secs. VB and V C, we will
investigate the extent to which the localization is preserved at
finite but large J, and nonzero A.

In general, (n(x,t)) cannot be calculated in closed form
from Eq. (24) for an arbitrary initial condition (n(x,t = 0)) =
>4 8x,.x- However, in some special cases, this can be done. As
an example, consider an initial state consisting of a sequence
of fermions alternated by s — 1 empty lattice sites, with x; =
sk for some s € N with s > 1. This corresponds to a domain
wall in the 2d lattice which is almost flat, with an approximate
slope —(s — 2)/s. With this initial state, the average profile
(x,t) can be determined from the average number density
(n(x, t)) on the chain [see Eq. (24)]:

(nGx. 1) = > Ti_ (@)
k

1 .
_1 Z Qs g <2wt sin E) 27)
S S

o<n<s

where the last equality follows from the integral represen-
tation of the Bessel functions, Eq. (B12). At spatial scales
much larger than the (unit) lattice spacing, i.e., for |x| > 1,
the expression above implies

(n(x, 1)) >~ 1/s, (28)

because only the term with n = O contributes to the sum for
large |x|, due to the oscillating exponentials of the remaining
terms. This result is expected, as the value 1/s actually corre-
sponds to the average occupation along the chain in the initial
condition which, up to lattice effects, does not evolve in time.
After summing Eq. (27) over space, as prescribed by Eq. (17),
one obtains the average shape of the interface. In the limit
|x| > 1 this corresponds to {(u(x,?)) >~ x(2/s — 1) + const.,
i.e., to a time-independent flat interface, with the slope fixed
by the initial condition. Accordingly, up to lattice effects, flat
interfaces in the 2d system do not evolve, independently of
the underlying lattice: This actually suggests that a proper
continuum limit of this lattice dynamics might emerge, as we
discuss in more detail in the next section.

C. Smooth domain walls on the continuum
and the semi-classical limit

We now explore how to modify the parameters of the
fermionic model discussed above in a way such that, after
reinstating the lattice spacing a, a nontrivial continuum limit
of the dynamics of the particle density, or of the corresponding

(Lipschitz) interface, is obtained as a — 0. In particular, in
Sec. IIIC 1, we derive the dynamics of the fermion density
and of the Lipschitz interfaces on the continuum, while in
Sec. I C 2, we provide a physical interpretation of this dy-
namics in terms of a semiclassical picture.

1. Dynamics on the continuum

We begin by noting that Eq. (24) can also be rewritten in
an integral form as

) = [ dy p w0, (29)
where we introduced the initial density

P =Y 8y —x). (30)
k

To discuss the continuum limit of the these expressions, it is
convenient to introduce an absolute value in the index of the
Bessel function in Eq. (29), owing the symmetry in Eq. (B3):
Jf_x — Jﬁv—xr The above expressions are valid in full gener-
ality, for any Lipschitz initial state on the lattice, completely
specified by p(y). In taking the continuum limit as we will
describe below, this comblike function eventually turns into a
smooth function, which is obtained by properly rescaling the
coordinates with the lattice spacing.

The continuum limit is expected to provide accurate pre-
dictions at large distances and long times if, correspondingly,
the typical amplitude ¢ of the Bloch oscillations given by
Eq. (26) (in units of the lattice spacing @) becomes large on
the lattice scale, but attains a finite value when measured in
actual units, i.e., if £a is finite as the formal continuum limit
a — 0 is taken. According to Eq. (26), this is obtained by
assuming h ~ a and therefore y ~ a—!, see the definition of
y after Eq. (19). Equivalently, the same goal can be achieved
by requiring that g ~ a~!. Moreover, as the dependence of the
relevant quantities such as (n(x, 7)) and (u(x,t)) on time ¢
is only via w; [Eq. (23)], which involves the product Az, a
nontrivial limit is obtained by considering long times, with
t ~a~ ' as a — 0, but such that 4¢ remains constant. In turn,
this implies that w; — w;/a in Eq. (29), see also Eq. (23).
The scaling & ~ a actually corresponds to effectively dimin-
ishing the strength of 4 with respect to g, making it easier for
fermions to move. In practice, it can be obtained by introduc-
ing a factor a in front of the linear potential in the Hamiltonian
(18). This can be understood, in an equivalent manner, as the
requirement that the external potential generated by a (finite)
constant field E must be proportional to the physical position
X := xa in the continuum: If V(X) = —EX = —Fax, where
x € Z labels the lattice site, then one readily recognizes that
h=FEa «x a.

Quite generically, it is possible to infer the continuum limit
of the density of fermions starting from Egs. (29) and (30). In
fact, after reinstating the lattice spacing a and introducing the
actual coordinate X as above (and analogously Y := ay), one
can write

av .,
(n(X, 1) = / QY SN YN CIY

Above, with a slight abuse of notation we use the same nota-
tion for the density on the continuum (n(X = ax, t)) and on
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the lattice (n(x, t)). Moreover, we introduced

pY) = aZS(Y —axy) = p(Y/a), (32)
k

which is the initial density of fermions in the actual coordi-
nates. As a — 0, the comblike function p(Y) attains a more
regular dependence on Y—with 0 < p(Y) < 1 due to the
fermionic nature of the particles on the chain—and we can
use Eq. (B17) to determine the continuum limit of the kernel
J&_xl. Then, Eq. (31) in the limit a — O can be written as

0(wr — |X —Y|)
w1 — X = Y2/}
/1 PG+ X

-0 +00
n(x.1) 3 / Y p(¥)

1 ¢ /1—22"
where 6(x) is the Heaviside step function: (x > 0) = 1 and
0(x < 0) =0. In Sec. [T C2 below, we provide an interpre-
tation of this expression in terms of the semiclassical limit of
the fermion dynamics.

It is worth noticing that the kernel 1/(w+/1 — z2), which
appears in the previous equation, is normalized to 1 in the
interval |z| < 1 in such a way that, for + = 0, one recovers
(n(X,t =0)) = p(X). From this expression, it is also appar-
ent that any initial condition of the fermions on the lattice,
which translates into a space-independent p on the continuum,
does not actually evolve in the continuum limit. This is the
case, for example, of the initial condition considered at the
end of Sec. III B, with x; = sk and s =1, 2, ..., for which
[see Eq. (32)]

(33)

p¥)=a Z 8(Y — ask). (34)

keZ

In the continuum limit, the sum above turns into an integral,

a—0

i.e., Zkez flak) —= a~! /dé f(&) and therefore
+00

déS(Y—sé):l

oo s

pY) — (35

By inserting this density on the continuum in Eq. (33),
one readily finds Eq. (28). Note that, while on the lattice we
considered integer values of s, in the continuum limit s can
take any value s > 1, which corresponds to having an initial
average density 1/s of fermions on the lattice.

The linear and translationally invariant structure of the re-
lationship between the initial fermion density (n(X, t = 0)) =
p(X) and its value (n(X,t)) at a later time carries over to
the corresponding average positions (u(X, ¢)) of the interface,
given that d(u(X, t))/dX = 2(n(X, t)) — 1. This can be seen
with an integration by parts after having expressed (n(X, 1))
as the derivative of (1 (X, ¢)) on both sides of Eq. (33). Ac-
cordingly, in the continuum,

1
oz + X)
(X, )= | di——F—,
-1 T/l — 22
where o(X) stands for the initial condition. Note that the
fermionic constraint on the possible values of p translates into
the request that |d(uo(X))/dX| < 1, as it is for a Lipschitz
function on the continuum. On the lattice, on the other hand,

(36)

even if there is a clear relation between the initial configura-
tion of the chain and of the interface (given by the mapping),
the linearity is not present because of the fermionic nature of
the particles. Indeed, while in the continuum, one can multiply
the particle density by a constant x as long as 0 < pp, kpp <
1, the same cannot be done locally on the lattice.

Due to the positivity of the kernel it is also rather straight-
forward to show that if the initial condition uo(X) is a
Lipschitz function with a certain constant, then the same ap-
plies to the evolved function ((X, ¢)). As anticipated above,
Eq. (36) clearly shows that any flat initial profile po(X) =
aX + Xy does not evolve in time (with a possible dynamics
occurring solely at the lattice scale).

More generally, if the variation of the intial interface g
occurs on a length scale £, much larger than w,, the function
wo(Y = zw; + X) on the right-hand side of Eq. (36), can be
expanded around Y = X (recall that |z| < 1) and one finds that

2
(L(X. 1) = po(X) + %%’(X)

4
£ 20000 + 0 ). (T

This implies, inter alia, that a locally quadratic portion of
the profile is simply shifted upward or downward depending
on the sign of its curvature.

As an explicit application of Eq. (36), consider the case
in which the initial interface is described on the contin-
uum by po(X) = Asin(kX), with |kA| < 1 for the Lipschitz
condition to hold. From Eq. (36), one readily infers that
(X, 1)) = Ado(kw,) sin(kX), i.e., the shape of the boundary
is not affected by the dynamics but its amplitude is periodi-
cally modulated. Generalizing this result, the linearity of the
relationship between p and p allows us to conclude that if
the initial profile has a spatial Fourier transform fip(k) on
the continuum, then u(X, t) has fi(k, t) = Jo(kw,)jto(k) as its
Fourier transform in X. This means that if the spatial average
of the interface height is initially finite, i.e., fio(k = 0) is fi-
nite, then this average is not affected by the dynamics because
pk =0,1) = fio(k = 0).

2. Semiclassical limit

Equation (33) allows one to predict on the continuum the
average fermion density (n(x, ¢)) in terms of its initial value
(n(x,t =0)) = p(X) for a — 0. Interestingly enough, the
same expression can be derived starting directly from a semi-
classical model for the evolution of the effective excitations at
the interface.

To see this more explicitly, consider the case of a single
fermion evolving with Eq. (18) and take the classical limit of
its Hamiltonian, which is given by (see, e.g., Ref. [54])

H(p, q) = —2gcos p + 2hg, (38)

in the phase space (¢, p) € Rx[0, 27), with g the coordinate
of the particle and p the conjugated momentum. Conse-
quently, the equations of motion are

q(t) = 0,7 = 2gsin p(t), 39)
p(t) = =0,5C = —2h, (40)
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FIG. 4. (a) Visual representation of the mapping introduced
Sec. III B, applied to the corner configuration. The squares high-
lighted in gray correspond to the “eroded area,” i.e., to spins
belonging to the corner which have been flipped from | = U to 1= M
due to the dynamics, forming a Young diagram. The interface 1 (x)
is highlighted in red. (b) An example of Young diagram with the
hook h([J) indicated for each of its elements [J. The hook of a box
[ is obtained by summing the number of boxes below it and to its
right (highlighted in red for a specific box in the figure), plus one
(corresponding to the box itself).

that lead to
p(t) = (=2ht + po) mod 27, 41)

q(t) = qo — 2h—gsin (ht)sin (ht — py), 42)

where gy and po indicate the initial values of g(¢) and p(z),
respectively.

Since we are dealing with noninteracting fermions, in the
classical analog we can consider a single particle located at
a certain position ¢go at time # = 0. As a consequence of the
uncertainty principle, the momentum py of the particle will
be distributed uniformly over the interval [0, 27), with a uni-
form probability density: P(pg) = 1/(27). Accordingly, at a
certain time ¢ the position g(¢) of the particle will have a distri-
bution centered around g, with an amplitude |2gsin(ht)/h| =
w;. The resulting distribution P(g(¢)) is obtained by inverting
Eq. (42), yielding

0(wr — 1q(t) — qol)
/1 —[g(t) — qol?/w}?

This is exactly the same kernel of Eq. (33), with the identi-
fication g9 — Y and ¢(¢) — X. The procedure just outlined
is very reminiscent of the hydrodynamics approach to free
fermions [55] which, however, uses the Wigner function to
extract the quantities of interest.

P(q(t)) = (43)

IV. INFINITE-COUPLING DYNAMICS
FOR AN INFINITE CORNER

In the previous section, we have studied two particular
cases—the striplike configuration and a Lipschitz interface—
for which the dynamical constraints emerging at infinite J
significantly simplify the evolution of the interface, which
then can be described in terms of an equivalent 1d model.
In this section, we specialize the generic case discussed in
Sec. III B, by considering an interface shaped as in Fig. 4(a),
which is composed of two straight lines (parallel to the lattice
directions) and a single, right-angled corner. This interface is

Lipschitz-continuous in the sense of Eq. (16), and therefore
the approach outlined in Sec. III B can be applied.

The case of a corner-shaped interface is particularly in-
structive, because of several connections to other fields of
physics and mathematics.

(1) Its evolution can be thought of as the quantum
counterpart of corner growth models studied in classical,
nonequilibrium statistical mechanics [50,56-59]. These mod-
els describe the process of erosion of crystals; the case
considered here extends the investigation of the melting phe-
nomenon to guantum crystals [60,61]. In fact, while a flat
interface (of the type considered in Sec. III B) can only fluc-
tuate around its initial position, the corner configuration can
be eroded indefinitely—if no other localization mechanism
is present, as we will discuss below (see also Ref. [28]).
However, in comparing the quantum to the classical case
one should bear in mind that, for the quantum model un-
der consideration, the addition/removal of a block from the
corner (i.e., a spin flip) is always a coherent process, while
in the classical problems the removed blocks “dephase”
in the liquid state before being possibly reattached to the
solid.

It is also interesting to notice the following feature.
According to the stochastic dynamics, which is usually im-
plemented for the classical Ising model (corresponding to
Eq. (1) with g = 0), the possible transitions between differ-
ent spin configurations occur with a rate which is biased by
exp(—AE/T) (in a specific way that depends on the algo-
rithm), where AE is the energy difference between the final
and the initial configuration and T the temperature of the
bath. This implies, as expected on physical ground, that at
zero temperature 7' = 0 the possible transitions are those with
AE < 0. Assuming that the stochastic dynamics proceeds via
randomly flipping single spins (as the coupling o g does in
the quantum case), this implies that the allowed classical spin
moves can be represented analogously to Eq. (7) as

() M= L L="1and Z 511 for the fully re-
versible transitions with AE =0 (or, more generally,
AE = o(J) for h = 0). These are the moves contained in
Eq. (7).

(2) J —1, its spatial 7 /2 rotations, and O —. These
moves, occurring as indicated by the arrows, are not re-
versible and correspond to AE < 0, with AE = O(J).
Moves of type (b) are not present in Eq. (7). However, it

is easy to realize that, when considering an initial state with
an interface in the form of a corner or, more generally of a
Lipschitz function, these moves as well as the third type of
moves in (a) are inconsequential, making the classical and
the quantum dynamics actually explore the same set of con-
figurations. In a heuristics sense, they share the same Krylov
space of configurations in the o* basis. As a consequence, the
mapping discussed in Sec. III B and in Fig. 3 for the quan-
tum interface can be applied also to the classical interface.
This was done, e.g., in Refs. [59,62-64]. The corresponding
classical model is characterized by the classical equivalent of
the fermionic statistics, i.e., by the constraint of exclusion in
the occupation number of each lattice site which can be at
most one, making it belonging to the general class of simple
exclusion processes (SEPs) [50,51,58]. In the absence of the
external field 2 = 0, the only allowed transitions starting from
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a corner [see Fig. 4(a) for the conventions] are \ — N and

its reversed 7 — \, corresponding to flipping a spin inside a
corner from its two possible initial states. Such moves have the
same rate, and therefore each classical particle in 1d attempts
jumps to the left or to the right empty neighboring sites with
the same rate, resulting in the so-called symmetric simple
exclusion process (SSEP). Due to the intrinsic (unbiased)
diffusive nature of ther dynamics, the growth of the interface
turns out to be diffusive, while it is ballistic in the quantum
case, as discussed further below. For i # 0, on the other hand,
the transition ., — 7 and its reversed " — \ occur with
different rates, depending on the sign and magnitude of //T .
In particular, for 7 = 0 it turns out that the only allowed
moves are > — ~ forh < 0and~, — > for h > 0. This
corresponds to the classical particle jumping only towards the
empty neighboring site to the left or to the right depending on
having 2 > O or < 0, i.e., to the so-called totally asymmetric
simple exclusion process (TASEP). This model turns out to
displays generically a ballistic growth (see, e.g., Ref. [59]),
while the quantum dynamics is actually localized for # # 0. In
addition, also the resulting limit shape is different: We discuss
this aspect in more detail further below in this section.

(2) Each configuration which is dynamically connected
to the corner corresponds to a Young diagram, as detailed
in Sec. IV D. In particular, we will show an interesting con-
nection between two seemingly unrelated measures on Young
diagrams: The probability density of the quantum-fluctuating
interface, which naturally emerges in the context of the 2d
Ising model, and the Plancherel measure, commonly studied
in representation theory [65-71].

(3) Lastly, it is worth mentioning that the case of a Lip-
schitz interface, and in particular of a corner, the mapping to
free fermions points to an explicit form of holography: A two-
dimensional quantum problem in the strong-coupling limit is
mapped to a free, simpler problem in one less spatial dimen-
sion. This is reminiscent of the AdS/CFT duality [72-74]:
The interface in the Ising model is the string in two spatial
dimensions (plus time as an additional coordinate), while the
noninteracting fermions on the chain are the dual field theory.
When the string tension J is large, the corresponding field the-
ory is free. When the string tension decreases, the field theory
becomes interacting and, in our case, no longer integrable.

However, in order to discuss the melting of a bubble and
not of a simple corner, one has necessarily to introduce a more
complicated theory of fermions, possibly with many species.
It worth noticing that going back further in time, one finds
other connections between the Ising model and string theory,
for instance the conjecture that the 3d Ising model should be
dual to a weakly-coupled string theory [75,76] (for a recent
discussion see Ref. [77]), although that is supposed to hold
only at the critical point.

Before passing on, we finally notice that the initial condi-
tion for the 2d Ising model discussed in this section actually
corresponds to a single domain wall on the fermionic chain,
which separates the filled part of the chain from the empty
one. Let us emphasize that, for & # 0, this initial configuration
is close to the boundary of the spectrum of the Hamiltonian
within the Krylov sector it belongs to. Indeed, such configu-
ration maximizes (or minimizes, depending on the sign of /)

the expectation value of the Hamiltonian, being the state of
maximal area of its Krylov sector. While in the limit J = oo
this observation in marginal, as the system is integrable (thus
any initial configuration leads to a nonergodic behavior), it
becomes relevant at finite J, where the behavior of states at
the middle of the spectrum can be also qualitatively different
from the ones at the edges. This observation will be relevant
in Secs. V B and V C when discussing the finite-J corrections.

A. Average of the interface and its continuum limit

In the language of Sec. III B, the corner-shaped initial state
corresponds on the fermionic chain to

(W) = [ [ w10, (44)

x>0

with a domain wall separating the empty half-chain for x < 0
from the completely filled one at x > 1. In the language of
electronics, this would be called a “maximum voltage bias”
Fermi sea. By applying the approach previously illustrated [in
particular Eq. (24)], one easily finds that the average density
profile on the chain is given by

(n(x, 1) =Y JHwr). (45)

y<x

Summing over space [see Eq. (17)], one obtains the aver-
age interface profile

(e, 1)) =2 (x = (@) —x, (46)

y<x

which, as anticipated, displays periodic oscillations with pe-
riod 7 /|h| at each position x.

As discussed in Sec. III C, in order to determine the contin-
uum limit of Egs. (45) and (46) it is then sufficient to replace
y by y/a and therefore w; by w;/a in Egs. (45) and (46),
after reinstating the lattice spacing a. Then the limit a — 0
can be determined as explained in Sec. IIIC. Alternatively,
one can specialize the general prediction in Eq. (33) to the
corner considered above, which corresponds to having, in the
continuum,

+00
p(Y) =a) (Y —ak)
k=0
40 +00
— d§ sy —§)=06(), (47
0
i.e., a homogeneous spatial density of fermions equal to 1
for Y > 0 and an empty lattice for Y < 0. A straightforward
integration leads to

0 for X < —uwy,
(nX, 1)) = % + %arcsin(X/a),) for |X| <w;, (48)
1 for X > wy,

which, for & = 0, agrees with the prediction of Ref. [78] for
free fermions. Integrating over X, one finds

(X, 1) = o QX/wy), (49)
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with
Q) = [v] for |v| > 1,
v = %(«/1 —vZ +varcsinv) for

Alternatively, this expression can be derived directly from
Eq. (36), by using uo(X) = [260(X) — 1]X as the initial con-
dition.

Equations (49) and (50) can be easily generalized to the
case of a Lipschitz corner in which, however, the slopes of the
interface in its two sides are not the same. On the lattice, this
corresponds to having a certain average density of fermions
on the left of the origin and a different one on its right. In fact,
consider an initial profile which is linear for both X < 0 and
X > 0, but with two different slopes «_ and «, respectively,
and that fulfils uo(X = 0) = 0. Such a profile must take the
form

(50)

lv] < 1.

po(X) = [a_0(=X) + a; . 6(X)]X. D

The right-angled corner considered above corresponds to
ay = £1. With this ¢o(X), Eq. (36) implies that

(WX, 1)) = 2T

x4+ & ;“‘ 0 QX/w),  (52)

where Q(v) is given by Eq. (50). In fact, this expression
simply follows from the linearity of the equation and from
the result reported above for the right-angled corner.

Remarkably, the function Q2(v) in Eq. (50) first appeared
in the context of random Young diagrams [65-67]; we will
elaborate more on this point in Sec. IV D. Here, instead, we
comment on the connection between the dynamics studied
above and the classical melting processes which were men-
tioned at point 1. of the introduction to this section. In fact, in
the cases of the SSEP or the TASEP, the stochastic dynamics
starting from a completely filled half-line—corresponding to
the dynamics at zero temperature of a corner in the Ising
model—can be solved, obtaining the large-time behavior of
the density of particles (briefly reported in Appendix D). As
anticipated at the beginning of this section, the SSEP is, in
a sense, the classical analog of the quantum dynamics with
h = 0, while the TASEP of the dynamics with 4 # 0. It turns
out, however, that the scaling functions describing the ero-
sion of the corner (which occurs diffusively for SSEP and
ballistically for TASEP), via the same mapping described in
Sec. III B, have a different functional form compared to 2
of Eq. (50) (see Appendix D). This fact highlights how the
quantum and classical dynamics turn out to be quantitatively
and qualitatively different in spite of their many similarities.
In Sec. IV D, we will discuss how this difference emerges also
in terms of concentration of probability measures, showing
that a simple entropic argument concerning the accessible
configurations is not sufficient for explaining the limiting
shapes of the interfaces, but that, as expected, also the classical
or quantum nature of the underlying microscopic dynamics
matters.

B. Fluctuations of the interface

The approach described in the previous section allows
one to determine not only the average position of the
quantum-fluctuating interface, but also its fluctuations. While

(a) —— t=0
—— =T/10
— =TJ5

—— ¢ =3T/10
—— t=2T/5
t=1/2

(ul, 1))

0.0 0.5 1.0 1.5 2.0

FIG. 5. Fluctuations of the interface profile, quantified via
(u?(x,1))¢, starting from the infinite corner at r = 0. (a) Space
dependence of (u*(x,1))¢ for various values of the time ¢ within a
half period. Because of the presence of the linear external poten-
tial also the fluctuations of the interface periodically return to the
original value. (b) Time dependence of the average interface position
(m(x,1)) (solid line) and of the corresponding fluctuations (shaded
area), for two different values of the position.

presenting the complete calculation in Appendix C, we report
here the final result for the connected two-point function of
the density:

(nCx, O, D) = 8uy Y I (@) = B2 (x,ys ), (53)
i>0
where we introduced the Bessel kernel
Ji1 (w)-]v(a)) - Jx(a))-]y—l ()

B, y;w) :=w (54)
g 20 —y)
Note that, for x = y, Eq. (53) straightforwardly reduces to
(n*(x, ))c = (n(x, D)1 = (n(x, )], (35

which is actually expected for fermionic particles. Summing
over x and y in Eq. (53)—thus applying the prescription
of Eq. (17)—leads to the connected 2-point function of the
interface profile (u(x, £)u(y, t))c [Eq. (C8)]. In Fig. 5, we
show the fluctuations of the interface profile: In panel (a), we
present the value of (u?(x, t))¢ as a function of position for
different times, while in panel (b), we plot, for two values of x
along the chain, the average position of the interface with the
corresponding fluctuations, over two periods of oscillation.
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S(z,y) |[|wt

wi

FIG. 6. (a) Light-cone structure induced by the presence of the
Bessel kernel, see Eqgs. (53) and (54). The red line represents the
position of the light cone x = |w;|. Inside the light cone, the Bessel
functions oscillate with a nonzero average value. It is within this
region, in the continuum limit, that the Bessel kernel reduces to the
sine kernel of Eq. (56). Outside the light cone, instead, the Bessel
functions decay exponentially upon moving away from it, and in the
continuum limit they approximately vanish. Therefore, if both x and
y are inside the light cone, i.e., in the gray area, the Bessel kernel has
a nonvanishing value. If at least one of the two points is outside the
light-cone, the Bessel kernel approximately vanishes. (b) Correlation
matrix [see Eq. (58)] in the continuum limit. As discussed in the text,
in this regime C,, can be set to zero outside the light cone, while
inside the light cone the Bessel kernel (x, y; @, ) can be replaced by
the sine kernel S(x, y).

It is instructive to discuss the continuum limit also for the
fluctuations of the shape p. As they involve the Bessel kernel
in Eq. (54), they are related to the universal fluctuations found,
e.g., in Laguerre and Jacobi ensembles of random matrices
[79] (see also Ref. [80]), and of random representations of
the symmetric group [69]. In particular, the presence of the
Bessel functions implies a light-cone structure for the cor-
relations, see Fig. 6(a): If either |x| > w, or |y| > w, the
correlations are exponentially suppressed [as follows from
the large-index asymptotic behavior of the Bessel function
discussed in Eq. (B13)]. If, instead, both x, y < w;, then by
virtue of the large-argument asymptotics of the Bessel func-
tions presented in Eq. (B14), the kernel reduces to the sine
kernel

SGe.y) = sin (7 (x y)/Z)' (56)

T(x—y)

The sine kernel is found in numerous contexts in physics and
mathematics, among which gaussian ensembles of random
matrices [81], and free fermionic chains without a linear po-
tential [82]. Notice that, in passing from the Bessel kernel to
the sine kernel, the explicit dependence on w, has been lost in
the expression for the correlations, while it remains implicit
in the maximum value attained by x or y (i.e., the border of
the light cone), see Fig. 6(b). Finally, let us mention that a less
trivial limit emerges in a region of order a),l /3 around the light
cone, where by means of a uniform expansion [Egs. (B15) and
(B16)] the Bessel kernel reduces to the celebrated Airy kernel
[83,84].

Despite all the connections mentioned above, we need
to emphasize that in this quantum setting the fluctuations

are given by the square of the Bessel kernel, see Eq. (53):
Accordingly, they are quantitatively different from the cases
mentioned above, which involve the kernels at their linear
order.

C. Entanglement dynamics

The “holographic” description of the interface in terms
of an integrable 1d model (i.e., noninteracting fermions in a
linear potential) allows one to extract much more information
beyond averages and correlations, using the vast amount of
analytical techniques developed in recent years [85-88]. For
instance, one can compute the so-called full counting statis-
tics, i.e., the probability distribution of the fermions, with the
techniques of Ref. [89]. In fact, it turns out that the predictions
of Ref. [89] for the case h = O carry over to our case & 7= 0
just by replacing t — w,/(2g); this “minimal” substitution is
motivated by the fact that in the analytical expressions dis-
cussed in Sec. III B the time dependence occurred only via w,
defined in Eq. (23), which encompasses both cases. Similarly,
the growth of the entanglement across a bipartition of the
lattice can be studied by using the results available for the 1d
problem [90]. In particular, one has to partition the 2d lattice
in two halves by means of a “vertical” line [e.g., through the
corner, corresponding to the time axis in Fig. 6(a)], so that,
on the chain, one has well defined subsystems. At this point,
the entanglement of the 2d and the 1d problems are equal, as
there is a one-to-one mapping linking all possible states in the
two settings. The entanglement between the two subsystems
can be computed as detailed in Ref. [90]: From the eigenval-
ues ¢;(t) of the correlation matrix C,,(¢) := (I//;(I)I//y(t)), the
entanglement entropy is obtained as

Sen(®) ==Y _[GIng+ (1 —g)In(1 =) (57)

=0

The correlation matrix can be calculated explicitly, by using
the properties of the Bessel functions which were used for
calculating the average magnetization, with the result that

Coy(t) = dGHIODB(x v ), (58)

B being the Bessel kernel of Eq. (54). If one computes the
entanglement entropy between two subsystems A and B, sep-
arated by a vertical line in the 2d problem, the indices of the
correlation matrix C,, are such that x, y € A (or B equiva-
lently). For a bipartition located in 0, one has x, y > 0. Let
us notice that the phase factor in the last equation does not
affect the entanglement entropy; in fact, it can be removed
via a unitary transformation. Accordingly, it is clear that the
correlation matrix Cy,(t) [and thus Sen(¢)] is a periodic func-
tion of time with period |h|/m, as its time dependence is only
through w;. Even if, to our knowledge, the eigenvalues of the
correlation matrix of Eq. (58) cannot be obtained analytically,
some analytical progress can be made in the continuum limit
[91,92]. Let us introduce the entanglement Hamiltonian #4
such that

pa = Kae M1, (59)

being p4 the reduced density matrix of a subsystem A, and
K4 a normalization constant. With this definition, one finds
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“ 0.4 — h=0ld )
! ~-- GHD, h=0.1 \
021 ¥ — h=05 \
~-- GHD, h =05
0.0 : : : :

0.0 0.2 0.4 0.6 0.8 1.0
t/T

FIG. 7. The plot shows the time dependence of the entanglement
entropy for two different values of the external field &, over one
period T = m /h, with g = 1. The solid lines represent the entangle-
ment entropy computed via diagonalization of the correlation matrix,
according to Eq. (5§7). In both cases, the diagonalization has been
performed on a chain of length L =100 > ¢ = g/h. The dashed
lines represent the prediction given by GHD, reported in Eq. (63).
One can clearly see that, for smaller values of £, i.e., closer to the
continuum limit, the agreement between numerical diagonalization
and GHD improves.

[91,93,94]

HAzln(l_CA), (60)

where C, is here the correlation matrix restricted to positions
belonging to the considered subsystem A. This means that H,4
and Cy4 are diagonal in the same basis, and the corresponding
eigenvalues satisfy the relation in Eq. (60).

As discussed also in Sec. IV B, the Bessel kernel reduces
to the sine kernel in the continuum limit inside the light cone.
In this regime one can thus approximate the correlation matrix
C,y by setting to zero the entries with x, y 2 w, and therefore
one is left with an effective matrix of size w; x @y, as depicted
in Fig. 6(b). Thanks to this approximation, one can obtain the
eigenvalues €, of 7,4 as [82,91]

2

(1) = iz 2k + 1), (61)

In w;

with k =0, 1, 2,.... Denoting by ¢ the eigenvalues of C,,
one has from Eq. (60)

1
e+ 1

Gk = (62)

Note, however, that the asymptotic value Eq. (61) needs
a very large w, to be accurate. For smaller values of wy,
the eigenvalues vary as 1/(Inw; 4 by) rather than 1/1nwy,
where by are constants depending on the specific eigenvalue
[91]. The evolution of the entanglement entropy can now be
determined by using Egs. (62) and (61) in Eq. (57). In Fig. 7,
we show the numerical evaluation of the time evolution of
the entanglement entropy, according to Eq. (57), for various
values of h. The presence of a nonvanishing external field
implies that also the entanglement entropy is periodic in time.

We have shown how the mapping of the original 2d prob-
lem onto a 1d chain can be used in order to calculate the
half-system entanglement entropy. However, the computation
was possible only because of a convenient choice of the bipar-
tition of the 2d lattice (i.e., a vertical one in the rotated frame):
More general bipartitions of the 2d lattice would instead map
nonlocally on the chain. It seems that computing the entangle-
ment of the 2d system using the mapping into 1d is viable as
long as the cut along which the entanglement is computed is
parallel to the projection performed in the mapping itself.

As a final point of this section, it is worth noticing that
the above results, valid in general on the lattice for arbitrary
values of the couplings g and 4, reduce, in the continuum limit
h < g, to the predictions of conformal field theory in curved
space [95,96] or quantum generalized hydrodynamics (GHD)
[55]. The entanglement entropy is in fact given by

1 2\
S(x,t) = 3 In a),(l — —2> + c, (63)
Wy

where ¢ >~ 0.475 and x is the position of the bipartition.
Equation (63) is clearly valid for |x| < w;; otherwise, the en-
tanglement entropy is zero because of the light-cone structure.
In Fig. 7, we also compare the prediction given by Eq. (63)
with the results of the exact diagonalization on the lattice,
showing that a good agreement is attained for small values
of h, as expected. This relation was derived in Ref. [55] for
h = 0; the general case is obtained by means of the minimal
substitution 2g|t| — «;, coming from Eq. (23). In passing
we mention that the GHD formalism allows one to predict
the dynamics of one-dimensional integrable quantum systems
directly in the continuum limit, even when the system is in-
teracting; this is the reason why one needs the limit 4 < g to
match the GHD prediction.

D. Connection with the asymptotics of the Plancherel measure

As pointed out at the beginning of Sec. IV, the states in
the Krylov sector connected with the infinite corner are in
one-to-one correspondence with Young diagrams (also known
as Ferrers diagrams). By definition, a Young diagram is a
collection of boxes, arranged in a sequence of left-justified
rows of nonincreasing length [97]. Young diagrams are a
graphical tool commonly used to represent integer partitions,
to compute dimensions of group representations, and for many
other mathematical purposes [97].

In order to discuss the connection with the present work, let
us recall here some basic facts concerning Young diagrams.
A partition A = (A =2 Xy = -+ 2 A, 2 0) of an integer N
indicates a possible decomposition of N as a sum of n positive
integers, i.e.,

A=) =N (64)
k=1

Representing each integer A as a string of A; adjacent boxes
0O - - - O, one can easily see that a partition corresponds to a
Young diagram, obtained by stacking all the n strings, starting
from the first. A theorem [97] states that the irreducible repre-
sentations of the symmetric group Sy of degree N are labeled
by the possible partitions A of size |A| = N. Moreover, the
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dimension of the representation corresponding to a certain A
can be obtained via the hook length formula

Al
[Toe b@)

where h([J) is the so-called hook of the square [ [97], an
integer number determined as explained in Fig. 4(b).

For our purposes, the most interesting interpretation of
dim(A) resides in the fact that it gives the number of ways
in which the diagram X can be constructed, starting from the
empty diagram, by adding one square at a time in such a
way that at each step one still has a partition [98]. In the
mathematical literature, it is common to define the Plancherel
measure on the set of partitions as [65-69]

: 2
HP(A);zzlgﬂfﬁﬁlln (66)
|A[!
which is proved to be a normalized measure, i.e., a probability
[99].

An important result of combinatorics is that the Plancherel
measure up concentrates at large N, i.e., it becomes a delta
function on a particular set of diagrams [65-69]. The diagrams
belonging to this set have approximately the same shape;
more precisely, after a 37 /4 counterclockwise rotation of the
diagrams [such that they are finally arranged as in Fig. 4(a)]
their shape is actually described by the function vNQ(x/~/N)
with Q(v) given in Eq. (50). It is thus quite surprising to
find another, completely different growth process that leads
to the same limiting shape as the one induced by the quantum
dynamics of the 2d Ising model.

While we could not devise a mathematically rigorous
proof, we heuristically understand the above correspondence
as follows. Recalling that dim(X) gives the number of paths
that reach the diagram XA from the empty one, always re-
maining within the set of Young diagrams, we notice that the
Plancherel measure pup weights each diagram with the square
of the number of paths. On the other hand, one can consider
the Green’s function

dim(») = (65)

1

G(A’,A;E):()J|E_H
8

12), (67)

where we denoted with H, the Hamiltonian Hpxp in Eq. (7),
making explicit the dependence on g, and A and A’ are two
Young diagrams. Performing the locator expansion of the
resolvent [28,100-102]

Ipl

S 1 8
G )&, )\,/; E = )
¢ =R VETE o HE—EW
PpeP(I ) k=1
(68)

where P(1/, 1) denotes the set of paths in configuration space
from A" to A, |p| is the length of the path p and we introduced
the notation Hy—o|A') = Ex|1’), i.e., E, denotes the energy
of |A) in the absence of hopping (g = 0). In the spirit of the
forward approximation [28,101,102], one can approximate the
sum in Eq. (68) by reducing P(1/, A) to SP(X/, 1), i.e., the set
of shortest paths from A’ to A. This corresponds to work at
the lowest order in the hopping g. Under this assumption, the
argument of the sum does no longer depend on the specific
path, but only on its length d(1, 1), because all the diagrams

with a fixed number of blocks, viz. at the same distance form
the empty diagram, have the same energy E, = —h|A|, see
Eq. (7). This means that the sum gives the number of shortest
paths from A’ to A (with A # A/, otherwise it gives zero).
Specializing Eq. (68) to the case of the path from the empty
diagram ' = 0 (with E;.—p = 0) to A ( 0), one finds

. d(0,%)
dim(A) g
GA,O,FE) =
( ) E /1:[1 E + hk

: [A]
_ dim(}) <§> rd+E/h) ’ 69)
E h) TAA+E/h+|A])

where, in the second line, we used the fact that (0, 1) = |A|.
Taking the residue of this propagator at E = 0, one finds the
expression of the corresponding eigenfunction

_dim) g\
YE=0(X) = B <ﬁ> . (70)

Accordingly, the probability [/z—o(A)|?> of being in the state
|A) turns out to be proportional to [dim(A)]>—i.e., to the
square of the number of paths leading to it, according to
the interpretation of dim())—and therefore to the Plancharel
measure up(A) in Eq. (66). This motivates the connection
between the quantum dynamics and the Plancherel measure
concentration.

Before passing to the next section, it is interesting to note
that the forward approximation also gives the correct result
for the decay of the eigenfunctions upon increasing |A|. To
see this, one must plug in Eq. (70) the value of dim(1), which
clearly depends on the specific form of the diagram associated
with the state |A). Referring for details to Ref. [67], we just
say here that it is possible to provide an upper (respectively
lower) bound to the maximal (respectively typical) value of
dim(A): In both cases, the leading term scales as /[A]!. Using
Eq. (70), one gets that the eigenfunctions approach zero faster
than exponentially upon increasing ||, because of the overall
factor 1/+/]A]!. This estimate is in agreement with the exact
result of Eq. (19), since the Bessel functions decay as the
inverse factorial of the (large) index, see Eq. (B13).

V. MECHANISMS OF INTEGRABILITY BREAKING

In the previous sections, we showed that the Hilbert space
of the 2d Ising model in the infinite-coupling limit J — oo
shatters in many disconnected Krylov sectors. Among these
sectors, those corresponding to the wide class of interfaces
discussed in Sec. III B can be mapped onto a 1d model which
turns out to be integrable. In this section we discuss the dy-
namics of the interface beyond integrability and the robustness
of the qualitative features of the exact solution, presenting in
detail what was briefly anticipated in Ref. [16] by us.

In Sec. VA, we argue that the interfaces which do not
satisfy the Lipschitz condition of Eq. (16) may have a very
different dynamical behavior compared to the one described
so far, because they can break into disconnected pieces. This
is done by considering the case of an interface which is locally
Lipschitz, but which it is not the graph of a function u at a
larger scale. In Sec. V B, we consider, instead, another possi-
ble source of integrability breaking: The presence of a finite,
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albeit still large, coupling J. Specifically, we will discuss the
O(J~") corrections to the infinite-coupling Hamiltonian (3)
and address the ergodicity of the resulting model. In Sec. V C,
we discuss, using both analytical and numerical techniques,
why the O(J~!) corrections to the infinite-coupling Hamilto-
nian lead to a localization phenomenon, named Stark MBL,
induced by the presence of the longitudinal field 4. Finally,
in Sec. VD, we compare our results for the time evolution
of a domain on the lattice with the equivalent problem in the
continuum, studied in the context of the false vacuum decay
scenario, highlighting qualitative differences.

A. Finite bubbles

Throughout Secs. III B to IV D, we assumed the presence
of a single interface, separating the 24 lattice in two infinitely
extended domains. It is then natural to investigate the extent
to which the predictions derived therein carry over to finite
domains. The easiest and natural case to be considered is
that of a single, large bubble of “down” spins, surrounded by
“up” spins (or vice versa). Let us also introduce the notion of
convexity on the lattice: We will say that a domain is convex
if any line parallel to the lattice axes joining two points in
the domain lies entirely within the domain itself. As already
noted in Refs. [16,18], all convex bubbles are dynamically
connected with the minimal rectangle (with sides parallel to
the lattice axes) that contains them, i.e., they belong to the
Krylov sector generated by this rectangle. Moreover, because
of the perimeter constraint, the domain-wall dynamics is al-
ways confined within such a rectangle. Accordingly, we can
directly assume that the shape of the bubble at the initial time
t = 0O is arectangle, as all the other cases will follow from this
one.

The early-stage dynamics of such a rectangular bubble can
be predicted on the basis of the previous analysis. In fact, the
sides of the bubble are immobile, since no spin can be flipped
without modifying the perimeter, while the corners start to be
eroded, as discussed in Sec. IV. However, the evolution will
deviate from that of an infinite and isolated corner as soon as
two adjacent corners will start “feeling” the presence of the
other. The timescale at which this happens can be be bounded
from below by computing, in the fermionic language, the
probability of finding two fermions, each coming from a dif-
ferent isolated corner, halfway along the flat portion of the
interface which connects these two corners.

Let us denote by L the length of the shortest side of the rect-
angular, finite bubble. There are now two possible cases. If the
longitudinal field 4 = O or, more generally, % is small enough
for the Bloch oscillations to have an amplitude ¢ >~ |g/h|
[Eq. (26)] larger than the distance L/2, then the excitations
propagate ballistically on the chain with speed 2g [Eq. (49)],
and they meet at L/2 after a time

L
Tcomer(h = O) ~ . (71)
48

If, instead, h is nonzero and large enough to confine the
dynamics in a region smaller than L/2, one can estimate the
probability P(x,t) of having a fermion at a distance x < 0
from the corner (equivalently, a hole at distance x > 0) with
P(x,t) =1 — (n(x,1)). On the maxima of the oscillations

of the corresponding interface,’ attained at times t* such

that w,» = 2y [Egs. (23) and (49)], one finds (n(x,t*)) =
D ex Jy2 (2y), cf. Eq. (45), and consequently

P(L/2,t") = Y JQ2p). (72)

y=L/2

Recalling that the Bessel functions of large order decay
exponentially fast to zero, one can approximate [see also
Eq. (B13)]

PL/2.%) ~ 12,2y ~ —— (28 ' (73)
I =T\ T )

With this result, the typical time after which two fermions,
coming from different corners, interact can be estimated as
Teomer(h £ 0) ~ 1 /P2 (L/2,t*) or, more explicitly,6

1
Teomer (R ?é 0) ~ g €2L InL-2L ln(Zeg/h)' (74)

One can see that, in the case & ## 0, a time which is more
than exponentially large in the bubble size L must pass, before
integrability breaking starts to be manifest.

It is natural to wonder what happens to the bubble af-
ter this timescale. Based on elementary reasoning, one can
argue that two kinds of processes may take place: (a) The
excitations coming from one corner may start to affect the
dynamics of adjacent corners, transferring energy between
corners and deteriorating the perfect coherence of the single-
corner oscillations; (b) the interface may break because of
the detachment of isolated bubbles of flipped spins caused by
the interface-splitting transitions | =) {l || + H.c. of Eq. (7). We
note, however, that these detached parts can move away from
the parent interface only via g>/J processes. A detailed study
of this challenging problem is left for future investigations.

We conclude by emphasising that the case of two adja-
cent corners we have considered here actually applies to any
very large bubble, provided that its boundaries are “smooth”
enough—i.e., that the Lipschitz condition is locally satisfied
while the points responsible for its global violation are very
dilute. If, instead, the initial interface is rather corrugated,
i.e., it is not the graph of a function u(x) even locally, then
we expect a really complicate time evolution, during which
all accessible configurations may be explored, and the single-
interface description is no longer possible.

SA very similar result is obtained if taking the average over a
period, rather than the maximum of the oscillations.

5This result can be obtained using Fermi’s golden rule. In par-
ticular, the interaction rate for two fermions coming from different
corners is proportional to the probability of having both fermions
at half chain. Being fermions of different species, they interact only
at the scattering point and therefore such probability is the product
of the single fermion probability of being at distance L/2 from the
corner. Consequently, taking the inverse of the rate, one obtains

Tcorner .
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B. Finite coupling

We now relax the assumption that J be strictly infinite,
considering the effects of the corrections o< 1/J, but still under
the assumption that J > |h|, g.

A large but finite J still imposes an effective dynamical
constraint, valid up to a timescale which become exponen-
tially long upon increasing J: This follows from the rigorous
prethermalization bounds of Ref. [103]. Specifically, the
perturbatively “dressed” version of the domain-wall length
operator D [defined in Eq. (2)], arising from the Schrieffer-
Wolff transformation, is accurately conserved for a long time
that scales (at least) exponentially:

cJ ] (75)

C
Toretn = Ty = — €Xp | ——————
preth = Lpreth g p max(g, |h|)

(here c and C are numerical constants independent of J, g, and
h). This is because the Schrieffer-Wolff effective Hamiltonian
Het = Hpxp + (1/0)(- ) + (1/J%)(---) + - - -, computed up
to a suitable optimal perturbative order, commutes with D in
Eq. (2) up to an exponentially small error [103]. In addition,
the evolution of all local observables is well approximated by
Heff for ¢ < Tpreth [103]

As anticipated above, the zeroth order of the Schrieffer-
Wolff effective Hamiltonian H.i was already determined in
Sec. II B and is given by Eq. (3). Computing higher-order cor-
rections to H.g becomes rapidly very complex, as the number
of terms increases more than exponentially. In Appendix E 1,
we sketch the computation of the first-order corrections in
1/J, while in Appendix E2, we specialize it to the dynam-
ical sector of a smooth interface, of the type defined in
Sec. I B. In this sector, the perturbative corrections takes
a simpler form. The construction above can be translated in
the fermionic representation. The Schrieffer-Wolff effective
Hamiltonian

He = HY +H" + 0U7?), (76)

has the zeroth-order contribution H, }O) given by Eq. (18), while
the first-order corrections turn out to be

Hél) = —g Z(W;‘ﬁxﬂ + H.c.)

+ % Z(zijjﬂlflwlv&n +H.c.

— 3y V) (77)

One may recognize that they entail next-nearest-neighbor
hoppings and density-density interactions. One can notice also
that the density-density interactions, which are diagonal in the
occupation number basis, do not depend on /. Consequently,
the addition of the first-order corrections breaks the h — —h
symmetry: Changing the sign of 4 modifies the expectation
value of the energy. The terms in Hél) are rather generic, and
therefore one naturally expects them to break the integrability
of the model, and make it thermalize rather quickly. However,
as we anticipated in Ref. [16], if & is sufficiently large the
perturbation is not able to restore ergodicity. In the next sec-
tion we describe this phenomenon in detail.

Let us briefly mention that, upon including the O(J~')
corrections, an isolated flipped spin can spread in the 2d
lattice with a hopping amplitude o g?/J. This means that it
is no longer possible to provide an effective 1d description
even for initial configurations of the striplike form, discussed
in Sec. Il A for J = oo.

Before continuing, it is important to emphasize a funda-
mental issue with the Schrieffer-Wolff transformation. For
large but finite J, the dynamics of the initial product states
considered so far in the form of the classical configurations
will exhibit vacuum fluctuations even away from the existing
domain walls. This is due to the perturbative dressing of the
bare ferromagnetic state by virtual spin excitations. In prac-
tice, this arises from the application of the Schrieffer-Wolff
unitary transformation exp(iS,), cf. Eq. (E8), to the fully po-
larized initial product state. Accordingly, for such initial states
one should think of the ferromagnetic vacua (i.e., those on the
two sides of an infinite interface or the inner and outer regions
of a bubble) as superpositions of dilute spin flip excitations, of
spatial density ~(g/J)?. Such excitations can be described as
magnons, hopping on the 24 lattice with amplitude o g>/J. In
principle, this dilute magnon gas contributes to the dynamics
of the interface, but in the following we will ignore this fact,
leaving its discussion to future investigations. This choice
actually corresponds to taking as the initial state an interface
in the the Schrieffer-Wolff transformed basis, rather than in the
classical one discussed so far.

C. Arguments in favour of Stark many-body localization

The goal of this section is to study the evolution induced
by the Hamiltonian (76). The first term in Eq. (76) is the
Hamiltonian Hr considered already in Secs. III B and IV: It
represents a chain of Stark-Wannier-localized, noninteracting
fermions. The second term, i.e., prl) of Eq. (77), is a small
perturbation containing both next-nearest-neighbor hoppings
and two-body interactions. Accordingly, there is a competition
between the localized nature of the dynamics induced by H }0)

and the interactions in H}l), which are generally expected to
drive the system towards a thermal phase. Previous works
[19,20,104] have shown that, for interacting Hamiltonians
very similar to Eq. (76), an extended nonthermal phase is
present for sufficiently strong field A, partly in analogy to
what happens in the disorder-induced many-body localization
(MBL). Indeed, the phenomenon has been dubbed Stark MBL.

In order to quantify the competition between interactions
and the linear potential responsible for the localization, we de-
veloped an analytical argument a la Basko-Aleiner-Altshuler
(BAA) [21] which goes as follows. Start from the integrable
limit J = 4o00: The eigenfunctions are expressed in terms of
the single-particle orbitals of Eq. (19) and are all spatially
localized. Their localization length & can be quantified by the
participation ratio: Using Eq. (19) and Neumann’s addition
theorem (see Appendix B),

£ = Z];‘(y) = l /n dejg(y«/Z —2cosf), (78)
- 0

T

where y is given after Eq. (19). An approximate form of
this relation is derived in Appendix F, where we perform the
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FIG. 8. Graphical representation of adjacent regions (“quantum
dots”) of size & along the chain, each corresponding to one local-
ization length, as represented by the eigenfunction (red, solid line).
As described in the text, focusing on one of these intervals, one can
derive an estimate for the critical value of 4, above which the system
is not ergodic even in the presence of a finite J.

asymptotic expansion of the above integral for large values of
y through the method of the Mellin transform, determining

£ = 1“:2’5) + 0(?—3), (79)

where C = 2%¢” ~ 56 and yg = 0.5772... is the Euler-
Mascheroni constant. Such an approximation is clearly
accurate for y > 1, i.e., for small 4.

We now assume that one can partition the system into
boxes (“quantum dots”) of size &, as sketched in Fig. 8. Within
each of them, the number of states is clearly Ny = 2§ (there
are & sites that can be either empty or occupied), whereas the
maximum energy difference between two many-particle states
is Amax & |h]€2. To understand this latter estimate, assume
h > 0: Then, the minimum energy is attained when no particle
is present (Epi, = 0), while the maximum when all sites are
occupied (and thus Ep.x = Zizo hx ~ h& 2). With the same
reasoning, with i < 0 one gets A, A |h|£2, thus confirming
the estimate.

Following BAA (and thus also building on Ref. [105]), we
say that interactions should not be able to restore ergodicity
(at least perturbatively) if their strength A ~ g?/J is smaller
than the average local level spacing:

Amax _ |hIE?
8 ~ N —, 80
D AR (80)
i.e.,, when A < 8. This is equivalent to requiring
g |hg
= , 81
7T 81

which is always satisfied for 0 < |y| < 1, i.e., for sufficiently
large |h|. It is interesting to note that the regime of validity
of the heuristic criterion (81) depends only weakly on J. In
Fig. 9, we show, upon varying J and £, the regions of validity
of the inequality (81), where & = £(h/g) is given by Eq. (78).
One can observe how, for fixed J, the criterion is satisfied for
sufficiently large /; moreover, for J/g 2 1, the condition in
Eq. (81) holds for h/g = 1.

As a check for the above estimate, we performed numer-
ical simulations, focusing in particular on the “generalized
imbalance”, a witness of ergodicity breaking. Given a generic
initial state |Wy), the time-evolved generalized imbalance for

141 2

7z |_ i
12f g _ [hle 7 .55 ______________
7 28 et
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g _hlg J 5
g . 3
0.4 J 28
02f :
0.0
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FIG. 9. Region of the (h/g, g/J) plane within which the condi-
tion of localization in Eq. (81) is valid (color), and region where
delocalization is expected (white). For each region, a sketch is pro-
vided of the comparison between the unperturbed level spacings
(solid black line) and the strength of the interactions (shaded gray
area). We note that, for fixed J, the condition is satisfied for suffi-
ciently large h. For J/g 2 1 (dashed line), the predicted boundary
between the two regions is no longer reliable because the higher-
order corrections neglected here become dominant.

a system of length L is
L/2

IL.(t) = Z Z(‘I’olmom 1m(x, 0)|Wo), (32)
x=—L/2+1

where we defined m(x, t) := 2 n(x, t) — 1. If the initial state
|Wy) is a Néel state, then the generalized imbalance reduces to
the standard imbalance between the occupation number of odd
and even sites, used both in numerical simulations and cold-
atom experiments. Taking the infinite-size limit and averaging
over time, one obtains

I = lim
L,T—o0

1 T
= /0 drI,(1), (83)

which is zero in generic thermalizing systems. Accordingly,
I # 0 is a sufficient condition for the system to be nonergodic
(even if it is not necessary). The infinite-time limit in the
definition of I can be obtained also by using the diagonal
ensemble: Assuming |Wy) to be given as in Eq. (21), one finds

L2

> (mx,0))

X 3 (Ealm(x, 0)|Eo)|(WolE,) . (84)

with the average (- - - ) defined in Eq. (25), and |E,) the eigen-
basis of the Hamiltonian Eq. (18).

The ergodicity test based on the valuer of I should in prin-
ciple be done for every initial configuration. However, there
are states |Wy) that will trivially give a nonergodic result / >
0. For example, states near the ground state will remain noner-
godic also in the presence of the 1/J corrections, just because
they lie at the edges of the spectrum: We checked numerically
that this is the case, for instance, for the domain-wall state
of Eq. (44) (data not shown). A nontrivial test, instead, is
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FIG. 10. (a) Numerical values of the generalized imbalance [
obtained in the diagonal ensemble at / =4, g=1. In order to
improve the readability, only the data for L =8, 12, and 16 are
reported. The dotted line represents the analytical prediction I, for
J =00 and L = oo given in Eq. (86). (b) Extrapolation to L = co
of the size-dependent generalized imbalance /(L) obtained numeri-
cally, and reported in (a). The extrapolation is done using the ansatz
I(L) = I, + A/L. Different colors correspond to different values of
h [see (c) for the legend]. (c) The colored dots correspond to the
values of i for which we reported the extrapolation in panel (b).
The red error bars are the results of the extrapolation, with the error
coming from the fit. The two points with the smaller values of & are
in correspondence of the local maxima of I, at J = oo and their
extrapolations are compatible with zero within the error bars. At
larger values of #, instead, the extrapolation provides values of the
generalized imbalance which turn out to be compatible with those at
J =o0.

provided by generic states which lie in the middle of the
spectrum: For our purposes, the Néel state |Z,) =[], w§k|0),
for which (m(x, 0)) = (—1)*, will suffice.

In Fig. 10, we compare the numerical values of [ at finite
J, with the analytical prediction I at J = +o0: Using the
definition in Egs. (82) and (B4), one finds

L2

- ) 1
Loy = Jim 3 —(Zalm(x, Oym(x, 0)|Z2)
x=—L/2+1
) L2 [L/4]
1 It 1y 72 :
= Jim Yo ) (=D'5_ Qysin(hr))
x=—L/2+1y=—[L/41+1
= Jo(4y sin(ht)). (85)

In the long-time limit, the temporal average I, of I..(t) is
given by

1 T
I, = lim T / dt Jo(dy sin(ht)) = JZ2y), (86)
0

T—o0

where the last step is a known property of the Bessel functions
[106], see Eq. (B22).

The curve I, is represented, for g = 1, by the dashed lines
in Figs. 10(a) and 10(c). For finite values of J, instead, one
is able to compute the generalized imbalance only numeri-
cally and for finite L. Accordingly, the estimate for L — oo
has to be obtained via extrapolation, which we perform in
Fig. 10(b). The numerical values of the generalized imbalance
show a linear dependence on 1/L, allowing for a reliable
extrapolation to L = oo (see the caption of Fig. 10 for more
details). The final results are reported in Fig. 10(c): While for
h < 1, the generalized imbalance is compatible with 0, for
h > 1 the results at finite J are perfectly compatible with the
analytic prediction at J = oco. These data provide numerical
support to the argument a la BAA that we discussed above.
In addition, we performed also numerical simulations for the
time evolution of the generalized imbalance (which we do
not report here), and we noticed that the relaxation time to
the diagonal ensemble value depends on J (the larger J, the
longer the time needed), whereas the asymptotic value does
not, again in agreement with the argument 4 la BAA.

D. Implication for the dynamics of finite bubbles
and the decay of false vacuum

As mentioned in Introduction, the problem addressed in
the previous sections is reminiscent of the false vacuum decay
process, that received much attention in the field theory con-
text, in particular starting from the works by Coleman [5-7].
In our work, we started directly from the situation in which
a true vacuum bubble is already present in the false vacuum
(or false vacuum in the true vacuum, which is equivalent in
our setting). Therefore we will not discuss here the timescale
needed to create a bubble out of a uniform configuration (for
the 1d quantum Ising model this issue has been addressed in
Refs. [107,108]). Here we will limit ourselves to compare the
evolution of such domains on the lattice and in the continuum,
the latter problem being solved in Ref. [5].

Let us start by reminding the reader that a false vacuum,
i.e., the state in which the spins are uniformly aligned in
opposite direction to the longitudinal field, is a highly-excited
state with finite energy density, which is expected to decay
to configurations with equal total energy but larger entropy.
Coleman identified and described this kind of decay process
occurring in a field theory as the generation of a resonant true-
vacuum bubble(s), the critical linear size L, of which is deter-
mined by the balance between the energetic cost for creating
its interface (~ 4 8JL, in our setup), and the bulk energy gain
in having a bubble of true vacuum (in our setup, this comes
from the spin alignment, with gain ~ — 2hL2). The value of
the critical linear size of the bubble is easily found: L, ~ J/h.

In continuous space-time, the timescale associated with
the formation of the bubble above can be calculated in the
framework of relativistic quantum field theory using instan-
tons. The total potential energy change AV ~ JL, — 2hL2,
which vanishes at the moment of the formation of the bubble,
starts decreasing to large negative values when the bubble
increases its dimension and accelerates quickly to swallow
the remaining false vacuum, transforming the gained potential
energy in kinetic energy AT so that the total energy E does
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not change, i.e., AE = AT + AV = 0. However, there are
considerable differences between our lattice setting and what
happens in a field theory on the continuum. First of all, in the
limit J — oo it is easily seen that L, — oo and therefore the
bubble is not formed at all. But, for finite J, if one waits a time
exponentially large in J/h (using the result from Coleman’s
continuum calculations), the bubble will eventually form. The
walls are now expected to accelerate, expanding the bubble
indefinitely, accumulating excess potential energy in a way
which conserves the total energy. This expansion and accel-
eration, however, cannot occur on the lattice: As it can be
seen from the dual fermionic description, the kinetic energy
of the domain wall is actually bounded on the lattice by the
value of g, and this prevents an expansion to sizes larger than
g/h. This is the reason why the bubble starts oscillating. We
have proven in this paper that these oscillations survive the
perturbative introduction of a finite 1/J, because the mecha-
nism of Stark MBL confines the holographic fermions. With
finite J, h, and g, instead, Coleman’s results for the expansion
and the acceleration must proceed on timescales which are
exponentially large (nonperturbative) in J. Our best attempt at
calculating this rate is in Sec. V. In the simpler case of 1d spin
chains, in fact, it was found that Bloch oscillations also inhibit
the expansion of the true vacuum bubble [29,30,109]. Accord-
ingly, the post-vacuum-decay scenario ought to be profoundly
different from that described by Coleman.

VI. CONCLUSIONS

In this work, we have shown, expanding on the results
of Ref. [16], how to describe the dynamics of interfaces in
the two-dimensional quantum Ising model with strong fer-
romagnetic coupling J. As a first step, we discussed the
infinite-coupling limit J = oo, focusing both on the equilib-
rium properties of 1d linear spin domains embedded in the
2d lattice, and on the dynamics of infinite interfaces de-
scribed by Lipschitz-continuous functions. In the first case,
we have shown that the model reduces to a 1d PXP Hamil-
tonian, for which one can calculate exactly the equilibrium
magnetization, assuming that the initial state has negligible
overlap with quantum many-body scars. The interest in the
second case, instead, has a twofold motivation: First, the
corresponding configurations effectively describe smooth in-
terfaces and, second, given the impossibility of breaking the
domain wall (ensured by the Lipschitz condition which is
conserved by the dynamics), an effective 1d description can
be provided in terms of fermionic particles subject to a linear
potential, which is amenable to an exact solution. We also
discussed how to take the continuum limit of the dynamics,
in order to predict the behavior of the quantum-fluctuating
interface at scales much larger than the lattice spacing. A
semiclassical interpretation of the resulting formula naturally
emerged.

Then, we moved to the case of an interface shaped like an
infinite corner. In particular, we discussed the properties of the
average limiting shape, both on the lattice and in the contin-
uum, and its relationship with classical corner growth models.
We predicted the dynamics of the entanglement entropy
between the two halves of the corner, and unveiled a deep

connection between the quantum problem and the asymptotics
of the Plancherel measure on random Young diagrams.

We finally relaxed the assumption of infinite strength of
the Ising coupling J, making use of a Schrieffer-Wolff trans-
formation to calculate the O(1/J) corrections. The first-order
corrections break the integrability of the model with J = oo
but, remarkably, ergodicity is not restored. In fact, the pres-
ence of the longitudinal magnetic field in 2d, which translates
into a linear potential in 1d, causes the emergence of Stark
MBL, that we characterized both numerically, computing the
generalized imbalance, and analytically, providing an argu-
ment for its validity. Even if a recent work provided analytical
evidence against Stark MBL [110], their results apply only to
the infinite-time limit, where our perturbation theory in 1/J is
no longer reliable. We expect therefore that, on the timescales
considered in this work, the phenomenology of localization is
quite robust.

In order to understand the temporal range of validity of
our predictions, we investigated the relevant timescales con-
trolling the dynamics of the system in generic conditions.
In particular, we identified in Tyem the prethermal timescale,
after which the description in terms of Schrieffer-Wolff ex-
pansion is no longer valid: It turned out that Ty becomes
(at least) exponentially long upon increasing J. Moreover,
the possibility of utilizing a 1d chain to describe interfaces
in 2d is justified as long as the effects of possibly having a
finite bubble size are negligible. Accordingly, we estimated
the timescale T.omer below which this is a reliable assumption,
and Tomer turned out to increase more than exponentially upon
increasing the linear size of the domain. Both these timescales
ensure that the results presented here, which were derived in
the infinite-coupling or infinite-size limits, actually carry over
to the case with finite but “large” coupling and sizes, up to
very long times.

An intriguing question is about the dynamical effects aris-
ing at times longer than T, and Teomer. While we leave this
problem to future work, we can argue that the description
given here is no longer valid, as the interface-splitting moves
start playing a major role, and even the conservation of the
interface length is no longer strictly guaranteed. As a conse-
quence, the possibility of employing a 1d chain to describe the
dynamics of a generic 2d domain will likely be lost. However,
for some initial configurations or at least in some regimes, we
expect that it will still be possible to give a description in terms
of a 1d effective problem, as we hope to address in a future
work.

Let us conclude by noting that, in the general case, the full
2d nature of the problem will emerge in the long-time limit, or
for generic couplings. In these regimes, no 1d description will
be reliable and new techniques will be needed. Ultimately,
it is natural to expect that a complete solution of the 2d
quantum Ising model is at least as hard as the solution of the
3d classical Ising model.
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APPENDIX A: MAGNETIZATION IN THE LINEAR STRIP

We provide here a more detailed analysis of the dynamics
of a linear strip of spins, treated in Sec. IIT A.

Let us start from the computation of the number C(L, [) of
dynamically accessible configurations for a strip of spins of
length L, in which / < L — 2 spins are flipped compared to the
initial configuration: Due to the perimeter constraint, C(L, [)
satisfies Eq. (9). This recursion relation is actually obtained by
summing the number C(L — 1, [) of configurations in which
the L — 1-th spin along the chain is not flipped (we recall
that the L-th spin cannot flip) and the number C(L — 2,1 — 1)
of configurations in which it is flipped. As there is only one
configuration with no spin flip, the initial condition for Eq. (9)
is C(L, 0) = 1 and its solution is thus given by Eq. (10): This
is a direct consequence of Pascal’s property of the binomial
coefficient [111]. In order to determine the total number of
accessible configurations starting from the strip, one needs
also to know the maximum number /j,,x of spins that can be
flipped without violating the perimeter constraint. As antici-
pated above, the first and last spin cannot flip, and therefore
one is left with L — 2 potentially “active” spins. If L — 2 is
even, one can flip at most (L — 2)/2 alternating spins, whereas
if L — 2 is odd, one can flip (L — 1)/2 alternating spins. Ac-
cordingly, I« is given by Eq. (11) in the main text.

Under the assumption of an ergodic dynamics (see the
main text), the magnetization profile can be determined by us-
ing the following argument. Consider the j-th spin of a chain
of length L. The number of configurations having the jth spin
“up” are given by the total number of allowed configurations
for the two subchains (consisting of j — 1 and L — j spins,
respectively) split by the jth spin, that is Fj_; xF;_;. In the
remaining, F; — Fy_;F;_, allowed configurations of the strip
the jth spin is down, and therefore the magnetization at site j
is simply given by

_—W kR F)+ Rk =2FL7jF'jfl
FL FL

(m(j)) -1,

(AD)
as reported in Eq. (13), with the reflection symme-
try (mp(j)) = (my(L — j+ 1)) and the boundary condition
(m(j)) = —1. Using the explicit expression of the Fibonacci
numbers in Eq. (14), one gets, for L — oo

gt (- 1)’
(@—1D2p -1\ o ’
(A2)

L 2
(Mmoo = o=

¢ being the golden ratio. In the limit j — oo, one
finds the magnetization at center of the strip (Mo puk) =
lim;_, o (moo(j)) to be given by Eq. (15), after using the ex-
pression of the golden ratio provided before Eq. (14). The
dependence on j of Eq. (A2) also implies that the approach
to this asymptotic value is exponential with the typical length
&, indicated after Eq. (15).

APPENDIX B: USEFUL PROPERTIES
OF THE BESSEL FUNCTIONS

In this Appendix, we collect a number of properties of
Bessel functions which are useful and widely used to derive
the results presented in the main text, and we provide also a

sketch of their proofs. Many of these properties can actually
be found in Refs. [106,112,113].

One of the equivalent definitions of the Bessel function of
the first kind J,, is in terms of the integral:

T
dr . )
Jn(y) — / _‘[ ez(nrfysmr). (Bl)
_p 21

From this definition, it follows immediately that

D =1, (B2)
Ju(—=y) =J_,(y),and, forn € Z,

Jn(y) = (=1)"Ju(y). (B3)

Using again the definition, one can compute the following
relation, useful in the calculation of the average of the number
operator in Eq. (24), Sec. III B:

D T yoaly)e >

n=—0oo

o b4 ’
— Z / d_‘L’ d_‘E ei((x—n)r—y sin r)ei((y—n)r’—y sin r’)e—2ithn
-

= 2 21
(B4)
— 672i)'ht /ﬂ ;Z_‘C ei[(xfy)rfy(sinrfsin(r+2hl))] (BS)
g 27
— e—i(.x+y)lzt /ﬂ d_‘L' ei[(x—y)‘H—Z;/ sin it cos 7] (B6)
_p 2m
= e M py g 2y sin(he)), (B7)

where we used Y 02 ™ = 27 8(x 4 2km). Setting t = 0,
we obtain the completeness relation

Y T Mk (r) = s

n=—00

(B8)

that also leads immediately to

> =1

n=—00

(B9)

If the sums of the previous equation is restricted to positive
integer values, using telescopic sums, one obtains

YUY Wn1 (V) = D1t (W (0)]
2(m — n)

ij+m()/)-]_/‘+iz(l/) =

j=1

’

(B10)
that reduces to

ST = St () = St ()8, (0]
j=0

(B11)
when the limit m — n is taken. This relations allows us to

compute explicitly the fluctuations of the number operator
in Eq. (C5), Appendix C. Using the same procedure as in
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Eq. (B4), we can compute also

1 ; nmw
J2 — _ 2lxn7r/mj 2 o , B12
DI == e o(2rsin—-).  ®12)

keZ 0<n<m

which is used in Eq. (27), in Sec. III B.

Another very useful tool is the asymptotic expansion of the
Bessel functions for large order and argument (see Ref. [106]),
which are useful for discussing the continuum limit of the
dynamics in Sec. III C. For fixed y and x — oo, one finds

Je(y) ~ (B13)

)
2rx\2x )’
i.e., the Bessel functions vanish faster than exponentially upon
increasing x > y. In the limit y — oo with fixed x, instead,
we have, at the leading order

| 2 b/ T
Jx(]/)"’ ECOS (V—Ex—z)

If both the order and the argument of the Bessel function
diverge, the asymptotic expansion is different if the argument
is larger than the order or vice versa: At the leading order for
x — +00, one has

(B14)

ex(tanhafot)
Jo(xsecha) ~ ——, for secha <1, x>0
( ) /27 x tanh «
(B15)
Ji(xsec B) 2 (t ) -2
(xsec B nxtanﬂcos x(tan 8 — B 1)
T
for secB>1, B e (O, E) (B16)

from which we notice the strong similarity between
Egs. (B13), (B15) and Egs. (B14), (B16). This means that
the asymptotic expansions of the Bessel function remain un-
altered even when both the argument and the order scale
linearly, but with different powers. Indeed, to see the transition
between the regimes described by Eqgs. (B15) and (B16) one
has to consider J,(x + ax'/?) for x — oo and fixed a, which
is not important for our discussions. For the purpose of taking
the continuum limit as explained in Secs. [IIC and IV A,
we note that Eqs. (B15) and (B16) imply that, in the limit
x, y — 4o0o with fixed y/x, one has

1

J20) ~ 0@y — x)— —————,
()~ 00 —x)— T GhPR
where 6 (x) is the unit step function which equals 1 for x > 0
and vanishes otherwise. This equality is valid after integration
with a smooth function, i.e., in the sense of distributions. In
fact, the rapidly oscillating cos? term deriving from Eq. (B16)
has been replaced with its average value 1/2, while the rapidly
decaying exponential in Eq. (B15) has been set to zero, as
indicated by 8 (y — x) which appears in the expression above.

Another useful formula is

o0 1 T
> K= —/ dO J3(\/2y? —2y%cos0), (BIS)
0

T

B17)

k=—00

which is used in Eq. (78). In order to prove it, one can use
a modified version of Neumann’s addition theorem, i.e., the

Graf’s and Gegenbauer’s addition theorem [106]

Jo(v/x2 + y2 — 2xycos )

= Jo()o(@) +2 ) Je(x)Ji(x) cos(kO).
k=1

(B19)

By setting x =y = y, taking the square of both sides, and
taking the angular average for 6 € [0, 7], one gets

1 T
—/ do J3(v/2y? —2y2cos0)
T Jo

=l +2) o)=Y Jw), (B0
k=1

k=—00

thus proving the identity.
We conclude this section by reporting from Ref. [106] the
relation

2 /2
M@ = = / 46 15,(2/< 5in6) cos ((e—¢) cos 6).
0
(B21)
that, setting z = ¢ and v = 0 reduces to

2 /2
J@2) = -~ / do Jo(2zsinh). (B22)
0

This expression is used to derive Eq. (86).

APPENDIX C: TWO-POINT FUNCTIONS

In order to obtain the fluctuations of the limiting shape u
of the Young’s diagrams, one needs the two-point function of
the number operator n, see also Eq. (17). For simplicity, we
report here the computation done at equal times, but the same
procedure can be extended also for different times. Let us start
by computing

(Woln(x, H)n(y, 1) Wo) = (Wo P (W ()W (1) (1) o).
(C1)

Also in this case, one can expand the initial state and use
the time evolution of the fermionic operators. The expectation
value one gets, using Wick contractions, is

Yoo Y1 Yl Y] ... w1 10)
= —5;83_ + (Sjk(s?l— + 8;82}, (C2)
being, by definition,

1
8:,) = {0

After some straightforward steps one arrives at

(Woln(x, n(y, 1) Wo) = (Z J,?_x(wz)) (Z J,?_y<w,>)

i>0 i>0

2
— (Z Ji_x(w )iy (v, ))

i>0

+ 81y (Z Jimx(@)i—y (e, )) :

i>0

ifa=>b>0,

otherwise. (©3)

(C4)
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being w, = 2|y sin(ht)|, as in the main text. Therefore the
connected two-point function is

(Woln(x, t)n(y, 1)|Wo)c
2
=Sy (Z VAN )) — (Z Jiex(@) iy (e )) . (C5)
i>0 i>0
Using Eq. (B10), one arrives at (see also Ref. [114])

(Woln(x, HHn(y, 1)|Wo)c

= (Sxy (Z Jiax(wt ))

i>0

- <w Ux@)Jy-1 (@) = Sy @)y (@0)] )2. (C6)
2(y — x)

The fluctuations of the number operator of the fermions along
the chain is readily obtained from Eq. (C4) by setting x = y:

Sn(x, 1) = (Woln(x, 1)*|Wo) ¢
= fox(w»(l — Zf,?x«o,)). (C7)
i>0 i>0

At this point, summing over space as it was done before,
one arrives at the correlation function for the shape operator

(Wolpux', Hu(y', )| Wo) ¢

> (w V(@ )y—1 (@) — Jy(@ )1 ()] >2

x<x y<y xX=Yy
+4) D 5y (Z T7 (o )) (C8)
x<x Yy i>0
=4 Z Z |:5xy (Z T2 (o )) — B(x, y; w; ){|. (C9)
XX y<y i>0

With the same procedure one can compute the expectation
value of the current operator, defined as

JO 1) = i OV (0 — ¥l OV ().

Using this definition, one obtains

(C10)

(Wolj(x, )| Wo) = y sin 2ht[J7(2y sin ht)
— Jop1Qy sinht)J,—1 2y sinht)]. (C11

At x = 0, it reduces to

(Wolj (0, 1)[Wo) = y sin 2kt [J§ (2y sinht) + J7(2y sinht)].
(C12)

Also the current-current correlator can be computed with the
same tools: We report here the result for x = 0, which is given
by

(Wolj(0, 1) (0, 0)|Wo) = J2(2y sinht) — JZ (2y sin ht).
(C13)

APPENDIX D: COMPARISON WITH CLASSICAL SIMPLE
EXCLUSION PROCESSES

In this Appendix, we compare the predictions presented in
Sec. IV A for the dynamics of the corner-shaped interface in
the quantum Ising model, with those obtained for the classical
simple exclusion processes (SEP) which, as discussed in the
main text, represents the classical counterpart of the quantum
Hamiltonian (18). In particular, we focus on the totally asym-
metric simple exclusion process (TASEP) and the symmetric
exclusion process (SSEP), discussing them in the appropriate
continuum limits, which makes the comparison with Egs. (48)
and (49) immediate. For a discussion of these processes on the
lattice, instead, we refer to the vast literature on the topic, e.g.,
Refs. [52,64,115-118].

First, we note that, while the time evolution of the TASEP
is ballistic [119], one of SSEP is characterized by a diffu-
sive scaling [118,120]. Denoting respectively by n(x, ) and
w(x, t) the density of particles and the interface height [as in
Eq. (17)], it turns out [119] that the dynamics of the rescaled
density

nr(§, 1) = lim pr(§N, TN) (D)
N—oo
of the TASEP (the subscript T stands for TASEP) obeys the
Burgers equation
’ (7 (1 = np)]
—ny = —[np(1 —ny)].
PP Ml £ T T
We have denoted with pr the average number of particles on
the lattice, while ny denotes the average number in the contin-
uum, which is obtained by taking the limit in Eq. (D1), where
N is the inverse of the lattice spacing. With the step initial
condition nr (&€, 0) = 6(§)—corresponding to the corner—
one obtains the solution ny(x, t) = ny(x/t), with the scaling
function

(D2)

0 for v < -1,
nr(v) = IJZF—” for |v| <1, (D3)
1 for v>1.

The corresponding interface height wr(x,t), determined ac-
cording to Eq. (17) on the continuum, turns out to be given by
ur(x,t) =t Qr(x/t), with the scaling function

|v] for

14+v?
2

lv] > 1,

Qr(v) = (D4)

for |v| < 1.

In the case of the SSEP, instead, the dynamics is diffusive
and a different scaling of space and time has to be taken
in order to obtain a nontrivial continuum limit. Specifically,
the rescaled density ng(&, v) = limy_ ps(é«/ﬁ, TN) (the
subscript S stands for SSEP), satisfies the heat equation [120]

d 192
—ns = ———1ns.
ar 2982 "
The same initial condition as before, i.e., ng(§,0) = 0(§),
leads to the solution ng(x,t) = ng(x/ V2t) with the scaling
function

(D5)

ns(v) = 1+ erf(v),

> (D6)
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1.00 + (a) /’— 1.5 -
0.75
1.0 A
= 050 A =
—_— n(v) 05
0.25 o , — r(v)
ns(v
0.00 A _/ () 0.0 —
T T T T T T T T T T T T T T
—1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5 —1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5

FIG. 11. (a) Comparison between the average number density n(v) in the quantum case, and the density profiles nr (v) and ng(v) of TASEP
and SSEP, respectively. In particular, n(v = x/w,) = (n(x, t)) is given by Eq. (48), expressed in terms of the ratio v = x/w;, while ny (v = x/t)
and ng(v = x/ \/2t) are given by Egs. (D3) and (D6), respectively. (b) Comparison between the interface limit shape p(v) of the quantum
problem and the corresponding quantities pr(v) and us(v) for TASEP and SSEP, repectovely. The scaling function Q(v = x/w,) is given
by Eq. (50) and is the limit shape of the quantum system. Q7 (v = x/t) and Qs(v = x/@), instead, are given by Eqs. (D4) and (D7), and

correspond to the evolution of the shape of an initial corner (dashed line).

where we introduced the error function erf(x)=
2/ fg e dr. According to the continuum version
of Eq. (17), the interface profile is given by ug(x,t) =
V2t Qg(x/ V2t ), with the scaling function

.2
e

N

Qs(v) = + verf(v). (D7)

In Fig. 11, we compare the scaling forms obtained above for
TASEP and SSEP with the one of the quantum model. In
doing this comparison one should remember that the very
scaling variables differ in the various cases with the sole
exception of TASEP and the quantum Ising model with & = 0:
In spite of the fact that they both show a ballistic scaling, the
corresponding scaling functions are still different.

APPENDIX E: SECOND-ORDER SCHRIEFFER-WOLFF
AND INTEGRABILITY BREAKING

In this section, we perform a Schrieffer-Wolff transforma-
tion [35] to get a renormalized Hamiltonian, describing the
effective degrees of freedom in each sector H; when g, h <
J < +o00. We remind that the Schrieffer-Wolff transforma-
tion consists in a renormalization procedure that progressively
eliminates, order by order in perturbation theory, all the
block-off-diagonal Hamiltonian matrix elements, i.e., the ones
coupling different sectors H; and H;» with [ # I’. Mathemati-
cally, it is a unitary rotation U = S, withS§=S8,+S5,+---,
that gives

SHe S =Hy+Hi+H + -, (ED)
where S, and H, are of order n in the perturbative coupling.
Moreover, performing the expansion up to a finite n yields a
rotated Hamiltonian in which the block-off-diagonal terms are
of order n + 1 or higher.

We will follow a recent derivation of the transformation,
given in Refs. [30,103], that gives directly the correct result at
any desired order.

1. First-order corrections: PXP Hamiltonian

Let us start by separating the original 2d Ising Hamiltonian
in Eq. (1) as follows:

H=H,=|-J) oio}
(i,)

4 (—gZaf—hZaf) =Hy+V.. (E2)

Setting, for the time being, & = 0, the Schrieffer-Wolff
transformation amounts to the following iterative algorithm
(starting from n = 1):

(1) SplitV, = H, + R,, where H, contains only the block-
diagonal terms and R, only the block-off-diagonal ones.

(2) Determine S, from the equation

(3) Set

1
_'[Skls [Skza DRI [Skps HO] .. ]]

2.

(kt1,....kp)e[n+1]

Vn+1 =

1
+ Y — Sk ISty -, [Sk,, V1. 1L (B4
(ki,.ckp)en] £

where the summations run over the set [m] of the ordered
partitions (kp, ..., k,) of an integer m(= ki +ky + - - - + k),
and [m]’ excludes the partition (k; = m) with p = 1.

Let us apply the algorithm described above to our case,
up to order n = 2. First of all, we identify in V; the block-
diagonal terms:

1 i

_ tpl gxpt pt 4 plptorptpl
Hl—_gZ(PLiPDiU‘XPRiPUi+PL5PDiU‘APRiPUi
i

I pl 1T pt I pt 1 pl
+ PiPpi0; PriPui + PriPpioi FriFy;

1 L

+ Pgipéiafpllipéi + PLliniUixpliiPSi)'

(E5)
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and the block-off-diagonal terms:

Ry =—g Z(Plfiplgia'xpliipéi + PIfiPI%iU'XPl%iPLTJi

l l

I pl 1 pl I pt I pl I pt _xpt pt
+ P iPpi0 PriPoi + PLiPpioi PRiPy; + BLiPpioi PriPy;

1 plgipl pt o ptplorpl pt
+ PiPpio; PriPy; + PriPpioi FriPy;
| |

+ PLTiplgiUiXPRiPIEi+PLTiP1§iUiXP1§iPUi+P1TiP1§i(7fPIIiPLTIi)~

(E6)

In the previous equations, the projectors PI-M are those

given in Eq. (4), while Li/Ri/Ui/Di stands for the

left/right/above/below neighbor of the site i, as in the main

text. One easily gets convinced that the terms in H; couple

states within each H,, since they conserve the number of do-

main walls; contrarily, each term in R; changes their number.
Then, we need to solve Eq. (E3), specified for S;:

[S1, Ho)]+ R, =0. ET)

A Dbit of reasoning leads to the conclusion that one can
compensate each term in Ry, of the form P ;Pp;0;" PriPyi, with
a term in S; of the form P ;Pp;0;7 Pr;Py;. Fixing the correct
signs, one finds

ig Loipl yplipl o plpl _yplpt
Si = Y <§ LiPpioi Brifui + PLiPpioi Prifui
i
I pl _ypt pl I pt _ypl pl I pt _ypt pt
+ BiPpi0; PPy + PLiPpo; Priby; — PLibpo; Prifui

1 1 L

T pd ypl pl Tt pl ypt pt
+ BLiPpi0; PPy — PLiPpio; BriPy;

l 11

1
tpt yplpt _ptpt ypt pl tpt _ypt pt
— BiPp,o; PriPy—PLiPp,o; PRiPUi_EPLiPDiGi PRiPUi>'

(E8)
Finally, applying Eq. (E4) for n = 2 yields
Vo = 381, [S1. Holl + [S1. Vil = —3[S1. Ri] + [S1. Vil
(E9)

The expression above generates a plethora of terms; however,
we are interested only in the block-diagonal part of V,, namely,
H,: Indeed, the block-off-diagonal part R, can be removed
by going to the next order in the perturbative construction.
For now, we will compute only the terms in Eq. (E9) that are
diagonal in o* (thus leaving out terms involving o* and o”
that are still block-diagonal). It is easy to identify them, since
they come from commuting o7 in Ry and V; with 67 in Sy,
while leaving the projectors untouched (and therefore the 4
projectors around i have to be the same both in R;, V;, and
S1). With a bit of patience, one may work out all the details,
finding
g Loipl zplpl o plpl zplpt
[H2]diag = 47 <§PLiPDi0i PriPui + PLiPpioi BriPu;
1

I pl |\’ 2 I pl
+ PLiPDiUiZPgiPUi + PLiP];‘GiZPRiPUi

L ptozpl pl 4 plptoipt pb
— P Ppo; Py Py; + BP0 BRi Py

2 l

T pd _zpt p?t tpt _zpl pt
— BP0 PriPy; — PLibpo BRPy;

1
T pt 1 pl t pt T p?
— BP0 FriPy; — ) LiPDiUiZPRiPUi>' (E10)

FIG. 12. Graphical representation of the off-diagonal part
of H,y, corresponding to next-nearest-neighbor hoppings [see
Eq. (E10)], constrained to Young diagrams configurations.

2. First-order corrections: Corner Hamiltonian

Now we specify the expression derived in the previous sec-
tion to the sector within H; which is dynamically connected
to the corner considered in the main text, i.e., we restrict our
attention to the Young diagrams subspace Hy. In the previous
section we have already determined the diagonal part of the
second-order correction H,, see Eq. (E10). We just need to
determine the off-diagonal (but block-diagonal) part. With a
bit of reasoning, one may get convinced that the only allowed
moves at the second-order perturbation theory, which bring
a state out of Hy and then back in, are those represented in
Fig. 12. Correspondingly, the Schrieffer-Wolff Hamiltonian
reads

H> vy = [H>]dgiag
g tpt pt — _—\p'pt pl
~ a7 Y [P PlyPluie og + o7 op) P PruiPr;

i

+ PIIiPIEiPlgUi(Gi+Ul;Fi + O—iial;i)P]%iPliDiPliRi]' (EIT)
The factor in front of the sum is fixed by a careful use of
Eq. (E9). Now that we have the Hamiltonian in 2d, we can
express it in the 1d language of fermions. Before, however, it

is convenient to expand all the projectors P™ in terms of o'
One finds

5
[H2]diag = - %

3¢

z z .2 z z 7.2
+ § :(GLiUDioi Ogi + 01050, 0y
i

z Z Z,..Z Z,.Z z z
§ : (GLiai +0; 0g; + 0;0y; + 0p;0; )

i

64J
+ opi0; o0y, + UZiUizalgialzJi)' (E12)

The term with only two Pauli matrices gives a constant contri-
bution on the Young diagram states, since it counts the number
of horizontal and vertical frustrated bonds (it is a constant
energy shift in the whole sector ;). The term with four spins,
instead, can be represented, up to a constant term in the sub-
space Hy, by an operator which counts the number of corners
in each diagram. Accordingly, in the fermion language, one
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finds the Hamiltonian

Hyp=— Z(w'e—"’"m Yo + Heeo 4 3num,yy) (E13)
~4 Z(w; Ver +He)

Z( AR/ SRIVMEY I

- 3% ’»”x‘/f);+1 wx+1)1

where the first term is a correction to the kinetic energy and
the second a four-fermion interaction.

(E14)

APPENDIX F: PARTICIPATION RATIO
AND LOCALIZATION LENGTH

In this section, we compute the (inverse) participation ratio,
from which one can easily derive the localization length of the
eigenfunctions. By definition

1 s
IPR = Zj,f(y) = ;/ d0J(y~2 —2cosh), (Fl)
k 0

where we used both Neumann’s addition theorem to write the
sum as an integral and the explicit form of the eigenfunctions.
With a change of variables, the integral can be cast in the form

2 (' 2Qyx) 11
IPR = > d SR A = L1 =4y ),
e A <2 2 ")

(F2)
where ,F; is the generalized hypergeometric function. For
large y, one can take the asymptotic expansion of the latter
and the (nonoscillating part of the) IPR turns out to be given
by

2yg+51In4+1n y?
22y

—yg —In(32 1
PR — 3—ye —InG3 y>+0<_)’

64my3 y3
(F3)

being yr the Euler constant. Since the localization length of
the eigenfunctions is roughly £ &~ 1/IPR, one finds

2m2y
2yg +5In4 +1ny?’

which gives Eq. (79).

Alternatively, one can also determine the asymptotic ex-
pansion for the IPR directly from the integral, using the Mellin
transform. In particular, for two functions fj »(x) and their

(F4)

Mellin transforms f],z(s), it holds

1 c+ioo 5 »
2—/ ds fi(1 = s)f2(s),  (F5)
Tl J,

o0
/ dx fi(x) f2(x) =
0 —ioco
being, in our case, fi(x)=
Jg(2yx). One gets then
1—s s
ﬁ F(z) fz(s)z 1 F(T)F(E) ]
FIES) Qyy2mr2(1-3%)
(Fo)
Accordingly, the first equality in Eq. (F2) can be alternatively
written as

01— [x]) and fo(x) =

fils) =

1 c+ioo 1 1 FZ(I S)F( )
IPR = —
270 Je—ico o Qy)y 31 -3)
1 c+ioco
=_ ds F(s). (F7)
2mi c—ioco

The poles structure of the I" function sets ¢ € (0, 1). To com-
pute the integral, one can move the Bromwich path towards
increasing values of Re(s); this way one has to go around the
poles of the integrand, which are double poles located on the
odd integer numbers, and use the residue theorem to compute
their contribution to the integral. As an example, we report
the residue at s = 1, for other values of s the computation is
analogous. By definition one has

Res[F(s), s = 1]

Wi r(%)zre)}

2 2y) (1 -3)°

(F8)

s=1

Expanding around s =1 one has (s — 1)>T'(15%) = 4(1 +
ve(s — 1)) + O(s — 1)?, from which it follows:
2yg +51n4 +1ny?

Res[F(s),s =1] = — 2y . (F9)

Applying the residue theorem, one obtains a 2i factor that
cancels the one in front of Eq. (F7) and a minus sign given
by the index of the contour, which is clockwise, obtaining the
first term of Eq. (F3). The other terms are obtained with the
residues of the other poles. In general, from the dependence on
1/y? in the integral, one can see that the residue of the pole at
s = 2n + 1 gives the order 1/y2"*! of the asymptotic expan-
sion. In this way, one obtains the same result as in Eq. (F3)
from the asymptotic expansion of the hypergeometric func-
tion. Notice that the residues of the poles give only the power
series contribution to the whole integral. There is a bounded
oscillating term missing, that comes from the remaining part
of integral on the Bromwich path.
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