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The robustness against local perturbations, as long as the symmetry of the system is preserved, is a dis-
tinctive feature of topological quantum states. Magnetic impurities and defects break time-reversal invariance
and, consequently, time-reversal invariant (TRI) topological superconductors are fragile against this type of
disorder. Nonmagnetic impurities, however, preserve time-reversal symmetry and one naively expects a TRI
topological superconductor to persist in the presence of nonmagnetic impurities. In this work, we study the
effect of nonmagnetic disorder on a TRI topological superconductor with extended s-wave pairing, which can
be engineered at the interface of an Fe-based superconductor and a strongly spin-orbit coupled Rashba layer.
We model two different types of nonmagnetic random disorder and analyze both the bulk density of states and
edge state spectrum. Contrary to naive expectations, we find that the disorder strongly affects the topological
phase by closing the energy gap, while trivial superconducting phases remain stable and fully gapped. The
disorder phase diagram reveals a strong expansion of a nodal phase with increasing disorder. We further show
the decay of the helical Majorana edge states in the topological phase and how they eventually disappear with
increasing disorder. These results alter our understanding of effects of impurities and disorder on TRI topological
phases and may help explain the difficulty of experimental observation of TRI topological superconductors.
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I. INTRODUCTION

Many of the recent developments in condensed matter
physics have focused on theoretical prediction and exper-
imental verification of topological phases of matter [1–3].
Topological superconductivity constitutes a particularly ex-
citing case, thanks to the presence of exotic Majorana
quasiparticles and their potential for technological applica-
tions [4–6]. With topological phases being generally robust
and protected against local perturbations, such as disorder
and decoherence, topological superconductors have become
particularly interesting candidates for topological quantum
computing [7,8].

Time-reversal symmetry, alongside particle-hole and chiral
symmetries, plays an essential role in classifying topological
states [9,10]. Several platforms for topological supercon-
ductivity have already been studied in both theory and
experiment, where time-reversal symmetry is broken explic-
itly either by an external magnetic field or by magnetic
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impurities [11–25]. Topological superconductivity that pre-
serves time-reversal symmetry has also been widely predicted
theoretically [26–28].

Generally, a topological phase is expected to be robust
against any perturbation that does not break its classify-
ing symmetries. In particular, a time-reversal invariant (TRI)
topological phase would be expected to be robust against any
perturbation that does not break time-reversal symmetry. As
a consequence, several topological TRI systems have been
shown to prevail in the presence of nonmagnetic impurities
and disorder [29–32]. Despite this strong disorder protection,
TRI topological superconductivity has so far been challenging
to observe experimentally.

One promising proposal for experimental realization of
a TRI topological superconductor is based on proximity-
induced superconductivity from an Fe-based superconductor
into a Rashba spin-orbit coupled (SOC) layer [28]. Belonging
to class DIII, the effective Hamiltonian for this hybrid struc-
ture in two dimensions (2D) is topologically characterized by
a Z2 index [9,10]. In the topological phase, a Kramers pair of
helical Majorana edge states propagate along the boundary of
the system. By simply tuning the chemical potential it is also
possible to tune from the topological to a trivial phase, with an
intersecting nodal phase [28]. The effects of single magnetic
and nonmagnetic impurities have previously been studied in
this system [33]. In particular, it was shown that nonmag-
netic impurities behave very differently in the topological and
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trivial phases. For any material realization and its functional-
ity it is however more relevant to consider random disorder
and its effects.

In this work, we perform numerical calculations to in-
vestigate the effect of random nonmagnetic disorder on TRI
topological superconductors by studying hybrid structures
composed of an Fe-based superconductor and an effective
2D material with Rashba SOC. In particular, we consider
both Anderson disorder, where the chemical potential is
randomly fluctuating, and concentration disorder, where ran-
domly placed dilute but strong nonmagnetic scatterers are
present. By evaluating the bulk density of states (DOS), we
find that even moderately weak nonmagnetic disorder induces
subgap states that quickly fill the entire energy gap in the topo-
logical phase. Some aspects of a disorder-induced metallic
phase have previously been discussed [34,35] and attributed
to sign-changing potential fluctuations, while we demonstrate
fragility of topological phase for both small disorder and
without any need for sign-changing scattering. Furthermore,
we are able to trace this disorder sensitivity of the topological
phase to the existence of subgap states in the single- and
few-impurity limit, although a single impurity never generates
states near zero energy, such that only random bulk disorder
can fully destroy the gap. We find that the critical disorder
strength that fully closes the gap is almost exactly proportional
to the size of the topological gap in the clean limit. This
leads to the topological phase being particularly fragile for
small gaps. We further show that this disorder behavior of the
topological phase stand in sharp contrast to that of trivial con-
ventional and extended s-wave superconductors, which both
remain fully gapped even for strong disorder. Consequently,
by increasing the disorder, we observe a strong expansion
of the nodal region in the phase diagram, essentially only
at the expense of the topological phase. We also study the
evolution of the helical Majorana edge modes with increas-
ing disorder and show how they quickly delocalize into the
bulk and are eventually destroyed when the bulk gap closes.
These results clearly demonstrate that the naive expectation of
robustness against symmetry-preserving perturbations are not
accurate for TRI topological superconductors; instead they are
surprisingly sensitive to nonmagnetic disorder. With nonmag-
netic disorder being very common in most superconductors
and hybrid structures, our results indicate that experimental
observation of TRI topological superconductivity might be
challenging.

The remainder of this work is organized as follows. In
Sec. II, we introduce a 2D lattice model to study the hybrid
structure of an Fe-based superconductor and a Rashba SOC
layer. In Sec. III, we present our results where we first analyze
the disorder dependence of the bulk DOS in Sec. III A. Next,
in Sec. III B we discuss the phase diagram in the presence
of disorder, and finally in Sec. III C we show the effect of
disorder on the topological edge states. We summarize our
results in Sec. IV.

II. MODEL

A TRI topological superconductor can be constructed at
the interface of a 2D Rashba SOC material and an Fe-based
s±-wave superconductor, as originally proposed by Zhang

et al. [28]. In this work, the authors considered a 2D square
lattice with nearest-neighbor hopping t and Rashba spin-
orbit interaction λR from the 2D Rashba SOC material and
with superconducting pairing, consisting of on-site �0 and
isotropic nearest-neighbor �1 pairing terms, induced by the
extended s-wave symmetry of the Fe-based superconductor.
The tight-binding Hamiltonian for this system within the stan-
dard mean-field framework for superconductivity reads

H0 =
∑
i,j,σ

(
−1

2
tijc

†
iσ cjσ + �ijc

†
iσ c†

jσ̄

)

− λR

∑
i,η=±

ηc†
i,↑(ci−ηx̂,↓ − ici−ηŷ,↓) + H.c., (1)

with �ij = �0 and tij = μ for i = j, where i = (ix, iy) rep-
resents a site in a 2D square lattice and μ is the chemical
potential. We restrict the range of hopping and supercon-
ducting pairing to nearest neighbors, 〈i, j〉, with t〈i,j〉 = t and
�〈i,j〉 = �1. For clarity, we scale all parameters to the nearest-
neighbor hopping by setting t = 1. The combination of �0

and �1 results in an extended s-wave pairing symmetry that
retains the symmetry of the normal-state Hamiltonian but
changes sign between the � and M points of the first Brillouin
zone. The Rashba SOC also splits the normal-state Fermi
surface, such that by adjusting the chemical potential one can
make the inner and outer Fermi surfaces experience pairing
gaps with either same or opposite signs. This has direct con-
sequences for the topology of the system. It is noteworthy
that in Hamiltonian Eq. (1), no scattering takes place between
the two helical Fermi surfaces. Furthermore, there is no inter-
band scattering due to impurities, as the topological features
protected by symmetry prevent any such interband scattering.
Time-reversal symmetry is preserved for the Hamiltonian in
Eq. (1), which means it belongs to class DIII. For this class in
2D the topological classification is through a Z2 index and not
a Chern number [9,10]. The Z2 invariant is set by the relative
sign of the superconducting gap for each of two SOC split
Fermi surfaces. Opposite signs of the gap yield a topological
phase with ν = 1 and s±-wave superconducting pairing, while
the same sign gives a trivial phase with ν = 0 and s++-wave
pairing [36,37]. The topological phase is known to have a
Kramers pair of 1D helical Majorana states at any boundary
toward a trivial region [28].

In Fig. 1 we present the phase diagram of the Hamiltonian
Eq. (1) as a function of the Rashba SOC λR and chemical
potential μ. Depending on the size of λR and μ compared to
the ratio of the superconducting gaps, r = t�0/�1, the system
has three different phases: topologically trivial (ν = 0), non-
trivial (ν = 1), and nodal phase [28]. The topological phase
occurs for |μ − r| < 2λR

√
|r| − r2/4 (red in Fig. 1), while

the trivial phase requires |μ − r| > 2λR

√
2 − r2/8 (blue in

Fig. 1). The white region in between these two phases rep-
resents the nodal phase, where at least one of the SOC split
Fermi surfaces crosses the nodal line of the superconducting
gap function. Interestingly, the trivial, topological, and nodal
phases all meet at the origin μ = r, λR = 0, forming a triple
point in the phase diagram.

To include the effect of nonmagnetic, or potential, disorder,
we independently implement two different disorder models,
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FIG. 1. Phase diagram of a clean hybrid structure consisting of
an Fe-based s±-wave superconductor and a 2D Rashba SOC layer,
described by Eq. (1), as a function of μ − r and λR. Topologically
trivial s++-wave (ν = 0), nontrivial s±-wave (ν = 1), and nodal
phases are depicted by blue, red, and white, respectively. The color
intensity coding corresponds to the energy gap size. Blue and red
solid lines mark the phase boundaries.

namely local random chemical potential fluctuations, or An-
derson disorder, and dilute but strong nonmagnetic scatterers,
or concentration disorder. Anderson disorder is modeled by
adding an on-site random chemical potential εi to every site,

H (1)
dis =

∑
iσ

εic
†
iσ ciσ , (2)

where εi is chosen from a box distribution, εi ∈ [−W/2,W/2].
To simulate concentration disorder, we add a constant strong
potential to a randomly chosen, small, subset of lattice sites,

H (2)
dis =

∑
σ

∑
i∈	∗

V c†
iσ ciσ , (3)

where 	∗ is a small subset of all sites of the square lattice
	. The disorder concentration c is then given by the ratio of
the dimensions of 	∗ and 	, which becomes a chosen input
parameter, while the position of the sites contained in 	∗
is random. A notable difference between these two disorder
types is that, for Anderson disorder the added on-site terms
average to zero, while for concentration disorder, the effective
chemical potential is shifted, on average, by cV .

We solve H = H0 +H (i)
dis using exact diagonalization

within the TBTK code [38–41]. We use large lattices with
both periodic boundary conditions (PBCs) and open bound-
ary conditions (OBCs) in order to assess both the effect of
disorder on bulk properties and its influence on the topological
edge states appearing at the boundary in the topological phase.
To be able to compare our results for Eq. (1) with those of
a conventional s-wave superconductor, we also perform the
same calculations but setting �1 = 0. This results in mod-
eling a trivial and conventional s-wave superconductor with
only on-site pairing, which has no topological features and
benefits from strong protection against disorder as established
by Anderson’s theorem [42].

In this work, for simplicity, we assume �0 = �1 = 0.2
and λR = 0.5. We also choose μ = 1.0 for representing the
topological s±-wave phase and μ = 2.9 for representing the

trivial s++-wave phase, unless otherwise stated. For these two
values of the chemical potential, the size of the excitation gap
in the clean case is almost the same, 2� ≈ 0.24, and we can
thus directly compare the influence of disorder in the subgap
regime between these two topologically distinct cases. For
the conventional s-wave superconductor we set �0 = 0.15,
which gives rise to an excitation gap similar to the two afore-
mentioned superconducting states. Note that we here keep
the superconducting order parameter constant throughout the
sample. Technically, a more accurate treatment would require
us to calculate �0 and �1 in a self-consistent manner. How-
ever, previous tests on similar proximity-induced hybrid struc-
tures have revealed only minor quantitative corrections to the
gap size and hardly any changes to the phase diagram [31,43].

Finally, finite-size effects are usually unavoidable in solid-
state simulations. The inclusion of random disorder makes
it even more challenging to obtain configuration-independent
results. Throughout this work we report exact diagonalization
results using a square lattice with 51 × 51 sites (unless oth-
erwise stated), but we have checked our results also using
smaller lattice sizes. Moreover, when we perform disorder
averaging we choose the number of disorder realizations n
such that σ/

√
n < 0.015 is fulfilled, where σ is the standard

deviation. Typical values here are n = 40 and σ = 0.02. This
procedure guarantees that all our disorder-averaged results
are sufficiently independent of a specific disorder realization.
Furthermore, in order to calculate the bulk DOS we use a
Gaussian kernel for smoothing the data, setting the standard
deviation for the Gaussian kernel to � = 0.02.

III. RESULTS

Having established the phase diagram and the overall prop-
erties of our system in the clean limit we now turn to the
effects of nonmagnetic disorder in this TRI topological super-
conductor. First, we study the properties of the bulk DOS in
the presence of different disorder types and strengths. Despite
naive expectations of disorder robustness for topological sys-
tems as long as their symmetries are preserved, we show that
the TRI topological superconducting phase is actually very
fragile against nonmagnetic disorder. This leads us to derive
a very different phase diagram at finite disorder, where espe-
cially the nodal phase is heavily expanded. Finally, we explore
the impact of disorder on the helical Majorana edge states
where we capture their delocalization and eventual destruction
with increasing disorder.

A. Bulk density of states

To illustrate the impact of nonmagnetic disorder on the
bulk properties of a TRI topological superconductor, we first
evaluate the bulk DOS for the Hamiltonian Eq. (1) in the
presence of both Anderson and concentration disorder, H (i)

dis
(i = 1, 2), with PBCs imposed. In Fig. 2 we show the DOS
for a single disorder configuration for three different disorder
strengths W (top) and disorder concentrations c (bottom).
Each panel in Fig. 2 shows the DOS for three different
superconducting states with topological s±-wave (red), triv-
ial s++-wave (blue), and trivial conventional on-site s-wave
(green) symmetries. In particular, in Figs. 2(a)–2(c), we
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FIG. 2. Bulk DOS for different superconducting phases in the
presence of disorder with topological s±-wave (red), trivial s++-wave
(blue), and conventional s-wave (green) superconducting symme-
tries, all with similar energy gaps in the clean limit. Top row:
Anderson disorder with W = 1.0, 1.8, and 2.4. Bottom row: Con-
centration disorder with V = 2 for c = 1%, 4%, and 7%.

consider Anderson disorder using W = 1.0, 1.8, and 2.4, re-
spectively. Initially, in the absence of the disorder and for
only small disorder, the size of the energy gap is equal for
all three superconducting states; see Fig. 2(a). However, when
increasing the strength of the Anderson disorder, we find
the DOS to be different between the topological and trivial
phases in a number of respects. Most importantly, the gap
size in the topological s±-wave superconducting phase is
strongly reduced. Surprisingly, even for W ≈ 1.8, which is
still small in comparison to the superconducting bandwidth
of the Hamiltonian D ≈ 15, the gap of the topological phase
closes; see Fig. 2(b). Increasing the disorder further, what was
the topological phase becomes gapless; see Fig. 2(c). In con-
trast, the conventional s-wave state is robust for all reported
disorder strengths without any notable change in the gap size.
Similarly, for the trivial s++-wave state the energy gap stays
wide open only showing a minimal reduction in the presence
of disorder, at least as long as W � D.

Next, we investigate concentration disorder in Figs. 2(d)–
2(f). Here, we set the impurity scattering strength to V = 2
and vary the disorder concentration between 1%, 4%, and 7%,
respectively. Again, we observe that very small concentrations
of disorder strongly affect the topological phase. As seen in
Fig. 2(e), an impurity concentration of only 4% fully closes
the energy gap of the topological phase, producing a gap-
less state. In contrast, the conventional s-wave state remains
completely unaffected even for large concentrations. Also the
trivial s++-wave state survives large impurity concentrations,
albeit with a slightly reduced gap size. To conclude, the re-
sults in Fig. 2 show that for both Anderson and concentration
disorder the topological phase is very fragile against disorder,
in sharp contrast to the robustness of trivial s-wave phases.
Given that the disorder does not break any of the symmetries
protecting the topological phase, this is an unexpected finding.

We can start to understand the strong effect of nonmag-
netic disorder on the topological phase and its gap by first

−0.1
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Dimer Horiz.
Dimer Diag.
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0 2 4
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0.1

E

N = 20(c)

0 2 4
V
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FIG. 3. Energy of subgap states induced by N randomly placed
nonmagnetic impurities on a 51 × 51 lattice as a function of impurity
scattering strength V . Gray shade corresponds to the bulk bands in
the clean limit. Cyan shade and dashed blue line mark the disor-
der strengths for the Anderson and concentration disorder used in
Fig. 2. (a)–(d) Topological s±-wave phase for (a) N = 1, (b) N = 10,
(c) N = 20, (d) single impurity vs dimers of impurities. (e), (f) Trivial
s++-wave phase for (e) N = 10 and (f) N = 20. (d) Single impurity
and single-impurity dimer oriented either horizontally or diagonally.

considering the single-impurity case. As shown in Ref. [33],
a single potential impurity added to the TRI superconductor
in Eq. (1) produces a single pair of subgap states (symmetric
around zero energy and twofold degenerate due to time-
reversal symmetry) in the energy spectrum in the topological
phase, while the trivial phase never hosts any subgap states
for nonmagnetic impurities. However, a single impurity was
also shown to never induce states at or near zero energy. In
our results, we clearly see that we generate a finite-bulk DOS
also at zero energy for a finite concentration of disorder.

To connect the earlier single-impurity results [33] to our
bulk results, we next analyze the energy spectrum when we
add N randomly positioned impurities, letting N = 1, . . . , 20.
The results are summarized in Fig. 3 where we plot the subgap
spectrum as a function of the impurity strength V . The case
of a single impurity N = 1 is shown in Fig. 3(a), where we
observe a subgap state clearly forming for V � 1.5 but notably
always staying rather far from zero energy. With increasing
number of impurities, N , we observe an increasing number
of subgap states that also move closer to zero energy. In
Figs. 3(b) and 3(c) we plot the cases of N = 10 and N = 20,
respectively. Already for N = 20, which corresponds to an
impurity concentration of only c = 0.008, we observe a
considerable contraction of the energy gap. From the plotted
sequence of disorder sites, N = 1, 10, 20, we can easily
extrapolate to the results for larger concentrations obtained
in Figs. 2(a)–2(f) using V = 2, marked by a vertical dashed
blue line in Fig. 3. In this way we obtain a smooth connection
between the single-impurity results and bulk results at finite
disorder concentration, noting that the difference is that
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multiple impurities push the subgap impurity states closer and
closer to zero energy, eventually filling the whole energy gap.

To contrast the results for the topological phase, we also
plot results for N = 10, 20 impurities in the trivial s++-wave
phase in Figs. 3(e) and 3(f). For a few impurities, we hardly
observe any subgap states; only for N ∼ 10 do subgap states
start to slowly leak into the bulk gap, but they always re-
main extremely close to the bulk band edge. This explains
the slightly reduced bulk gap in Figs. 2(a)–2(f) in the trivial
phase. Finally, in Fig. 3(d) we consider the special case of an
“impurity dimer,” i.e., two impurities next to each other and of
identical strength. The dimer generally produces lower-lying
impurity subgap states than the single impurity, but the exact
values vary depending on the dimer orientation on the lattice.
In fact, horizontally bonded dimers even achieve zero-energy
states at certain disorder strengths. This further supports the
fact that for random finite disorder concentration, zero and
near-zero energy states will always be present.

If we instead redo the same calculation as in Fig. 3 but
use a disorder strength that on each disorder site varies be-
tween [−V,V ], we arrive at qualitatively the same results,
which eliminates any possible influence of the shift of the
overall chemical potential. We also note that all plots shown
in Fig. 3 represent only a single disorder realization, but we
do not expect disorder averaging over multiple realizations to
qualitatively change the results.

To shed further light on the effects of disorder we in-
vestigate more closely when the topological gap is lost. To
this end, we introduce Wc, the ensemble-averaged disorder
strength for which the transition from gapped topological
to gapless phase takes place for Anderson disorder. To be
computationally achievable, we choose to evaluate Wc for
points in the topological phase along the dashed line in
the phase diagram in Fig. 1 and for λR ∈ [0, 1], which is
the most physically relevant range. In the clean system, the
phase diagram is geometrically symmetric along μ = r and
the gap size in the topological phase, �Topo, grows with
increasing λR as shown by the blue curve in Fig. 4(a). By
plotting Wc as a function of λR in red and in the same panel,
we find that Wc has almost exactly the same dependence as
the gap �Topo on λR. In more detail, we observe an algebraic
relation, Wc ∝ λ

1/2
R , as indicated by the fit (solid red line) in

Fig. 4(a). This strongly suggests that �Topo is the relevant
energy scale for the transition to the gapless phase. Hence, the
larger the topological gap in the clean limit, the more robust is
the topological phase, as also intuitively expected. This means
that in regions close to the nodal phase in the clean limit in
Fig. 1, even very weak disorder will destroy the topological
gap and render a nodal spectrum.

We can alternatively evaluate the critical density c∗, for
which concentration disorder completely fills the topological
gap and generates a nodal phase. In Fig. 4(b) we plot c∗
as a function of λR using several different values of V . We
find again that stronger disorder, here represented by higher
disorder densities, are needed to reach the critical density for
larger λR, or, equivalently, a larger topological gap �Topo in the
clean limit. Instead keeping λR constant, for larger V , we find
smaller c∗, since stronger scatterers push the impurity subgap
states further into the gap as seen in Fig. 3, which facilities the
transition to the nodal phase.
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Δ
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FIG. 4. (a) Critical disorder strength Wc of Anderson disorder
(red, left axis) and topological gap �Topo in the clean limit (blue,
right axis) as a function of λR. (b) Critical concentration c∗ for
concentration disorder as a function of λR. Solid red line in (a) is
a fit to Wc ∝ λ

1/2
R ; all other lines are only guides to the eye.

B. Phase diagram

Having established that the energy gap in the topologi-
cal phase is quickly diminished and even disappears in the
presence of disorder, we next establish the phase diagrams
for finite disorder. By using extensive numerical simulations
extracting both the topology and gap size, we produce in
Figs. 5(a)–5(c) the phase diagrams analogous to the clean sys-
tem in Fig. 1 for different strengths W of Anderson disorder,
averaged over 50 independent disorder configurations. As ex-
pected, stronger disorder affects the phase diagram drastically.
First of all, the nodal region (white color) grows substantially
and especially occupies regions that were topological in the
clean limit. Second, the trivial phase is much less affected by
disorder than the topological phase. Additionally, while the
nodal phase shrinks in the clean limit into a triple point at
μ = r and λR = 0, in the presence of disorder we find the
nodal phase expanding over a large area for small λR. We also

−1 0 1
μ − r

0

1

2

λ
R

(a)
W = 1.2

−1 0 1
μ − r

(b)
W = 2.4

−1 0 1
μ − r

(c)
W = 3.6

ΔTriv

Gapless

ΔTopo

FIG. 5. Phase diagram as a function of Rashba SOC λR and
chemical potential μ − r for Anderson disorder with W = 1.2 (a),
W = 2.4 (b), and W = 3.6 (c), representing disordered versions of
the clean phase diagram Fig. 1. Blue and red dashed lines separate
different phases in the clean system.
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FIG. 6. Phase diagram as a function of disorder strength W
and chemical potential μ − r for λR = 0 (a), λR = 0.5 (b), and
λR = 1.0 (c).

note that disorder affects the phase diagram in an asymmetric
way with respect to μ − r. This is not surprising as the gap
size in the clean limit is not symmetric with respect to μ − r;
see color intensity in Fig. 1. As a consequence, the filling of
the gap through disorder-induced states occurs differently for
positive and negative values of μ − r.

To further illustrate the effect of disorder on the phase
diagram, we plot in Fig. 6 phase diagrams for fixed Rashba
SOC λR, while we tune the chemical potential and disor-
der strength. As shown in Fig. 6(a), there is no topological
phase for λR = 0. For moderate disorder strength, the trivial
phase also remains gapped. By further increasing the disor-
der strength, the gap is however reduced and eventually, for
disorder of the order of the band gap, we lose the gap even
in the trivial phase. Next setting λR = 0.5 in Fig. 6(b), the
clean system is topological for |μ − r| � 1. By adding disor-
der, we clearly see how the topological phase is much more
fragile to disorder than the trivial phase. Finally, in Fig. 6(c),
we set λR = 1.0 which in the clean limit generates a topo-
logical phase for the whole range of |μ − r| � 2. Again, we
observe that disorder leads to strong suppression of the gap in
the topological phase, but due to the initially larger topological
gap thanks to the larger λR, the transition to the nodal phase
requires a larger Wc compared to Fig. 6(b). Somewhat surpris-
ingly, we find that further increasing the disorder strength W
beyond Wc in Figs. 6(b) and 6(c) eventually drives the system
from the gapless nodal phase into the trivially gapped phase
for a range of μ − r. By using OBCs and calculating the local
DOS we have verified that there are no edge states in this
regime, consistent with the trivial topology. This behavior of
a reentrant gapped phase is reminiscent of disorder-induced
topological phase transitions found earlier in superconductors,
where Anderson disorder has been shown to lead to topo-
logical phase transitions between phases with different Chern
numbers [44].

C. Edge states

To further investigate the detrimental effect of disorder on
topological s±-wave TRI superconductors, we study the disor-
der impact on the helical Majorana edge modes by performing
OBC calculations for a disk geometry with radius r = 47 lat-
tice points. Such a disk size is sufficient to avoid overlapping
of the edge wave functions at opposite sides of the disk, which
would lead to their hybridization. By tuning the Anderson
disorder strength W , we observe a clear destructive influence
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FIG. 7. Local DOS for subgap energies |E | < �Topo/4 in the
topological phase for a finite disk of radius r = 47. 2D and 3D plots
of the local DOS in the clean limit [(a), (d)] and for W = 1.8 [(b),
(e)] and W = 2.6 [(c), (f)]. (g) Line cuts of the local DOS in same
low-energy range through the disk for different disorder strengths W .

of disorder on the edge modes. As an illustration, we plot in
Fig. 7 the accumulated local DOS for subgap energies |E | <

�Topo/4 using a specific disorder configuration. Figures 7(a)–
7(c) and 7(d)–7(f) contain identical data but plotted in 3D
and 2D, respectively. In Figs. 7(a) and 7(d), in the absence of
disorder, we find well-localized helical Majorana edge modes
and a fully gapped interior. By introducing moderately small
Anderson disorder, as shown in Figs. 7(b) and 7(e), the helical
Majorana edge modes already begin to fade away and near-
zero subgap states begin to be visible throughout the disk
interior. When the disorder strength is increased further, see
Figs. 7(c) and 7(f), the edge modes are strongly suppressed
and a clear subgap DOS develops in the interior. Similar
calculations for concentration disorder confirm that the helical
Majorana edge modes in the topological phase disappear with
increasing impurity concentration. As a complement, we also
plot line cuts through the disk in Fig. 7(g). Here it becomes
clear how the delocalization of the edge states goes hand in
hand with the emergence of subgap states in the bulk. This
result shows how the loss of the topological gap in the bulk
directly affects the edge states, which fade into the bulk and
eventually disappear with increasing disorder. In other words,
the edge of the topological phase is affected by disorder in the
same way as the bulk, a manifestation of the bulk-boundary
correspondence.

IV. SUMMARY

In this work, we study the effects of nonmagnetic disor-
der in a time-reversal invariant superconductor, which can
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be realized in a hybrid structure consisting of an Fe-based
superconductor and a spin-orbit coupled Rashba layer. The
hybrid structure hosts three different phases, a topological
s±-wave and a trivial s++-wave, with an intersecting nodal
phase. We perform intensive numerical calculations in the
presence of two different types of disorder, Anderson disorder,
i.e., random chemical potential fluctuations, and concentration
disorder, i.e., random dilute strong potential scatterers, both
preserving time-reversal symmetry. The naive expectation is
that the topological phase should be robust against this dis-
order as it preserves all symmetries protecting the topology.
Instead we find that the disorder leads to subgap states quickly
accumulating in the gap of the topological phase, leading to
the closure of the topological gap even for moderately weak
disorder. These findings are in contrast to the topologically
trivial phase, as well as conventional s-wave superconductors,
which are both exceptionally robust to disorder with no no-
table subgap states even for strong disorder. We are able to
trace this disorder fragility of the topological phase to the
existence of subgap states in the single- and few-impurity
limit. Notably though, single impurities do not generate (near)
zero-energy states, while random disorder fully closes the gap,
generating a gapless phase. We derive the phase diagram in
the presence of disorder, where we very generally observe the

expansion of the nodal phase at the expense of the topological
phase. In addition to a bulk analysis, we also investigate the
helical Majorana edge modes associated with the topological
phase. We find that even moderately weak disorder causes the
edge states to decay into the bulk and eventually to disappear.
Thus, we find that disorder affects both edge and bulk of the
topological phase in the same detrimental way. Our results
suggest that the lack of a hard energy gap and the exten-
sion of the nodal phase due to disorder can easily prevent
experimental detection of time-reversal invariant topological
superconducting phases.
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