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Real-time simulations of quantum spin chains:
Density of states and reweighting approaches
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We put the density of states (DoS) approach to Monte Carlo (MC) simulations under a stress test by applying
it to a physical problem with the worst possible sign problem: the real-time evolution of a nonintegrable quantum
spin chain. Benchmarks against numerical exact diagonalization and stochastic reweighting are presented. Both
MC methods, the DoS approach and reweighting, allow for simulations of spin chains as long as L = 40, far
beyond exact diagonalizability, though only for short evolution times t � 1. We identify discontinuities of
the DoS as one of the key problems in the MC simulations and propose calculating some of the dominant
contributions analytically, increasing the precision of our simulations by several orders of magnitude. Even after
these improvements, the DoS is found highly nonsmooth, and therefore, the DoS approach cannot outperform
reweighting. We prove this implication theoretically and provide numerical evidence, concluding that the DoS
approach is not well suited for quantum real-time simulations with discrete degrees of freedom.
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I. INTRODUCTION

The simulation of the real-time evolution of a many-body
quantum system up to some finite physical time t is a problem
of utmost importance across many areas of physics. However,
it is an NP-hard problem which, in general, can only be solved
on a classical computer in a time

Tsim ∼ eα(t ) ndof (1)

that grows exponentially with the number of degrees of free-
dom (dof) ndof in a system. Polynomial-time solutions are
only possible on a quantum computer [1,2]. With the current
state of technology, only relatively small quantum systems can
be reliably simulated on quantum computers. Therefore, at
least for some time, we must rely on classical computers to
simulate the real-time evolution of quantum systems. While
we certainly cannot simulate the real-time evolution in poly-
nomial time on a classical computer, we can try to reduce the
coefficient α(t ) in the exponent in Eq. (1).

Conceptually, the simplest approach to simulate real-time
evolution is to find all eigenstates of the Hamiltonian using
numerical exact diagonalization (ED). This approach works
well for systems with finite-dimensional Hilbert spaces, such
as quantum spin chains, and allows us to calculate any real-
time evolution [3] in a straightforward way. For a chain of L
spin- 1

2 dof, such as Ising spins, the Hilbert space dimension
is N = 2L. Correspondingly, the computational cost of the
plain vanilla ED scales as O(N3) = O(23L ). Physical results
found in most of the literature scale up to L � 18, see, e.g.,
Refs. [4–7]. More advanced methods, such as the shift-invert
method of ED (SIMED) [8] and polynomially filtered ED
(POLFED) [9] allow for extremely efficient ED. POLFED has
only O(N2) = O(22L ) runtime and O(N ) = O(2L ) memory
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requirement, both up to polynomial corrections in L and for
a fixed number of eigenvalues. The largest systems simulated
to date have L = 26, and the largest ones used for physics
beyond mere algorithmic proof of principle have L = 24. Un-
fortunately, the polynomial corrections are not specified in the
literature, but they appear to be quite significant if these are the
largest sizes possible. In addition, it is only claimed that the
limited number of eigenvalues from the bulk yield the correct
results. The truncation in the eigenspectrum might well cause
relevant artifacts.

Another possible approach is to approximate the quantum
evolution exp(iĤt ) as a product of many exactly treatable
factors using a Suzuki-Trotter decomposition. Instead of ED,
in this case, we must perform multiple matrix-matrix multi-
plications, with a computational cost that scales as O(N2) =
O(22L ) for local Hamiltonians. This allows us to simulate spin
chains with L � 24 [10,11].

An alternative to methods based on calculations in the en-
tire Hilbert space is provided by Monte Carlo (MC) methods,
which replace exact summation over all states with impor-
tance sampling. For finite-temperature equilibrium partition
functions, MC methods typically reduce the exponential scal-
ing in the system size L down to a polynomial one. MC
methods can also be used for bosonic systems in a straight-
forward way, in contrast to ED which necessarily relies on
truncations of an infinite-dimensional Hilbert space.

In the absolute majority of cases, real-time evolution
problems have path integral representations with oscillatory
integrands, either real or complex valued. The most straight-
forward approach to deal with nonpositive-definite integrands
in MC simulations is reweighting, whereby one performs
importance sampling with the weight proportional to the ab-
solute value of the integrand, and reweights the contribution
of any field configuration with the corresponding complex
phase of the integrand. However, in this case, the NP-hardness
of the real-time evolution problem reveals itself in the

2469-9950/2023/107(2)/024302(18) 024302-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7641-8030
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.024302&domain=pdf&date_stamp=2023-01-10
https://doi.org/10.1103/PhysRevB.107.024302


PAVEL BUIVIDOVICH AND JOHANN OSTMEYER PHYSICAL REVIEW B 107, 024302 (2023)

exponentially quick deterioration of statistical power with ndof

and the evolution time t . Many contributions with different
complex phases cancel each other, and exponentially many
MC samples are needed to calculate the path integral with
desired precision. This exponential growth of computational
complexity is referred to as the sign problem.

In the past decade, the density of states (DoS) approach
has been advocated as an efficient way to make the sign
problem milder [12–15]. Starting from a generic oscillatory
path integral representation of a partition function Z of the
form:

Z =
∫

Dφ exp (−SR[φ] + iSI [φ]), (2)

the basic idea of the DoS approach is to construct a numerical
approximation to the DoS, or probability distribution, of the
complex phase SI [φ]:

ρ(E ) =
∫

Dφ exp (−SR[φ])δ(E − SI [φ]). (3)

Here,
∫
Dφ denotes integration or summation over any con-

tinuous or discrete variables φ. Knowing ρ(E ), which can
be determined without encountering a sign problem, we
can calculate the full partition function Z as a simple one-
dimensional integral over E :

Z =
∫

dEρ(E )eiE . (4)

An important development was the logarithmic linear relax-
ation (LLR) method [16–18] based on Robbins-Monro (RM)
[19] iterations, which allows obtaining high-precision results
for the DoS ρ(E ) for lattice models with continuous [20,21]
as well as discrete [22] dof. Applications include the compact
U (1) lattice gauge theory [20], heavy-dense QCD at finite
quark density [12,13], finite-density Bose gas [14], finite-
density Hubbard model [21], and the Potts model [22]. It is
fair to say that, in all cases, the computational complexity of
evaluating the original multidimensional oscillatory path inte-
gral in Eq. (2) translates into the complexity of evaluating the
one-dimensional oscillatory integral in Eq. (4), which is very
sensitive to statistical errors in the DoS ρ(E ). This problem
was tackled in Refs. [12–14,21,22] by constructing various
analytic approximations to ρ(E ) and using them to calculate
the integral. The approximations included polynomial fits and
splines. Resummations based on Fourier transforms of ρ(E )
were considered in Ref. [21]. This allowed us to obtain results
of practical significance for lattice sizes that are intractable
with other methods, e.g., the straightforward reweighting.

In this paper, we put the DoS/LLR approach under a stress
test by using it to simulate the real-time evolution, for which
the partition function in Eq. (2) is strongly dominated by
the imaginary part of the action SI . This is hence a physical
problem for which the sign problem is expected to be max-
imally strong. As a model of choice, we use a nonintegrable
quantum Ising chain with quenched disorder [4]. We explicitly
quantify the computational cost required to obtain a fixed
error of our measurements and compare it with that of the
reweighting and ED methods. We find that, without further
analytic approximations, the computational cost of evaluating
the one-dimensional integral in Eq. (4) of the DoS is not better

than that of simple reweighting. We also critically examine the
smoothness of the DoS and find an efficient way to remove
some of the dominant discontinuities, which improves the
performance of both the DoS and the reweighting approaches
by orders of magnitude. This also allows us to construct rea-
sonably good polynomial approximations for the DoS ρ(E );
however, they turn out to hardly improve the quality of the
results because of the high number of parameters required.
Therefore, for our particular system, the DoS approach only
outperforms reweighting in very rare cases. Our overall con-
clusion is that both MC approaches, LLR and reweighting, are
advantageous compared with ED when simulating short-time
evolutions for large spatial system sizes, even allowing for
sizes completely inaccessible to ED. On the other hand, ED
is clearly better for long times.

We chose the nonintegrable quantum Ising chain with
quenched disorder [4] as our test model because it is one
of the simplest nonintegrable models which exhibit ergodic
and many-body localization regimes. The Hamiltonian of the
model reads, in its most general form,

H = −σ z · J · σ z − h · σ x, (5)

where σ x,z = (σ x,z
1 , . . . , σ x,z

L ) is the spatial vector of Pauli x-
and z-spin matrices, respectively, J ∈ RL×L is some coupling
matrix, and h ∈ RL is a vector of local magnetic fields hi.

We work in the ergodic regime, where no symmetry can
accidentally make the sign problem milder. Furthermore, the
model has a straightforward path integral representation. Its
energy spectrum can be easily obtained using exact numeri-
cal diagonalization for chain lengths of order L � 20, which
allows us to obtain benchmark results for any real-time ob-
servables without any statistical errors. In this paper, we
focus on one of the simplest real-time quantities, the infinite-
temperature spectral form factor (SFF):

K(t ) = 〈K (t )〉J = 〈|TreiHt |2〉J, (6)

where 〈·〉J denotes the average over different disorder realiza-
tions, and U (t ) is the real-time evolution operator for given
disorder J. Universal late-time features of SFFs, such as the
ramp [23–25], have proven useful as probes of quantum chaos
in strongly interacting many-body systems. SFFs are useful
for distinguishing ergodic and many-body localized regimes
[26].

Originally, our hope was to apply the DoS/LLR approach
to resolve the ongoing debate about the existence and the
properties of the many-body localization phase in quantum
spin chains [4–7,10,11,27–33]. The debate is strongly focused
on extrapolations toward the thermodynamic limit; therefore,
it is useful to devise methods that could work for lattice sizes
that are currently inaccessible for numerical ED. While our
improvements to the DoS/LLR approach allow us to simulate
spin chains of lengths as large as L = 40, well beyond the
reach of any ED methods, such simulations are bound to
early times t � 1. This is by far insufficient to resolve the
late-time behavior of SFFs, which starts distinguishing the
ergodic and many-body localized regimes at the Heisenberg
timescale t � 2L. Let us note in passing that the necessity to
simulate up to times of order of 2L is very likely to make
the calculation of the SFF an NP-hard problem even for a
quantum computer. Indeed, the no fast-forwarding theorem
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[34] is likely to hold for our Hamiltonian. Therefore, quantum
computers will need an exponentially large computational
time Tsim � 2L to simulate physical evolution up to physical
times t � 2L.

The rest of this paper is structured as follows. We pro-
vide the details of the model in Eq. (5) and its classical
1 + 1-dimensional counterpart in Sec. II. Next, we introduce
the DoS/LLR algorithm in Sec. III, and we derive how the
algorithm can be optimized in Sec. IV. Analytic estimates for
the runtimes of all the different approaches are discussed in
Sec. V, and finally, the results of numerical experiments are
presented in Sec. VI.

II. THE MODEL

In this paper, we follow Ref. [4] and consider the
Hamiltonian in Eq. (5) with both the nearest neighbor and
next-to-nearest neighbor couplings:

Ji j = (J0 + �Ji ) δi, j+1 + J2δi, j+2, (7)

where the nearest neighbor coupling contains quenched disor-
der �Ji that is sampled uniformly from �Ji ∈ [−�J,�J].
Periodic boundary conditions (pbc) are applied. The magnetic
field term hi = h0 is constant. Throughout this paper, we
choose h0 = 0.6, J2 = 0.3, J0 = 1, and �J = 1 deeply in
the chaotic regime.

The real-time dynamics of the system as well as the sever-
ity of its sign problem are captured in the SFF:

K(t ) ≡ 〈K (t )〉J ≡ 〈|TrU (t )|2〉J, (8)

where 〈·〉J denotes the average over different disorder realiza-
tions, and U (t ) is the real-time evolution operator for given
disorder J:

U (t ) = e−iHt =
Nt∏
j=1

e−iδH

=
Nt∏
j=1

eiδσ z ·J·σ z
eiδh·σ x + O(δ), (9)

with the physical evolution time t and the Suzuki-Trotter
discretization step size δ ≡ t/Nt . This Suzuki-Trotter decom-
position becomes exact in the limit where the number of time
steps Nt → ∞.

The transfer-matrix method allows us to relate the Trotter-
ized version to a two-dimensional system of classical spins
[35]:

K (t ) ∝ Z ≡
∑
{s}

e−S(s), (10)

where we sum over all possible spin si,k = ±1 combinations,
arriving at the action:

S = −i
∑

k

∑
i, j

si,kJi js j,k −
∑

i

∑
k

(
hi − π

4
i

)
si,ksi,k+1, (11)

Ji j := δJi j, hi := −1

2
log tan (δhi ), (12)

where J and hi are real constants. See Appendix A for details
on the derivation.

Any spin flip results in a change of S by λ(hi − π
4 i) with

λ ∈ {±4, 0} and some contributions of order δ. Therefore,
both real and imaginary parts are significantly changed even
for small δ. Here, λ = ±4 flips the sign of the action.

We split the action into three separate parts:

S = iSI + SR + iπSS, (13)

SI := −
∑

k

∑
i, j

si,kJi js j,k, (14)

SR := −
∑

i

∑
k

hisi,ksi,k+1, (15)

SS := 1

4

∑
i

∑
k

si,ksi,k+1. (16)

Now each of SI , SR, and SS is real. Furthermore, SS is an
integer, and therefore,

eiπSS = ±1 (17)

contributes only a sign to the total measure.

A. Probability weighted DoS

MC-based algorithms can easily implement the probability
density induced by SR, whereas the complex phase and real
sign contributions by SI and SS , respectively, pose severe
issues. As outlined in Eqs. (2)–(4), in this paper, we employ
the DoS approach, rewriting the partition sum as

Z =
∑
{s}

e−SR e−iSI e−iπSS

=
∑
{s}

e−SR

∫
R

dE e−iE δ(E − SI )
∑
z=±1

z δz,e−iπSS

=
∑
z=±1

z
∫

R
dE e−iE

∑
{s}

e−SRδ(E − SI )δz,e−iπSS

=
∑
z=±1

z
∫

R
dE e−iE ρz(E ). (18)

In the last step, we defined the DoS ρz(E ) as

ρz(E ) :=
∑
{s}

e−SR δ(E − SI ) δz,e−iπSS . (19)

B. Normalization

Let us define the auxiliary partition sum:

ZR =
∑
{s}

e−SR =
∑
z=±1

∫
R

dE ρz(E ), (20)

which is a sum of manifestly positive contributions and there-
fore does not suffer from a sign problem. Note that all terms
containing the coupling J have been dropped, and ZR there-
fore completely decouples into its one-dimensional (timelike)
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parts, i.e.,

ZR =
∏

i

ZR,i, (21)

ZR,i = Tr
[
(T2)Nt

i

]
= 2Nt (coshNt hi + sinhNt hi ), (22)

where the last line is the well-known solution of the one-
dimensional classical Ising model and can be obtained by
diagonalizing the 2×2 transfer matrices (T2)i from Eq. (A7).

In the full simulation, one would usually normalize the sum
over the DoS to one so that the MC estimator (denoted by 〈·〉)
of the partition sum becomes

〈Z〉 = ZR

〈
Z

ZR

〉
, (23)

where ZR is known analytically, and 〈 Z
ZR

〉 can be found by
evaluating Eq. (18) with the normalized estimator of ρz(E ).
Combining this result with Eq. (A12), we finally obtain a for-
mula for the trace of the quantum mechanical time evolution
operator:

TrU (t ) = AZR

〈
Z

ZR

〉
. (24)

III. THE ALGORITHMS

The canonical choice and baseline algorithm for MC sim-
ulations with a sign problem is reweighting. In this approach,
all contributions stemming from the imaginary part of the
action are simply considered part of the observable. In this
case, this means that configurations are sampled purely from
the probability distribution p(SR) induced by SR (using, for
instance, local Metropolis-Hastings updates), and the partition
sum is estimated by〈

Z

ZR

〉
=
∑

{s} e−SR e−iSI e−iπSS∑
{s} e−SR

=
∑
{s}

p(SR) e−iSI e−iπSS

= 〈
e−iSI −iπSS

〉
SR

. (25)

Another natural approach is to estimate the DoS ρ prior
to determining any observables. This can be done efficiently
using the LLR algorithm. The principle idea of LLR was
proposed by Wang and Landau [16] and applied to the clas-
sical Ising model with uniform coupling in two dimensions.
Later on, it was optimized through the introduction of the 1/t
algorithm [17,18] in accordance with the theoretically optimal
scheme derived by Robbins and Monro [19].

Let us consider a classical Ising system of N ≡ LNt spins.
The auxiliary variable E [typically identified as an energy, see
Eq. (19)] is divided into M bins Ei, i = 1, . . . , M, so that we
discretize the DoS:

ρi :=
∫ Ei+Ei+1

2

Ei+Ei−1
2

dE ρ(E ) , i = 2, . . . , M − 1, (26)

and for i = 1 (i = M), the lower (upper) bound of the integral
takes the minimal (maximal) value of E . Of course, the arith-
metic mean can be exchanged for any other value between

Ei and its neighbors without changing the general argument.
Discretization errors are of order O(h2), and further details
are discussed in Appendix B.

We write

ρi ≡ eαi , (27)

and from now, on we aim to estimate αi as accurately as
possible (hence the logarithmic in the name of the method).
Starting from uniform initial conditions (αi = 0 for all i), we
employ an update scheme of 
 steps in total where, at the
kth step, some configuration update s 
→ s′ is proposed and
accepted with the probability:

pacc = e−SR[s′]

e−SR[s]
· ρi(s)

ρi(s′ )

= eSR[s]−SR[s′] eαi(s)−αi(s′ ) , (28)

where i(s) and i(s′) are the bins that correspond to the
imaginary part of the action SI on configurations s and s′,
respectively. The DoS of the accepted bin, say i without loss
of generality, must be updated:

αi 
→ αi + βN,M,
(k, i), (29)

where β � 0. Without prior knowledge of the DoS, we drop
the explicit dependence on i. Furthermore, we know from
Ref. [19] that the conditions:

∞∑
k=0

βN,M,
(k) = ∞, (30)

∞∑
k=0

βN,M,
(k)2 < ∞, (31)

must hold [36]. They propose a function asymptotically scal-
ing as 1/k since this is the fastest decaying function (up
to logarithmic factors) of the required class and therefore
promises best convergence for large k.

The coefficients in the explicit form:

βN,M,
(k) = aN,M,


bN,M,
 + k
, (32)

are of crucial importance, and we derive in Appendix C why

aN,M,
 = ln 2
MN

ln 

bN,M,


, (33)

bN,M,
 = 3M (34)

are a particularly good choice. We will use them throughout
the rest of this paper.

LLR iterations do not form a Markov chain because the
accept/reject probability depends on the history of the previ-
ous updates. Therefore, statistical errors cannot be calculated
via straightforward bootstrap procedures or similar. In-
stead, every simulation presented hereafter has been repeated
Nruns = 40 times, and the error has been estimated from the
resulting distribution. In practice, LLR simulations are not
always stable but are prone to outliers. To counteract this
effect, we used the median as the best estimator for observ-
ables instead of the more commonly used mean. Similarly, the
errors have been approximated using the 16 and 84% quantiles
instead of the standard deviation. For a normal distribution,
this choice of median and quantiles is fully compatible with
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FIG. 1. Densities of states in the even (positive) and odd (negative) parity sectors, respectively, calculated with LLR0 (left) and LLR2

(right). The spin chain length is L = 6, the evolution time is t = 1, the number of Monte Carlo sweeps is Ns = 108.

the default choice of mean and standard deviation, but for
other distributions, it is more stable.

IV. SMALL TRANSVERSE COMPONENT EXPANSION

The representation in Eq. (10) of the real-time partition
function in terms of a finite sum over classical Ising spins
implies a finite number of states, so that technically speaking
the DoS in Eq. (19) is a collection of delta peaks. However, in
the presence of quenched disorder, there are in general O(2L )
delta peaks spread randomly over the range of width O(L)
of possible values of SI . As a result, the bulk of the DoS ap-
proaches the continuous function in the thermodynamic limit
L → +∞. For finite length L, the apparent continuousness is
a mere consequence of the finite resolution following from
the fixed number M of bins defining the DoS, i.e., the true
distribution is convoluted with a function that is 1 within a bin
and 0 everywhere else.

Looking at a typical distribution of the DoS (see Fig. 1), it
appears to be fractured into bands. The top one corresponds to
the even sector and consists of a few very narrow peaks. The
second (odd) band is closer to a smooth distribution, though
it still features some irregularities. An alternating descent of
smooth bands with roughly equal step size on a logarithmic
scale follows. With the technically available precision, we
usually cannot resolve any but the four highest bands.

It is straightforward to interpret these bands, as they di-
rectly correspond to a particular parity sector each. Every
spin-flip pair in the temporal direction (see Fig. 2) changes this
sector. It comes with a sign flip and a Boltzmann suppression,
i.e.,

SS 
→ SS − 1, (35)

SR 
→ SR + 4h, (36)

⇒ p 
→ −p

(
tan

th

Nt

)2

, (37)

where p = e−SR−iπSS is the sign-full probability weight, and
SS,R as in Eq. (13). This provides a canonical way of expand-
ing the DoS ρz(E ) and the partition sum Z in powers of tan th

Nt
,

that is, around small times t or transverse fields h.

From now on, we will denote simulations restricted to
parity sectors with at least n spin-flip pairs by LLRn (or REWn

for reweighting). In practice, this means that the acceptance
probability in Eq. (28) is set to zero for any proposed configu-
ration with less than n spin-flip pairs. Otherwise, the sampling
algorithm proceeds unchanged.

Thus, the plain vanilla algorithm allowing us to visit the
full phase space will be denoted LLR0, and a lot of our studies
will be focused on LLR2 as a good tradeoff between precision
and performance. The remaining contributions from all the
configurations with less than n spin-flip pairs are calculated
analytically as follows.

A. Leading order: n = 0 spin-flip pairs

Without any spin flips in the temporal direction, the phase
space is confined to one of the 2L spatial configurations re-
peated Nt times. Therefore, the DoS and the classical partition
sum reduce to

ρz(E )|n=0 ∝ δz,1

∑
{s}

δ

⎛
⎝E − t

∑
i, j

siJi j s j

⎞
⎠, (38)

Z|n=0 =
∑
{s}

eiNt
∑

i, j siJi j s j+LNt h

=
(

tan
th

Nt

)− 1
2 LNt ∑

{s}
eit
∑

i, j siJi j s j , (39)

and thus,

TrU (t )|n=0 =
(

sin δh cos δh

tan δh

) 1
2 LNt ∑

{s}
eit
∑

i, j siJi j s j

= (cos δh)LNt
∑
{s}

eit
∑

i, j siJi j s j . (40)

The prefactor Z0 ≡ (cos δh)LNt
δ→0−→ 1 is clearly an artifact

from Trotterization, but it cannot be dropped in realistic simu-
lation since it crucially counteracts finite δ effects in the LLRn

simulation itself.
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FIG. 2. Visualization of configurations with different numbers n of spin-flip pairs in the time continuum. Periodic boundary conditions are
applied, so flips come in pairs only. Without loss of generality the solid lines represent spin-up and the dotted lines spin-down. From left to
right: n = 0, n = 1, n = 1, and n = 4.

Here, we assume that the couplings Ji j are nonuniform,
and hence, the full sum over all configurations {s} must be
calculated. In simpler cases, e.g., Ji j = J δi+1, j , the sum can
be simplified and therefore the computational complexity re-
duced dramatically.

Note that the continuum limit of this result corresponds
to the h = 0 approximation of the quantum mechanical time
evolution operator:

TrU (t )|n=0 = Tr
{
eitσ z ·J·σ z

eσ xO(ht )}
=
∑
{s}

eit
∑

i, j siJi j s j + O[(ht )2], (41)

where the linear order in ht can be dropped because Trσ x = 0.

B. Next-to-leading odd order: n = 1 spin-flip pair

Let us now consider the case of a single spin-flip pair, that
is, exactly one of the quantum spins has exactly two different
values over time in the z basis. Some visualizations can be
found in Fig. 2. We absorb the probability weight −(tan δh)2

and the combinatorial factor Nt/2 (temporal translational in-
variance yields a factor Nt , exchangeability of start and end
point of the flipped region a factor 1

2 ) into a new prefactor:

Z1 ≡ −Nt

2
(tan δh)2Z0 . (42)

Now for every configuration s without flips, there are L dif-
ferent candidates l for a flip with Nt − 1 different possible
lengths τ each. We can write the resulting phase as

SI |n=1 = −(Nt − τ )
∑
i, j

siJi js j − τ
∑
i, j

si(1 − 2δil )Ji j
(
1 − 2δl j

)
s j

= −
⎛
⎝t
∑
i, j

siJi j s j − 4τ
∑

j

sl Jl js j

⎞
⎠. (43)

Combining the prefactor and the phase leads to

ρz(E )|n=1 = Z1 δz,−1

∑
{s}

∑
l

Nt −1∑
τ=1

δ

⎛
⎝E − t

∑
i, j

siJi j s j + 4τ
∑

j

sl Jl js j

⎞
⎠, (44)

TrU (t )|n=1 = Z1

∑
{s}

eit
∑

i, j siJi j s j
∑

l

Nt −1∑
τ=1

e−4iτ
∑

j sl Jl j s j

= Z1

∑
{s}

eit
∑

i, j siJi j s j
∑

l

e−2it
∑

j slJl j s j
sin
[
2(Nt − 1)

∑
j sl Jl js j

]
sin
(
2
∑

j sl Jl js j
) , (45)

with the well-defined continuum limit:

ρz(E )|n=1 = (ht )2

2
δz,−1

∑
{s}

∑
l

θ

⎛
⎝−
∣∣∣∣∣∣E − t

∑
i, j

siJi j s j

∣∣∣∣∣∣+
∣∣∣∣∣∣4τ
∑

j

sl Jl js j

∣∣∣∣∣∣
⎞
⎠, (46)

lim
δ→0

TrU (t )|n=1 = − (ht )2

2

∑
{s}

eit
∑

i, j siJi j s j
∑

l

e−2it
∑

j slJl j s j sinc

⎛
⎝2t

∑
j

slJl j s j

⎞
⎠, (47)

where θ denotes the Heaviside step function.
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Note that the temporal sum in Eq. (45) could be calculated
exactly since it reduced to a geometric series. This allows an
evaluation of the remaining sum in O(L2L ), i.e., the same
runtime as the contribution without flips.

Again, we could have obtained the continuum result up to
leading order directly from the time evolution operator using
the Zassenhaus formula:

TrU (t )|n=1

= Tr
[
eitσ z ·J·σ z

eith
∑

i σ
x
i
]+ O[(ht )4]

= Tr

{
eitσ z ·J·σ z

∏
i

[
1 + ihtσ x

i − 1

2
(ht )21

]}
+ O[(ht )4]

=
[

1 − 1

2
L(ht )2

]
Tr
[
eitσ z ·J·σ z]+ O[(ht )4]. (48)

Here, the cyclic property of the trace ensures that the simple
first-order decomposition into σ z and σ x parts is equiva-
lent to a symmetric decomposition with an error of order
O[(ht )3]. Additionally, Tr(σ x )3 = 0 reduces the residual error
to O[(ht )4].

C. Higher orders: n � 2 spin-flip pairs

In principle, we can follow the steps of the previous sec-
tion to write down the contribution of the nth order (n spin
flips) for arbitrary n. The prefactor (without combinatorics)
reads

Zn ≡ (− tan2 δh
)n

Z0, (49)

and the phase (including combinatorics) generalizes to

SI =
∑

k

∑
i, j

si

{∏
l

[
1 − 2δilθ

(
k − τ l

1

)
θ
(
τ l

2 − k
)]}

× Ji j

{∏
l

[
1 − 2δl jθ

(
k − τ l

1

)
θ
(
τ l

2 − k
)]}

s j, (50)

where θ denotes the Heaviside step function, and τ l
1,2 are

successive flipping times of spins at spatial position l . The
partition sum must include all possible combinations of {l}
and corresponding τ l

1,2.
The evaluation of the partition sum for any n � 2, however,

is prohibitively expensive because the temporal sum can no
longer be evaluated analytically. Two different regions flipped
at overlapping times introduce nontrivial entanglement (see
right panel of Fig. 2). Another way to see this is the fact
that the first-order Trotter decomposition of the time evolution
operator results in an error of order O[(ht )4]. A higher order
treatment therefore necessitates more complicated decompo-
sitions with nonzero commutators considered.

D. Spline fitting

In LLR2 simulations, all the leading peaks have been
removed from the DoS so that the remaining function is rela-
tively smooth and can be approximated by a fit. Since we do
not know anything about the global structure of the DoS in
general, a smooth local approximation like a cubic spline [37]

is the canonical choice. Such a spline with a fixed number of
free parameters or dof, where dof are smaller or equal to the
number of data points, is fitted to the log-DoS, as depicted
in Fig. 3. The fit can then be numerically integrated to high
precision.

A smooth fit comes with two advantages. First, discretiza-
tion errors in SI due to a finite bin size in Eq. (26) are reduced.
In practice, this effect is usually negligible, and if it is not, a
finer discretization should be chosen in the first place. More
relevantly, fluctuations of neighboring bins with large uncer-
tainties are averaged out. This allows decent estimations of the
SFF at relatively high noise levels.

The single but crucial disadvantage of fitting the data is
that a priori the optimal number kdof of dof is completely
unclear. In Fig. 3, we show the same data fitted with different
order splines to the effect that the leftmost is underfitted and
will yield completely wrong results, whereas the rightmost is
overfitted and the desired smoothing effect is absent. We use
the Bayesian information criterion (BIC) [39]:

BIC = M ln

(
χ2

M

)
+ kdof ln(M ), (51)

to find the optimal number of dof. Here, M is again the number
of bins of the DoS, and χ2 is the usual chi-squared value. The
BIC is supposed to be minimal for the best choice of kdof.

Overall, the fitting allows us to extract results from other-
wise too noisy data, but they come at the cost of additional
uncertainty and possible bias so that high-precision data is
better evaluated without any fitting. This becomes clear from
the comparison of the two top plots on Fig. 4, where the
errors obtained from spline-fitted results are only considerably
smaller for small numbers of MC updates.

E. Origin of the nonsmooth DoS

The highly irregular shape of the DoS is the crucial dif-
ference to the DoS of models with continuous (and compact)
variables where the LLR approach has been shown to outper-
form reweighting significantly [12]. It is therefore important
to understand the origin of this shape. Naïvely, one might
think that it has to do with the random coupling and the
chaotic nature of the system, but it turns out that this is not the
case. Even the simplest transverse Ising model with constant
coupling and no next-to-nearest neighbor interaction features
a nonsmooth DoS.

Qualitatively, the origin of the strange form of the DoS
can be understood starting with the spikes in LLR0 forming
the highest band. In the case when the nearest neighbor cou-
plings contain quenched disorder �Ji, there are 2L−1 spikes
of equal height. In the case of constant couplings, for example,
for the conventional transverse field quantum Ising model
without quenched disorder, there are L/2� + 1 spikes with
binomially distributed heights. Now the second band, i.e., the
single flip-pair expansion, can be seen (up to a proportionality
factor) as a convolution of the first band with a rectangular
function, taking the value 1 for every SI that can be reached by
a single flip pair and the value 0 everywhere else. Thus, every
delta peak smears out to a superposition of rectangle-shaped
functions at the same position, as can be seen in Eq. (46). Its
width relative to the total range of SI scales as O(1/L). The
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FIG. 3. Spline fits to log[ρ+(SI ) − ρ−(SI )] with different degrees of freedom (dof) for 538 data points and respective Bayesian information
criterion (BIC), Eq. (51). The spin chain length is L = 6, the evolution time is t = 1, the number of Monte Carlo sweeps is Ns = 104.

FIG. 4. Relative errors of the spectral form factor �K (t ) = |K (t )/KED(t ) − 1|, where KED(t ) has been calculated with exact diagonaliza-
tion, as a function of the number of sweeps Ns. For small evolution times t � 0.3, �K (t ) reaches a plateau value that is entirely saturated by
nonstatistical Trotterization errors. Error bars in negative direction that would extend below 0 are omitted. Lines show the respective statistical
powers. Top left to bottom right: LLR2, LLR2 with spline fitting, LLR0, and REW2. The chain length is L = 16 for all plots.
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FIG. 5. Density of states in the even (positive) parity sector, cal-
culated with LLR2 for the pure transverse Ising model with constant
coupling, i.e., J2 = �J = 0. Chain length L = 6; time, field strength
and coupling t = h = J0 = 1; number of Monte Carlo sweeps
Ns = 107.

generalization is straightforward. With every additional flip
pair, the previous distribution is convoluted with a rectangular
function. For instance, the DoS of LLR2 looks like the original
spikes of LLR0 convoluted with a triangle function, yielding
the batman profile in Fig. 5 for the simple transverse field
Ising model with constant coupling Ji j = δi, j+1 and L = 6.

Note that the notion of successive convolutions is only
exact up to a single flip pair. Beyond, it still allows us to
understand the shape of the DoS qualitatively, but crucial
contributions from interferences between two or more flip
pairs are neglected (e.g., two flip pairs might be on the same
spatial site) so that the DoS is not reproduced correctly.

With larger L, the DoS smooths out in the disordered
case. The overall smoothing stems from an exponentially large
number of peaks constituting LLR0, not from a broader smear-
ing of the lower bands, since the convolution always acts on
scales of O(1/L).

V. RUNTIME COMPARISON

A. ED

The straightforward solution for arbitrary times is the ED
of the full 2L-dimensional system. Since the diagonalization

of a matrix has cubic scaling, we end up with a runtime in
O(23L ).

In our benchmarks, we used the LAPACKE_DSYEV rou-
tine provided by the LAPACKE package in C to calculate the
complete spectrum of the respective Hamiltonian to machine
precision.

For completeness, we also mention that the brute force
approach of simply trying all the combinations in the classical
system to calculate the exact partition sum has a runtime of
O(2LNt ).

B. Reweighting

Stochastic methods like reweighting cannot be compared
with exact methods like ED directly since the computational
effort crucially depends on the desired precision ε. It is,
however, reasonable to expect square-root convergence in the
amount of statistics due to the central limit theorem and to set
a sweep over the full lattice of N = L Nt sites as the smallest
unit of data. With these assumptions, we get a runtime scaling
of O(LNtε

−2) for a system without a sign problem. It is
important to keep in mind that this is the best-case scenario,
and phenomena like critical slowing down are completely
neglected.

For the sake of simplicity, we will assume a small enough
and constant Trotter step size δ, so that Nt ∝ t . Note that this
implies exponential runtime even without a sign problem for
physically interesting long times t ∼ 2L.

The crucial change we must introduce for systems with a
sign problem is a factor of the statistical power:

� =
∣∣∣∣ Z

ZR

∣∣∣∣, (52)

that is, the modulus of the expectation value of the complex
phase. This modification leads to a runtime scaling of

Tsim ∼ O
(
Ltε−2�−2

)
, (53)

so in the following, we must estimate the magnitude of � as
best we can. It is clear that we cannot calculate it exactly since
that would allow us to solve the complete initial quantum
mechanical problem.

We start with the observation that

|TrU (t )| = |AZR| �, (54)

where the left-hand side can be estimated from universal prop-
erties of the SFF, and the product AZR is known analytically.
Let us expand the latter product near the continuum limit:

|AZR| =
∏

i

(sin δhi cos δhi )
Nt /2

[
cosh

(
−1

2
ln tan δhi

)Nt

+ sinh

(
−1

2
ln tan δhi

)Nt
]

=
∏

i

(δhi )
Nt /2

[(
1√
δhi

+
√

δhi

)Nt

+
(

1√
δhi

−
√

δhi

)Nt
]

[1 + O(δhi )]
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=
∏

i

[
(1 + δhi )

Nt + (1 − δhi )
Nt
]
[1 + O(δhi )]

=
∏

i

[(
1 + thi

Nt

)Nt

+
(

1 − thi

Nt

)Nt
]

[1 + O(δhi )]

=
∏

i

2 cosh (thi )[1 + O(δhi )]. (55)

In the common case of all fields equal hi ≡ h, we thus obtain
the formula:

� = |TrU (t )|
2L cosh (th)L , (56)

which is exact as δ → 0.
Since the SFF is bound from above |TrU (t )| � 2L, the best

possible runtime scaling amounts to

Tsim ∼ O[Ltε−2 cosh(th)2L], (57)

so that reweighting can never outperform ED when th �
acosh2 ≈ 1.3.

Empirically, we find that, for small times, |TrU (t )| ∼
2Le−Lt2

until it reaches the plateau at 2L/2. Moreover, to main-
tain high precision, usually we have to scale the Trotter step
with the system size δ ∼ 1/L, so that a more realistic runtime
estimate is given by

Tsim ∼ O
[

1

2−L + e−Lt2 L2tε−2 cosh (th)2L

]
. (58)

C. LLR

In what follows, we show that, for both reweighting and
LLR, the error is strongly dominated by the bulk, that is, the
region with highest DoS. Since LLR is only advantageous in
sampling the tails of the DoS distribution more accurately, it
cannot significantly outperform reweighting. This conclusion
is also confirmed by our MC data.

For a more formal comparison, we must introduce several
assumptions. First, we demand that all the LLR parameters
have been tuned properly. The bin size used for LLR is
small enough to have negligible discretization errors. Such
a choice is always possible, though the need to tune the
parameters is a serious disadvantage of LLR. Secondly, we
bin the data accumulated for reweighting in the same fashion,
again without significant loss of precision. Now the normal-
ized DoS obtained by either method can be interpreted as
a probability distribution ρi on the same discrete and finite
set i ∈ {1, . . . , M}. The same as in Eq. (26), M denotes the
number of bins the DoS has been split into.

It is easy to see that, with reweighting every bin, i is visited
Ni = ρi
 times on average, where 
 is the total number of
samples. Therefore, in the large 
 limit, according to the
central limit theorem (or naturally assuming a Poisson distri-
bution of bin counts), the absolute uncertainty of the number
of counts in said bin is

√
Ni yielding an error of

�ρi ≡ ρi√
Ni

=
√

ρi



. (59)

Since LLR is a special case of the RM algorithm with a
nondifferentiable target function, the coefficients in the expo-
nent converge strictly as O(1/

√

) [40]. Thus, the relative

error of ρi lies in O[e1/
√


 − 1] = O(1/
√


). We can obtain
some bounds on the proportionality factor as well, though
these results are by no means as precise as for reweighting.

In the early stages of the RM iteration, the probability to
update the ith bin is simply ρi (the same as for reweighting).
As RM iterations proceed and the coefficients αi are updated,
at asymptotically large 
, all bins are visited with equal
probabilities ∼1/M. Therefore, in the bulk of the DoS defined
as all the regions with ρi � 1/M, the probability to visit bin
i decreases with the number of iterations 
 and eventually
approaches 1/M from above. We can thus provide bounds on
Ni in the bulk region:

ρi
 � Ni �



M
. (60)

On the other hand, in the tail of the distribution where
ρi � 1/M, the probability to visit the bin i increases with the
number of RM iterations and eventually approaches 1/M from
below. The expectation value of the iteration count Ni in this
region is therefore bounded by

ρi
 � Ni �



M
. (61)

In the following, we assume the best possible scenario, using
the upper bounds on Ni, in which case the statistical error is
given by

�ρi =
⎧⎨
⎩
√

ρi



if i in bulk,

ρi

√
M



if i in tail,
(62)

and shows that LLR cannot outperform reweighting signifi-
cantly even in that case.

Let us consider some probability ρ0 from the bulk and
another ρ∞ = ζρ0 from the tail, where ζ is some small param-
eter. For reweighting, we need 
 ∼ ζ−2 samples to resolve
ρ∞ at all. For LLR, on the other hand, the error in the tail
is much smaller. However, even if we knew ρ∞ exactly, this
knowledge is useless if �ρ0 > ρ∞, i.e., the error is bulk
dominated. From this follows the condition:

�ρ0 < ρ∞ ⇒
√

ρ0



< ζρ0 ⇔ 
 >

ζ−2

ρ0
. (63)

Thus, not only does LLR follow the same scaling as for
reweighting in Eq. (53), but it even has very similar errors
quantitatively since the statistical uncertainties in the bulk are
almost identical for reweighting and LLR, and these uncer-
tainties dominate in both cases.

024302-10



REAL-TIME SIMULATIONS OF QUANTUM SPIN CHAINS: … PHYSICAL REVIEW B 107, 024302 (2023)

We remark that this argument is applicable independently
of the specific form of the DoS and the conclusion therefore
generalizable beyond its application to spin chains. Generally,
complexity of a given problem is encoded in the magnitude
of the parameter ζ . For instance, in our case of real-time spin
chain simulations, ζ ∼ e−Lt is exponentially suppressed with
the system size providing an alternative perspective on the
origin of the NP-hardness of the sign problem.

D. Augmented LLR2 or REW2

Removing the two leading-order contributions from the
stochastic calculations and evaluating them exactly comes
with an additional cost of

O
(
L2L
)

(64)

as compared with plain vanilla LLR0 or REW0. However, it
allows us to achieve the same precision with a significantly
lower accuracy goal since the stochastic part contributes with
a reduced weight. More specifically,

ε−1 
→ ε−1
{
1 − cosh(th)−L

[
1 + 1

2 L(th)2
]}

(65)

results in an overall runtime of the approximate order

Tsim ∼ O
{

L 2L + Ltε−2

[
cosh (th)L − 1 − L(th)2

2

]2
}

. (66)

This estimate should be compared with Eq. (57). We see that
summation over the two leading-order contributions allows
us to obtain equally precise results at short times with sig-
nificantly smaller statistics (i.e., computational effort) and to
extend the stochastically calculable time region toward some-
what larger values.

VI. RESULTS

All the simulations presented in this paper have been per-
formed using R as a frontend and C as a backend. The complete
code and most of the data are publicly available at Ref. [41].
Some of the data are rather large and have therefore not been
published in the same way, but we are happy to provide them
in case of interest.

We tested our algorithm on chains of up to L = 50 with
LLR0/REW0 and up to L = 40 with LLR2/REW2. Small
lengths L � 16 have been benchmarked against results from
ED. We emphasize that the larger lattices with L � 24 are
far out of the reach of any exact calculations. For instance.
L = 40 would require 16 TB of memory to even store a single
complex state vector in double precision. We also stress that,
while LLR2/REW2 has a runtime scaling as O(2L ) and there-
fore L > 40 quickly becomes unfeasible, there are no such
limitations for LLR0/REW0, and L can be chosen practically
arbitrarily large at the cost of somewhat reducing the evolution
time t .

In each simulation, we chose a single random realization
of the coupling J . The disorder average over J is technically
straightforward and would only add a layer of uncertainties to
the results, obscuring the quality of the algorithms.

Some typical examples of the scaling of the relative error
between the MC and ED results with the number of MC itera-
tions are shown in Fig. 4. The error is plotted as a function of

the total number of sweeps Ns = 
/N for different evolution
times t and correspondingly different strengths of the sign
problem. Respective statistical powers � are shown as lines.
In an ideal stochastic simulation, the error should scale as
�−1/

√
Ns, and it does so usually. There are some exceptions

in the decrease with Ns though. The shortest evolution times
just plateau out at a constant error level. For LLR0, the simula-
tions would require a much finer discretization of SI to resolve
the spiked DoS properly. The LLR2 and REW2 calculations,
on the other hand, are so precise that the Trotter error for the
choice of Nt is resolved.

From the two top plots in Fig. 4, we also conclude that
the results obtained with spline fitting tend to be better than
the ones from simple integration for small numbers Ns � 105

of MC updates and for large evolution times t ∼ 1 where the
sign problem is more severe (compare the top left corners of
both plots). More statistics undermines the usefulness of fits,
as they cannot extract any additional information.

The true reason for the favorable spline results in the case
of small statistics appears to be that the best fitting functions
are very smooth in this case. Therefore, the highly oscillatory
integral in Eq. (18) required to obtain the SFF yields a value
close to zero. Since the analytic approximation used in LLR2

is not too bad by itself, the overall result is better than the
noise in the unfitted case. Thus, using the stochastic data does
not help to improve the analytic approximation for too little
statistics. However, in the spline-fitted case, it does not add
any harm either.

It is evident that the augmentation defining LLR2 allows
us to reduce the error at short times by several orders of
magnitude compared with plain vanilla LLR0. It is also clear,
however, that it does not significantly mitigate the sign prob-
lem at long times, confirming the predictions from Eq. (66).

A direct comparison of LLR2 and REW2 shows very little
differences. If anything, reweighting appears to be slightly
better. This is exactly what we expect from Sec. V C, where
we showed that LLR and reweighting have principally the
same sign problem. The minor difference in favor of reweight-
ing most likely comes from the binning required for LLR as
well as a suboptimal parameter choice (see Appendix C).

Figure 6 shows the SFFs corresponding to the errors in
Fig. 4. We added the approximations for continuous times
derived in Sec. IV. The strength of the LLR2 method becomes
clear when the small differences between the approximations
and the exact results are observed. Only these differences
must be calculated stochastically. Note, however, that even at
very short times t � 0.4, the stochastic contribution cannot
be neglected, and the MC results are not compatible with the
approximations.

We further remark that the LLR results at large times
and small statistics are systematically incompatible with the
correct values. This can be explained by a required minimal
number of iterations to fill up the DoS. We expect that a
different choice of coefficients aL,M,
 and bM than in Eqs. (33)
and (34) might reduce this problem, but we did not conduct
additional extensive parameter tuning. This is certainly a great
disadvantage of LLR as opposed to reweighting.

The results obtained for longer chains L � 20 and depicted
in Fig. 7 are qualitatively similar to those discussed above
for L = 16. Again, LLR2 and REW2 yield extremely precise
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FIG. 6. The spectral form factors K (t ) compared with the solution from exact diagonalization (exact) and the approximations: no flips,
Eq. (40); 1 flip pair, Eq. (47); and O(t2) Trotter, Eq. (48); for different numbers of Monte Carlo sweeps Ns. Error bars in negative direction that
would extend below 0 are omitted. Top left to bottom right: LLR2, LLR2 with spline fitting, LLR0, and REW2. The chain length is L = 16 for
all plots.

results at short times, and reweighting generally outperforms
LLR. Notably, these results demonstrate the scalability of
our stochastic algorithms toward very long chains, provided
t � 1. Especially for REW0, we can obtain reliable results for
virtually arbitrarily large values of L.

VII. DISCUSSION AND OUTLOOK

In this paper, we investigated the possibility to evaluate the
SFF (real-time partition sum) of a nonintegrable spin chain
in Eq. (5) using MC simulations. The partition sum contains
a multitude of mutually canceling complex-valued contri-
butions, which turns its direct evaluation into an NP-hard
problem. We investigated the infinite-temperature spectral
function because it poses the most challenging problem and
is often considered in the literature. We remark, however,

that the method would be applicable with only minor mod-
ifications (a larger, in principle unlimited, number of parity
sectors) to finite-temperature systems as well. In fact, finite
temperatures might severely reduce the sign problem.

We compared the most straightforward approach based
on importance sampling with subsequent reweighting with a
more advanced DoS approach, in which the statistical distri-
bution of the complex phase of the action is calculated with
high precision.

One of our main results is the improved simulation strat-
egy, in which the contribution of configurations with zero
and one spin flips into the real-time partition function are
summed over exactly. These configurations contribute to the
leading and next-to-leading orders of the expansion of the
real-time partition function TrU (t ) in Eq. (6) in powers of
the magnetic field h. Summation over all other configurations
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FIG. 7. Normalized spectral form factors 2−2LK (t ) for system sizes hardly (L = 20) or not at all (L � 30) treatable by exact diagonaliza-
tion. Error bars in negative direction that would extend below 0 are omitted. Top left to bottom right: LLR0, LLR2, REW0, and REW2. The
number of Monte Carlo sweeps is Ns = 107 for all plots.

is performed stochastically, using either the standard MC up-
dates (for reweighting) or the LLR algorithm (for the DoS
approach). As we discuss below, both approaches work nearly
equally well.

As illustrated in Fig. 4, the improved simulation strategy
significantly accelerates convergence to exact results, which
we obtained using numerical diagonalization of the Hamilto-
nian. It allows us to study real-time evolution of spin chains
with lengths up to L = 40 and up to physical times t � 1.
Our method thus clearly outperforms numerical ED methods
at short evolution times t � 1. Since for our spin chain the
numerical cost of ED does not depend on the evolution times
(up to possible issues with numerical precision of the result
due to round-off errors), ED becomes more advantageous for
t � 1. The algorithm could also be translated to a continuous
time formulation along the lines of Ref. [42], which removes
Trotterization errors.

An advantage of the stochastic approach is that it can be
easily extended to bosonic systems with infinite-dimensional
Hilbert spaces, for which ED typically becomes prohibitively
expensive even for O(10) dof. Indeed, to obtain precise results
for bosonic dof, the size of the local Hilbert space Nloc asso-
ciated with each bosonic dof should usually be �2, which
results in a significantly faster growth of computational cost
Tsim ∼ (Nloc)ndof with the number of dof than for quantum spin
chains. In addition, we need to extrapolate the result to the
limit Nloc → +∞. The possibility to simulate short periods
of real-time evolution for systems with a large number of
bosonic dof is particularly attractive for numerical studies of
the early-time evolution of quark-gluon plasma in heavy-ion
collisions before the onset of hydrodynamic behavior.

It is less clear how our results would translate to fermionic
systems in general because the performance would crucially
depend on a particular realization. Broadly speaking, we can
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distinguish two classes: Hubbard-Stratonovich transforma-
tions resulting in continuous dof and those resulting in discrete
dof (e.g., Hirsch transformations). In the first case, we expect
LLR to perform better than reweighting because of the im-
plied smoothness of the DoS. On the other hand, the latter
case enables improvements of the LLRn/REWn type.

Another important and somewhat counterintuitive conclu-
sion is that, at least for our Hamiltonian and the Trotterization
scheme, the DoS/LLR approach does not appear to offer
significant advantage over the simple reweighting. In fact,
reweighting often outperforms the DoS/LLR approach, pre-
sumably because of the suboptimal choice of parameters in
the LLR algorithm. Reweighting, on the other hand, does not
depend on any tunable parameters.

In general, the main technical advantage of the DoS/LLR
approach is that it allows to resolve the tails of the distribu-
tion of the complex phase with much higher precision than
reweighting. In our case, the contribution of these tails to the
real-time partition sum is subdominant in comparison with
the bulk contribution (central region in the distributions on
Fig. 1). Therefore, sampling the tails with high precision is
not an advantage in itself. As stressed in Refs. [12,43–45],
high-precision data for the tails of the DoS become an ad-
vantage if the DoS ρ(E ) can be well approximated by some
function with a small number of parameters, e.g., a low-degree
polynomial fit or a spline. In this case, precise knowledge
on the distribution tails translates into a better choice of fit
parameters. This allows for more precise numerical estimates
of the oscillatory integrals of the form Z = ∫ dEρ(E )eiE in
the representation in Eq. (4) of the real-time partition function.

As discussed in Sec. IV E, in our case, the DoS in Eq. (19)
is a sum of δ functions and piecewise constant terms for
any finite L. The DoS only looks like a continuous function
in the thermodynamic limit L → +∞. While separating out
the leading and next-to-leading contributions to the DoS, as
described in Secs. IV A and IV B, leaves us with a much
smoother DoS, we were still not able to approximate it by
a function (polynomial or spline) with a sufficiently small
number of parameters. As a result, spline or polynomial ap-
proximations improve the convergence to exact results only
for small numbers of MC samples in RM iterations (29).
Consequently, the LLR approach did not offer significant im-
provement over the reweighting approach.

In this respect, the LLR approach might work better for
systems with continuous dof, where the DoS ρ(E ) in Eq. (3)
is a continuous function even for a finite number of dof (away
from the thermodynamic limit). See the fermionic system
considered in Ref. [21] for an example. In this case, the
DoS might allow for good-quality approximations in terms of
functions with a small number of parameters, which allows
us to effectively use the information about the tails of the
DoS to improve the precision of oscillatory integrals of the
form of Eq. (4). However, other complications might arise
when applying the DoS/LLR method to continuous dof. To
provide the most obvious example, the DoS will be clearly
a nonnormalizable and unbounded function for the real-
time partition function of even the simplest one-dimensional
quantum harmonic oscillator. For the harmonic oscillator,
this unboundedness can be easily solved by complexification
of the path integral, which makes the path integral com-

pletely real valued. The complexification, however, becomes
increasingly complicated for anharmonic potentials. As a re-
sult, we will be inevitably forced to adapt the Lefschetz
thimble/holomorphic flow approaches, which have their own
complications [46–50]. A further problem with the DoS/LLR
approach for continuous variables might be the loss of ergod-
icity for simulations with constrained values of the imaginary
part of the action SI , especially if one uses the hybrid MC al-
gorithm based on nearly continuous updates of field variables.
Finally, the polynomial approximations to the DoS, which
plays a crucial role in reducing statistical errors, might fail
in the vicinity of phase transitions [15].

We should note that the DoS/LLR approach might also
be useful for exploratory studies, for example, to guide the
construction of analytic approximations. In fact, our work
proceeded in exactly this way—we first measured the unsub-
tracted DoS function with LLR0, and only after looking at
the DoS plots in Fig. 1, we realized how to subtract the lead-
ing and next-to-leading contributions specified in Eqs. (40)
and (47).
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APPENDIX A: DERIVATION OF THE CLASSICAL ISING
MODEL IN d + 1 DIMENSIONS AND FURTHER DETAILS

The exponentials in Eq. (9) can be calculated exactly in the
canonical z basis because the first term is diagonal and the
second one can be decomposed into local blocks of size 2×2,
yielding

eiδhiσ
x
i =

(
cos δhi i sin δhi

i sin δhi cos δhi

)
. (A1)

Let us now compare these matrices with the local build-
ing blocks of the anisotropic classical Ising model with an
arbitrary coupling matrix J ′ within the first dimension and
a nearest neighbor coupling h′ within the second dimension
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defined by the action:

S = S1 + S2, (A2)

S1 = −
∑

k

∑
i, j

si,kJ ′
i j s j,k, (A3)

S2 = −
∑

i

∑
k

h′
isi,ksi,k+1. (A4)

The physics of such a classical statistical system are governed
by the Boltzmann weighted partition sum (over all possible
spin configurations):

Z =
∑
{s}

e−S(s), (A5)

inducing the transfer matrices:

T1 = [
e−S1]

k,k+1 = diag

⎛
⎝∑

i, j

siJ
′
i j s j | s ∈ {±1}L

⎞
⎠, (A6)

and

(T2)i = {
e−(S2 )i

}
k,k+1 =

[
eh′

i e−h′
i

e−h′
i eh′

i

]

= 1

2

(
1 1
1 −1

)[
eh′

i + e−h′
i 0

0 eh′
i − e−h′

i

](
1 1
1 −1

)
. (A7)

We immediately observe the similarity between T1 and the
interacting part of the time evolution operator. Therefore, we
set

J ′ ≡ iδJ. (A8)

Note again that this J corresponds to the purely spatial cou-
pling matrix. The coupling in the temporal direction turns out
to be more challenging, as we must exploit the similarity of T2

with the 2×2 matrix in Eq. (A1):[
eh′

i e−h′
i

e−h′
i eh′

i

]
!∝
[

cos δhi i sin δhi

i sin δhi cos δhi

]

⇒ e−2h′
i = i tan δhi. (A9)

Together with the proportionality factor:

A =
∏

i

ANt
i , (A10)

Ai =
√

i sin δhi cos δhi, (A11)

this allows an exact identification between the trace of the
quantum mechanical time evolution operator and the classical
partition sum:

TrU (t ) = AZ. (A12)

We can define the purely real constants:

J := δJ, (A13)

hi := − 1
2 log tan δhi, (A14)

so that the action reads

S = −i
∑

k

∑
i, j

si,kJi js j,k

−
∑

i

∑
k

(
hi − π

4
i

)
si,ksi,k+1. (A15)

1. Distribution of the imaginary part

It is instructive to investigate the distribution of SI before
we go on. For this, we define the auxiliary variable:

θk :=
∑
i, j

si,kJi js j,k, (A16)

with the upper bound:

|θk| � ||J||1 � nL δ ||J||∞, (A17)

where n is the number of neighbors a single site can couple to
(n = 2 for pure nearest neighbor coupling in one dimension),
and || · ||p denotes the p norm. Since the considered system
is translationally invariant in the time direction, all θk are
distributed identically, though not independently in general.
The Z2 symmetry of spin reflections is unbroken, so the ex-
pectation value of θk is θ̄k = 0.

Suppose the θk were uncorrelated. Then according to the
central limit theorem, SI would follow a normal distribution:

SI ∼ N (0, v), (A18)

with a variance:

v � Nt (nL δ ||J||∞)2 = 1

Nt
(nL t ||J||∞)2, (A19)

approaching zero in the continuum limit.
In the opposite limit of maximal correlation, on the other

hand, SI simplifies to

SI = Ntθk ⇒ |SI | � Nt nLδ ||J||∞ = nL t ||J||∞, (A20)

that is, a constant in the time-step size. We do not consider the
case of anticorrelation since it is highly unphysical. There-
fore, we find that, in any relevant case, SI is bounded by the
physical time extent, and the variance is going to approach a
constant:

lim
Nt →∞

v � t ξ (nL ||J||∞)2, (A21)
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in the continuum limit, where ξ is the correlation length in
the time direction. Here, ξ is proportional to the standard
deviation of SI .

2. Alternative boundary conditions

We remark here that the pbc silently assumed above are
the most usual but not the only possible choice. Physically,
they correspond to same-to-same scattering and are best suited
for infinite time approximations. In contrast, open boundary
conditions (obc) correspond to all-to-all scattering and might
be relevant in comparisons with the matrix product state or
similar calculations where they are much easier to realize than
pbc. Closed boundary conditions (cbc) allow for particular
choices of initial and final states.

In all the nonperiodic cases, there is one less time step than
time slices, so the proportionality factor between quantum and
classical partition sums reduces to

∏
i ANt −1

i . Furthermore, the
trace in Eq. (22) must be replaced by projections to corre-
sponding vectors.

For obc, one obtains

ZR,i = 1

2
(1, 1)(T2)Nt

i

(
1
1

)
= 2Nt −1 coshNt −1 h′

i, (A22)

and for cbc,

ZR,i = (1, 0)(T2)Nt
i

(
cos ϕ

sin ϕ

)

= 2Nt −1[(cos ϕ + sin ϕ) coshNt −1 h′
i

+(cos ϕ − sin ϕ) coshNt −1 h′
i], (A23)

where initial and final states are rotated against each other by
the angle ϕ. We observe that, as expected, all the boundary
conditions lead to the same result at infinite times t → ∞,

Nt → ∞, and moreover, the cbc case of ϕ = 0 (same-to-same
scattering) yields the same result as pbc up to an irrelevant
difference of Nt by one.

APPENDIX B: ERROR SCALING WITH BIN SIZE

The discretization of the DoS into bins as in Eq. (26)
naturally leads to errors vanishing as the bin width goes to
zero but is relevant for finite bin size. The observable we are
ultimately interested in amounts to a Fourier transformation
of the DoS, so we can judge the quality of the discretization
method by its ability to approximate the integral:

Fa(x0, h) := 1

2h

∫ x0+h

x0−h
dx e f (x)+iax. (B1)

The separate estimation of the DoS in bins of length 2h
succeeded by a multiplication with the phase at the midpoint
of the interval, as employed in this paper, results in

eiax0

2h

∫ x0+h

x0−h
dx e f (x)

= Fa(x0, h) e− 1
6 ia[2 f ′ (x0 )+ia]h2+O(h4 ). (B2)

Alternative approximations include the classical midpoint
formula:

e f (x0 )+iax0 = Fa(x0, h)e− 1
6 { f ′′(x0 )+[ f ′(x0 )+ia]2}h2+O(h4 )

, (B3)

as well as a more intricate piecewise linear (trapezoidal) for-
mula:

e f (x0 )

2h

∫ x0+h

x0−h
dx e f ′(x0 )x+iax

= Fa(x0, h) e− 1
6 f ′′(x0 )h2+O(h4 ), (B4)

as used, e.g., in Ref. [20].
Thus, the multiplicative errors of all the different methods

are of order O(h2). Empirically, we find that the bin size
can easily be chosen small enough to completely neglect this
error since the uncertainties in the estimation of f (x) itself
dominate the total error.

APPENDIX C: LLR STEP SIZE

First, we note that the condition in Eq. (30) is not sufficient
in practice, as the sum does not go up to infinity but only up
to 
. Therefore, we require additionally


∑
k=0

βN,M,
(k) �
∑

i

α̂i, (C1)

where we denote the exact logarithmic DoS with the hat α̂i.
The left-hand side of Eq. (C1) evaluates to


∑
k=0

βN,M,
(k) = aN,M,


[
ln




bN,M,


+O
(
b−1

N,M,


)+O(
−1)

]
,

(C2)

while the right-hand side can only be approximated:

∑
i

α̂i �
∑

i

N ln 2 = MN ln 2 ≈ 0.69MN. (C3)

Though this is a conservative upper bound, it is not very
far from realistic estimations. If we, for instance, assume a
parabolic shape for αi with a maximum close to N ln 2, we
obtain

∑
i α̂i � 2

3 ln 2 MN ≈ 0.46MN . Thus, up to a factor of
order one, we find that

aN,M,
 = ln 2
MN

ln 

bN,M,


(C4)

is a good choice.
To get a value for the remaining offset bN,M,
, we must

consider the small k behavior rather than the large k limit
as we did before because the offset is going to be irrelevant
in the latter case. Consider the likely case that one of the
first contributions βN,M,
(k � bN,M,
) is added to a state that
has a much smaller exact α̂i relative to the other states. To
compensate this mistake after some k0 steps (k0 can be large
if the initial random walk remains in a distant region of the

024302-16



REAL-TIME SIMULATIONS OF QUANTUM SPIN CHAINS: … PHYSICAL REVIEW B 107, 024302 (2023)

phase space for a while), we must spend κ steps adding this
contribution to every other of the M states. For this to be
possible, the condition:

M

bN,M,


�
k0+κ∑
k=k0

1

bN,M,
 + k
= ln

k0 + κ

k0
+O

(
bN,M,


k0

)
, (C5)

must hold. This provides a lower bound for κ:

κ � k0

[
e

M
bN,M,
 − 1

]
, (C6)

which must be small for the algorithm to be efficient. Thus, it
turns out that the offset bN,M,
 ≡ bM solely depends on the
number of states and bM � M for the runtime to not blow
up exponentially. On the other hand, we cannot choose bM

arbitrarily large either since that would defeat the purpose of
βN,M,
(k) decreasing quickly. Numerical tests suggest that

bM = 3M (C7)

yields a performance close to optimal.
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