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Ergodicity breaking of an inorganic glass aging near Tg probed by elasticity relaxation
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We performed a series of aging experiments with an inorganic glass (As2Se3) at a temperature T2 near the
glass transition point Tg by first relaxing it at T1. The relaxations of Young’s modulus were monitored, which
were (almost if not ideally) exponential with T1-dependent relaxation time τ , corroborating the Kovacs’ paradox
in an inorganic glass. Associated with the divergence of τ , the quasiequilibrated Young’s modulus E∞ does not
converge either. An elastic model of relaxation time and a Mori-Tanaka analysis of E∞ lead to a similar estimate
of the persistent memory of the history, illuminating ergodicity breaking within the accessible experimental time,
as described in the Gardner transition theory. Experiments with different T2 exhibit a critical temperature Tp ∼ Tg,
i.e., when T2 > Tp, both τ and E∞ converge. The results unveil a long-expected phenomenon that structural glass
transition could be a zero-to-nonzero transition, manifested by a nonvanishing structural memory in aging when
the temperature is below Tp in the glass transition range. This demonstrates the existence of the ergodicity
breaking deep in the glass state and Tp could be the Gardner transition point of the structural glass.
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I. INTRODUCTION

The microscopic dynamic behaviors of an amorphous sys-
tem and the corresponding complex free-energy landscape is a
high-profile and challenging subject in theoretical physics and
material science [1,2]. Aging experiments of the spin glass [3]
revealed a nonvanishing dependence on historic disturbance
especially when it was applied with a long waiting time. This
was manifested by not only the varied spectrum of relaxation
time, but also the nonconverged physical quantity in an exper-
imentally accessible duration [4]. Such observations together
with the similar results of numerical simulations [5,6] have
led to the concept of ergodicity breaking (EB) described by a
phenomenological model based on a rugged free-energy sur-
face, or more analytically, replica symmetry breaking (RSB),
revealed in the mean-field solutions of spin systems [2,7]. In
2021, Giorgio Parisi was awarded the Nobel Prize in physics
due to the exact solution of the mean-field spin glass transition
[8–10]. In spin glass, the EB manifested as the divergence of
magnetic susceptibility when specimens are cooled along dif-
ferent paths in the temperature-magnetic field with the same
start and end points. The typical paths are called zero-field
cooling (ZFC) and field cooling (FC), leading to different
magnetic susceptibilities below a transition temperature.

As it is generally believed that the results of spin glass
can be extended to structural glasses due to the amorphous
state, revealing that the EB phenomenon in structural glasses
becomes interesting and important. In 1985, Gardner [11]
introduced a further development of the random first order
transition (RFOT) [12] that occurs when the deep basins of
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a free energy landscape can split into fractal and hierarchical
subbasins, corresponding to a marginally stable state of the
system. This process occurs when the system is compressed
or cooled beyond a threshold, and is defined as the Gardner
transition. This impalpable transition is realized theoretically
in a finite-dimensional system [13–15], while for the real
system in which d = 2 or 3, the extrapolation and continuity
of the solution must be checked. In 2017, Jin and Yoshino
[16] explored the complex structure of the free-energy land-
scape of the simplest glass through the hard sphere system.
They designed laboratory-reproducible rheological protocols
to examine the dynamic features of the hard sphere system,
in which compressing first then shearing corresponds to the
ZFC protocol, and shearing followed by compression is re-
garded as the FC protocol. They found that shear modulus
showed a protocol dependence when the density, or the pres-
sure, reaches a critical value. Through the MD simulation,
the trajectories of the spheres were tracked, which shows the
aging behavior after the shear modulus bifurcates, display-
ing the EB phenomenon visually. The Gardner transition is
examined in this three-dimensional hard sphere system, and
the split point of the modulus is defined as the transition
point. However, it is still arguable on the possibility of find-
ing any EB phenomenon in real structural glass, considering
that the built-in randomness of spin-spin interactions differs
fundamentally from the self-generated position randomness in
structural glass. Kovacs’ experimental study on the volume re-
laxation of a polymeric glass below Tg in 1964 [17] challenged
the ergodicity of the glassy system. The experiments show that
the effective relaxation time (τeff ) after long-time aging was
still affected by the initial state especially in the experiments
of temperature up jump. Because of the presumed uniqueness
of an equilibrium (ergodic) state (note that the equilibrated
volume was not provided by Kovacs [17]), the observed
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divergence of τeff was termed as “expansion-gap paradox”
or “τeff paradox” [18,19], questioning how a quasiequili-
brated system can exhibit disparate dynamics. Owing to the
fundamentality in understanding glass relaxation, Kovacs’ ex-
periment was later reexamined by McKenna et al. [18] and
repeated by Koll and Simon [19], which confirmed the gap
in the quasiequilibrium τeff . Kovacs’ finding of the expansion
gap seemingly hints at the possibility. However, his results
were criticized especially by the inorganic glass community
[20–22] as the dilatometry experiments with inorganic glasses
[23,24] after Kovacs did not render a convincing trend of
persistent history dependence near Tg. For example, Goldstein
and Nakonecznyj [23] speculated that the τeff paradox might
not be found in inorganic glasses because they had a narrower
relaxation-time spectrum than a polymeric glass did. Struik
[25] criticized that the τeff paradox might merely be a mani-
festation of the divergence of τeff when a stretched exponential
process approached equilibrium. These criticisms might have
discouraged the effort following the route of Kovacs to unveil
an EB phenomenon or the nature of glass transition in struc-
tural glasses through monitoring volume (V ) change.

In this work, we switched our attention to the variation of
Young’s modulus (E ) of a structural glass, as the Gardner
transition in the hard sphere system displays. The Young’s
modulus is a two-time quantity (i.e., the autocorrelation func-
tion of stress or strain [26,27]) that can be analogous to the
magnetic susceptibility of a spin glass and must be more
sensitive to the heterogeneous dynamics in a glass [28].
Also, in experiments with structural glasses, E changes much
more significantly in the temperature range of glass transi-
tion. Roughly speaking, −lg(dE/dT/E ) is 2–3 [29,30] and
−lg(dV/dT/V ) is 5–6 [29] for an inorganic glass, i.e., the
variation in Young’s modulus is at least two orders of magni-
tude more significant than that in volume at temperatures near
Tg. Hence, it is more plausible to probe an EB phenomenon, if
any, based on E (t) than that based on V (t). Hereunder, we re-
ported aging experiments with an inorganic glass, in which the
relaxations of E were exponential. The exponentiality thus al-
lows an undoubtful quantification of relaxation time τ as well
as a clear quasiequilibrium magnitude of E∞ when the aging
time t is much larger than τ . Most unexpectedly, we show
that both τ and E∞ depend identically on thermal history,
i.e., they do not converge at low temperatures but converge at
high temperatures. It should be noted that for crystalline ma-
terials thermal history decides microstructures, which leads
to different mechanical properties. For amorphous materials,
such a history dependence occurs when the atomic arrange-
ment is frozen. However, people often believe that structural
relaxation—if it occurs at an elevated temperature close to
Tg—should lead to the converged mechanical properties. In
this work, we challenge this common understanding based on
experimental results, i.e., we demonstrate that EB, as revealed
in spin glass and theoretical glass models, does occur in a
structural glass transition.

II. MATERIALS AND METHODS

A. Sample preparation

The commercial chalcogenide glass As2Se3 (Hubei New
Hua-Guang Information Materials Co., Ltd, China) with

the dilatometry Tg = 180 ◦C (at which the viscosity is ap-
proximately 1012 Pa s [31]) is chosen. As2Se3 glass is
representative of chalcogenide glasses which has been widely
used in infrared imaging [32] and optical switches [33]. It
has excellent thermal stability against crystallization [34] with
the lowest crystallization temperature of 200 ◦C, as extrapo-
lated in the plot of isothermal crystallization rate [35]. The
results presented in this paper were obtained from a sample
of 40.025 × 8.035 × 2.45 mm3 and 3.6396 g, measured using
impulse excitation technique (IET) station HT1600 (IMCE,
Belgium).

B. Impulse excitation technique (IET)

The natural vibration of a beam generates sound, of which
the frequency and attenuation reflect the viscoelastic prop-
erties of materials. for studying the temperature effect, the
beam can be heated in a dedicated IET furnace (as shown
in Fig. 1), into which argon gas is continuously purged to
minimize the effect of oxidation. The samples in the device are
fixed at the stationary (nodal) points of the first-order flexible
vibration mode of a free-free beam, and hit at the middle span.
A sound collection device is arranged above the midpoint of
the sample. This collection device consists of a ceramic bar
for transmitting the sound and a high-precision microphone
for recording the sound signal. The Young’s modulus, which
is proportional to the square of frequency, is calculated ac-
cording to the American Society for Testing and Materials
(ASTM) standard 1876 [36] and the amplitude decay rate is
determined from the full width at half maximum (FWHM)
of the signal. This technique has been employed to study re-
laxation phenomena in various glasses [29,30,37–39] as well
as the transient amorphous states during a crystalline phase
transition [40].

C. Experimental protocol

Different from the ZFC and FC paths employed in spin
glasses and the hard-sphere systems, here the path depen-
dence, signifying the Gardner transition (or EB), is realized
by the change in initial states. In experiments, the sample was
first heated to and annealed at an initial temperature T1 for
a sufficiently long time to reach a quasiequilibrium state (no
apparent trend of modulus change) and then quickly (about
0.5 ◦C/s) heated or cooled to the end temperature T2. We
chose1 the commercial chalcogenide glass As2Se3. During
heating, argon gas was purged to protect the sample from
oxidation and Young’s moduli were measured and recorded
every 20 s.

1Several oxide glasses were attempted, but the results were much
more contaminated by experimental fluctuations, causing ambiguity
to make any judgement. A plausible cause could be the noise in high-
temperature measurements because of the higher Tg (∼500 ◦C). The
IET system we employed is to record the sound generated by sample
vibration. At a higher temperature, the environmental noise further
deteriorates the weak acoustic signal.
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FIG. 1. The specimen, fixture, furnace, and the obtained sound signal in an IET experiment.

III. RESULTS

A. Divergency of the modulus

Figure 2 shows the results of aging at T2 = 175 ◦C after
the temperature jumps from T1 = T2 ± �T with �T = 5, 10,
and 15 ◦C. An example temperature profile of the two-step
aging is shown in the above-left inset, which illustrates the
temperature overshoot and slow variations in a jump from
T1 = 160 ◦C to T2 = 175 ◦C. Though this transition took hun-
dreds of seconds, it is regarded to be a short transient process
in comparison with the long aging time at T1 and T2 (∼104 s).
Also, the relaxation at T2 starting from t = 0 as defined in

FIG. 2. Two-step aging results of As2Se3 glass with T2 = 175 ◦C
and T1 = T2 ± 5, 10, and 15 ◦C. Main plot: relaxation and quasiequi-
librated Young’s modulus at T2, showing the divergence of Young’s
modulus relaxation time process, illustrating a T1 dependence.
Above-left inset: a temperature profile from 160 to 175 ◦C; above-
right inset: plot of quasiequilibrium Young’s modulus E∞ against T1.

this inset warrants the measurements of quasiequilibrium re-
laxation time and Young’s modulus.

As shown in the main plot of Fig. 2, when �T = 5 ◦C,
the relaxation processes after up and down jumps are almost
symmetric and the Young’s modulus after a long relaxation
seemingly merges. With the increase in �T , the relax-
ations after up and down jumps become asymmetric, and
more surprisingly, the quasiequilibrium Young’s moduli are
also different. We averaged the final leveled segment of the
Young’s modulus data, containing over 400 data points col-
lected in hours, to quantify the quasiequilibrium magnitude
of Young’s modulus E∞, as plotted in the above-right inset
of Fig. 2 against T1. Though the difference of E∞ is small
(<1.5%), it is noteworthy that the divergence of E∞ at T2 is
systematic, i.e., E∞ decreases with T1 and up-jump experi-
ments render more deviation than down-jump ones when �T
is the same.

B. Kovacs’ paradox of the relaxation

The normalized modulus change δE (t ) = [E (t ) −
E∞]/E∞ is investigated, as shown in Fig. 3(a) with the
fitting curves using a stretched/compressed exponential
function:

δE (t ) = δ0 exp[−(t/τ )β], (1)

where τ is the relaxation time, β is the stretched/compressed
exponent, and δ0 is the scaling constant. As shown in Fig. 3(a),
all the relaxation curves are fitted with high quality, and the
obtained parameters of τ and β against the initial temperature
T1 are plotted in Figs. 3(b) and 3(c), respectively. It is noted
that β is almost unity with the maximum deviation of 0.07.
Therefore, it is safe for us to claim that the relaxation E (t) in
the chalcogenide glass As2Se3 is exponential with negligible
stretching and that Kovacs’ finding of the diverged relaxation
time has been explicitly shown in Fig. 2(b); more specifically,
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FIG. 3. (a) Plots of the relative change of Young’s modulus δE (t )
with fitting results using Eq. (1), and plots of (b) relaxation time τ

and (c) exponent β against T1, indicating exponential relaxations.

τ increases sharply with the decrease of T1, indicating that
going deeper in the initial glass state leads to a slower rear-
rangement of the microscopic system. This is similar to the
simulation result of the hard-sphere system [16].

IV. DISCUSSION

A. History dependence caused by EB

While various models have been proposed to reconcile the
conflict between equilibrium dynamics and the history de-
pendence indicated by Kovacs’ τeff paradox, such as rational
thermodynamics [23], stochastics relaxation models [26–28],
or the coupling model [41], a loophole in the paradox is indeed
the experimental inability to probe the slowest relaxation in a
nonexponential process [19,25]. In our experiments, however,
the relaxations are exponential, the loophole vanishes, and the
history dependence of the relaxation time stands. And we have
supplemented with the observation that the long-term relax-
ation may not bring the system to equilibrium or an ergodic
state because E∞ does not converge, i.e., the ergodicity is
broken and the glassy system can only explore a T1-dependent
subregion of the configurational space. This finding echoes the
extensive computational and experimental findings that aging
a spin system at temperatures below Tg does not bring the
system asymptotically to an equilibrium state [4–6]. Note that
we cannot exclude the possibility that an ultralong relaxation
may bring the system to equilibrium because of the constraint
of the experimental system (in our case it is due to the limit of
inert gas supply). However, because of all the E ∼ lgt curves
clearly leveled off as shown in Fig. 2 with durations of the flat
segments over 10τ , it is reasonable to claim that the further
relaxation, if it exists, needs a time scale well beyond the
experimentally accessible range.

We anticipate further a correlation between the dynamics,
manifested by τ , and the statics, manifested by E∞, because
the temperature dependencies of them are similar. Based on
the elastic model proposed by Mooney [42] which was derived
based on Eyring’s picture of local molecular movements [43],
a relaxation comes about when thermal fluctuations generate
a local expansion exceeding a certain critical value. Mooney

FIG. 4. Analysis of T1 dependence of (a) relaxation time τ and
(b) quasiequilibrium Young’s modulus E∞ based on the elastic model
[42] and Mori-Tanaka approach, respectively, with an inset in (b)
illustrating the simplification of the T2-aged glass to be a composite.

[42] estimated the probability that these relaxation events
were interfered with the thermal longitudinal sound waves and
proposed that

τ = τ0 exp

[
Q

kBT

]
, (2)

where τ0 is a prefactor, kB is the Boltzmann constant, Q ∝
c2
∞ ∝ E is the activation energy, and c∞ is the speed of

longitudinal sound waves. Note that the temperature T in
Eq. (2) is a phonon temperature which does not account for
the effect of the nonequilibrium dynamics associated with an
unrelaxed atomic configuration [44]. We follow Tools [45]
and other researchers [46,47] to involve the effect of struc-
tural temperature by introducing an equivalent temperature
Te ∈ [T1, T2] to replace T in Eq. (3), because the glass is
sufficiently equilibrated at T1 and then aged at T2. For sim-
plicity, letting Te = μT1 + (1−μ)T2 with μ = μ(t ) ∈ [0, 1]
being time dependent, Eq. (2) is then recast as

ln τ = ln τ0 + h
E

Te
, (3)

where h = Q/(kBE ). At a quasiequilibrium state, E∞ and
μ∞ = μ (t → ∞) are constant. Replacing E with E∞ in
Eq. (3), and fitting the results of τ , it is obtained that μ∞ =
0.080, as shown in Fig. 4, wherein the data points collapse
to a straight line given by Eq. (3). The obtained slope h =
1877.3 K/GPa, together with E∞ = 16.2 ± 0.1 GPa (see the
above-right inset of Fig. 2), leads to the activation energy of
Q = hEkB = 60.4 ± 0.4 kcal/mol, agreeing reasonably well
with the activation energy of 68 kcal/mol of As2Se3 near
Tg [48] determined based on the temperature dependence of
shear viscosity.

Though μ∞ is small, it indicates the nonvanishing struc-
tural memory in an aged glass, corresponding to the unmerged
E∞ as shown in Fig. 2(b). We simplify the aged glass to be
a composite, wherein the components are the glass patches
with different macroscopic physical properties after EB, as
sketched in the inset of Fig. 4(b). Denoted by Ei and Em, the
Young’s moduli of the subbasins with different macroscopic
properties, the ratio E∞/Ei can be expressed as a function
of x = Ei/Em. By neglecting the geometry of the subsystems
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TABLE I. Quasiequilibrium Young’s modulus at T2 = 175 ◦C.

T1 E∞
(°C) (GPa)

160 17.04
165 16.70
170 16.42
180 15.90
185 15.61
190 15.33

with different Young’s modulus, i.e., we simply suppose the
inclusions are spherical, the effective shear and bulk modulus
can be derived based on the Mori-Tanaka (MT) method [49]:

G∞ = Gm + (Gi − Gm)Vf

1 + 4
(
1 − Vf

)
Gp(Gi − Gr )

(4)

K∞ = Km + (Ki − Km)Vf

1 + 9
(
1 − Vf

)
Kp(Ki − Km)

and

Gp = 3(2Gm + Km)

10Gm(4Gm + 3Km)
,

(5)

Kp = 1

3(4Gm + 3Km)
,

where G∞, Gi, and Gm are the effective shear modulus, shear
modulus of initial structures (inclusion), and shear modulus of
relaxed structures (matrix), respectively, and K∞, Ki, and Km

are the corresponding bulk modulus. Then, recall the relations

Gθ = Eθ

2(1 + νθ )
,

(6)

Kθ = Eθ

3(1 − 2νθ )
,

where Eθ , and νθ are Young’s modulus and Poison’s ratio,
respectively; θ = i and m. Then the effective Young’s modulus
can be written as

E∞ = 9K∞G∞
3K∞ + G∞

= g(Ei, Er )|(νi,νm,Vf ). (7)

That is, E∞ can be considered as a function of Ei and Em

with parameters of (νi, νm, Vf ). Normalizing Eq. (7) with Ei

leads to

E∞/Ei = y(1, Em/Ei )|(νi,νm,Vf ) = f (x)|(νi,νm,Vf ). (8)

With some simple derivations, we obtain

df (x)

dx

∣∣∣∣
(x=1,νi=vm )

+ 1 = Vf . (9)

The quasiequilibrium Young’s moduli (E∞) at T2 = 175 ◦C
and various T1 are provided in Table I. To calculate Vf at
varied T2, E∞ obtained in a series of T1–T2 aging experiments
are provided in Table II.

Figure 5 shows the modulus-temperature curve of As2Se3

glass in the temperature range [40, 150 ◦C] with the heating

TABLE II. Quasiequilibrium Young’s modulus at differnt T2.

T1 E∞ T2 E∞
(°C) (GPa) (°C) (GPa)

160 17.01 170 16.51
180 15.88 170 16.39
163 16.84 173 16.77
183 15.82 173 16.28
167 16.56 177 16.052
187 15.52 177 16.046
170 16.39 180 15.88
190 15.34 180 15.88

rate of 20 ◦C/min. It leads to the Debye-Grüneisen coefficient
of dE/dT = −0.0071 GPa/◦C.

Interestingly, f (x) leads to Vf because the function is very
weakly dependent on νi and νm. Em can be determined to be
the average of E∞ of the up and down jumps with �T = 5 ◦C
as the two magnitudes are very close. Note that Ei corresponds
to the Young’s modulus of the quasiequilibrium structures
of T1 quenched to T2, which can be determined based on
the Debye-Grüneisen coefficient. The calculated experimental
points of f (x) are plotted in Fig. 4(b) together with the curve
predicted by MT theory passing through experimental points
when νi = νm = 0.3 and Vf = 0.080 95. If νi and νm vary be-
tween [0.1, 0.4], Vf varies between [0.080 94, 0.081 01] based
on the best fit of experimental points, exhibiting a very weak
dependence on Poisson’s ratios. Intriguingly, Vf is identical
to μ∞ though they are determined in completely different
ways. This may imply that the quasiequilibrium dynamics and
atomic arrangement are closely correlated.

B. Gardner transition point in As2Se3

According to Eq. (9), the slope in the plot of Fig. 4(b)
near x = 1 can be used to estimate Vf . We repeated the aging
experiments with T2 = 170, 173, 177, and 180 ◦C, and T1 =
T2 ± 10 ◦C to obtain the relation between Vf and T2, i.e., the
temperature dependence of memory persistence. The results
are plotted in Fig. 6. To exemplify, the relaxation curves of
T2 = 170 ◦C and 180 ◦C are shown in the insets of Fig. 6. It
is noted that at 180 ◦C the two curves merge after a long-time

FIG. 5. Temperature dependence of Young’s modulus of As2Se3

glass. The Debye-Grüneisen is estimated by a linear fit.
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FIG. 6. Plot of the measure of memory persistence Vf against
the aging temperature T2, indicating a clear transition at a critical
temperature Tp ∈ (177, 180 ◦C) with bottom-left and upright insets
showing the aging curves E (t) at T2 = 180 and 170 ◦C, respectively,
after equilibrated at T1 = T2 ± 10 ◦C.

aging and the exponential relaxation times after up and down
jumps are almost identical (∼300 s). Therefore, Vf = 0 at
180 ◦C. Noteworthy is that when T2 = 177 ◦C, Vf is 0.005
determined from the well separate E∞ after up and down
jumps. Besides, τ = 394.0 and 320.2 s based on exponential
fits for up and down jumps at this temperature, respectively,
with the expected difference that the up-jump case relaxed
slower. Figure 6 suggests there is a critical temperature Tp ∈
(177, 180 ◦C) initiating an EB, which can be regarded as the
Gardner transition point. Below Tp, the structural memory
persists, i.e., the system is out of ergodicity; above it, the
memory can fade completely, i.e., the system restores ergod-
icity. For As2Se3, Tg is not a uniquely determined temperature
but varies in the range 175–180 ◦C [50] due to the variety of
characterization techniques. We hence argue that the critical
temperature Tp is within the empirical range of Tg, at least
for As2Se3, signifying that structural glass transition is not
just a slowing-down process. Also, we emphasize that our
work has paved the way to uniquely determine Tp through
measuring E∞ after two-step aging with �T ∼ 10 ◦C. The
measurement of the exact Tp for As2Se3 would only depend
on the accuracy and resolution of temperature control and
modulus measurement.

Phenomenologically, the persistent memory can be ex-
plained based on a rugged free energy landscape [6], namely,
a glassy system may be trapped in deep energy basins during
aging at T1, which constrains the exploration of the full energy
landscape at T2 within an experimentally accessible time that
is already much longer than the relaxation time estimated
from viscosity. This picture is also reminiscent of the “mo-
saic” transition delineated by the RFOT theory [12], that is,
a glassy system transforms into a patchwork consisting of
distinguishable atomic arrangements below Tg. In the two-step
aging experiments, some patches at T1 persist at T2 during the
long aging.

Hence, at least for the concerned glass, the physical picture
of free energy landscape variation can be schematically shown
in Fig. 7. the macroproperties diverge in different protocols

FIG. 7. Variation of the free energy landscape and macrostate
distribution in different protocols: when T2 > Tp, the barriers disap-
pear at T2 that the macroscopic properties of protocol 1 and protocol 2
converges due to the recovery of the ergodicity, even though T1 < Tp;
when T2 < Tp, the barriers and fractal metabasins remains and the
ergodicity breaks, so that different protocols results in discrepant
macrostate distribution as the comprision of protocol 3 and proto-
col 4, which is the protocol dependence as the Gardner transition
displays, even though T1 > Tp.

when T2 < Tp even though the T1 is higher than Tg (protocol 3
and protocol 4), as shown in Fig. 2. The energy barrier is for-
bidden, and the difference of the energy state at the transition
region (T1) makes the divergent distribution of dynamics after
EB, while once T2 > Tp, the barrier reduces and the fractal
configuration recedes so that the ergodicity recovers and the
system could reach the stable point of the amorphous state
even though T1 < Tp (protocol 1 and protocol 2), as shown in
Fig. 6.

However, the mean-field picture based on a free-energy
landscape does not explain how a persistent memory forms
from the random variations of atomic configurations, espe-
cially when Tp ∼ Tg > TK (TK is the Kauzmann temperature).
Therefore, a real-space picture is needed. Trying to establish
it, at least with a clue, we note several recent attempts in estab-
lishing the connection between static structures and long-time
dynamics based on molecular dynamics (MD) simulations.
In a very recent investigation of structural-property relation
in a binary Lennard-Jones glass, a machine learning algo-
rithm [51] was established, which, after training, can predict
long-time dynamics based on the static initial structures. This
result is a triumph in decoding the nature of the glass state,
as it unveils that the information of initial structures is not
“forgotten” in the subsequent relaxation process [52], similar
to our results on the initial-state dependence of relaxation
time. More transparently, Wang et al. [53] conducted MD
simulations of Cu50Zr50 and found that the activation energy
had a strong correlation with the vibrational mean squared
displacement (VMSD) instead of the short-range structural in-
dices. As VMSD describes the long-range elastic interactions,
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Wang et al. [53] argued that the effect of elastic constraint
could be the rate-limiting mechanism of structural relaxation
in a glass, which is also the reason we employed the elastic
model to analyze relaxation time.

Interestingly, Wang et al. [53] found that the glass tends
to be more heterogeneous during relaxation because the soft
spots, those substructures with higher flexibility (higher free
energy), tended to flock together, leading to the heterogeneity
in both structure and dynamics. Parallelly, Zhang and Lam
[54] have established a distinguishable-particle lattice model
(DPLM), which can be regarded as an abstraction of soft-spot
dynamics. It simplified position randomness in a structural
glass to be a random force field between site particles and
introduced voids to mimic the motion of soft spots. Such a
setup leads to the spatially constrained dynamics (SCD), i.e.,
only agminated voids bring about significant relaxation events
while isolated voids are trapped. The DPLM simulations suc-
cessfully reproduced the divergence of quasiequilibrium τeff

[55] even though the void concentration and thus the equilib-
rium state were predefined.

Even though these dynamic models are not established
based on the guidance of the Gardner transition theory, their
basic ideas could all be encompassed by the multistage fractal
configuration of the energy landscape. The memory of the
initial state means the relaxation through different basins is
frozen, and the soft spots and free volumes are the results
of the EB. Encouraged by the DPLM result and MD simu-
lations, we anticipate that a simplified real-space glass model
revealing SCD may involve additionally the generation and
depletion of soft spots (or voids) that is dependent on the
bath as well as structural temperatures, local stress state, and
global energy penalty, following those already established in
the free-volume picture [56], describing the order of EB and
corresponding distribution. Thus, the initial-state dependence,
in terms of both relaxation time and quasiequilibrium state,

may be revealed as a consequence of the Gardner transition
and the associated evolution of the EB.

V. CONCLUSION

The two-step aging experiments with an inorganic glass
As2Se3 are performed to reveal the clear phenomena of ergod-
icity breaking based on the measurements of instantaneous
Young’s modulus. The further fractal of the free-energy land-
scape within the glass state is reflected through the divergency
of the dynamic response at the same temperature with dif-
ferent thermal history. Based on the concept of the Gardner
transition, the status of ergodicity breaking and the memory
effect are assessed through the theory of classical mechan-
ics. We identified a critical ergodicity-breaking temperature
of As2Se3 in terms of the volume fraction of the persis-
tent memory, which was within the empirical glass transition
range and regarded as the Gardner transition point of As2Se3.
It should be noted that the two-step aging experiments re-
veal a higher-order ergodicity-breaking phenomenon of the
amorphous system (corresponding to the glass transition, the
first-order ergodicity breaking), while if this kind of breaking
is infinite dimensional, as in the Gardner transition descrip-
tion, it needs further investigation.
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