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Anderson localization transitions in disordered non-Hermitian systems with exceptional points
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The critical exponents of continuous phase transitions of a Hermitian system depend on and only on its dimen-
sionality and symmetries. This is the celebrated notion of the universality of continuous phase transitions. Here
we numerically study the Anderson localization transitions in non-Hermitian two-dimensional (2D) systems with
exceptional points by using the finite-size scaling analysis of the participation ratios. At the exceptional points of
either second order or fourth order, two non-Hermitian systems with different symmetries have the same critical
exponent ν � 2 of correlation lengths, which differs from all known 2D disordered Hermitian and non-Hermitian
systems. These feature is reminiscent of the superuniversality notion of Anderson localization transitions. In the
symmetry-preserved and symmetry-broken phases, the non-Hermitian models with time-reversal symmetry and
without spin-rotational symmetry, and without both time-reversal and spin-rotational symmetries, are in the
same universality class of 2D Hermitian electron systems of Gaussian symplectic and unitary ensembles, where
ν � 2.7 and ν � 2.3, respectively. The universality of the transition is further confirmed by showing that the
critical exponent ν does not depend on the form of disorders and boundary conditions.
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I. INTRODUCTION

Disorder-induced quantum phase transitions from ex-
tended states to localized states, known as the Anderson
localization transitions (ALTs) [1], are a fundamental topic in
wave physics. ALTs can be divided into different classes. Each
class has a set of specific critical exponents that depend only
on the dimensionality and symmetries of the class and not on
the details of the disordered Hamiltonians. This is the notion
of the universality of continuous phase transitions [2–4]. In
Hermitian cases, disordered metals are classified into Gaus-
sian orthogonal, unitary, and symplectic ensembles according
to time-reversal and spin-rotational symmetries. Disordered
Hermitian metals are classified into Gaussian unitary en-
semble if they do not have time-reversal symmetry (TRS),
Gaussian orthogonal ensemble if they have both TRS and
spin-rotational symmetry, and Gaussian symplectic ensemble
if they have the TRS but without spin-rotational symmetry.
Different symmetry classes have different critical exponents
near the ALTs that depend only on their dimensionality.
For example, disordered two-dimensional (2D) electron gases
exhibit the integer quantum Hall effect when TRS is bro-
ken [5,6]. In the presence of weak spin-orbit interactions,
the critical exponent of correlation length is ν � 2.3 [7–9],
while the same gases without a magnetic field, such that
the systems belong to the Gaussian symplectic class, have
ν � 2.7 [10–12].

Hamiltonians of all open systems are ubiquitously non-
Hermitian, and non-Hermiticity leads to fundamentally dif-
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ferent phenomena in non-Hermitian systems from their
counterparts of Hermitian systems in all aspects, including
the topological properties [13–16] and the Anderson localiza-
tions [17–19]. For example, while the critical dimension of
ALTs for Hermitian systems is two [3], extended states can ap-
pear in one-dimensional systems with non-Hermiticities [17].
Likewise, disordered non-Hermitian systems can be classi-
fied by their symmetries, which leads to a 38-fold symmetry
classification [20,21]. Based on the 38-fold classification, pre-
vious works numerically investigate the universality of ALTs
of some symmetry classes [22–25].

Noticeably, non-Hermitian systems with specific sym-
metries (e.g., parity-time symmetry (PTS) [26] or pseudo-
Hermitian symmetry [27]) display exceptional points (EPs),
where the right eigenstates coalesce and become orthogonal
to the corresponding left ones [28]. Exceptional points have
recently attracted enormous attention because of their exotic
properties and potential applications in spintronics [29], elec-
tronics [30], photonics [31], and optics [32]. However, many
theoretical efforts have focused on the topological properties
of EPs in the clean limit [33–37], and a systematic study
of ALTs of disordered non-Hermitian systems with EPs is
lacking.

Here we investigate the ALTs of two 2D non-Hermitian
systems with different symmetries and with EPs at fixed
points in the complex-energy plane. Based on the finite-size
scaling analysis of participation ratios, we find that critical
exponents of ALTs at either the second-order or fourth-order
EPs of different symmetry classes (class AIII or class DIII +
S−+) are identical within numerical errors (ν = 2) and are
distinctive in those of any known symmetry classes. These
findings indicate that ALTs at EPs in different symmetry
classes form one universality class, a behavior which, together

2469-9950/2023/107(2)/024202(14) 024202-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1740-578X
https://orcid.org/0000-0002-8600-3258
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.024202&domain=pdf&date_stamp=2023-01-20
https://doi.org/10.1103/PhysRevB.107.024202


C. WANG AND X. R. WANG PHYSICAL REVIEW B 107, 024202 (2023)

TABLE I. Definitions of TRS, PTS, PHS, and PPHS in the
real and momentum spaces. H is the non-Hermitian single-particle
Hamiltonian in the real space, and h(k) is the non-Hermitian
Bloch Hamiltonian. In the absence of disorders, H can be block-
diagonalized as H = ∑

k a†
kh(k)ak. P is the parity inversion operator.

PTS (PPHS) means a non-Hermitian system is invariant under
a combination of time-reversal (particle-hole) and parity-inversion
transformations.

Symmetry Real space Momentum space

TRS UT H∗U −1
T = H uT h∗(−k)u−1

T = h(k)

PTS UPT PH∗P−1U −1
PT = H uPT h∗(k)u−1

PT = h(k)

PHS UPHT U −1
P = −H uPhT (−k)u−1

P = −h(k)

PPHS UPPPHTP−1U −1
PP = −H uPPhT (k)u−1

PP = −h(k)

with a different critical exponent ν = 2, is evocative of a
new superuniversality class. Besides, ALTs in the symmetry-
preserved and symmetry-broken phases, where the energy
spectra are real and complex, respectively, belong to the same
universality class. Now, the critical exponents are ν � 2.7
and 2.3, depending on whether TRS is presented, and agree
with those of the 2D symplectic class [10–12] and unitary
class with spin-orbit interactions in Hermitian systems [7–9],
respectively. To further substantiate the universality, we nu-
merically show that the types of disorders and boundary
conditions do not affect the critical exponents at EPs.

The paper is organized as follows: The lattice models and
the methods are described in Secs. II and III, respectively.
Numerical results are presented in Sec. IV, followed by a
discussion in Sec. V and a conclusion in Sec. VI.

II. MODELS AND SYMMETRIES

We study non-Hermitian Hamiltonians H that transform
under certain transformation operators O as [O, H]ζ=±1 =
OH − ζHO = 0. If O is the product of parity and time-
reversal operators or a pseudo-Hermitian symmetry operator,
then eigenenergies of H are real or form pairs of complex-
conjugate numbers, i.e., ε ∈ R or (ε, ε∗) [38]. For a Bloch
Hamiltonian h(k), the two symmetries can be written as
[uPT K, h(k)]ζ=1 = 0 and [uqη, h(k)]ζ=1 = 0 with uPT and
uq being unitary operators and K and η being complex-
conjugate and Hermitian-conjugate operators, respectively.
The critical point separating the real-energy and complex-
energy spectra is thus the EP [29]. One should not be confused
PTS with TRS defined by [uT KKk, h(k)]ζ=1 = 0 with Kk

changing k to −k in the momentum space, see Table I. In-
terpretations of PTS and TRS are given in Appendix A 1.

To investigate ALTs at an EP, an accurate trace of its loca-
tion is required. Such process is easy for clean systems where
closed-form solutions of eigenvalues are available but is diffi-
cult for disordered systems where the positions of EPs may
be random. Here our strategy is to consider non-Hermitian
systems with an additional parity-particle-hole symmetry
(PPHS), defined by [uPPλ, h(k)]ζ=−1 = 0 with uPP being a
unitary operator and λ being the transpose operator, such that
eigenvalues are in pairs of (−ε, ε). This constraint, together
with PTS, leads to a cross shape of eigenvalue distributions

on the complex-energy plane whose EPs are fixed at the ori-
gin, see Appendix A 2. It should be mentioned that PPHS is
different from particle-hole symmetry (PHS) which is defined
by [uPλKk, h(k)]ζ=−1 = 0 of uP being a unitary matrix. A
non-Hermitian system with PPHS means it is invariant under
a transformation of the product of the parity inversion and the
particle-hole operations. The definition of PPHS is given in
Table I and Appendix A 1.

Under these considerations, we study two non-Hermitian
tight-binding models on square lattices of size L × L with
lattice constant a = 1 of different symmetries. The first one
reads

H1 =
∑

i

c†
i [(wi + iui )σ1 + iκσ3]ci

−
∑

i

[
iα

2
c†

i (σ2ci+x̂ − σ1ci+ŷ) + H.c.

]
. (1)

Here c†
i (ci) is the creation (annihilation) operator of a spinor

on lattice site i. σ0,1,2,3 are the identity and Pauli matri-
ces acting on the spin space. x̂ and ŷ are the unit vectors
along the x and y directions, respectively. κ and α are real
positive constants. Disorders are modelled by the on-site
potential (wi + iui)σ1, where wi and ui are real numbers
and distribute uncorrelatively and uniformly in the range
of [−W/2,W/2].

For wi = ui = 0, H1 can be block-diagonalized with the
Bloch Hamiltonian h1(k) = α sin k2σ1 − α sin k1σ2 + iκσ3.
h1(k) has PTS with [σ1K, h1(k)]ζ=1 = 0. The appear-
ance of EPs can be seen from the eigenvalues of h1(k):
ε±

1 = ±[α2(sin2 k1 + sin2 k2) − κ2]1/2, which are real for
α2(sin2 k1 + sin2 k2) > κ2 or come as complex pairs for
α2(sin2 k1 + sin2 k2) < κ2. The domain with real energy is
termed as the symmetry-preserved phase, otherwise known
as the symmetry-broken phase. Therefore, for α > κ/

√
2, the

two phases are separated by an EP locating at ε±
1 = 0 where

α2(sin2 k1 + sin2 k2) = κ2.
In addition to PTS, h1(k) has PPHS as well, i.e.,

[iσ2λ, h1(k)]ζ=−1 = 0, such that ε±
1 are symmetric to the

origin of the complex-energy plane. Disorders breaks lattice-
translational symmetry but preserves PPHS since [iσ2λ, (wi +
iui )σ1]ζ=−1 = 0. Differently, PTS is preserved only if ui = 0
since [σ1K,wiσ1]ζ=1 = 0 and [σ1K, iuiσ1]ζ=1 �= 0. Hence,
for wi �= 0 and ui = 0, H1 has both PTS and PPHS whose
eigenvalues are in the cross region of the complex-energy
plane and the EP is at the origin; while, for wi �= 0 and ui �= 0,
PTS is broken, and no EP is found, as shown in Figs. 1(a)
and 1(b).

It is worth classifying the model H1 within the framework
of Altland-Zirnbauer (AZ) classification. In this symmetry
classification, one require to consider TRS, PHS, particle-hole
symmetry† (PHS†), time-reversal symmetry† (TRS†), chiral
symmetry (CS), and sublattice symmetry (SLS), rather than
PTS and PPHS, see Appendix A 3 for more details. For H1

with wi �= 0, ui = 0, TRS, PHS, PHS†, TRS†, and SLS are
broken but CS is preserved. Therefore, H1 of wi �= 0, ui = 0
belongs to class AIII. On the other hand, H1 with wi �= 0, ui �=
0 breaks all symmetries of the AZ classification and belongs
class A. We summarize these results in Table II.

024202-2



ANDERSON LOCALIZATION TRANSITIONS IN … PHYSICAL REVIEW B 107, 024202 (2023)

TABLE II. AZ classification has six fundamental symmetries known as TRS, PHS, TRS†, PHS†, CS, and SLS. The entries 0 indicating
no symmetry and ±1 meaning that UU ∗ = ±I , respectively. In addition to the six fundamental symmetries, our models have two additional
symmetries, known as PTS and PPHS, whose definitions are given in Table I. The entries 0 and ±1 means without and with the two symmetries
(±1 stands for UU ∗ = ±I). The last column in the table is the symmetry class of Hermitian systems, whose criticality of Anderson localization
transitions is reported to be equivalent to the corresponding non-Hermitian symmetry class [25].

TRS PHS TRS† PHS† CS SLS Class PTS PPHS Hermitian class

H1

wi �= 0, ui = 0 0 0 0 0 1 0 AIII 1 −1 A
wi �= 0, ui �= 0 0 0 0 0 0 0 A 0 −1 AIII

H2

wi �= 0, ui = 0 −1 1 −1 −1 1 1 DIII + S−+ 1 −1 AII
wi �= 0, ui �= 0 0 1 −1 0 0 1 DIII + S− 0 −1 DIII

The second model reads

H2 =
∑

i

c†
i [(wi + iui )τ2σ0 + iκτ3σ3]ci

−
∑

i

[
iα

2
c†

i (τ0σ2ci+x̂ − τ0σ1ci+ŷ) + H.c.

]
, (2)

where τ0,1,2,3 are the identity and the Pauli matrices acting on
the pseudospin space. Disorders are modelled by the on-site
term (wi + iui )τ2σ0. The Bloch Hamiltonian of H2 is h2(k) =
α sin k1τ0σ2 − α sin k2τ0σ1 + iκτ3σ3, which has both PTS
and PPHS, i.e., [τ3σ1K, h2(k)]ζ=1 = [iτ0σ2λ, h2(k)]ζ=−1 = 0.
Therefore, the complex-energy spectra of h2(k) are sym-
metric to the origin of the complex-energy plane: ε±,s

2 =
±[α2(sin2 k1 + sin2 k2) − κ2]1/2 with the EP at ε = 0 and s =
1, 2 standing for a twofold degeneracy. With disorders, wiτ2σ0

(iuiτ2σ0) preserves (breaks) PTS. Hence, H2 with wi �= 0 and
ui = 0 has an EP at ε = 0, and no EP is expected for wi �= 0
and ui �= 0, see Figs. 1(c) and 1(d). Recall that the energy
spectrum of H2 is twofold degenerated. Consequently, the EP
shown in Fig. 1(c) is fourth order, different from the second-
order EP in Fig. 1(a).

In addition to PTS and PPHS, H2 has TRS, PHS, TRS†, and
PHS† when wi �= 0, ui = 0 and belongs to class DIII + S−+.

FIG. 1. (a) Eigenenergy distribution in the complex-energy plane
of H1 for α = 0.2, κ = 0.1, L = 30, ui = 0, and wi ∈ [−W/2,W/2]
with W = 0.3. (b) Same as (a) but for ui = wi. (c) Same as (a) but
for H2. (d) Same as (a) but for H2 and ui = wi. 102 samples are used
for each plot. Red dots denote the EP positions in (a) and (c). No EP
is observed for (b) and (d) since the disorder terms iuiσ1 and iuiτ2σ0

break PTS.

Therefore, for ui = 0, H2 (class DIII + S−+) and H1 (class
AIII) belong to different symmetry classes in the AZ clas-
sification even though both of them have EPs. Differently,
TRS and PHS† are broken if ui �= 0, and H2 belongs to class
DIII + S−. A detailed analysis of symmetries is given in
Appendix A 3 and the results are summarized in Table II.

III. NUMERICAL METHODS

Complex mobility edge (complex energy at an ALT) can
be numerically identified from the finite-size scaling analysis
of the participation ratio p2 of a state with energy ε defined
as p2(ε) = 〈(∑i |ψi,ε |4)−1〉. Here ψi,ε is the normalized wave
function amplitude of a right eigenstate, and 〈· · · 〉 denotes the
ensemble average. p2 scales with the system length as p2 ∝ L2

for extended states and approaches a constant for localized
states [7]. If there is an ALT for a given state at a critical
disorder Wc, then p2 near Wc behaves as

p2 = LD[ f (L/ξ ) + φLy f̃ (L/ξ )] (3)

with D ∈ [0, 2] being the fractal dimension [39] of the critical
wave function, φ being a positive constant, and y < 0 being
the exponent of irrelevant scaling parameters. ξ is the corre-
lation length and diverges as ξ ∝ |W − Wc|−ν near Wc with
ν > 0 being the universal critical exponent. The validity of the
single-parameter scaling Eq. (3) has been confirmed in both
Hermitian [40,41] and non-Hermitian systems [19,25]. ALTs
in the same universality class have identical critical exponents.

In our approach, p2(ε) is numerically computed through
the exact diagonalizations by using the KWTANT pack-
age [42] and the SciPy library [43] on Python. Then, a
chi-square fit of p2 to the scaling function Eq. (3) is performed
by a polynomial expansion [44] from which we obtain Wc, ν,
D, φ, y, and the unknown scaling functions f (x) and f̃ (x). All
fittings have satisfactory goodness-of-fits Q > 0.01. Curves
YL(W ) = p2L−D − φLy f̃ (L/ξ ) for different sample size L are
used to identify an ALT by the following criteria: (i) YL(W )
increases (decreases) with L for extended (localized) states,
(ii) YL(W ) for different L cross each other at Wc, and (iii)
YL(W ) for different L collapse to a smooth scaling function
f (L/ξ ) near Wc.

Note that H1 and H2 cannot be diagonalized at the EP [28].
Instead, we calculate p2(ε̃) with ε̃ being the nearest eigenvalue
to the EPs and assume p2(0) = p2(ε̃). This approximation
should be valid in the thermodynamic limit L → ∞ and for
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FIG. 2. (a) ln[YL (W )] of H1 at ε = 0 (the EP) and for L =
80, 120, . . . , 400. Here α = 0.2, κ = 0.1, and ui = 0. (b) ln[YL] vs
ln[L/ξ ] for data of (a). Each datum is averaged over more than
103 samples. [(c) and (d)] Same as in (a) and (b) but at ε = −0.2
(symmetry-preserved phase). [(e) and (f)] Same as in (a) and (b) but
for ε = −0.2 + i0.01 and wi = ui. Other fitting parameters are given
in Appendix C.

ε̃ extremely close to EPs, see Appendix B. For finite-size
systems, there should be a critical length L̃ above which the
critical exponent ν, obtained by scaling analysis of p2(ε̃),
keeps unchanged within numerical errors. Hence, the approx-
imation should be acceptable for L > L̃. We find L̃ = 80 for
H1 and H2. Numerical evidence is given in Appendix B.

IV. RESULTS

Let us first consider H1 with α = 0.2, κ = 0.1, and ui =
0. The system has an EP at ε = 0 as shown in Fig. 1(a).
Figure 2(a) shows ln[YL(W )] of ε = 0 for various L ranging
from 80 to 400. Here curves of different L cross at a single
point Wc = 0.85 ± 0.05, and states of W < Wc (W > Wc) are
extended (localized) because YL increases (decreases) with
L. Finite-size scaling analysis yields ν = 1.95 ± 0.07, which
is different from any known critical exponents of disordered
non-Hermitian systems, indicating that the ALT belongs to an
unknown universality class. Data near the critical point col-
lapse on a single smooth scaling function with two branches
for the extended and localized states, see Fig. 2(b).

For the state at energy ε = −0.2 in the symmetry-
preserved phase, an ALT occurs at Wc = 0.93 ± 0.05, see
Fig. 2(c). The beautiful scaling function shown in Fig. 2(d)
substantiates the criticality of the transition. The fitting
suggests that ν = 2.3 ± 0.1 which equals to that of Hermi-
tian spinful Gaussian unitary ensemble [9], where TRS and
spin-rotational symmetries are broken. This is because the
non-Hermitian systems in the symmetry-preserved phase be-
have as the Hermitian systems and the disorder term wiσ1

breaks TRS, see Appendix A 3. Hence, the ALT shown in
Figs. 2(c) and 2(d) belongs to the same universality class of
the spinful Gaussian unitary class [9].

To further confirm the universality shown in
Figs. 2(a)–2(d), we carry out numerical calculations of
the dimensionless conductance gL based on the transfer
matrix method [45,46] and perform the corresponding
finite-size scaling analyze for ε = −0.01 (near the EP)
and ε = −0.2 (the symmetry-preserved phase) of H1 with
ui = 0, see Appendix D 1. The obtained critical exponents
are ν = 2.05 ± 0.07 and 2.33 ± 0.05, respectively, which
accord with those based on participation ratios within
numerical errors. Besides, the critical exponent for the
symmetry-preserved phase is also close to that for 2D
Hermitian spinful Gaussian unitary ensemble [9], which is
consistent with a recent work that estimates an equivalent
mapping between the universality of class AIII for Hermitian
systems and class A for non-Hermitian systems [25].

An ALT also occurs at Wc = 0.83 ± 0.02 for the state
at ε = 0.08i in the symmetry-broken phase, as shown in
Appendix D 2. The calculated critical exponent, ν = 2.32 ±
0.02, equals to that of ε = −0.2 within numerical errors,
indicating that they have the same universality. The same
universality of the symmetry-preserved and symmetry-broken
phases can be understood as follows: The symmetry-
preserved phase of H1 with ui = 0 can be mapped into the
symmetry-broken phase under the transformation H1 → iH1

due to the presence of both PTS and PPHS. The critical ex-
ponents of H1 and iH1 should be the same since this mapping
exchange only real and imaginary axes without changing their
eigenfunctions.

For ui �= 0, PTS is broken, and the EP disappears. Be-
low we set that both ui and wi uniformly distribute in
[−W/2,W/2]. For a state at ε = −0.2 + i0.01, an ALT can
be identified at Wc = 0.62 ± 0.03, see Figs. 2(e) and 2(f).
The critical exponent is ν = 2.79 ± 0.02 that is significantly
different from those in Figs. 2(a)–2(d), i.e., a distinguished
universality class. To the best of our knowledge, there is
no estimation of ν for non-Hermitian systems with PPHS
[σ2λ, H1]ζ=1 = 0 in 2D. Remarkably, the obtained ν is very
close to those of classes AIII, CII†, and DIII within the AZ
classification [25].

Now let us turn to H2 with α = 0.2, κ = 0.1, ui = 0 that
belongs to class DIII + S−+. Similarly to H1, there is an ALT
at Wc = 0.65 ± 0.03 for states near the EP, see Figs. 3(a)
and 3(b). The critical exponent ν = 2.0 ± 0.1, the same as that
of H1 at the EP within numerical errors even though H1 and H2

with ui = 0 belong to different symmetry classes (class A and
DIII + S−+, respectively) and the orders of EPs are different.
Our results, presented in Figs. 2 and 3, suggest that ALTs
for the states at EPs have the same critical exponent ν � 2.
This notion of “superuniversality” reminisces similar concept
in disordered Hermitian superconducting systems [45].

To understand critical properties of ALTs for the
symmetry-preserved states of H2, state of ε = −0.2 is stud-
ied. As shown in Figs. 3(c) and 3(d), an ALT occurs at
Wc = 0.45 ± 0.05 with ν = 2.79 ± 0.05 which is signifi-
cantly larger than that shown in Figs. 2(c) and 3(d), but the
same as that of 2D Gaussian sympletic ensembles in Her-
mitian random matrices [12]. Different from H1 that breaks
TRS, H2 is invariant under the time-reversal transformation
of � = τ3σ2K, i.e., [�, H2]ζ=1 = 0. This explains why the
critical exponents of the symmetry-preserved states of H2 fall
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FIG. 3. (a) ln[YL] as a function W of H2 with ε = 0, α = 0.2,
κ = 0.1, and L = 80, 120, . . . , 280. (b) ln[YL (ln[L/ξ ])] for data
of (a). [(c) and (d)] Same as in (a) and (b) but at ε = −0.2
(symmetry-preserved phase). [(e) and (f)] Same as in (a) and (b) but
at ε = −0.2 + 0.01i for ui distributing uniformly in the range of
[−0.1, 0.1]. Other fitting parameters are given in Appendix C.

into the universality class of ν � 2.7 [12] for the Hermitian
time-reversal-invariant systems with �2 = −I .

Interestingly, H2 of ui �= 0 and wi �= 0, whose eigenvalues
are complex, has different critical exponent as those above
and thus belongs to a different universality class. This claim
is derived from data of ln[YL(ε = −0.2 + i0.01)] for ui dis-
tributing uniformly in the range of [−0.1, 0.1], as shown in
Figs. 3(e) and 3(f), where an ALT happens at Wc = 0.26 ±
0.01 with ν = 2.56 ± 0.03. Thus, for systems without EPs,
its universality class depends on symmetries, the same as their
Hermitian counterparts.

V. DISCUSSIONS

A. Fractal dimension

Equation (3) says p2 ∝ LD at criticality, in contrast to
p2 ∝ L2 for extended states and p2 ∝ L0 for localized states.
The fractal dimension D is universal according to the
renormalization-group theory of the σ model in 2 + ε dimen-
sions [47]. At EPs, we obtain D � 1 within numerical errors
(see the tables in Appendix C) that supports this argument.

D relates to the spectral compressibility χ characterizing
fluctuations of the energy level number n in an energy win-
dow near the criticality, i.e., var(n) = χ〈n〉. For Hermitian
systems, the following relation between χ and D holds: χ =
(d − D)/(2d ) [48]. Therefore, our results suggest a universal
χ = 1/4 for EPs. In an early work, we have shown that the
nearest-neighbor level-spacing distributions follow some uni-
versal functions near EPs [38]. However, how to generate the
concept of the spectral compressibility and test the correctness
of χ = 1/4 remains unclear and deserves further studies.

B. More evidence for the superuniversality at EPs

The meaning of universality requires the independence of
ν on the boundary conditions and the forms of disorders [4].
Since open boundary conditions and uniform distributions
of random numbers are used in Figs. 2 and 3, studies with
periodical boundary condition and disorders of the normal
distribution are carried out to test the universality of ν at
EPs, see Appendices D 3 and D 4. Indeed, the same critical
exponents for EPs, ν � 2, is obtained in all cases.

C. Skin effect

The non-Hermiticity itself can also lead to localizations of
waves. A phenomenon is known as the non-Hermitian skin
effect where the wave functions localize at the boundary of
systems for some specific non-Hermiticities [15]. However,
our models, Eqs. (1) and (2) with PTS, do not suffer from the
skin effect such that all localizations shown here are due to
disorders rather than non-Hermiticities, see Appendix E.

D. Materials relevance

The participation ratio p2(ε) of a non-Hermitian Hamil-
tonian H with a right eigenenergy ε is the same as p2(ε −
iγ I ) of H − iγ I with I being the identity matrix of the
same dimension of H . For Hφε = εφε , one can easy to
find that (H − iγ I )φε = (ε − iγ )φε . By definition, p2(ε) =
p2(ε − iγ ). Hence, additional on-site potentials −iγ σ0 and
−iγ σ0τ0 to Hamiltonians Eq. (1) and (2) do not change the
participation ratios, as well as the universality.

Note that the effective k · p Hamiltonian of h1 near
k = (0, 0) reads h1(p) = α(p × σ) · ẑ + iκσ3, which, together
with a nonlocal loss −iγ σ0 with γ > κ , which does not affect
the criticality, describes a Rashba spin-orbit coupling with
different spin lifetimes. Possible physical realizations of H1

are ferromagnetic semiconductors such as MnGaAs and other
III-V host materials [49] with a spin-dependence impurity
wiσ1 that breaks TRS. Likewise, H2 can be treated as the 2D
electron gases with Rashba spin-orbit coupling and different
lifetimes of spins/pseudospins, but the disorders wiτ2σ0 are
spin independent.

In addition to electronic systems, EPs present in many
other systems, including lasers [50,51], microcavities [52],
electrics [53], and magnonics [29], to name a few. Disorders
can be artificially induced in such systems such that the ALTs
of the EPs in these systems can be experimentally studied in
principle. In Appendix F, a laser cavity network is proposed
as a possible experimental verification of the numerical results
presented in this paper.

VI. CONCLUSION

In summary, ALTs at EPs of two non-Hermitian systems
of different symmetries have the same critical exponent ν �
2, independent of the forms of disorders and the boundary
conditions. This strongly suggests that ALTs at EPs of non-
Hermitian systems belong to a new universality class that may
depends only on dimensionality. Besides, the universality of
ALTs of the symmetry-preserved and symmetry-broken phase
is the same as their Hermitian counterpart and depends on the
presence of their symmetries.
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APPENDIX A: SYMMETRY CLASSIFICATIONS

In Appendix A 1, definitions of parity-time and parity-
particle-hole symmetries are first presented and explained.
Then, their constraints on the energy spectra are derived,
especially for those non-Hermitian systems given in Ap-
pendix A 2. Finally, we identify the symmetry classes of H1

and H2 in Appendix A 3.

1. Parity-time and parity-particle-hole symmetries

A system characterized by Hamiltonian H is said to have
TRS if

UT H∗U −1
T = H (A1)

in the real space or

uT h∗(−k)u−1
T = h(k) (A2)

in the momentum space. Here UT U †
T = I, uT u†

T = I . The
system is said to have PTS if H does not change under a
combination of time-reversal and parity inversion transforma-
tions. For single-particle Hamiltonians in the real space, the
parity operator can be written as UPP with UPU †

P = I and P
representing spatial inversion on lattice, i.e., i = (ix, iy) goes
to i = (−ix,−iy). Consequently, the parity-inversion trans-
formation changes k to −k for Bloch Hamiltonians in the
momentum space. Then we say a non-Hermitian system with
PTS if

UPT PH∗(UPT P )−1 = H (A3)

in the real space or

uPT h∗(k)u−1
PT = h(k) (A4)

in the momentum space. By introducing the operator Kk that
changes k to −k, we can write Eqs. (A2) and Eq. (A4) in ele-
gant forms as [uT KKk, h(k)]ζ=1 = 0 and [uPT K, h(k)]ζ=1 =
0, respectively.

In addition to PTS, our non-Hermitian models H1 and
H2 also have PPHS, a symmetry relating to the product of
particle-hole and parity-inversion transformations. We first
define PHS for non-Hermitian systems:

UPHT U −1
P = −H (A5)

in the real space or

uPhT (−k)u−1
P = −h(k) (A6)

in the momentum space with UPU †
P = I and uPu†

P = I . Simi-
larly to PTS, we say a non-Hermitian system has PPHS if

(UPPP )HT (UPPP )−1 = −H (A7)

in the real space or

uPPh(k)T u−1
PP = −h(k) (A8)

in the momentum space. In Eqs. (A7) and (A8), UPP =
UPUP and uPP = uPuP. Likewise, Eqs. (A6) and (A8) can be
rewritten as [uPλKk, h(k)]ζ=−1 = 0 and [uPPλ, h(k)]ζ=−1 =
0, respectively. Here λ is the transpose operator. We summa-
rize the definition of TRS, PTS, PHS, and PPHS in Table I.

Before the end of this section, we would like to emphasize
that disordered non-Hermitian Hamiltonians are defined in the
real space rather than the momentum space, and one can cal-
culate the corresponding Bloch Hamiltonian only in the clean
limit. A disordered non-Hermitian system’s Hamiltonian with
a symmetry guarantees that its Bloch Hamiltonian is also
invariant with the corresponding symmetry operation, but it
is not vice versa since disorders may break the symmetry.

2. Constraints of complex energies due to symmetries

PTS gives some constraints on the complex eigenener-
gies. Let us assume a Bloch Hamiltonian h(k) has PTS, i.e.,
Eq. (A4), and |ε〉 is a right eigenstate of h(k) with an eigenen-
ergy ε, i.e., h(k)|ε〉 = ε|ε〉. Then,

uPT Kh(k)|ε〉 = ε∗uPT K|ε〉 = h(k)uPT K|ε〉. (A9)

Equation (A9) means that uPT K|ε〉 is also a right eigenstate
of h(k) with eigenenergy ε∗. If the two states |ε〉 and uPT K|ε〉
are the same, then ε = ε∗, i.e., ε is real. This can happen for
either uPT u∗

PT = I or uPT u∗
PT = −I if h(k) has a double

degeneracy [38].
PPHS also gives constraints on the complex eigenenergies.

Recall that PPHS is defined as [uPPλ, h(k)]ζ=−1 = 0 in the
momentum space, where λ is the transpose operator satisfy-
ing λ(cA)|α〉 = cAT |α〉 with c, A, |α〉 being arbitrary complex
number, operator, and ket, respectively. For a corresponding
left eigenstate of |ε〉 satisfying h†(k)|ε̃〉 = ε∗|ε̃〉,

u∗
PPh†(k)|ε̃〉 = u∗

PPε∗|ε̃〉 = −h∗(k)u∗
PP|ε̃〉. (A10)

To derive Eq. (A10), we have used u∗
PPh†(k) = −h∗(k)u∗

PP
by taking the complex conjugate of Eq. (A8). Multiply K to
Eq. (A10):

h(k)(uPPK|ε̃〉) = −ε(uPPK|ε̃〉). (A11)

Therefore, there always exists a right eigenstate uPPK|ε̃〉 with
energy −ε. Namely, PPHS makes the complex-energy spec-
trum symmetric to the origin of the complex-energy plane.

3. Symmetry classification

Altland-Zirnbauer classification is a well-established ap-
proach to determine the symmetry class of a non-Hermitian
system [21]. Noticeably, our models H1 and H2 go beyond
the AZ classification due to the presence of PTS and PPHS
shown in Table I. However, we would like to determine the
symmetry classes of our models within the framework of AZ
classification. TRS and PHS are two symmetries in the AZ
classification. In addition, one require TRS†, PHS†, CS, and
SLS. TRS† is defined as{

UP′HT U −1
P′ = H real space

uP′hT (−k)u−1
P′ = h(k) momentum space

, (A12)
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PHS† is defined as{
UT ′H∗U −1

T ′ = −H real space

uT ′h∗(−k)u−1
T ′ = −h(k) momentum space

, (A13)

CS is defined as{
U�H†U −1

� = −H real space

u�h†(k)u−1
� = −h(k) momentum space

, (A14)

and SLS is defined as{
USHU −1

S = −H real space

uSh(k)u−1
S = −h(k) momentum space

. (A15)

CS and SLS can be treated as combinations of PHS and TRS†

and PHS and TRS, respectively. On the one hand, if none of
TRS, PHS, PHS†, and TRS† are preserved, then one requires
to determine whether the non-Hermitian system has CS and
SLS. On the other hand, if all TRS, PHS, PHS†, and TRS† are
preserved, then CS and SLS are solely determined.

Let us determine the symmetry class of H1. Note that

H∗
1 =

∑
i

c†
i [(wi − iui)σ1 − iκσ3]ci

−
∑

i

[
iα

2
c†

i (σ2ci+x̂ + σ1ci+ŷ) + H.c.

]
, (A16)

HT
1 =

∑
i

c†
i [(wi + iui )σ1 + iκσ3]ci

−
∑

i

[
iα

2
c†

i (σ2ci+x̂ + σ1ci+ŷ) + H.c.

]
, (A17)

and

H†
1 =

∑
i

c†
i [(wi − iui)σ1 − iκσ3]ci

−
∑

i

[
iα

2
c†

i (σ2ci+x̂ − σ1ci+ŷ) + H.c.

]
. (A18)

From Eqs. (A16) and (A17), one can see the hopping terms
of H∗

1 and HT
1 are the same since the non-Hermiticity is intro-

duced by the on-site terms. For wi �= 0, ui = 0 [see Fig. 1(b)],
TRS, PHS, TRS†, PHS†, and SLS are broken, but CS is
preserved with U� = σ3 ⊗ I and u� = σ3. Here I is the unit
matrix acting on the coordinate subspace. Hence, H1 belongs
to class AIII. For wi �= 0, ui �= 0 [see Fig. 1(a)], H1 belongs
to class A, where TRS, PHS, TRS†, PHS†, CS, and SLS are
broken.

H1 also has PTS and PPHS. Note that

PH∗
1 P−1 =

∑
−i

c†
−i[(w−i − iu−i)σ1 − iκσ3]c−i

−
∑
−i

[
iα

2
c†
−i(σ2c−i+x̂ + σ1c−i+ŷ) + H.c.

]

=
∑

i

c†
i [(wi − iui )σ1 − iκσ3]ci

+
∑

i

[
iα

2
c†

i (σ2ci+x̂ + σ1ci+ŷ) + H.c.

]
. (A19)

To derive Eq. (A19), we have reversed the x and y axes.
Effectively, P keeps the on-site terms but takes the complex
conjugate of the coefficients of the hopping terms. For wi �=
0, ui = 0, we can choose UPT = σ1 ⊗ I such that Eq. (A5)
is satisfied. One can also use an elegant form of UPT P =
σ1(−1)ix+iy to write the parity-time operator. Differently, one
cannot find a proper UPT for wi �= 0, ui �= 0. Hence, PTS is
preserved only if ui = 0. On the other hand,

PHT
1 P−1 =

∑
i

c†
i [(wi + iui )σ1 + iκσ3]ci

+
∑

i

[
iα

2
c†

i (σ2ci+x̂ + σ1ci+ŷ) + H.c.

]
. (A20)

One can always choose UPP = iσ2 ⊗ I such that PPHS is
preserved.

Now, let us turn to H2. Note that

H∗
2 =

∑
i

c†
i [−(wi − iui )τ2σ0 − iκτ3σ3]ci

−
∑

i

[
iα

2
c†

i (τ0σ2ci+x̂ + τ0σ1ci+ŷ) + H.c.

]
, (A21)

and

HT
2 =

∑
i

c†
i [−(wi + iui)τ2σ0 + iκτ3σ3]ci

−
∑

i

[
iα

2
c†

i (τ0σ2ci+x̂ + τ0σ1ci+ŷ) + H.c.

]
. (A22)

For wi �= 0, ui = 0 [see Fig. 1(c)], TRS, PHS, TRS†, and
PHS† are preserved with UT = (iτ3σ2) ⊗ I,UP = (τ0σ1) ⊗
I,UP′ = (iτ1σ2) ⊗ I,UT ′ = (iτ2σ1) ⊗ I . Now H2 belongs to
class DIII + S−+. On the other hand, for wi �= 0, ui �= 0 [see
Fig. 1(d)], TRS and PHS† are broken since the on-site terms
are complex. In this case, H2 belongs to class DIII + S−.

H2 also has PTS and PPHS. Note that

PH∗
2 P−1 =

∑
i

c†
i [−(wi − iui)τ2σ0 − iκτ3σ3]ci

+
∑

i

[
iα

2
c†

i (τ0σ2ci+x̂ + τ0σ1ci+ŷ) + H.c.

]
,

(A23)

and

PHT
2 P =

∑
i

c†
i [−(wi + iui )τ2σ0 + iκτ3σ3]ci

+
∑

i

[
iα

2
c†

i (τ0σ2ci+x̂ + τ0σ1ci+ŷ) + H.c.

]
.

(A24)

For H2 of wi �= 0, ui = 0, PTS and PPHS are preserved with
UPT = (τ3σ1) ⊗ I and UPP = (iτ0σ2) ⊗ I . For wi �= 0, ui �=
0, PTS is broken but PPHS is still preserved. We summarize
the presence/absence of PTS and PPHS for H1 and H2 in
Table II.

Before the end of this section, we want to mention that
H2 of ui = 0 also has pseudo-Hermitian symmetry which is
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FIG. 4. (a) log10[|ε̃|] of H1 as a function of log10[L]. The red
line is a fit of log10[|ε̃|] = −γ log10[L] + δ with γ = 0.45 and δ =
−0.64. (b) Same as (a) but for H2. Here γ = 0.60, and δ = −0.27.
102 samples are used here. Critical exponents for ε = 0 as a function
of Lmin obtained by L ∈ [Lmin, Lmax] with Lmax = 400. Other param-
eters are the same as those in Figs. 2(a) and 2(b) and Figs. 3(a) and
3(b). Dashed lines in (c) and (d) locate ν = 2.

defined as

UqH†U −1
q = H (A25)

in the real space or

uqh†(k)u−1
q = h(k) (A26)

in the momentum space. Here UqU †
q = I , and uqu†

q = I . One
can choose Uq = (iτ2σ0) ⊗ I to satisfy Eq. (A25). Pseudo-
Hermitian symmetry is equivalent to the AZ or AZ† classes
with SLS, see Ref. [21] for more details. Therefore, H1 does
not have pseudo-Hermitian symmetry due to the absence
of SLS.

APPENDIX B: NEAREST-NEIGHBOR LEVELS TO EPS

Since the non-Hermitian Hamiltonians cannot be exactly
diagonalized at the EPs, we find the nearest-neighbor level ε̃ to
the EPs (locating at ε = 0 for our models H1 and H2) and treat
the participation ratio of ε̃, say, p2(ε̃), as p2(0) numerically.
Here we show that ε̃ become extremely close to the EP for
L → ∞ such that, for large-enough sizes, p2(ε̃) � p2(0). To
support this argument, we plot the ensemble average log10[|ε̃|]
as a function of system size log10[L] for H1 and H2 with W =
0.1 and ui = 0, see Figs. 4(a) and 4(b), respectively. Since the
EP locates at ε = 0, |ε̃| is the distance between the EP and
its nearest-neighbor level. As we can see, |ε̃| scales with L as

|ε̃| ∼ L−γ with γ = 0.45 for H1 and γ = 0.60 for H2, i.e., in
both cases, limL→∞ ε̃ = 0.

Our numerical results also show that one cannot use very
small system sizes L to determine the critical exponents of
EPs of H1 and H2, i.e., a large-enough size to ensure ε̃ close
to the EPs. We find that the critical exponent ν decreases with
L for relatively small size but becomes constant on a critical
length L̃. Figures 4(c) and 4(d) show the critical exponents ν

for ε = 0 as a function of Lmin obtained by finite-size scaling
analyses of sizes {Lmin, Lmin + 40, Lmin + 80, . . . , Lmax} with
Lmax = 400. It is seen that the critical exponent approaches to
2 within numerical errors for Lmin = L̃ = 80.

APPENDIX C: FINITE-SIZE SCALING ANALYSIS
AND FITTING PARAMETERS

To determine the critical exponent ν, a finite-size scaling
analysis of participation ratio p2 is required. Near the critical
disorder Wc, p2 scales with the system size L as

p2 = LD[ f (L/ξ ) + φLy f̃ (L/ξ )] (C1)

with the correlation length ξ diverging at Wc. We expand the
unknown scaling function f (x) and f̃ (x) as

f (L/ξ ) = a0 + (L/ξ )1/ν + a1(L/ξ )2/ν,
(C2)

f̃ (L/ξ ) = a2 + (L/ξ )1/ν + a3(L/ξ )2/ν

with

ξ = (b1|W − Wc| + b2|W − Wc|2)−ν . (C3)

The fitting parameters are D, ν,Wc, φ, y, a0, a1, a2, a3, b1, b2

(in total, there are 11 fitting parameters) with D being the
fractal dimension, ν being the critical exponent of correlation
length, Wc being the critical disorder, and y being the exponent
of the irrelevant variable. The maximal likelihood estimate of
the fitting parameters is obtained by minimizing the following
quantity:

χ2 =
I∑

i=1

J∑
j=1

[
p2(i, j) − p̃2(i, j)

σ (i, j)

]2

. (C4)

Here p2(i, j) = p2(Wi, Lj ) are the numerical data, and p̃2(i, j)
are given by the scaling function Eq. (C1). χ2 is known as the
chi-square. The total degree of freedom for a fitting process
is Nf = I × J − M. We also estimate the so-called goodness-
of-fit Q by following the standard scenario, which can be used
to judge whether the fitting is acceptable or not. Generally
speaking, a wrong model will often been rejected with a very
small values of Q, while it is acceptable if Q > 10−3 [44].

We summarize some fitting parameters in Tables III
and IV, where some of them are mentioned in Sec IV, together

TABLE III. Chi-square fitting results for the parameters of ALTs in H1.

Disorders ε Wc ν D y Nf Q

wi �= 0, ui = 0 0 0.85 ± 0.05 1.97 ± 0.07 1.0 ± 0.1 −0.9 ± 0.1 139 0.1
wi �= 0, ui = 0 −0.2 0.93 ± 0.05 2.3 ± 0.1 0.78 ± 0.05 −1.1 ± 0.1 139 0.2
wi �= 0, ui = 0 0.08i 0.83 ± 0.02 2.32 ± 0.02 0.81 ± 0.02 −1.3 ± 0.1 139 0.1

wi �= 0, ui �= 0 −0.2+0.01i 0.62 ± 0.03 2.79 ± 0.02 0.67 ± 0.05 −0.7 ± 0.2 127 0.05
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TABLE IV. Fitting parameters of ALTs in H2.

Disorders ε Wc ν D y Nf Q

wi �= 0, ui = 0 0 0.63 ± 0.08 2.0 ± 0.1 1.06 ± 0.03 −1.5 ± 0.1 121 0.08
wi �= 0, ui = 0 −0.2 0.45 ± 0.01 2.79 ± 0.05 0.6 ± 0.1 −1.3 ± 0.2 139 0.03

wi �= 0, ui �= 0 −0.2+0.01i 0.26 ± 0.01 2.56 ± 0.03 0.77 ± 0.03 −1.0 ± 0.1 139 0.1

with the degree of freedom Nf and the goodness-of-fit Q.
Tables V and VI give fitting parameters of Anderson local-
ization transitions discussed in Appendices.

APPENDIX D: MORE EVIDENCE
FOR THE UNIVERSALITY

Here we give more data to support the universality at
EPs. In Appendix D 1, we study the ALTs of H1 with ui = 0
by calculating the dimensionless conductances based on the
transfer matrix method [46]. The obtained critical exponent is
identical to that by participation ratios, a strong support to the
universality of ALTs in Figs. 2(a)–2(d). In Appendix D 2, we
numerically study the ALTs in the symmetry-broken phases.
In Appendices D 3 and D 4, we study the ALTs under a differ-
ent boundary condition and with a different form of disorders.
All ALTs near the EPs in Appendices D 2, D 3, and D 4 have
the same criticality.

1. Dimensionless conductance

As a self-consistent check, we investigate the localization
properties of states of H1 with wi �= 0, ui = 0 through the data
of dimensionless conductance. By using the transfer matrix
method [46], we calculate the dimensionless conductance of
a disordered sample modelled by Eq. (1) between two clean
semi-infinite leads by Eq. (1) with wi = ui = 0 at a complex
Fermi level ε, i.e., gL = Tr[T T †] with T being the transmis-
sion matrix. As the standard paradigm, the contact resistance
is eliminated. For a given disorder W , the localization nature
of a state at ε are determined by the following criteria: (i)
gL(W ) increases (decreases) with the size L for the state
being extended (localized), while it is size independent for the
critical state. (ii) If there exists a quantum phase transition
at a critical disorder Wc, then gL(W ) of different size L near
Wc collapse into a smooth scaling curve f (x = L/ξ ) with the
correlation length ξ diverging as ξ ∼ |W − Wc|−ν .

The ensemble average ln[gL] as a function of W for
ε = −0.01 (near the exceptional point) and −0.2 (in the
symmetry-preserved phase) for α = 0.2, κ = 0.01 are dis-
played in Figs. 5(a) and 5(c), respectively. It should be noted
that it is unreasonable to choose ε = 0 in the transfer matrix
approach since H1 cannot be diagonalized at the exception
point [28]. Instead, we choose a state at ε = −0.01, which is
very close to the EP, and find a transition from extended states

to localized states at Wc = 0.63 ± 0.08. Finite-size scaling
analysis gives ν = 2.05 ± 0.07, which equals to ν = 1.95 ±
0.05 from the data of participation ratios within numerical
errors. The details of the finite-size scaling analyses can be
found in the Appendix of Ref. [44]. On the other hand, for ε =
−0.2 (in the symmetry-preserved phase), we also see a critical
point at Wc = 0.39 ± 0.02 near which ξ ∼ |W − Wc|−ν with
ν = 2.33 ± 0.05, which equals to ν = 2.3 ± 0.1 shown in
Fig. 2(d). Hence, the obtained critical exponents ν by trans-
fer matrix methods are consistent as those from participation
ratios, which should be strong supports to the universality.

2. ALT in the symmetry-broken phase

For a full picture for the localization nature of states of
the non-Hermitian model H1, we also calculate the ensem-
ble average ln[YL] as a function of W for various L, as we
do in Figs. 2(a)–2(d), but for one state in the symmetry-
broken phase (ε = 0.08i). The obtained data are displayed
in Fig. 3. Clearly, data for different sizes cross at one point
Wc = 0.83 ± 0.02 and those of W < Wc (W > Wc) increases
(decreases) with the system size L. These features indicate a
transition from a band extended states to a band of localized
states at Wc. ALTs can not only happen near the EP and in
the symmetry-preserved phase as shown in Figs. 2(a)–2(d) but
also in the symmetry-broken phase, where the eigenenergies
come as the complex-conjugate pairs (ε, ε∗).

To further substantiate the criticality, we perform the finite-
size scaling analysis for data in Fig. 3(a). Our analysis shows
that the correlation lengths ξ diverge as |W − Wc|−ν with
ν = 2.32 ± 0.02, and data of ln[YL] as a function of ln[L/ξ ]
collapse to two different curves (the upper and lower branches
are for extended and localized states, respectively). The
critical exponent equals to that of ε = −0.2 in the symmetry-
preserved phase. As we explained in the main text, ALTs of
the symmetry-preserved and symmetry-broken phases belong
to the same universality class. Numerical data in Figs. 2(c)
and 2(d) and Fig. 6 confirm this assertion.

3. ALTs under periodic boundary conditions

In Figs. 2 and 3, we apply open boundary conditions
to the 2D Hamiltonians H1 and H2. Here we change the
boundary condition to periodic boundary conditions and see
whether the critical exponent ν is different for ε = 0 (EPs).

TABLE V. Fitting parameters of ALTs in H1 and H2 with periodic boundary conditions.

disorders ε Wc ν D y Nf Q

H1 wi �= 0, ui = 0 0 0.81 ± 0.02 2.0 ± 0.1 1.0 ± 0.1 −1.3 ± 0.3 139 0.3
H2 wi �= 0, ui = 0 0 0.37 ± 0.03 2.01 ± 0.08 0.97 ± 0.05 −0.7 ± 0.2 133 0.1
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TABLE VI. Fitting Parameters of ALTs in H̃1 and H̃2.

Disorders ε σc ν D y Nf Q

H̃1 wi �= 0, ui = 0 0 0.25 ± 0.03 2.03 ± 0.06 1.0 ± 0.1 −1.0 ± 0.1 139 0.1
H̃2 wi �= 0, ui = 0 0 0.28 ± 0.06 2.0 ± 0.1 0.8 ± 0.2 −1.2 ± 0.1 139 0.02

The calculated ln[YL] as a function of W for H1 with wi �=
0, ui = 0 is depicted in Fig. 7(a) with a critical disorder at
Wc = 0.81 ± 0.02. The finite size scaling analysis yields ν =
2.0 ± 0.1. Likewise, we find the ALT at Wc = 0.37 ± 0.03
with the critical exponent ν = 2.01 ± 0.08, see Fig. 7(c).
Hence, the universality at EPs are not affected by choosing a
different boundary condition. The scaling functions are shown
in Figs. 7(c) and 7(d). Other fitting parameters are in Table V.

4. ALTs for Gaussian distributions

In Figs. 2 and 3, we model disorders of H1 and H2 by ran-
dom on-site potentials, whose amplitudes wi and ui distribute
independently and uniformly in a range of [−W/2,W/2].
Here we supply numerical evidence to the universality at EPs
for a different form of randomness, i.e., wi and ui are white
noise and follow the Gaussian distribution of zero mean and
variance σ 2. We label the corresponding Hamiltonians as H̃1

and H̃2, whose Bloch Hamiltonians are the same as those of
H1 and H2 and the disordered on-site potentials are Gaussian.
Since we focus on delocalization-localization transitions at
EPs, we set ui = 0 in what follows.

Similarly to H1 and H2, eigenenergies of H̃1 and H̃2 form
crosses in the complex-energy plane with the second-order
and fourth-order EPs locating at ε = 0. These features are
visualized in Figs. 8(a) and 8(b) for α = 0.2, κ = 0.1, σ =
0.1. We then investigate the Anderson localization transitions
at the EPs. The calculated ln[YL(σ )] are shown in Figs. 8(c)
and 8(d) for H̃1 and H̃2, respectively. Finite-size scaling ana-
lyze yield ν = 2.03 ± 0.06 for H̃1 and ν = 2.0 ± 0.1 for H̃2,
which are identical to those of H1 and H2 within numerical
errors. The scaling functions are given in Figs. 8(e) and 8(f).

FIG. 5. (a) 〈ln[g]〉 as a function of W for L =
80, 128, 160, 196, 256 at ε = −0.01 (near the exception point).
(b) Scaling function ln[ f (x = ln[L/ξ ])] for (a). [(c) and (d)] Same as
in (a) and (b) but for ε = −0.2 (in the symmetry-preserved phase).

APPENDIX E: SKIN EFFECT

Non-Hermiticities sometimes cause a skin effect where
the wave functions localize exponentially at boundaries of
systems of the open boundary conditions. This can be seen
by the following low-energy continuous Hamiltonian

h(p) = αp1σ1 + αp2σ2 + Vnh

= αp1σ1 + αp2σ2 + i
∑

μ=0,1,2,3,

κμσμ, (E1)

with α and κ0,1,2,3 being real numbers. The Hermitian part of
Eq. (E1) is the effective k · p Hamiltonian of the Hermitian
part of model (1) of the main text, and Vnh is a general non-
Hermitian potential. One can generalize the Hamiltonian in
the real p space to that in the complex p̃ space, i.e.,

h( p̃) = iκ0σ0 + α p̃1σ1 + α p̃2σ2 + iκ3σ3 (E2)

with p̃1,2 = p1,2 + iκ1,2/α being complex numbers. The role
of κ1,2 �= 0 can be thus seen by replacing the real wave vectors
p1,2 by the complex ones p̃1,2 in the Bloch phase of exp[ip ·
x]. Hence, eigenstates of Eq. (E2) localized exponentially
at the boundaries if κ1,2 �= 0. However, this never happens
for the non-Hermitian systems with either PTS or pseudo-
Hermitian symmetry. For PTS, one requires uPT h∗(p)u−1

PT =
h(p). Since

h∗(p) = −iκ0σ0 + α(p1 − iκ1/α)σ1 + α(−p2 + iκ2/α)σ2

− iκ3σ3, (E3)

we must set κ0 = κ1 = κ2 = 0 and choose uPT = σ1. Like-
wise, one can find that the skin effect is prohibited for a
pseudo-Hermitian system.

This can be seen in the following. In Fig. 9(a), we
show the wave function distribution log10 |ψi(ε = 0)|2 for
H1, whose EPs are second order, at a particular disorder
W = 0.1. One can see that the wave function spreads over the

FIG. 6. (a) Ensemble average ln[YL (W )] of H1 at ε = 0.08i (in
the symmetry-broken phase) for L = 80, 120, . . . , 280. The other
parameters are α = 0.1, κ = 0.1, ui = 0; 102 samples are used here.
(b) Scaling function ln[YL] = ln[ f (x = L/ξ )] for data in (a).
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FIG. 7. (a) Ensemble average ln[YL] as a function of σ for ε = 0
and L = 80, 120, 160, 200, 240, 280 for H1 with periodic boundary
conditions. (b) Scaling function ln[YL (ln[L/ξ ])] of (a). [(c) and (d)]
Same as in (a) and (b) but for H2. The remaining parameters are the
same as those in Figs. 2 and 3. Other fitting parameters are given in
Table V.

whole sample since it is a delocalized state. On the other
hand, for a stronger disorder W = 2.0 that is larger than Wc =
0.85 (see Table III), the state is highly localized at the bulk,
see Fig. 9(b). Similar features are also observed for H2, see
Figs. 9(c) and 9(d). Noticeably, such localizations are different
from that due to the skin effect. To see it, we consider the
following two models:

H1,skin =
∑

i

c†
i [(wi + iui )σ1 + iκσ2]ci

−
∑

i

[
iα

2
c†

i (σ2ci+x̂ − σ1ci+ŷ) + H.c.

]
, (E4)

FIG. 8. [(a) and (b)] Re[ε] vs Im[ε] for (a) H̃1 and (b) H̃2.
Here α = 0.2, κ = 0.1, σ = 0.1, and L = 40 (a) and 20 (b).
[(c) and (d)] Ensemble average ln[YL] as a function of σ for L =
80, 120, 160, 200, 240, 280 for (a) H̃1 and (b) H̃2 with α = 0.2, κ =
0.1, ε = 0. The remaining parameters are the same as those in Figs. 2
and 3. [(e) and (f)] Scaling function ln[YL (ln[L/ξ ])] of (c) and (d).
Other fitting parameters are given in Table VI.

FIG. 9. (a) Spatial distributions of log10 |ψi| of normalized wave
functions of the ε = 0 state (EP) in a typical realization of H1 of
wi = 0, ui �= 0 with α = 0.2, κ = 0.1, W = 0.1, L = 120. (b) Same
as (a) but for W = 2.0. (c) Same as (a) but for H1 with α = 0.2,
κ = 0.1, W = 0.1. (d) Same as (c) but for W = 2.0. (e) Same as
(a) but for H1,skin given in Eq. (E4). (f) Same as (a) but for H2,skin

given in Eq. (E5). Colors map log10 |ψi|. The yellow (blue) color
stands for a larger (smaller) spatial distribution.

and

H2,skin =
∑

i

c†
i [(wi + iui)τ2σ0 + iκτ0σ1]ci

−
∑

i

[
iα

2
c†

i (τ0σ2ci+x̂ − τ0σ1ci+ŷ) + H.c.

]
. (E5)

The differences between Eqs. (E4) and (E5) and H1 and H2

are the non-Hermitian on-site potentials: They are iκσ2 and
iκτ0σ1 in Eqs. (E4) and (E5) but iκσ3 and iκτ3σ3 in H1 and
H2. The modifications of the non-Hermitian potentials lead
to the skin effect in the y direction such that wave functions
of the two new models localized exponentially, see Figs. 9(e)
and 9(f). Such localizations are intrinsically different from
Anderson localizations where wave functions can be localized
at the bulk, rather than the edges, of a non-Hermitian system.

APPENDIX F: HONEYCOMB LASER CAVITY NETWORK

One possibility is to model Haldane Hamiltonian by the
laser cavity network as recently done in experiments that
realized chiral edge states [50,51]. In an early work [16], we
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derived the effective Hamiltonian of coupled laser cavities on
a honeycomb lattice

H =
∑
i∈A

εa,ia
∗
i ai +

∑
i∈B

εb,ib
∗
i bi

+
∑
〈i, j〉

(t1a∗
i b j + c.c.) +

∑
〈〈i, j〉〉

t2eiφ (a∗
i a j + b∗

i b j + c.c.).

(F1)

Here ai and bi are the laser field amplitudes at site i of A
and B sublattices, respectively. 〈i, j〉 and 〈〈i, j〉〉 denote the
nearest-neighbor sites and the next-nearest-neighbor sites, re-
spectively. Each resonator is coupled to its nearest-neighbors
sites with a real coupling constant t1 and to its next-nearest-
neighbor sites with a complex coupling constant t2eiφ with
φ being the tunable Haldane flux parameters. The complex
parameters εa,i and εb,i are

εa,i = ωa,i + i(g̃a − γ ) (F2)

and

εb,i = ωb,i + i(g̃b − γ ). (F3)

Real numbers ωa,i and ωb,i represent the resonance frequen-
cies of the resonator at site i of A and B sublattices. The
resonance frequency depend on the size and the shape of the
resonator. Therefore, disorders can be introduced by setting
ωa,i and ωb,i randomly. The real positive number γ is the linear
loss of a resonator. Real positive number g̃a and g̃b in Eqs. (F2)
and (F3) are the optical gains via stimulated emission that is
inherently saturated. Hereafter, we choose

g̃a = γ + κ, g̃b = γ − κ (F4)

such that εa,i = ωa,i + iκ, εb,i = ωb,i − iκ .
In the absence of disorders, say ωa,i = ωb,i = ω0, Eq. (F1)

can be block diagonalized in the momentum space

H =
∑

k

[
a∗

k b∗
k

]
h(k)

[
ak

bk

]
, (F5)

where

h(k) = h0σ0 + h · σ (F6)

with

h0 = 2t2 cos φ
∑

i=1,2,3

cos[k · vi]

h1 = t1
∑

i=1,2,3

cos[k · ui]

(F7)
h2 = −t1

∑
i=1,2,3

sin[k · ui]

h3 = 2t2 sin φ
∑

i=1,2,3

sin[k · vi] + iκ.

Note that σ0,1,2,3 stand for the unit matrix and the Pauli
matrices acting on the A-B sublattice space. In Eq. (F7),
u1 = (

√
3/2, 1/2), u2 = (−√

3/2, 1/2), u3 = −(u1 + u2),
and v1 = u2 − u3, v2 = u3 − u1, v3 = u1 − u2. The
Hermitian part of Eq. (F7) supports chiral edge states for
t2 �= 0 and −π < φ < 0 and 0 < φ < π . Near the two
distinct corners K = (4π/(3

√
3a), 0) and K ′ = −K, we can

expand the Bloch Hamiltonian h(k) with small p = (p1, p2):

h±(p) = −3t2 cos[φ]σ0 − 3t1a

2
(±p1σ1 − p2σ2)

− (±3
√

3t2 sin[φ] − iκ )σ3, (F8)

with the subscripts ± standing for the K and K ′, respectively.
By artificially tuning φ = 0, Eq. (F8) is invariant under parity-
time operation, i.e., [σ1K, h̃(p)]ζ=1 = 0, and supports an EP
at 9t2

1 a2(p2
1 + p2

2)/4 = κ2.
An on-site randomness like wiσ1 can be achieved by ar-

tificially changing the resonant frequencies of the cavities.
In principle, one can measure the laser field amplitudes of
Eq. (F1), see Ref. [51], from which the participation ratio
can be calculated p̃2 = ∑

i(|ai|4 + |bi|4). The ALTs can be
seen by studying the size dependence of p̃2 near the EP, and
the critical exponent can be calculated through the finite-size
scaling analysis. We thus expect the designed laser cavity
networks are ideal platform to study the Anderson localization
transitions at EPs and all conclusion given in this work can be
experimentally tested based on the laser cavity networks.
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[52] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity-time-
symmetric whispering-gallery microcavities, Nat. Phys. 10, 394
(2014).

[53] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
waves in PT -symmetric systems, Rev. Mod. Phys. 88, 035002
(2016).

024202-14

https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1038/nphys2927
https://doi.org/10.1103/RevModPhys.88.035002

