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Slow melting of a disordered quantum crystal
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The melting of the corner of a crystal is a classical, real-world, nonequilibrium statistical mechanics problem
which has shown several connections with other branches of physics and mathematics. For a perfect, classical
crystal in two and three dimensions the solution is known: The crystal melts reaching a certain asymptotic shape,
which keeps expanding ballistically. In this paper, we move onto the quantum realm and show that the presence of
quenched disorder slows down severely the melting process. Nevertheless, we show that there is no many-body
localization transition, which could impede the crystal to be completely eroded. We prove such claim both by
a perturbative argument, using the forward approximation, and via numerical simulations. At the same time we
show how, despite the lack of localization, the erosion dynamics is slowed from ballistic to logarithmic, therefore
pushing the complete melting of the crystal to extremely long timescales.
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I. INTRODUCTION

Research on quantum dynamics of extended objects, in
particular in situations far from equilibrium, has seen a surge
in activity in the last years, pushed by two, apparently inde-
pendent advances. On one side, the experimental techniques
to control mesoscopic systems have improved significantly in
the fields of cold atoms [1,2], trapped ions [3,4], nitrogen-
vacancy (NV) centers in diamond [5–7], superconducting
qubits [8], and others [9]. On the other side, novel theo-
retical results have been obtained regarding the dynamics
of strongly interacting quantum systems, both in presence
and in absence of quenched disorder. In the first case, the
work [10] made a strong case for the breakdown of ergod-
icity in presence of disorder, even if interactions are present.
This many-body localized (MBL) phase [11,12] is in stark
contrast with the previously assumed picture, for which a
generic interacting system would be ergodic in the sense of
the eigenstate thermalization hypothesis (ETH) [13,14]. The
same phenomenology has been further observed even in mod-
els without quenched disorder, but presenting, e.g., kinetic
constraints [15–17], Hilbert space fragmentation [18,19], or
large energy gaps throughout the spectrum [20,21].

The picture emerging from these recent advances is that
isolated quantum systems, out of equilibrium and (possibly)
in the presence of disorder, can display a serious suppression
of transport. Generically, they can pass from the usual dif-
fusive dynamics at small disorder, to subdiffusive transport
[22–25], and then finally to a localized regime [26], becoming
effectively integrable systems [27–30]. So far, evidence for
the MBL phase beyond perturbation theory [10,29] consists
in many numerical results on small, one dimensional spin
chains [31–35], some experimental results for larger sys-
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tems but smaller times [36–38], and a single analytic work
[39,40] proving MBL in a spin chain under some reasonable
assumptions.

While the situation is slowly getting under control in one
dimension (but with many caveats and uncertainties [41–47]),
in dimensions two and higher, the existence of MBL beyond
the original paper [10] and a few others [48–52] is even
more questionable. The main issue is that in 2d numerical
results are limited to extremely small systems [53], and at the
same time nonperturbative effects are thought to be stronger
[54–56]. Some counterexamples are provided by two studies
of dimer models in 2d [57,58] which, because of the slow
(though still exponential) growth of their Hilbert space di-
mension, can be studied up to 100 spins or so; and by some
recent investigations on quasiperiodically modulated 2d mod-
els [59–61]. Such studies show an MBL transition with the
same confidence that it is seen in spin chains, giving hope
that disorder can indeed localize in 2d following the same
route that works in 1d , at least for some particular microscopic
Hamiltonians.

In this work, we consider under the perspective of MBL
the process of melting of the corner of an imperfect, two-
dimensional quantum crystal. The process of melting of
classical crystals is a wide-studied phenomenon in statis-
tical mechanics [62,63] and mathematical physics [64,65],
with connections ranging from the theory of random integer
partitions [66–68] to determinantal point processes [69–73],
and even to Calabi-Yau manifolds [74,75]. Alongside pre-
vious works [76,77], we model the melting process by the
strong-coupling limit of the 2d quantum Ising model in both
transverse and longitudinal magnetic fields. In particular, via a
Schrieffer-Wolff transformation [78] one can obtain an effec-
tive Hamiltonian, that is particularly suitable for interpreting
the process in terms of the motion of the “crystal-liquid” in-
terface. Such Hamiltonian is in the same family of constrained
PXP models [79–81], arising in the context of ultracold
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Rydberg atoms [82]. In the presence of disorder, PXP models
show resilience toward localization already in 1d [83]. The
explanation relies on the fact that the local disorder before
the constraints are applied maps to nonlocal terms in the
Hamiltonian, which escape in this way the usual arguments
leading to localization in the perturbative limit. This is a first
clue that makes us suspect that crystal melting cannot be
stopped by disorder, no matter how strong the latter can be.
In this paper, we will exactly prove this working hypothesis:
The dynamics of the crystal melting gets only slowed down—
albeit quite dramatically—never stopping at any finite value of
disorder.

To prove our claim, we proceed as follows. After having
introduced the model, which is the quantum Ising model in
two spatial dimensions, we consider the evolution of a partic-
ular type of initial condition, under the approximation that the
Ising coupling J be the largest scale in the problem, the other
two being the longitudinal (h) and transverse (g) magnetic
fields. Within this approximation, the states of the Hilbert
space can be put in one-to-one correspondence with Young
diagrams, thereby reducing considerably the growth of the
Krylov subspaces for the evolution. This allows us to go to
relatively large system sizes, and explore the dynamical and
eigenstate properties as the amount of disorder is increased.
We find that, for any given system size, the eigenstate prop-
erties show some signs of localization, at least for sufficiently
large disorder. However, the disorder strength for which lo-
calization is seen grows with the system size in a way which
seems to indicate that no transition to MBL is present in the
thermodynamic limit. Because of this, the delocalized phase
emerging in such limit is rather peculiar in nature, as the dy-
namics is extremely slow: For example, the expected number
of spin flips at time t grows like ∼ ln(gt ), irrespective of the
value of disorder. This is in contrast with other situations in
which the delocalized side shows transport dictated by contin-
uously changing exponents, that are functions of the disorder
strength (see, for example, Refs. [24,25,43]). We support these
numerical findings with an analytical argument, employing
the forward approximation in the locator expansion of the
resolvent.

Our findings are relevant for several reasons. First, they
show that when the process of melting of a crystal is quantum-
coherent, then it cannot be stopped even by the presence of
arbitrarily strong quenched disorder. Second, our work shows
that generic PXP models do not likely present any stable
MBL phase in two dimensions, despite this feature is very
difficult to be inferred from the dynamical evolution alone.
Indeed, the delocalized phase suffers of a severe dynamical
slowdown, which could be easily misinterpreted for local-
ization if considered alone (e.g., in an experimental setting,
where eigenstate properties are difficult to access). Third, our
findings hint at the conclusion that quenched disorder and
dynamical constraints, when combined, prevent the occur-
rence of a stable MBL phase in two dimensions. While our
results do not constitute a real proof of this latter statement,
they nevertheless provide solid evidence. In this respect, our
work is one of the very few numerical studies (others that
we are aware of are Refs. [57,58]) that is able to explore
two-dimensional system sizes, which are not too small to draw
any possible conclusion on the thermodynamic limit.

FIG. 1. (a) Generic configuration diagonal in the σ z basis, made
of 3 disconnected bubbles of “down” spins (in white) surrounded
by “up” spins (in gray). (b) Visual representation of the hopping
terms of the Hamiltonian Eq. (2). The top row represents moves
that break a bubble into two pieces (or join them), and will not be
considered in our discussions. The bottom row represents moves
that give dynamics to the corner, allowing it to melt: We will focus
our attention on these ones. (c) The initial configuration we will
consider: An infinite, right-angled wedge. (d) One of the possible
configurations reached from the wedge in the melting process.

The rest of the paper is organized as follows. In Sec. II A
we introduce the model and in Sec. II B we specialize it to
the strong coupling limit. In Sec. III A we discuss the con-
nection between the dynamics of a corner interface and the
growth of Young diagrams, while is Sec. III B we show how
to describe the corner evolution using a 1d fermionic chain.
Subsequently, in Sec. IV we move to discuss the forward
approximation for the model under consideration, presenting
in Sec. IV A the analytic treatment and in Sec. IV B the com-
parison with numerical results. Then, we move to a detailed
presentation of the numerical results both for the spectrum, in
Sec. V, and for the dynamics, in Sec. VI C. Finally, in Sec. VII
we discuss the limits of validity of the results presented when
the strong coupling limit is relaxed (Sec. VII A) and the
comparison with corresponding classical models (Sec. VII B),
giving some final considerations in Sec. VII C.

II. MODEL

A. A disordered quantum solid undergoing melting

As anticipated in the Introduction, we are interested
in the dynamics of melting of a two-dimensional, disor-
dered quantum crystal. As done commonly in the literature
[64,65,67,71], we consider the melting process starting from
the tip of an infinite, right-angled wedge; see Fig. 1. More
general finite- and infinite-size initial configurations could be
treated with similar tools; see for more details Refs. [76,77].
We describe the solid, nonmelted part of the crystal via “up”
Ising spins σ z

i = +1, i ∈ Z2, and the melted part via “down”
spins σ z

i = −1 (σ x,y,z are Pauli matrices). The Hamiltonian is
that of the two-dimensional Ising model on a square lattice,
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with a constant transverse field g and a random longitudinal
field hi:

HIsing = −J
∑
〈i j〉

σ z
i σ z

j +
∑

i

hiσ
z
i + g

∑
i

σ x
i . (1)

The physical interpretation of the terms appearing in the
Hamiltonian is rather straightforward. The g term lets the
spins flip freely between +1 and −1, thus neither the melted
phase nor the crystal is preferred at this level (we stress that we
want to describe the quantum-coherent process of melting in
real time, thus we need time reversibility). The presence of the
ferromagnetic coupling term (J > 0 throughout the paper),
however, favors the formation of bubbles of aligned spins,
contrasting to a certain extent the action of the g flips. Finally,
we introduce disorder in the form of a random longitudinal
field hi ∈ [−W/2,W/2], with a uniform distribution: This
models the presence of impurities by assigning a different
energy cost for the addition/removal of a particle at each site
i ∈ Z2. Notice that our choice of the Hamiltonian (1) implies
that particles in the liquid state do not lose phase coherence, as
they are represented, in a rather simplistic way, by immobile
“down” spins, that do not wander around and interact with
one another. This choice is made so to boost the quantum
coherence of the model, which otherwise should be described
as an open quantum system.

B. Strong-coupling limit and effective PXP description

Throughout the paper, we will assume that the strong-
coupling limit J � g ∼ W hold. This assumption is necessary
to make sense of a quantum-fluctuating interface, that clearly
separates the solid and melted phases; otherwise, one could
not speak of a melting process altogether.

When the coupling J is very strong, the Hilbert space of the
model effectively decomposes into sectors identified by the
length of the domain walls, i.e., the number of violated Ising
bonds [76,77,84,85]. More precisely, one can introduce the
operator L = ∑

〈i, j〉(1 − σ z
i σ z

j )/2, which exactly measures
the number of frustrated Ising bonds. The operator L is the
combined length of the strings/domain walls, and it is a con-
served quantity in the limit J → ∞. Indeed, L is very closely
related to the interaction energy in the original model, and by
unitarity it must be conserved: The excess energy cannot be
compensated by other means.

When instead J is large but finite, L is only approximately
conserved. However, while for the ordered case with field h
this is a singular limit (since the energy of a string of length �

is J� and the volume energy contribution ∼h�2 is always dom-
inant), for our disordered model with average field 〈h〉 = 0,
the volume energy contribution is typically of order 〈h2〉1/2�.
Thus, in the limit J � h the string length can be conserved to
high accuracy.

As just described, through the operator L the Hilbert space
is split into sectors of equal domain-wall length and, if the ini-
tial condition is supported within only one of those sectors, the
dynamics will be confined in it for all times. In Refs. [84,85]
the fragmentation of the Hilbert space of the clean version of
the model (1) was studied in great detail, showing in particular
that the Krylov subspaces represent an even finer scale w.r.t.
the eigenspaces of L. In Refs. [76,77], instead, the dynamical

implications of the fragmentation were inspected; here, we
will build on these latter works, showing how the picture is
modified by the introduction of disorder.

The Hilbert space fragmentation in the strong-coupling
limit can be formally described through a Schrieffer-Wolff
(SW) transformation [78], that accounts for the Ising inter-
action in a perturbative way. In terms of the operator L, the
Hamiltonian Heff generated by the SW transformation, order
by order in J−1, will be such that [Heff ,L] = 0. To lowest
order, the effective Hamiltonian one finds in any Krylov sub-
space is of the PXP form [76,77]:

H

(2)

Above, we have introduced a convenient graphical notation to
indicate spin flips. Indeed, one can easily get convinced that
spin flips can take place only next to a up/down spin border, as
in Fig. 1(a), and are only of the form indicated by the shapes
in Eq. (2) and Fig. 1(b).

The next order in the SW transformation encompasses the
first O(1/J ) corrections. However, the resulting SW Hamil-
tonian is rather complicated, and probably of little practical
use in general situations. In Refs. [76,77] such Hamiltonian is
derived, but only for a class of physically relevant Krylov sec-
tors (which comprise the one investigated in this work). While
we could study also in this paper the effects of a finite J , we
believe that such effects would entail just a quantitative mod-
ification of the results presented, while leaving the physical
picture unchanged. Therefore, in the following we will always
neglect the O(1/J ) corrections, while leaving to Sec. VII A a
brief informal discussion of their possible implications.

So far, we have argued that one can pass from the Hamil-
tonian of the full 2d quantum Ising model, Eq. (1), to the
effective Hamiltonian, Eq. (2), capturing the dynamics of
domain walls in the original model, when the strong coupling
limit is considered. Before moving on, let us remind that PXP
Hamiltonians in 1d have shown some form of slow dynamics
in either numerics or experiments [86–90], and presence of
“scars” in the spectrum, i.e., atypical eigenstates (e.g., with
atypically low entanglement entropy). At the same time, for
PXP models both the spectrum as a whole, and the dynam-
ics at finite energy density, are ergodic. Such ergodicity is
resistant also to the introduction of quenched disorder [83];
this is a consequence of the fact that the disorder maps, in
an unconstrained basis of states, to generic, nonlocal interac-
tion terms. This feature will be present also in the 2d model
under consideration, thus we refer to Sec. III for a detailed
discussion.

III. MAPPING TO YOUNG DIAGRAMS
AND TO LATTICE FERMIONS

As stated in the Introduction, we are interested in the
dynamics of melting generated by the Hamiltonian (1) [or
equivalently Eq. (2)], starting from a particular type of initial
condition: A corner made of “up” spins, in a sea of otherwise
“down” spins, see Fig. 1(c). This configuration is physically
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FIG. 2. (a) Young lattice, i.e., the set of Young diagrams where
two of them are connected if differing by a single box. In figure the
lattice up to N = 5 is represented. (b) Matrix plot of the Hamiltonian
Eq. (4) up to N = 8, corresponding to a Hilbert space of dimension
67. The off-diagonal elements correspond to the adjacency matrix of
the Young lattice, and are all set to g ≡ 1, while the diagonal part is
determined by the disordered magnetic field as detailed in Sec. III A.

relevant, as it is one of the simplest crystal shapes whose melt-
ing can be studied. In this section, we discuss two mappings of
the Krylov subspace containing such corner-shaped interface:
A mapping to Young diagrams in Sec. III A, and one to lattice
fermions in Sec. III B. The usefulness of such mappings will
become clear as we proceed.

A. Young diagrams

The fragmentation into Krylov subspaces, briefly outlined
in the previous section, represents a huge source of simplifi-
cation for the full, 2d problem. A particularly neat example
is given by the initial state whose evolution we aim at de-
scribing, viz. a right-angled, infinite corner [see Fig. 1(c)].
For this case in particular, only the moves and

in Eq. (2) are allowed, and all the states in
the Krylov subspace are in one-to-one correspondence with
Young diagrams. Let us recall that, by definition, a Young
diagram is a collection of boxes, arranged in left-justified
rows, and stacked in nonincreasing order of length [91]. The
mapping to Young diagrams is quite transparent; a detailed
explanation can be found in Refs. [76,77]. We also recall en
passant that the Young diagrams of size N are in one-to-one
correspondence with the integer partitions of N .

Thanks to the mapping, the quantum dynamics which
makes the crystal wedge melt can be described equivalently by
the hopping on the space of Young diagrams D; see Fig. 2. The
initial state, viz. the full wedge, is the empty Young diagram
D = ∅. Then, the energy of a diagram D ∈ D is given by the
sum of the longitudinal fields on the “blocks” composing the
diagram:

ED =
∑
i∈D

hi. (3)

The rate of hopping between two Young diagrams D, D′ is g
if they are connected by a single block addition or deletion
(neighboring diagrams), or zero otherwise. Therefore, the ad-
jacency matrix of the Young lattice has nonzero elements only

between the set of diagrams of size N , call it DN , and that of
size N − 1 (DN−1) or N + 1 (DN+1); see Fig. 2(b) for a sketch.

In the end, one is left with a Hamiltonian operator, acting
on the Hilbert space HD built on the set of diagrams D, i.e.,
the Krylov subsector of the original Ising model that contains
the infinite wedge:

HD = g
∑

〈D,D′〉
|D〉〈D′| +

∑
D

ED|D〉〈D|. (4)

The net gain is that the dimension of HD is much smaller
than that of the full Hilbert space of all the spins con-
figurations {σi} on the plane. Indeed, let us denote the
dimension of the Hilbert subspace, made of diagrams com-
posed of exactly N squares, as dN := dim HDN . It follows
that, for the diagrams made up at most of N squares,
one has to compute the cumulative d̄N := ∑N

k=0 dk . Thus,
from the Hardy-Ramanujan asymptotic formula for partitions,
one finds d̄N � exp (π

√
2N/3)/

√
8π2N : The mild, stretched-

exponential growth of such numbers will enable us to reach
system sizes of up to N = 36 spins. Notice that such dimen-
sions correspond to a vanishing entropy density in the original
model, since s = ln(d̄N )/N ∼ N−1/2. In other constrained
models (including the 2d dimer models of Refs. [57,58]) the
growth of Krylov sectors is instead exponential, with a finite
entropy density.

Before moving on, let us remark that the approach outlined
above, i.e., passing from the original interacting model to an
hopping problem on the Hilbert space graph, is a common
practice in the field of many-body physics, and in particu-
lar of MBL [92]. For more standard quantum spin chains
with particle number conservation, one usually restricts to
the half-filling sector, thus obtaining the subset of the hyper-
cube with an equal number of positive and negative vertices
as graph—eventually with a disordered, correlated chemical
potential if the original model is disordered itself. In the case
under consideration, instead, the graph obtained is the Young
diagrams lattice of Fig. 2, another subset of the hypercube but
with very different connectivity properties wrt. the former:
This can be already guessed from the scaling with N of the
number of vertices and edges [93]. Let us also mention that
this hopping problem is very different from XXZ-type models
on random graphs themselves [94], since one has already got
rid of interactions by passing to the graph.

B. Lattice fermions

It is a classic result of combinatorics that Young diagrams
can be mapped to a spin-1/2 chain [95] or, equivalently, to a
fermionic chain via a Jordan-Wigner transformation; see also
Fig. 3. This has allowed for an analytic solution for the lim-
iting shape of the crystal wedge (for a clean system) [76,77]
and unveiled connections to the mathematics of random in-
teger partitions [66,68,74]. In the case of a clean system, in
particular, the Hamiltonian (1) maps to free fermions on the
chain. In the disordered case we are now studying, instead, the
integrability will be lost but the mapping, which is a form of
holography between a 2d problem and a 1d problem, retains
its usefulness in simplifying the description of the problem,
both for a numerical and an analytical treatment. Therefore,
we will briefly describe it here.
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0 x0 x

FIG. 3. Mapping of 2d configurations dynamically connected to
the corner, and thus of Young diagrams, to fermions. (a) The initial
configuration, i.e., an infinite wedge, is mapped to the domain wall
state | · · · 000111 · · · 〉 on the chain. (b) A generic state (in this case,
the Young diagram corresponding to the partition {7, 6, 4, 3, 3, 1, 1})
is mapped to a fermion configuration according to the procedure
described in the main text.

Let us start with the null Young diagram D = ∅: As shown
in Fig. 3(a), it is associated to a domain wall centered in 0 on
the chain. Then, by moving on the line particles to the left,
or holes to the right, to each and every 1d fermion configura-
tion at half filling there corresponds a Young diagram, as in
Fig. 3(b).

For what concerns the Hamiltonian, the hopping term be-
comes associated to simple nearest-neighbor hoppings on the
chain (whose fermionic operators we represent as ψx, x ∈ Z)

g
∑

〈D,D′〉
|D〉〈D′| ←→ g

∑
x

(ψ†
x ψx+1 + H.c.). (5)

The energy ED|D〉〈D|, however, has no simple interpretation
as a local term. Instead, it is a generic operator which involves
all the fermions, through their number operator nx = ψ†

x ψx:

ED|D〉〈D| ←→ E (nx, ny, . . . ), (6)

where x, y, ... are the indices of the sites “touched” by the
diagram D. This nonlocality of the disordered potential terms,
already anticipated in the Introduction, is typical of PXP
models [83], and it comes from the interplay of dynamical
constraints and local fluctuations in the potential energy. In
one spatial dimension, it was proven to be the cause of the
absence of a MBL phase [83]: Indeed, the presence of nonlo-
cal interactions on the chain makes the model evade all the
arguments in favor of ergodicity breaking. We believe that
the same happens in our 2d setting, since the perturbative
arguments supporting MBL work equally in any dimension,
while the nonperturbative effects that destabilize MBL are
stronger.

In view of the above, it is quite surprising to remark
that, on the contrary, in the clean case hi ≡ h the mapping
simplifies to∑

D

ED|D〉〈D| ←→ −2h
∑

x

x ψ†
x ψx . (7)

Therefore, for a uniform field h �= 0 the melting dynamics will
be Stark-localized, as found in Refs. [76,77]. Moreover, for
h � 1 the finite-J corrections are likely incapable of thermal-
izing the system, which therefore enters a Stark-MBL phase
[76,77]. We see therefore that the presence of disorder is
assisting the thermalization, since it breaks the integrability
(in the sense of free fermions) of the model, while it is not

able to make the model athermal by itself, due to its nonlocal
nature.

To conclude this section, we remark that the mapping of the
2d dynamics onto a line of fermions is interesting for several
reasons. First, as said above it constitutes a great simplifica-
tion of the problem, as it enables a 1d effective description,
amenable of much more analytical control. Second, the 2d
dynamics induces on the fermions a rather particular type of
dynamics, interesting by itself, which we set up to investigate
in the next sections. Third, as remarked also in Refs. [76,77],
the mapping is a form of holography [96], which surely de-
serves a better investigation, in view of the intense interest of
the last years on such phenomena, especially in presence of
quenched disorder [97–99].

IV. PERTURBATION THEORY ESTIMATES

It is becoming clear, as the discussion unfolds, that the
melting of an infinite quantum crystal wedge does not undergo
a localization phenomenon, even if it may be severely slowed
down by disorder. Therefore, as a first thing we perform a
perturbative estimate for the critical disorder strength Wc of
a putative MBL transition, showing that such Wc flows to
infinity as the thermodynamic limit is approached. To do
so, we employ the so-called forward approximation (FA)
[26,92,100,101], which consists in calculating the Green’s
functions to lowest order in the hopping among localized or-
bitals. For the sake of being self-contained, we review briefly
the main ideas of the FA in Sec. IV A, and then discuss the
implications for our system in Sec. IV B.

A. Brief description of the forward approximation

In the FA, one starts from the locator expansion of the
resolvent [102]:

G(b, a; E ) = 〈b| 1

E − H
|a〉

(8)

= δab

E − Ea
+ 1

E − Ea

∑
p∈P(a,b)

|p|∏
k=1

g

E − Epk

, (9)

where P(a, b) denotes the set of paths from a to b. Notice
that in our case the labels a, b, . . . will represent Young di-
agrams, and the graph will be defined by the adjacency matrix∑

〈D,D′〉 |D〉〈D′| [see HD in Eq. (4)]. As customary, one can
pass from the random walks P(a, b) to the self-avoiding walks
SAW(a, b) at the cost of introducing a self energy term:

G(b, a; E ) = G(a, a; E )

×
∑

p∈SAW(a,b)

|p|∏
k=1

g

E − Epk − �
{p0,p1,...,pk−1}
pk (E )

,

(10)

where indeed �{b,c,... }
a (E ) is the self-energy at site a obtained

removing from the lattice the sites b, c, . . . . From the exact
representation of Eq. (10) one can in principle obtain also
the (many-body) amplitude �α (b) of the system to be found
in configuration b, while being in the eigenstate α localized

024201-5



BALDUCCI, SCARDICCHIO, AND VANONI PHYSICAL REVIEW B 107, 024201 (2023)

around configuration a:

�α (b) = 1

�α (a)
lim

E→Eα

(E − Eα )G(b, a; E ). (11)

Notice that this reduces to δab in the limit g → 0. Finally, per-
forming the approximation of summing only on the shortest
paths (or directed polymers) SP(a, b) from a to b, and thus
working to lowest order in g, one finds

�α (b) ≈
∑

p∈SP(a,b)

|p|∏
k=1

g

Ea − Epk

(12)

=
(

g

W

)d (a,b) ∑
p∈SP(a,b)

|p|∏
k=1

1

E ′
a − E ′

pk

. (13)

Above, we have introduced the distance d (a, b), and the
rescaled diagonal elements of the Hamiltonian E ′

a := Ea/W .
At this point, the criterion for localization is given by the

requirement that, with probability 1 over the disorder realiza-
tions, the probability of finding a particle at distance O(L)
from the localization center of the state goes to zero for L � 1
[92,101]. More formally, defining

�r := max
b: d (a,b)=r

|�α (b)| (14)

the system is considered to be localized if Zr := 1
r ln |�r |

satisfies

P

(
Zr � −1

ξ

)
−→ 1 for r → ∞ (15)

for some finite ξ > 0. The other way round, if the system is
delocalized we expect

P(Zr � −ε) −→ 1 for r → ∞ (16)

for any arbitrarily small ε > 0. The critical value of the
disorder can be estimated from the average value 〈Z∞〉 =
limr→∞〈Zr〉 using the condition

〈Z∞(Wc)〉 = − ln |g|. (17)

The possibility of passing from the statements in probability,
Eqs. (15) and (16), to the one in terms of the average value,
Eq. (17), is possible because of probability concentration as
r → ∞ [92].

B. Application to the melting process

The numerical results, obtained by using the empty dia-
gram D = ∅ as starting point (“a” in the formulas above), are
reported in Fig. 4. It is sufficient to plot a value of W only, in
virtue of Eq. (13). As r is increased, 〈Zr〉 diverges, being fitted
reasonably well both by ∼√

r or ln r (more on this below).
This proves the absence of a finite critical value Wc, which
instead can be present only if 〈Zr〉 saturates to a finite constant.

We now explain why both the square-root and the log-
arithmic fits are reasonable for the data in Fig. 4 (larger
system sizes are needed to discriminate between the two).
Starting from the former, one can see that it traces back to
the dimension of the Hilbert space as follows. In Eq. (13),
the dominant contribution to the term (E ′

a − E ′
pk

)−1 is of order
∼d|pk |, being dk the number of states at distance k from the
initial configuration (cf. Sec. III A): Indeed, one can take the

FIG. 4. Plot of 〈Zr〉 vs r as described in the main text: In the
main panel it is shown in log-log scale, while in the inset in linear
scale. The dots are the numerical results of the FA up to r = 45.
Their growth should be compared either with a square-root (dashed
orange line), or a logarithm (dotted purple line). Fitting a square-root
behavior compares reasonably well with the mean-field-like estimate
of the main text: The fit (not shown) gives Zr ≈ 0.57r0.52, while the
analytical prediction was Zr ≈ π (2/3)3/2√r ≈ 1.71

√
r. The numer-

ical data was averaged over 3000 disorder realizations. The inset
contains the same data plotted in linear scale.

average level spacing to be δE ′
pk

≈ 2k/d|pk |, and take only the
dominant (exponential) contribution. The initial configuration
being empty, the diagrams at distance k are all made of k
blocks, thus they belong to the subspace HDk ⊂ HD. At this
point, one can evaluate the product over k in Eq. (13):

r∏
k=1

1

E ′
a − E ′

pk

∼
r∏

k=1

dk ∼ exp

[
r∑

k=1

π

√
2k

3

]

∼ exp

[
π

(
2

3

)3/2

r3/2

]
, (18)

where there was used the Hardy-Ramanujan formula
dim HDk = dk ∼ exp (π

√
2k/3), and the asymptotic expan-

sion of the harmonic numbers of order 1/2[103]. Notice that
one can set, according to the convention of Eq. (14), |p| = r
and |pk| = k.

The further sum over the SP in Eq. (13) does not alter the
behavior of the estimate for large |p|, as one can check by
giving an upper bound to the number of SP: For example, one
can bound it by making all diagrams of size k connected to all
diagrams of size k + 1, for all k. In this case, also the number
of SP is

∏r
k=1 dk , thus giving the same asymptotic behavior

(see also the discussion below).
Putting the pieces together, one gets

Zr = 1

r
ln |�r | ∼ √

r. (19)

This estimate gives a good prediction for Zr , as shown in
Fig. 4, but it relies on the assumption that, at each step of
the optimal path, it is feasible to remain as close as possible
to the resonant energy. Therefore, we understand that this is
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a optimistic estimate for Zr , yielding a scaling that we can
consider to be a sort of upper bound for it.

The assumption of remaining on resonance at each step is
not valid for general geometries: It is false, for instance, on
the Bethe lattice—which usually constitutes a good approxi-
mation of many-body Fock spaces. However, it is surely valid
in the case in which each configuration D ∈ Dr is connected to
any other configuration D′ ∈ Dr+1, in a mean-field-like setting
(this same mean-field approximation was used above to bound
the number of SP). We argue that the Young lattice of Fig. 2,
i.e., the graph obtained by joining two Young diagrams iff they
differ by just one square, has indeed properties much closer to
the mean-field case rather than to the Bethe lattice.

Let us consider the number of shortest paths connecting
the empty diagram ∅ to a configuration made of r blocks, call
it D ∈ Dr . For the Bethe lattice, by definition, the number of
paths going between any two configurations is one, as there
are no loops. However, considering the mean-field Young
lattice in which any configuration in Dr is connected to any
configuration in Dr+1, we already showed that the number
of shortest paths connecting the empty diagram with any dia-
gram at level r is

∏r
k=1 dk ∼ exp(Cr3/2). For the true Young

lattice, one can take advantage of the fact that the number of
shortest paths leading to a Young diagram D coincides with
the so-called dimension dim(D), computed according to the
hook length formula [68]. Such number dim(D) corresponds
also to the dimension of the representation of the symmetric
group identified by the diagram D [91]. At this point, the
typical dimension of a diagram D made of r squares is found
to be dim(D) ∼ √

r! [104], so the typical number of SP will
scale like

√
r! as well. Therefore, even if the SP are less than

in the mean-field case, they are more than exponentially many
in the distance from the starting configuration. In conclusion,
one obtains a growth

〈Zr〉 ∼ ln r. (20)

The true behavior of the curve in Fig. 4 will likely be
something in between a square root and a logarithm. For the
system sizes accessible to present-day computers, and given
the slow growth of both curves, it is not possible to discern
between the two hypotheses. Nevertheless, for our purposes
the results shown are sufficient to claim that there is no finite-
disorder localization transition, at least at the lowest order of
perturbation theory.

V. SPECTRAL STATISTICS VIA EXACT
DIAGONALIZATION

In this section, we support the conclusions found in per-
turbation theory by performing an extensive numerical study
of the model through exact diagonalization. The numerics
was performed by constructing explicitly the Hilbert space
of the model, i.e., the Young lattice of Fig. 2(a), with ad hoc
methods. An example of the Hamiltonian matrix, truncated
to a finite N , is shown in Fig. 2(b)[105]. The code is made
available on GitHub [106].

To distinguish between the MBL and ETH regimes of a
system, one can consider various indicators, each with well-
defined, and different behaviors in the two cases. Here, we
consider mainly spectral indicators. Let us start from the re-

FIG. 5. r parameter as a function of the disorder strength W
(in units of g ≡ 1), and for increasing system sizes. The r value
flows from the GOE prediction at small disorder, to the Poisson one
at large disorder for any considered system size. However, no real
sign of the build-up of a transition is found; rather, the crossover
from GOE to Poisson simply seems to shift to larger values of W
as the thermodynamic limit is approached. This feature is analyzed
by means of the upper (U) and lower (L) cuts, represented by the
dashed-dotted lines; see the main text for more details. The number
of disorder realizations used ranges from 10 000 (smallest system
size) to 1700 (largest system size). (Inset) Histogram of the nor-
malized level spacings s, for N = 32 and 3000 disorder realizations.
Also here one can see flow from GOE (dashed black line) to Poisson
(dotted black line).

sults for the statistics of the energy levels En, summarized
in Figs. 5 and 6. In the inset of Fig. 5 we show how, at
finite system size N , there is a crossover from Wigner’s sur-
mise (viz. GOE, at small W ) to the Poisson gap distribution
(at large W ) for the normalized level spacings sn = (En+1 −
En)/〈En+1 − En〉, taken at the center of the spectrum. To argue
that such crossover builds up into a sharp transition in the
thermodynamic limit, one may look at the spectral gap ratio
parameter

r =
〈

min(sn+1, sn)

max(sn+1, sn)

〉
, (21)

which needs not be normalized. In the main panel of Fig. 5,
one can see that the crossover from rGOE � 0.5307 to rPois �
0.3863 gets slightly steeper as N increases, but it also moves
to larger values of W . To perform a reliable finite-size scaling
analysis, we decided to look at the disorder strengths WU and
WL, for which the r parameter becomes smaller than 0.51 and
0.41, respectively [107]. Reliable estimates for WU and WL

were obtained by fitting locally the values of r(W ) with a
polynomial function, and solving for the intersection. In the
inset of Fig. 6, it is shown how the values found for WU

and WL seem to diverge linearly with system size, but with
two different slopes. In particular, the faster divergence of
WL indicates that no transition is being built up; instead, the
crossover from GOE to Poisson seems to become smoother
at larger system sizes. Notice that this last fact also prevents
one to perform a scaling collapse of the data: It is impossible
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FIG. 6. Finite-size scaling analysis of the disorder strengths for
which the r parameter becomes smaller than 0.51 (WU ) and 0.41
(WL). In the inset, it is shown how they seem to diverge linearly
with system size, but with two different slopes. In the main panel,
two different possible fits are performed: A linear one W = a + bN
(dashed line), and one of the form W = a′ + b′/N + c′/N2 (dotted
line). Further implications are discussed in the main text.

to accommodate the scalings of both r > 0.51 and r < 0.41
with only one function, since the two parts of the curve r(W )
are flowing toward larger values of W with different speeds. In
addition to the previous observations, both WU and WL seem to
represent lower bounds (see how the curves r(W ) change with
system size in Fig. 5) for the critical disorder strength Wc, at
which a putative MBL transition may take place: Therefore,
we believe that such transition does not take place at all in
the thermodynamic limit, being pushed to infinite disorder
strength.

A more refined analysis is shown in the main panel of
Fig. 6. There, we try to extrapolate to N = ∞ with two dif-
ferent fits. The dashed line represents the same fit of the inset,
i.e., a linear one: W = a + bN . The dotted line, instead, is a
fit of the form W = a′ + b′/N + c′/N2, which extrapolates to
a finite value at N = ∞. Nevertheless, one can notice that the
values extrapolated from WU and WL are far apart, indicating
that either the fitting region is severely pre-asymptotic, or
there is no single transition point, but a slow crossover even in
the thermodynamic limit. Moreover, one can recognize that,
to truly distinguish between the two fitting functions, one
would need to go to system sizes N � 60 (at least for WL,
which is the most sensitive to delocalization). Such a system
size corresponds to an Hilbert space dimension of more than
∼6 × 106, which is beyond reach for present-day computers
and algorithms.

It is interesting to compare our Fig. 5 with the equivalents
of Refs. [108,109], where instead the data indicates the ex-
istence of a transition in the thermodynamic limit. The two
plots are substantially different in the scaling as N → ∞. In
our case the curves r(W ) seem to emanate from a common
asymptote as W → ∞, and simply shift toward larger values
of W as N is increased. On the contrary, in Refs. [108,109]
such curves become steeper already at small system sizes,
and in particular the lower part of the curves moves toward

smaller values of W . Therefore, in those works it was possible
to analyze another reliable indicator of the MBL transition,
namely W∗, the point at which the curves for N and N + 1
intersect. Here, we could not extract a sensible W∗ from the
data of Fig. 5 being it ill-defined: The curves r(W ) are almost
superposed at large W .

As a last thing, we remark that all the above results apply
to the center of the spectrum, i.e., to generic states of the
model under consideration. However, as stated before, we are
interested in the dynamics starting from a particular state,
i.e., the empty Young diagram. Such state has zero expected
energy, but for the system under consideration there is no
symmetry that forces the spectrum symmetric w.r.t. zero, thus
making the corner an infinite-temperature state. We checked
explicitly, however, that the corner state on average lies at the
center of the spectrum, and that it has a vanishing probability
of being very close to the ground state (or the most excited
state).

VI. DYNAMICS

In the previous section, we have looked at spectral indi-
cators of ergodicity, and the emerging picture is that there is
no bona fide MBL phase in the thermodynamic limit for the
model under consideration. The absence of a truly localized
phase does not immediately imply that, even in the thermody-
namic limit, the dynamics of the model should be the same of
a standard, ergodic and diffusive system [22–24]. We will now
show, in fact, that the 2d quantum Ising model induces on the
“holographic” chain a peculiar type of dynamics. We will re-
late the properties on the chain to the ones in 2d: In particular,
the speed of the erosion of the corner will be mapped to the
particle current on the chain in Sec. VI A. The entanglement
entropy arising from a bipartition of the 1d chain, instead, will
correspond again to the entanglement entropy of a bipartition
of the 2d model, that we will describe in Sec. VI B. Finally, in
Sec. VI C we present the numerical results both for transport
and entanglement growth.

A. Transport on the chain

As a first step we find, in the ψx picture, the number of
blocks a Young diagram is composed of. This is done by
counting every fermion at distance x to the left from the
domain wall, and every hole at distance x to the right, each
weighted with the distance from the origin:

N =
∑
x>0

x(1 − nx ) +
∑
x�0

|x| nx, (22)

where nx = ψ†
x ψx is the fermion number at site x. Taking into

account that the configurations are definitively nx ≡ 1 as x →
+∞, and nx ≡ −1 as x → −∞, the sum converges. Then, let
us take a derivative w.r.t. time in Eq. (22):

Ṅ (t ) = −
∑

x

x ṅx(t ). (23)

Using the fermion number conservation ṅx(t ) + ∂xJ (x, t ) = 0,
where ∂x is the discrete space derivative, we can rewrite the
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total block number (after an integration by parts) as

N (t ) = −
∫ t

0
dt ′ ∑

x

J (x, t ′). (24)

This should be intended as an operator identity.
In the case of the clean crystal with hi ≡ 0, it can be shown

that, in the limit |x|, t → ∞ with |x/gt | held finite [76,77], it
holds

〈nx(t )〉 � 1

2
+

{
1
π

arcsin
(

x
2|g|t

)
if |x| < 2|g|t,

1
2 sgn(x) if |x| > 2|g|t .

(25)

Here, we are using the shorthand notation 〈A〉 := 〈∅|A|∅〉 for
the averages starting from the empty Young diagram initial
state. Using this result, in the continuum limit

〈Ṅ (t )〉 � 2g2t, (26)

and it follows

〈N (t )〉 � (gt )2. (27)

This power-law scaling can be traced back to the fact that for
the ballistic propagation of free fermions

〈J (x, t )〉 �
{|g|/2 if |x| < 2|g|t,

0 if |x| > 2|g|t, (28)

so

〈N (t )〉 � 2g2
∫ t

0
dt ′ t ′ = (gt )2. (29)

Now consider, instead, the case of diffusive motion of the
excitations in the fermionic chain. One has J = −D∂xnx for a
diffusivity coefficient D, so∫

dx 〈J (x, t )〉 = −D〈n+∞(t )〉 + D〈n−∞(t )〉 = −D (30)

and

〈N (t )〉 � Dt . (31)

In a more general setting, the exponent of the growth of
〈N (t )〉 in the Young blocks is related to the nature of transport
for the excitations of the ψ chain (x(t ) is the semiclassical
trajectory of the excitation):

〈N (t )〉 ∼ t2β ←→ x ∼ tβ. (32)

As just shown above, in the ballistic case β = 1 and in the
diffusive case β = 1/2. In Refs. [23,110,111] it is discussed
at length how the exponent β dictates the decay of the cor-
relation functions of the current, of the number n, and the
nonequilibrium steady state current Jness in a driven setup:

〈N (t )〉 x2 〈J (0, t )J (0, 0)〉 〈nx(t )nx(0)〉 Jness

t2β t2β t−2+2β t−β L1− 1
β

The extreme case in which β → 0 is expected when enter-
ing a MBL phase: β(W ) ∼ (Wc − W )α , although the critical
exponent α is currently unknown. In particular, for MBL
systems it is possible to show that N (t ) saturate to a constant

in the long-time limit [27–29]. As we will show numerically
in Sec. VI C, for the model under consideration β � 0, but
the absence of true MBL will manifest in the slow growth
〈N (t )〉 ∼ ln(|g|t ). This implies that the total current decays as
∼1/t , which is indeed an extremely slow decay. We will com-
ment in Sec. VII B how these features cannot be understood
on the basis of simple semiclassical pictures, and instead are
due to the quantum nature of the problem.

B. Entanglement growth

Let us turn now to entanglement spreading. One of the
most direct ways of quantifying entanglement growth is to
bipartite the system, and consider the entanglement entropy
SE relative to the bipartition. For the setting under consid-
eration, the most natural bipartition is the one that cuts the
fermion chain in half through the origin: On the 2d lattice, it
corresponds to a cut through the vertex of the corner, namely
its bisectrix.

In the clean case (W = 0), being the fermions free it is
possible to compute exactly the entanglement growth. The
computation was originally carried out in Ref. [112] (see
also Ref. [77]), and it briefly goes as follows. By definition,
SE = −Tr[ρA ln ρA], ρA being the reduced density matrix of
subsystem A. Both S and ρA descend from the correlation ma-
trix Cxy = 〈ψ†

x ψy〉, x, y ∈ A. Therefore, SE can be computed
from the eigenvalues λi of C as

S = −
∞∑

i=0

[λi ln λi + (1 − λi) ln(1 − λi )]. (33)

The computation of the eigenvalues turns out to be very
complicated in general, and is usually performed numerically.
In the continuum limit, however, the situation is simpler as
the correlation matrix reduces to the Sine kernel [77], and
a light cone structure emerges, so that C has nonvanishing
elements only inside the light cone. Using such simplifica-
tions, one obtains λk = 1/(eεk + 1), with εk (t ) = ±π2(k +
1/2)/ ln |2|g| sin(ht )/h|.

Turning on the disorder (W �= 0), the picture changes
significantly. First, as anticipated above the number of par-
ticles that hop across the bipartition is severely reduced from
〈N (t )〉 ∼ (gt )2 to 〈N (t )〉 ∼ ln(|g|t ); therefore, one should ex-
pect SE (t ) to grow at most like ∼ ln(|g|t ) as well. Below, we
will show the exact growth of SE obtained numerically, and
comment it in detail.

C. Numerical results

Here we summarize the results of a numerical investi-
gation for the dynamics generated by the Hamiltonian (2).
Time evolution was performed through full (for N � 26) and
sparse (for N � 28) matrix exponentiation with SciPy, hav-
ing constructed the Hamiltonian matrix incorporating both the
hopping and the on-site disorder as in Sec. V. The code is
made available on GitHub [106].

We start by showing in Fig. 7 the time evolution for the
average number of fermions 〈N (t )〉 that have hopped. Equiv-
alently, 〈N (t )〉 is the average number of squares the state is
composed of, in the language of Young diagrams. One can
see that the growth is ballistic—i.e., 〈N (t )〉 ∼ (gt )2—both at
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FIG. 7. Time evolution generated by the Hamiltonian (2), starting from the corner state. The average number 〈N (t )〉 of fermions hops is
plotted for various system sizes, and for three values of the disorder strength W (here we set g ≡ 1, fixing the energy scale). One can see that
at small disorder [i.e., W = 2, panel (a)] the curves do not behave much differently from the prediction for W = 0, Eq. (27), increasing almost
as g2t2 (dashed line) before saturating. Already at W = 5 [panel (b)], instead, the growth of 〈N (t )〉 has been severely hindered, insomuch that
it is compatible with a logarithm (dotted blue line): 〈N (t )〉 ∼ ηN ln t . Finally, at W = 9 [panel (c)] the logarithmic behavior of 〈N (t )〉 becomes
manifest, as shown also by the inset: The logarithmic derivative keeps decreasing toward 0, indicating that 〈N (t )〉 must be slower than a power
law. All the values of ηN , extracted from fits, are displayed in Fig. 8. All the numerical data are averaged over at least 1600 disorder realizations.

short times for all disorder strengths, and at all times for small
disorder: For this latter statement, see the case of W = 2 (in
units of g) in Fig. 7(a). Then, as the disorder is increased
slightly, the growth of 〈N (t )〉 slows down considerably; it
acquires a logarithmic behavior that lasts for three decades
already at W = 5 [Fig. 7(b)], and for four decades at W = 9
[Fig. 7(c)], for the largest system sizes considered, before
saturating to a finite-system value [113]. The growth of 〈N (t )〉
is more consistent with a logarithm than with a very small
power law; in the inset of Fig. 7(c) we show how the loga-
rithmic derivative d ln〈N (t )〉/d ln t keeps decreasing toward 0
also for the largest times reached—though some fluctuations
are present. Large fluctuations are present also at the level
of 〈N (t )〉: We found the fluctuation of N (t ) to be of the
same order of magnitude of 〈N (t )〉 for the strongest disorders
considered (i.e., W � 8).

The remarkable feature of the results of Fig. 7 is that,
for the same values of the disorder strength W , the spectral
indicators predict the presence of a thermal phase, where it
is natural to expect 〈N (t )〉 ∼ t (i.e., diffusion), or at most
〈N (t )〉 ∼ t2β , β < 1/2 (i.e., subdiffusion). We find, instead,
a severe impediment to transport, that pushes down 〈N (t )〉 to
a logarithm. In Fig. 8 we show the results of fits 〈N (t )〉 =
ηN ln t + cN : We find the scaling ηN (W ) = η0,N e−W/W0 with
W0 � 1.8.

In Fig. 9 we analyze instead the behavior of N (t ) at ear-
lier times. To this end, we define the timescale τ (W ) that
quantifies when the curve 〈N (t )〉 departs from the ballistic
growth g2t2, e.g., when | ln〈N (t )〉 − 2 ln(|g|t )| > ε for some
fixed threshold value ε. From the results of Fig. 7 we expect
that τ (W ) suffers of little finite-size effects. Moreover, it is
natural to expect τ (W ) to be a decreasing function of W , as
for strong disorder, the departure from the ballistic motion is
supposed to occur sooner. Also, one would guess τ (W ) → 0
for W → ∞, i.e., for every finite disorder strength there is a

ballistic regime at small times. Indeed, one can see, in the inset
of Fig. 9, that τ (W ) ∼ W −1.

Let us finally move to the entanglement growth. In Fig. 10
we consider the entanglement entropy, relative to the bipar-
tition along the bisectrix of the corner (and, consequently,
that cuts the fermionic chain at the origin). Several com-
ments are in order. First, despite the ballistic spreading of
particles, at W = 0 the entanglement growth is only loga-
rithmic in time (dashed black line in Fig. 10), because of
integrability. To see this, one can employ the so-called quasi-
particle picture, or the conformal field theory description in

FIG. 8. For both the average number 〈N (t )〉 and the entangle-
ment entropy SE (t ) we performed logarithmic fits η ln t + c. Here,
we display the dependence of the coefficients ηN and ηE on the disor-
der strength W . We find both of them compatible with an exponential
decay η = η0e−W/W0 , with W0 � 1.8 (the dashed lines show the fits).
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FIG. 9. Average number of fermion hops 〈N (t )〉, for various dis-
order strengths, with system size N = 30. The log-log scale makes
manifest the behavior 〈N (t )〉 ∼ (gt )2 at small times (g ≡ 1 for nu-
merical purposes), from which 〈N (t )〉 departs at the time τ (W ).
(Inset) Estimates of τ (W ), using a threshold ε = 0.05 (see main text).
The fit entails τ (W ) ∼ W −γ with γ = 1.0.

the continuum [114]: In both cases, the slow growth of en-
tanglement is traced back to excluded volume effects among
the fermions. It should not worry, then, that SE (t ) grows
faster if W > 0, but small: Indeed, a small amount of disor-
der helps the system in thermalizing, and the entanglement
entropy raises linearly in time, essentially because of chaos
propagation [115–117].

Second, in Fig. 8 we show the results of fits SE (t ) =
ηE ln t + cE , as was done for the number growth. We find the
scaling ηE (W ) = η0,E e−W/W0 with the same W0 � 1.8. Such
agreement does not come unexpected: If transport is blocked,

and no long-range dephasing interactions are present (con-
trary to the l-bit model of MBL [27–29]), then entanglement
cannot spread beyond the melted part of the corner. Indeed,
for each particle that hops across the origin, the entangle-
ment entropy between the left and right halves of the chain
increases fast, well before the next hop, because of nonlocal
interactions entailed by the disordered potential. But such
nonlocal interactions act only on the melted part of the corner,
and thus particle spreading functions as a bottleneck for the
entanglement growth.

VII. DISCUSSION

In this section, we take the chance to describe the limits of
validity of the approximations used (Sec. VII A), and to draw
a comparison with classical corner growth models, that have
been extensively studied in the literature (Sec. VII B). Finally
we present some concluding considerations in Sec. VII C.

A. Limits of validity of the approximations

So far, we have been discussing the dynamics of melting
of a 2d disordered quantum crystal, by modeling it through
the strong-coupling limit of the 2d quantum Ising model, in
presence of a random longitudinal field. However, the cou-
pling J was effectively taken to be infinite or, equivalently,
the O(1/J ) corrections were considered always negligible.
However, in Refs. [76,77] the O(1/J ) corrections were studied
in depth, showing that they lead to interesting phenomena as
Stark MBL. The rationale behind the choice of neglecting
the corrections in this work was the following: While in the
clean system (W = 0) the introduction of interactions leads to
integrability breaking, for W �= 0 it would lead to just minor
quantitative modifications in the dynamical behavior. While
we refer to Refs. [76,77] for the precise form of such O(1/J )

FIG. 10. Time evolution of the half-system entanglement entropy SE , for various system sizes, and three different disorder strengths. At
small disorder [W = 2, panel (a)], the growth of entanglement is fast, probably a power law (even if larger system sizes are needed to extract a
reliable scaling). Already at moderate disorder [W = 5, panel (b)], however, the growth of entanglement slows down to a logarithm (the dotted
blue line serves as a guide to the eye), being impeded by a logarithmic transport (as described in the main text). When disorder is ramped up
[W = 9, panel (c)], the logarithmic behavior SE (t ) ∼ ηE ln t remains, but with a smaller coefficient ηE in front. The coefficients ηE extracted
from fits are reported in Fig. 8. The dashed lines represent the entanglement growth in absence of disorder, i.e., W = 0, which is logarithmic
because of integrability. All the numerical data are averaged over at least 1600 disorder realizations.
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corrections, here we just remark that they are (parametrically
small) four-body interactions on the fermionic chain: There-
fore, they become negligible in comparison with the strong,
nonlocal interactions arising from the disorder. In particu-
lar, the sum appearing in Eq. (3) [and therefore in Eq. (6)]
makes the disordered interactions of order

√
NW , when acting

on Young diagrams of size N . Consequently, they become
stronger as time passes by, and the Hilbert space of larger
Young diagrams is explored, making the O(1/J ) corrections
even less relevant.

Of course, we expect the picture presented to break down
at small values of J: There, also the mapping to fermions
ceases to be valid, since it becomes possible for any 2d spin
to flip with nonvanishing probability, and the interface is no
more well defined. How the dynamics changes in such limit is
however a very interesting question, that we hope may be the
object of future studies.

B. Comparison with classical corner growth models

The slow growth of the average number of squares in the
Young diagrams 〈N (t )〉, observed in the quantum dynamics
(Sec. VI C), turns out to be anomalous also from the per-
spective of similar, classical models. Indeed, using the same
mapping to a chain detailed in Sec. III B, one can describe a
classical corner growth model in terms of simple exclusion
processes on the line [118,119]. In the absence of disorder,
it is natural to associate the quantum process to the totally
antisymmetric simple exclusion process (TASEP), that turns
out to have ballistic dynamics [120], but a different limiting
shape for the eroded part [77]. When disorder is added in-
stead, one might hope to reproduce the quantum dynamics
with an exclusion process in which particles are subject to
a strongly inhomogeneous waiting time before moving, ac-
cording to some probability distribution. It turns out that, even
when a fat-tailed probability distribution for the waiting times
is chosen (this also makes the process non-Markovian), the
growth of the eroded corner is power law [121,122], never
attaining a logarithmic behavior as the one observed in the
quantum regime. In particular, a logarithmic growth can be
obtained only if the waiting-time distribution behaves like
p(τ ) ∼ τ−1 for large τ , i.e., it is nonnormalizable. This is
an indication of the purely quantum nature of the problem

we have discussed, that cannot be reproduced by classical
means.

Another interesting question is about the comparison of
the average limiting shapes, between classical and quantum
melting processes. The clean case was already studied in
Refs. [76,77], to which we refer for further details. The dis-
ordered case is more intriguing, and difficult to analyze: We
plan to discuss this issue in a future work.

C. Final considerations

In this work we addressed the spectral and dynamical prop-
erties of a disordered two-dimensional quantum crystal. In
particular, we studied the quantum Ising model on a square
lattice, and studied the melting of an infinite, corner-shaped
interface. While the same problem turned out to display ergod-
icity breaking in absence of disorder [76,77], in this work we
presented both analytical and numerical evidence supporting
the absence of a many-body localized phase when disorder
is added. We established, through an analytical argument
based on the forward approximation, and numerical results
for spectral properties, that the model is ergodic for any finite
W in the thermodynamic limit. However, we also showed
that the dynamics turns out to be extremely slow: We found,
through an extensive numerical analysis, that the growth of
the average number of melted squares, 〈N (t )〉, passes from
ballistic to logarithmic in time already for small disorder, and
we characterized the crossover between these two regimes
with various indicators. Also the entanglement entropy SE (t )
shows a similar behavior, that traces back to the growth of
〈N (t )〉.

While the results showed in this work support the common
belief that MBL does not survive in dimensions higher than
one, we presented strong evidence for the onset of slow dy-
namics, namely slower than subdiffusive. Surprisingly, such
behavior is already present at small disorder strength, when
the system, at finite size, is fully ergodic according to the spec-
tral indicators. An explanation of this slow, logarithmic dy-
namics in terms of the phenomenology of avalanches [54–56]
would be desirable, but we did not address it in this first work.
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Taylor, and M. Žnidarič, Europhys. Lett. 128, 67003
(2020).

[44] D. Abanin, J. Bardarson, G. De Tomasi, S. Gopalakrishnan,
V. Khemani, S. Parameswaran, F. Pollmann, A. Potter,
M. Serbyn, and R. Vasseur, Ann. Phys. 427, 168415
(2021).

[45] P. J. D. Crowley and A. Chandran, SciPost Phys. 12, 201
(2022).

[46] A. Morningstar, L. Colmenarez, V. Khemani, D. J.
Luitz, and D. A. Huse, Phys. Rev. B 105, 174205
(2022).

[47] P. Sierant and J. Zakrzewski, Phys. Rev. B 105, 224203
(2022).

[48] A. Chandran, A. Pal, C. R. Laumann, and A. Scardicchio,
Phys. Rev. B 94, 144203 (2016).

[49] R. M. Nandkishore and S. L. Sondhi, Phys. Rev. X 7, 041021
(2017).

[50] S. Gopalakrishnan and D. A. Huse, Phys. Rev. B 99, 134305
(2019).

[51] S. Gopalakrishnan and S. Parameswaran, Phys. Rep. 862, 1
(2020).

[52] C. Artiaco, F. Balducci, and A. Scardicchio, Phys. Rev. B 103,
214205 (2021).

[53] T. B. Wahl, A. Pal, and S. H. Simon, Nat. Phys. 15, 164
(2019).

[54] W. De Roeck and J. Z. Imbrie, Philos. Trans. R. Soc. A 375,
20160422 (2017).

[55] W. De Roeck and F. Huveneers, Phys. Rev. B 95, 155129
(2017).

[56] T. Thiery, F. Huveneers, M. Müller, and W. De Roeck, Phys.
Rev. Lett. 121, 140601 (2018).

[57] H. Théveniaut, Z. Lan, G. Meyer, and F. Alet, Phys. Rev. Res.
2, 033154 (2020).

[58] F. Pietracaprina and F. Alet, SciPost Phys. 10, 044 (2021).
[59] U. Agrawal, R. Vasseur, and S. Gopalakrishnan, Phys. Rev. B

106, 094206 (2022).
[60] A. Štrkalj, E. V. H. Doggen, and C. Castelnovo, Phys. Rev. B

106, 184209 (2022).
[61] P. J. D. Crowley and A. Chandran, Phys. Rev. B 106, 184208

(2022).
[62] A. Bray, Adv. Phys. 43, 357 (1994).
[63] A. Onuki, Phase Transition Dynamics (Cambridge University

Press, Cambridge, UK, 2002).
[64] R. Cerf and R. Kenyon, Commun. Math. Phys. 222, 147

(2001).
[65] R. Kenyon, A. Okounkov, and S. Sheffield, Ann. Math. 163,

1019 (2006).
[66] A. Okounkov, Intl. Math. Res. Not. 2000, 1043 (2000).
[67] A. Okounkov, Sel. Math. 7, 57 (2001).
[68] A. Okounkov, arXiv:math-ph/0309015 (2003).
[69] A. Okounkov and N. Reshetikhin, arXiv:math/0107056

(2003).
[70] P. L. Ferrari and H. Spohn, J. Stat. Phys. 113, 1 (2003).
[71] H. Spohn, Physica A 369, 71 (2006).
[72] S. Torquato, A. Scardicchio, and C. E. Zachary, J. Stat. Mech.:

Theory Exp. (2008) P11019.
[73] A. Scardicchio, C. E. Zachary, and S. Torquato, Phys. Rev. E

79, 041108 (2009).

024201-13

https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevLett.118.266601
https://doi.org/10.1103/PhysRevLett.120.030601
https://doi.org/10.1103/PhysRevX.10.021051
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1073/pnas.1819316116
https://doi.org/10.1103/PhysRevLett.122.040606
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1002/andp.201600350
https://doi.org/10.1103/PhysRevB.103.184202
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1038/nphys3783
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1103/PhysRevLett.117.027201
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevB.102.064207
https://doi.org/10.1209/0295-5075/128/67003
https://doi.org/10.1016/j.aop.2021.168415
https://doi.org/10.21468/SciPostPhys.12.6.201
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1103/PhysRevB.94.144203
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1103/PhysRevB.99.134305
https://doi.org/10.1016/j.physrep.2020.03.003
https://doi.org/10.1103/PhysRevB.103.214205
https://doi.org/10.1038/s41567-018-0339-x
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevLett.121.140601
https://doi.org/10.1103/PhysRevResearch.2.033154
https://doi.org/10.21468/SciPostPhys.10.2.044
https://doi.org/10.1103/PhysRevB.106.094206
https://doi.org/10.1103/PhysRevB.106.184209
https://doi.org/10.1103/PhysRevB.106.184208
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1007/s002200100505
https://doi.org/10.4007/annals.2006.163.1019
https://doi.org/10.1155/S1073792800000532
https://doi.org/10.1007/PL00001398
http://arxiv.org/abs/arXiv:math-ph/0309015
http://arxiv.org/abs/arXiv:math/0107056
https://doi.org/10.1023/A:1025703819894
https://doi.org/10.1016/j.physa.2006.04.006
https://doi.org/10.1088/1742-5468/2008/11/P11019
https://doi.org/10.1103/PhysRevE.79.041108


BALDUCCI, SCARDICCHIO, AND VANONI PHYSICAL REVIEW B 107, 024201 (2023)

[74] A. Okounkov, N. Reshetikhin, and C. Vafa, in The Unity of
Mathematics (Springer, Berlin, 2006), pp. 597–618.

[75] H. Ooguri and M. Yamazaki, Commun. Math. Phys. 292, 179
(2009).

[76] F. Balducci, A. Gambassi, A. Lerose, A. Scardicchio, and C.
Vanoni, Phys. Rev. Lett. 129, 120601 (2022).

[77] F. Balducci, A. Gambassi, A. Lerose, A. Scardicchio, and C.
Vanoni, arXiv:2209.08992 (2022).

[78] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[79] P. Fendley, K. Sengupta, and S. Sachdev, Phys. Rev. B 69,

075106 (2004).
[80] I. Lesanovsky, Phys. Rev. Lett. 108, 105301 (2012).
[81] F. M. Surace, M. Votto, E. G. Lazo, A. Silva, M. Dalmonte,

and G. Giudici, Phys. Rev. B 103, 104302 (2021).
[82] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D.

Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901
(2001).

[83] P. Sierant, E. G. Lazo, M. Dalmonte, A. Scardicchio, and J.
Zakrzewski, Phys. Rev. Lett. 127, 126603 (2021).

[84] A. Yoshinaga, H. Hakoshima, T. Imoto, Y. Matsuzaki, and R.
Hamazaki, Phys. Rev. Lett. 129, 090602 (2022).

[85] O. Hart and R. Nandkishore, Phys. Rev. B 106, 214426 (2022).
[86] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,

H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Nature (London) 551, 579 (2017).

[87] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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