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Finite-dimensional signature of spinodal instability in an athermal hysteretic transition
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We study the off-equilibrium critical phenomena across a hysteretic first-order transition in disordered
athermal systems. The study focuses on the zero temperature random field Ising model (ZTRFIM) above the
critical disorder for spatial dimensions d = 2, 3, and 4. We use Monte Carlo simulations to show that disorder
suppresses critical slowing down in phase ordering time for finite-dimensional systems. The dynamic hysteresis
scaling, the measure of explicit finite-time scaling, is used to subsequently quantify the critical slowing down.
The scaling exponents in all dimensions increase with disorder strength and finally reach a stable value where
the transformation is no longer critical. The associated critical behavior in the mean-field limit is very different,
where the exponent values for various disorders in all dimensions are similar. The non-mean-field exponents
asymptotically approach the mean-field value (ϒ ≈ 2/3) with increase in dimensions. The results suggest that
the critical features in the hysteretic metastable phase are controlled by inherent mean-field spinodal instability
that gets blurred by disorder in low-dimension athermal systems.
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I. INTRODUCTION

The critical-like features in abrupt hysteretic transition
have recently been observed in various materials including
transition metal oxide [1–4], metal alloys [5,6], martensitic
transformation [7–9], functional materials [10], amorphous
solids [11–13], microbiology, and social, economic, climate,
and other complex systems [14,15]. Such “surprising” [7]
behavior is not normal in terms of typical first-order phase
transition formalism. Some of such transitions have been ex-
plained in terms of classical spinodal instability, a limiting
point of metastability (Fig. 1), where the system behaves like
a mean field [3,4,16,17]. The stability of the metastable phase
depends on the competition of disorder, thermal fluctuation,
and activation barriers separating the two phases [10]. Any
fluctuations, linked with disorder or thermal, in the abrupt
transition initiate nucleations before the extreme limit of
metastability [18]. In the long-range interacting system, ther-
mal fluctuations are suppressed [16,19], and the metastable
phase of the system approaches the spinodal point after mul-
tiple cycling of the materials (training) across the transition
[3,20]. The divergence of correlation length and relaxation
time scale (spinodal slowing down) signals the instability
in experiments [2,4,6]. The mean-field spinodal universal-
ity in disorder material might be explained in terms of
training-induced self-organized criticality [21,22]. However,
the critical exponents often vary widely from mean-field pre-
dictions [23] [see Table II] and therefore remains unexplained.
In general, the training cannot tune the quenched disorders
such as domain walls, friction, defects due to an underly-
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ing heterogeneous substrate, pinning defects, and kinetically
arrested heterogeneity. Therefore, the correlation length of
the system would be bounded by the local disorder points,
and heterogeneous nucleation sites start to emerge before
approaching the spinodal [24–28]. As a result, a suppressed
spinodal slowing down associated with a mild finite-size ef-
fect is expected to be observed [6,13,29] that may explain
such non-mean-field critical exponents. In this article, we in-
vestigate spinodal instability using a random field Ising model
(RFIM) in the presence of quench disorder and under athermal
conditions. The athermal (zero temperature) model mimics
the fluctuationless kinetics associated with long-ranged poten-
tial, whereas the short-ranged Ising model only deals with the
interplay of disorder and metastable barrier.

In RFIM, the critical signature in hysteretic transition has
generally been observed in two distinct aspects: steady-state
(slow-driven or quasistatic) and off-equilibrium (highly-
driven). The steady-state studies are limited to the avalanche
distribution and can explain the disorder-induced critical tran-
sition near the critical disorder [30,31]. Away from the critical
point, the power-law behavior of avalanche distribution is not
adequately understood [31]. One study attempts to explain
such phenomena at a low disorder regime in the context
of spinodal instability [13]. However, most of the hysteretic
transitions in materials are not single-step processes; instead
they show a broad transition accompanied by return point
memory indicating the disorder in the system is greater than
the critical disorder [7,30,32]. Therefore, further investiga-
tions are required above the critical point. On the other hand,
the off-equilibrium aspect of critical phenomena such as dy-
namic hysteresis scaling and phase ordering dynamics are
comparatively easy to measure in experiments. Not surpris-
ingly, numerous assessments have been reported for different
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FIG. 1. A schematic diagram for the spinodal transitions. The
order parameter φ and corresponding free-energy diagrams ( f − φ

curve) are exhibited as a function of increasing and decreasing fields.
The f − φ curves in the middle represent the binodal points where
the two minima are equal, and red f − φ diagrams are the two
spinodals points (limit of metastability) where the double-well free
energy switches to a single well, which is a conventional man-
ifestation of continuous transitions. The system exhibits spinodal
transition when the thermal fluctuations are insignificant to cross the
free energy activation barrier between binodal and spinodal points.

materials [3,6,33–50]. In theory, several attempts have also
been made in diversified models, but the results are often
inconsistent with one another (except in the mean-field limit).
Such studies are designed to describe specific experimental re-
sult [51–58]. Therefore, the origin of this general phenomenon
is not properly explored. In this work, we systematically
study the off-equilibrium critical phenomena from a general
perspective that describes a large class of the experimentally
reported dynamical critical exponents in various systems.

II. THE MODEL AND SIMULATION

We consider a d-dimensional (d = 2, 3, 4) random field
Ising model in which every spin interacts with its nearest
neighbors. A random field added to an external field acts as
a disorder of the system. The Hamiltonian of the model read
as

H = −J
∑

〈i, j〉
sis j −

∑

i

[H (t ) + hi]si, (1)

where J is the nearest-neighbor coupling strength of Ising
spins si, si = ±1, placed on the d-dimensional hypercubic
lattice of system of linear size L. The spin interacts ferro-
magnetically with strength J = 1 under the periodic boundary
condition. A time-dependent spatially uniform external field
H (t ), and a time-independent but site-dependent random field
hi, is applied. The random field hi is taken from a Gaussian
distribution V (h):

V (h) = 1√
2πσ 2

e−h2/(2σ 2 ), (2)

where the width of the distribution represents the disorder
strength of a single realization. We present all the physical
quantities after averaging over a sufficient number of in-
dependent disorder realizations (∼20 − 500). Since we are
interested in the athermal system, the thermal fluctuation in
the model can be neglected by performing zero-temperature
simulations. Therefore the spin-flip is completely determined
by the sign change of the local field at each site [30],

Ei = J
∑

j

s j + hi + H. (3)

The zero temperature random field Ising model (ZTRFIM)
shows an external field-dependent hysteretic magnetic tran-
sition (or switching) for a large range of disorder values σ .
The transition could be a single- or multiple-step (avalanche)
process depending upon the strength of the disorder. There is
a critical disorder σ = σc above which single-step transition
never happens. At σ = σc, the avalanche of all sizes exists that
follows a long (several decades) power-law size distribution
connected to a disorder-induced continuous transition (we will
say this is classical-critical point to avoid ambiguity) [30,31].
Here, we focus on critical-like field-induced transitions for
σ � σc.

A. Phase ordering dynamics

We perform the phase ordering dynamics of the ZTRFIM
on a d-dimensional lattice. We start with a system of fully po-
larized spins and suddenly tune the magnetic field close to the
coercive field, the field at which the magnetization reverses.
We study the time required to reach the steady state after the
quench. During this interval, the system goes through succes-
sive sets of spin-flips and finally arrives at a steady state. Such
phase ordering (or continuous ordering) is generally measured
through quench-and-hold experiments [3,6,59]. We extract the
relaxation time constant from the temporal evolution of the net
magnetization. The details algorithm is presented below.

(1) The spin at every site is either up or down (si = 1 or
si = −1) depending upon the sign of the initial field H0.

(2) We quench the external magnetic field to H = Hf at
time t = 0 and check if the local field, defined in Eq. (3),
changes sign on any site.

(3) If there is a sign change of the local field for at least
one site, we flip the spins on those sites in the next time step
t = t + 1.

(4) We check all the sites and repeat step 3 until no site
changes the sign of the local field, which indicates the system
has reached a steady state.

(5) The time required to reach this is considered as the
phase ordering times (or relaxation time) τ for that particular
quenched field Hf .

(6) We continue this process (steps 1-5) for different
quench fields H = Hf to get phase ordering times through-
out the transition regions both for increasing and decreasing
fields.

Figures 2(a1) and 2(a2) graphically illustrate the phase
ordering simulations where arrows indicate the direction of
the single-step field quenched from the all-up or all-down
spin configurations. After the quench, the system equilibrates
through successive sets of spin-flips and finally reaches the
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FIG. 2. The phase ordering simulations demonstrate for specified
quenched external fields (⊗) after decreasing (a1) and increasing (a2)
field-quenched from the complete spin-polarized states. (b1), (b2) the
corresponding time evolution of magnetization φ (order parameter)
after quenching. The magnetizations no longer evolve after reaching
the steady-state values. The corresponding time step required to
equilibrate the system (relaxation time) for given quenched fields are
pointed through (⊗) in Figs. 4(a) and 4(b). The data displayed in this
figure are calculated for system size 3003 under periodic boundary
conditions with disorder strength σ = 2.50.

steady-state value when it can no longer evolve due to the
absence of thermal fluctuations. The time evolution of magne-
tization φ = 1

Ld

∑Ld

i=1 si for decreasing and increasing quench
are represented in Figs. 2(b1) and 2(b2). The total number of
sets of spin-flips required to reach a steady-state configura-
tion from the fully polarized state, termed as relaxation time
constant, is plotted in Figs. 4(a) and 4(b) as a function of
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FIG. 3. (a) Magnetization φ as a function of external field H
for different ramp rates are computed using ZTRFIM simulations of
3003 system for disorder strength σ = 2.50. The quasistatic hystere-
sis curve is designated by (→ 0). (b) The quasistatic hysteresis curve
for different disorder strengths.

FIG. 4. Phase ordering relaxation time versus waiting fields for
decreasing (a) and increasing (b) field-quenched. (c) The recorded
peak-points of relaxation time τ as a function of disorder strength
(σ ) for 3003 system. (d) The value at the maxima of the time-constant
peaks τP corresponds to the classical-critical point of ZTRFIM and
follows a finite size scaling: (τP )max ∝ Lη, the exponent η = 1.68 ±
0.02 in 3d . Inset shows the variation of critical disorder σc with
system size L.

quenched fields. The extraction procedure of relaxation time
is detailed in the above algorithm (Sec. II A).

B. Dynamic hysteresis

The dynamic hysteresis calculations involve a linear ramp-
ing of the field H (t ) = H0 + Rt where R is the rate of
increasing or decreasing of the magnetic field across the
transitions starting from an initial field H0 → ±∞. The
magnetization of each step is calculated and presented as a
function of the external field. The algorithm to compute the
magnetization at each stage of increasing field is presented
below.

(1) We create a fully spin-polarized state by setting every
site to si = −1 for the initial magnetic field H0 → −∞.

(2) We increase the external field by R in every time step,
i.e., H (t ) = H (t − 1) + R.

(3) We recheck all the sites if the local field in Eq. (3)
changes the sign on any of the sites.

(4) We flip the spins of the sites where the local field Ei

changes sign and then calculate the net magnetization corre-
sponding to that external field.

(5) Then, we proceed to the next time step by increasing
the field by R and repeating steps (2-5). We keep increasing
the field until all the spins are flipped for large value of H ,
i.e., si = 1 for all i.

The algorithm is not practical for the quasistatic simu-
lations of ZTRFIM. Consequently, quasistatic loop, which
corresponds to R → 0 in our notation, is evaluated differently.
We allow the system to equilibrate at each external field be-
fore increasing the field strength following Refs. [30,31]. In
quasistatic field change, the system’s dynamic is unchanged;
therefore, this process is often called adiabatic [30,60]. How-
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ever, we cross-check that the linear ramping protocol with a
prolonged ramp rate is in good agreement with the quasistatic
protocol.

Figure 3(a) shows hysteresis curves different ramping rate
R. The area of the hysteresis curve increases systematically
with the rate of change of the external field. The quasistatic
hysteresis curve has also been extracted for different disorder
strengths σ [Fig. 3(b)]. As the disorder strength increases, the
hysteresis width decreases, accompanied by a broader change
of magnetization during switching.

C. Mean-field dynamic hysteresis

We also performed a dynamic hysteresis simulation in the
mean-field limit for the same model where the local field is
controlled by the average magnetization. The local field is
now defined as

Ei = Jzφ + hi + H, (4)

where φ = 1
Ld

∑Ld

i=1 si is the average magnetization of the
system, and z is the number of nearest neighbors. Therefore,
we carry out the mean-field dynamic hysteresis simulation by
following the same algorithm discussed above using Eq. (4)
instead of Eq. (3). The average magnetization of the spin-flip
local field makes the system infinite range, which is equivalent
to the mean-field approximation [61].

III. RESULTS

The simulated results introduce two separate phenomena
emerging in phase ordering and dynamic hysteresis measure-
ments. The phase ordering dynamic captures the time scale of
the relaxation and has been used to extract the critical disorder
for a specific system, as discussed in the following section.
We use this critical disorder as a boundary for the dynamic
hysteresis measurements.

A. Phase ordering time

The phase ordering time (relaxation time) of the quench-
and-hold experiment is the total Monte Carlo time steps (total
number of sets of spin-flips) to equilibrate the system onto the
steady-state configuration. Figures 4(a) and 4(b) show that the
phase ordering time increases at the coercive field. The time
constant peak at the field driven hysteretic transition points is
the direct evidence of critical slowing down across the abrupt
transformation [62]. Such slowing down in first-order transi-
tion can only occur when the system enters into the analytic
regions of spinodal singularity [4,16–18]. This slowing down
can also be observed in dynamic hysteresis measurements
(see Sec. III B) in terms of the finite-time effect across the
bifurcation points of hysteretic transition [63].

The time constant in the coercive field (the value at maxima
of the phase ordering time) is plotted in Fig. 4(c) as a func-
tion of disorder strength σ . There is a sharp increase of the
time-constant peak τP around σ = 2.20, which corresponds
to the classical-critical point of ZTRFIM [13,30,31]. At this
point, the system shows a field-driven hysteretic first-order
phase transition accompanied by a disorder-induced contin-
uous transition. The extraction of the critical disorder has
been a substantial task for the last three decades and it is still

TABLE I. The critical disorder computed using phase ordering
method for different dimensions. The value is compared with the
reported data calculated using existing methods [31,66,67].

Dimension Phase ordering σc Reported σc

2d 0.69 0.64 [67]
0.54 [71]

3d 2.20 2.16 [31]
4d 4.12 4.18 [66]
6d 7.75 7.78 [66]

an ongoing exercise for different dimensions [64–67] and in
infinite system size limits [68,69]. The rise in time-constant
peak at the classical-critical point demonstrates that the phase-
ordering dynamic is one such inventive technique for the
extraction of the critical disorder. The values are in good
qualitative agreement with the reported results (see Table I) in
different dimensions [30,31,66,67]. A little higher value of σc

has been observed as a reason for limited system-size calcula-
tion. Although we are not concerned about system size as the
time constant peak follows a finite-size scaling; for example,
the scaling exponent η = 1.68 ± 0.02 in 3d [Fig. 4(d)]. In the
experiment, the avalanches are tricky to detect as the signal
is often too low and smears outs in the bulk materials and in
a higher driving rate [27,70]. In that case, the phase ordering
dynamics can be applied easily [3,6,59].

The finite-size effect of the time constant peak at the co-
ercive fields behaves differently below and above the critical
point (Fig. 5). Below critical disorder, avalanche sizes are
comparable to the system size; hence usual power-law scaling
is expected [Fig. 5(a)] [60]. In contrast, the time-constant peak
expands slowly with system size [Figs. 5(b), 5(c), and 5(d)]
for the high disorder systems suggesting mild critical slowing
down due to the suppression of deep-rooted spinodal insta-
bility by quenched disorder [6,29]. In other words, diverging

FIG. 5. The time-constant peaks τP below the classical-critical
point follow power-law finite-size effect (a), whereas it expresses a
mild size effect above the critical point for d = 3, 2, and 4 (b), (c),
and (d). The solid and hollow symbols correspond to the increasing
and decreasing of fields, and a little mismatch between them depends
on how close the field reaches the transition points.
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correlation length (and susceptibility) becomes finite as it is
bounded by the local fluctuations in disorder density in low
dimension [25]. Therefore, the spiky but nondiverging time
constant peak at the coercive fields in Figs. 4(a) and 4(b) is
the effect of quenched disorder on the mean-field spinodal
slowing down [6,13,27,29]. The local fluctuations connected
to the random disorder trigger the heterogeneous nucleation
before reaching the spinodal point [24–28]. Hence, such sup-
pressed spinodal slowing down phenomena can be observed
in low-dimensional systems.

B. Dynamic hysteresis scaling

We quantify the effect of disorder (for σ > σc) on the spin-
odal slowing down by determining the delay in the switching
with the driving rate of the external field (i.e., finite-time
measurements). During rapid measurements, the delay in the
switching at the bifurcation point of hysteresis leads to a shift
in the coercive field [Fig. 3(a)]. The shift in the coercive
field in any finite-time measurements from the steady-state
coercive field associated with infinite-time measurement (or
change in the hysteresis loop area from the steady-state loop
area) follows a dynamic scaling with the rate of change of the
external field (R) [3,6,33–49,51–58]:

�Hc(R) = |Hc(R) − Hc(0)| ∝ Rϒ, (5)

where Hc(R) is the coercive field for R, the rate of change of
field, and Hc(0) is the steady-state coercive field. The dynamic
hysteresis scaling exponent ϒ is essentially a “finite-time
scaling” analogous to finite-size scaling.

In thermodynamic equilibrium, the correlation length di-
verges at the critical point of a continuous phase transition.
Therefore, the system becomes scale-free and shows power-
law scaling of various physical quantities. Due to the finite
volume (V = Ld ) of the system, the correlation length cannot
diverge rather bounded by the system size L [72,73]. That
eventually restricts the divergence of those physical quan-
tities before the actual critical point (βc(V ) < βc(∞); βc =
1/(kBTc)). For example, the specific heat peak decreases with
decreasing system size, accompanied by a shift in transition
point followed by a power-law scaling with system size L;
|Tc(∞) − Tc(L)| = L−λ where λ indicate as a shift exponent
[74]. One can draw a similar analogy of the shift in the tran-
sition point in the context of the metastable dynamics where
the system is no longer in equilibrium [3]. At the spinodal
instability, the system shows a critical slowing down due to the
divergence of characteristic time scale. Therefore, one would
expect to observe a similar power-law scaling [Eq. (5) ] of the
shift in transition points with the finite measurement times,
i.e., the inverse of rates of change of driving field (or external
driving parameter) [3,6,54,55,57]. The exponent ϒ , parallel to
the shift exponent when the system size L is replaced by the
rate of change of driving field R, is the quantitative measure of
spinodal slowing down. In the mean-field calculation, the ex-
ponent ϒ is always 2/3, which is the argument for the genuine
spinodal transition (as it is a mean-field concept) [3,54,55,57].
That can only be observed in long-range clean materials be-
longing to mean-field universality or in long-range disorder
materials, provided disorder can be reorganized under train-
ing. However, in practice, quenched heterogeneities build up

TABLE II. Experimentally reported dynamic hysteresis scaling
exponent (ϒ) for different materials.

System Exponent ϒ

Ferroelectric BaTiO3 single crystals [43] 0.195 ± 0.016
Ferroelectric BaTiO3 bulk ceramics [45] 0.23 ± 0.025
Soft Pb(Ti, Zr)O3 ferroelectric ceramic [46] 0.25
Hard Pb(Ti, Zr)O3 ferroelectric ceramic [47] 0.28 ± 0.01
Ultrathin Fe/Au ferromagnetic film [36] 0.31 ± 0.05
Ferroelectric Pb(Ti, Zr)O3 thin film [39] 0.33
Martensitic transition in Co (heating) [42] 0.39
Polycrystalline BaTiO3 bulk ceramics [44] 0.39
Antiferroelectric BPA mixed crystal [40] 0.40 ± 0.04
Martensitic transition in Co (cooling) [42] 0.49
Structural transition in VO2 [48] 0.51 ± 0.09
N-SmA transition in binary mixture (1:9) [34] 0.629 ± 0.005
Cold atomic system [33] 0.64 ± 0.04
Mott transition in V2O3 [3] 0.66
Ultrathin Co/Cu ferromagnetic film [37] 0.66 ± 0.03
Ferroelectric SrBi2Ta2O9 thin films [38] 0.66
Switching of bistable laser [41] 0.66
N-SmA transition in binary mixture (4:6) [34] 0.672 ± 0.008
N-SmA transition in binary mixture (2:8) [34] 0.701 ± 0.04
N-SmA transition in binary mixture (3:7) [34] 0.766 ± 0.05
Martensitic transition in MnNiSn alloy [6] 0.85 ± 0.07
Glass transition of glycerol [35] 0.88 ± 0.09
Austenite transition in MnNiSn alloy [6] 0.93 ± 0.13
Nickelate films with quenched disorder [50] 0.94 ± 0.07
Nickelate films with quenched disorder [50] 0.98 ± 0.04
PbTiO3/polymer ferroelectric composites [49] 1
Martensitic transition in FeMn alloy [48] 1

in numerous materials for various reasons such as underlying
heterogeneous substrate, doping, pinning, friction, kinetic ar-
rest, and many more. A complex interplay between quenched
disorder and long-range force fields gives rise to disorder-
associated athermal transition in those materials [10]. As a
result, non-mean-field exponents (ϒ �= 2/3) have been ob-
served in various materials [see Table II]. Such phenomena
can be described through a nearest-neighbor Ising-like system
in the zero-temperature environment [30,31].

The exponents ϒ , calculated in the 3d-ZTRFIM simula-
tions, primarily increase with increasing disorder strength σ

and finally saturate to a value near ϒ = 1 (Fig. 6). While, in
the mean-field limit, the value is consistent (ϒ ≈ 2/3) within
the uncertainty of the calculation except for σ > 4.75. The
quasistatic transition in the mean-field model for disorder σ >

4.75 is no longer hysteretic, i.e., the switching is away from
the saddle-node bifurcation point that violates the necessary
conditions (hysteretic) of finite-time scaling [Eq. (5)]. There-
fore, the sudden deviation of the scaling exponent from the
mean-field value σ = 5.0 is insignificant in the context of this
article. The error in exponent ϒ increases during the crossover
to the saturated value, and sometimes it does not follow a
single exponent power-law scaling if the number of disorder
average is low [6]. Most importantly, the dynamic hysteresis
scaling exponent explicitly depends on the (diverging) time
scale of the system as it is independent of system size. The
finite-size effect has been canceling during steady-state sub-
traction [Eq. (5)].
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To further investigate the spinodal slowing down in finite
dimensions, we have computed ϒ versus σ , above σc, for
different dimensions. With the increase in dimensionality,
the exponent ϒ is slowly approaching towards mean-field
value, which is fixed in all dimensions (Fig. 7). We have
also observed the same trend even in six dimensions for
small system sizes. Thus the normal upper critical dimen-
sion (dup = 6) of ZTRFIM is not applicable for spinodal
singularity [66,75]. Therefore, we argue that genuine spinodal
instability can be observed at very large (infinite) dimensions
for such quenched-disorder systems, as suggested in the recent
works [13,76].
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dimensional calculation. The mean-field values for all disorder are
independent of dimensions.

IV. DISCUSSION

It had long been considered that spinodals, an artifact of
mean-field theories, cannot exist in low dimensions as any
(thermal, disorder, or nonperturbative) fluctuations lead to
overcoming the nucleation barrier before the spinodal can
ever be reached [18]. However, theories based on long-range
interaction and coarse-grained Landau-Ginzburg formalism
hint existence of spinodal instability in higher dimensions
[16,77,78]. Although, even above the upper critical dimen-
sion, it is difficult to observe mean-field-like spinodal in
short-range force systems [13]. On the other hand, spinodal
criticality can be seen in a low-dimensional system if the range
of interaction exceeds some limiting value [79]. Therefore,
theoretically, such instability is a matter of a competitive re-
lationship between fluctuations, dimensionality, and the range
of interaction of the system. In the long-ranged system, ther-
mal fluctuation can be ignored [19], yet the local fluctuation
due to the disorder is an obstacle to the growth of susceptibil-
ity at the singular point [13]. In that case, the hidden instability
is sometimes discernible only after numerous cycling (or
training) through the transition point [3]. The training may
reorganize the disorder and naturally guide the system to ap-
proach the instability associated with self-organized criticality
[21,22]. A large class of materials (see Table II) shows the
mean-field dynamic scaling exponent (ϒ = 2/3) connected to
spinodal instability.

Restructure of the disorder is not always achievable, pre-
cisely when the disorder is quenched. The local fluctuations
linked with the disorder initiate a few heterogeneous nucle-
ations on the pathways toward spinodal instability, where
the growth is spontaneous due to the downhill nature of
free energy. Finally, in the low dimension, the transformation
takes place through a mixture of spinodal nucleation and
classical nucleation and growth. Therefore, the criticality will
remain hidden even above the upper critical dimension by
the finite correlation length. That gives rise to a nonuniversal
non-mean-field dynamic scaling exponent (ϒ) [Table II] ac-
companied by finite (not diverging) growth of phase ordering
time in various experimental systems. The above arguments
followed by ZTRFIM simulation capture nearly all the scaling
exponent (ϒ) except ferroelectric switching. Due to large
strains, the intrinsic domain-wall motion dominate ferroelec-
tric switching well below the curie temperature [80]. The
Coulomb forces are responsible for such switching that could
make the system fundamentally different from the Ising-like
[81]. However, the high disorder materials such as alloy,
glass, and disordered nickelate by exhibiting higher exponents
support the results obtained from ZTRFIM simulation (see
Table II and Fig. 7). The other affirmation established from
the upper limit of the exponents ϒ > 1 has not been seen in
any experiments to the best of our knowledge.

As disorder increases, emerging heterogeneous nucleating
sites increase, leading to a decrease in the spinodal-nucleation
process, and finally, for a sufficiently high disorder (σth ≈
σc + 1.5), the system is no longer critical. Above this thresh-
old level, the nature of the supersaturated transition with the
driving rate is independent of disorder strength. That could be
identified as a distinct crossover from critical-like to a possible
percolationlike transition [82].
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Most importantly, dynamic scaling exponents (ϒ) ap-
proach toward mean-field values as we increase the dimen-
sionality and is expected to approach the mean-field value
only in an infinite dimension [13,76] where the exponent is
nearly independent of disorder strength (σ ).

V. CONCLUSION

The critical-like signatures such as diverging time scale,
diverging susceptibility, and observation of power-law scaling
in an abrupt hysteresis transition in materials are directly
linked with the spinodal instability [3,4,16,17]. The trademark
of such instability can only be observed in a long-ranged
interacting system where thermal fluctuation is irrelevant
(athermal) such that the system is unable to hop the nucleation
barrier of the parent phase [16,19]. Based on the ZTRFIM
simulation, we argue that the spinodal instability, even in an
athermal system, gets hindered by the local fluctuations asso-
ciated with quenched disorder [6]. As the disorder increases
in a finite-dimensional system, the associated fluctuation also
increases that shield the instability accordingly. Finally, the
transformation becomes conventional (noncritical) first order
above some threshold value of the disorder. Such hidden in-
stability is gradually disclosed with the dimensionality of the
system as nonperturbative local fluctuations reduces inversely
with the dimension [13]. Therefore, non-mean-field critical
behavior in abrupt hysteresis transitions is nothing but finite-
dimensional vestiges of spinodal instability. This argument
has recently been reported in glassy dynamics [76]. Here,
we are presenting it from a general context that explain a
large class of previously reported measurements in various
materials being necessarily hysteretic.
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APPENDIX: POWER-LAW FITTING AND ERROR

The dynamical shifts in coercive fields from the steady-
state coercive field follow a scaling with the rate of change of
external field R. In the scaling equation [Eq. (5)], there is only
one fitting parameter, i.e., the exponent ϒ . The exponent has
been extracted by fitting a straight line in the log-log graph,
where the slope of the straight line specifies the value of ϒ

[Fig. 8(a)].
In the log-log graph, the fitting is dominated by the lower

rate values and the steady-state coercive field Hc(0). The
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FIG. 8. (a) Log-log plot of shift in coercive field from the steady-
state coercive field with rate of change of field (•). (—) represent the
power laws fitting with exponent ϒ = 0.47 ± 0.0034. (b) Histogram
of fitting exponent ϒ . The exponents were evaluated by choosing
four independent points out of the whole data set. The displayed
analyses have been done on data set of increasing field for Ld = 3503

and σ = 2.25.

inaccuracy in Hc for lower R may lead to a large error in
the exponent value; specifically, a small error in Hc(0) could
ruin the fittings. We cross-check each fitting exponent using
another rational fitting tool where each data point plays an
equal role in extracting the exponent.

Statistical distributions of nonlinear fitting. In this tech-
nique, we pick up four data points from the complete set of
data corresponding to different rates and calculate the expo-
nents for all possible combinations. Using those exponents,
we calculate the steady-state coercive field respectively. We
consider only those exponents that lie between the numerical
uncertainty of the coercive field corresponding to the relative
variance of magnetization. The distribution of accepted ex-
ponents obeys a normal distribution. The distribution’s mean
and standard deviation can be considered the effective expo-
nent and corresponding error. The details of the technique are
following.

Let us assume Hci and Hc j are the coercive field for ith and
jth rate of change of field. From Eq. (5), the shift in coercive
field from the steady-state coercive field Hc(0) can be written
as

Hci = Hc(0) + aRϒ
i , Hc j = Hc(0) + aRϒ

j . (A1)

The sign of the constant a depends upon the decreasing and
increasing field. The influence of Hc(0) for the extraction of
the exponent can be abolished by subtracting the above two
equations,

(Hci − Hc j ) = a(Rϒ
i − Rϒ

j ). (A2)

If N is the total number of field rate we have NC2 (i.e., N1)
similar equations. We eliminate the constant a by dividing any
two such equations (for example, (i, j) and (k, l ) pairs), i.e.,

(Hci − Hc j )

(Hck − Hcl )
= (Rϒ

i − Rϒ
j )

(Rϒ
k − Rϒ

l )
. (A3)
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Here (i, j) �= (k, l ); but we count combinations such as i =
k if j �= l and vice versa. Therefore, one can pick up two
pairs in N1C2 possible ways. Numerical solutions of N1C2

transcendental equations supply N1C2 numbers of ϒ that are
free from all kinds of technical domination. By plotting the
distribution of N1C2 number of ϒ , one can examine whether
this data set follows a power-law scaling at all. For example,
the data set does not follow a scaling law if one gets any other
distribution rather than a sharp (within the acceptable error)
normal distribution.

However, for each data pair (i, j) there is one Hc(0).

Hc(0){i, j} =
Hci − ( Ri

R j

)ϒ
Hc j

1 − ( Ri
R j

)ϒ
, (A4)

Hc(0){k,l} = Hck − ( Rk
Rl

)ϒHcl

1 − ( Rk
Rl

)ϒ
. (A5)

There is no limitation on the value of Hc(0) that is not
justifiable for the monotonic increasing function of Eq. (A1).
The numerical errors of the two points in a random pair may
yield some unacceptable Hc(0) along with an incorrect ϒ . To
draw an accurate distribution of ϒ , we neglected some values
of ϒ for which the inferred Hc(0) lying outside the uncer-
tainty of coercive field corresponds to the relative variance of
magnetization [Hc(0) ± δHc(0)].

The mean of the distribution [Fig. 8(b)], ϒmean = 0.468,
is in good agreement with the straight-line fitting expo-
nent [Fig. 8(a)]. The standard deviation of the distribution
is larger than the least square-fitting error. In the nonlinear
fitting method, a small numerical inaccuracy in coercive fields
(Hc(R) ± δHc(R)) for any rate (R) magnifies the error of the
exponent, which is over-estimated. Therefore, we have re-
ported the least squares-fitting error in Figs. 6 and 7. Note that
the goodness of the fitting has been observed in the statistical
distribution for all the data sets.
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