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Transport signatures of fragile glass dynamics in the melting of the two-dimensional vortex lattice
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In a two-dimensional superconducting vortex lattice, the melting from the solid to the isotropic liquid can
occur via an intermediate phase that retains orientational correlations. The effect of such correlations on
transport and their interplay with the quenched disorder remain open questions. We perform magnetotransport
measurements in a wide range of temperatures and magnetic fields on a weakly pinned two-dimensional vortex
system in amorphous MoGe films. While at high fields, where quenched disorder dominates, we recover the
typical strong-glass behavior of a vortex liquid, at low fields the resistivity shows a clear crossover to a fragile
vortex glass. Our findings, supported by numerical simulations, suggest that this is a signature of heterogeneous
dynamics that arises from the presence of orientational correlations.
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I. INTRODUCTION

Thermal melting of two-dimensional (2D) crystalline
solids has been investigated in a variety of systems, including
colloids, electrons on the surface of liquid helium, rare-gas
atoms on substrates such as graphite, liquid-crystal films, dust
plasmas, and vortices in thin superconducting (SC) films in
a transverse magnetic field [1,2]. The melting transition is
generally understood to be driven by the proliferation of topo-
logical defects, as described by the Berezinskii-Kosterlitz-
Thouless-Halperin-Nelson-Young (BKTHNY) theory [3–5].
According to BKTHNY, for weak enough quenched disor-
der the transition from the 2D (weakly pinned) solid to the
isotropic liquid phase occurs via an intermediate phase called
hexatic. In the hexatic phase, free dislocations appear, break-
ing the quasi-long-range positional order, but preserving the
hexagonal orientational one. By increasing the temperature
(T ) further, free disclinations form and a fully isotropic liq-
uid is established. This melting sequence has indeed been
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detected by scanning-tunneling-spectroscopy (STS) imaging
of vortices in 2D superconductors [6–9], but the morphol-
ogy of dislocations can be affected by microscopic details,
resulting in the apparent coexistence of isotropic with hexatic
liquid as well as with smecticlike (striped) regions [6], or
the emergence of chains of dislocations [10]. The presence
of competing orders may give rise to metastable states and
the associated slow dynamics in many systems [11]. An STS
study on amorphous MoGe (a-MoGe) thin films did observe
[9] a strong suppression of the vortex diffusivity in the pres-
ence of hexatic correlations compared to the isotropic liquid.
However, the nature of the vortex dynamics near the melting
transition, its effect on electrical transport, and its evolution
with magnetic field (H) have not been explored in relatively
clean a-MoGe samples, where finite orientational correlations
may arise even in the liquid phase.

We perform extensive magnetotransport measurements on
a-MoGe thin films similar to those used in the STS studies that
revealed the presence of hexatic correlations at low H [8,9].
Our key experimental finding is that, for fixed low fields H <

9 T, the low-T resistivity follows a Vogel-Fulcher-Tamman
(VFT) law, i.e. ρ(T ) = ρVFT, where

ρVFT = Z̃ exp

(
− W̃ (H )

T − T̃0(H )

)
. (1)

Here W̃ (H ) is a constant independent of T , and T̃0(H )
marks the temperature at which the linear resistivity van-
ishes. As H increases, we find that T̃0(H ) is suppressed to
zero, i.e., standard Arrhenius behavior is recovered, and non-
linear voltage-current characteristics V -I emerge. The VFT
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law [12–14] generally describes the behavior of the so-called
fragile liquids above the glass transition, and it is usually
attributed to the emergence of dynamical heterogeneities [15].
We argue that the VFT law at low H results from dynamical
heterogeneities due to emergent orientational correlations as
the melting transition is approached. This is supported by our
Monte Carlo simulations of the 2D XY model in the presence
of a transverse H. We show that the orientational order leads
to a caging effect that suppresses vortex diffusivity, which
follows a VFT law as one enters the hexatic phase, i.e., the
vortex diffusion coefficient

Dv = Z exp

(
− W (H )

T − T0(H )

)
. (2)

The temperature T0 identifies the liquid-solid transition tem-
perature corresponding to the vanishing of the superfluid
density. Our results thus reveal a fragile glass-like dynamics
associated with the thermal melting of a weakly pinned 2D
vortex lattice, and a crossover to a strong-glass (T̃0 = T0 = 0)
behavior at higher H , resulting from the interplay of orienta-
tional correlations and disorder.

II. RESULTS

Our samples are 22-nm-thick a-MoGe films with SC tran-
sition temperature Tc ∼ 7.6 K at zero field (see Appendix A),
and low normal-state sheet resistances Rs ≈ 78 � indicative
of a very weak disorder [9,16]. Here Tc is defined as the tem-
perature at which the linear resistance R ≡ limI→0 V/I (i.e.,
ρ) falls below the experimental noise floor (see Appendix A).
The characteristic lengthscales for vortex distortions parallel
to the applied H and caused by thermal fluctuations or pinning
are of the order of several μm [17,18], i.e., much larger than
the sample thickness t . Therefore, the vortex lattice (VL) in
these films is indeed 2D, although the SC state is 3D (t > ξ ,
where ξ ∼ 5 nm is the SC coherence length [17]). In the field
range of interest, any geometric, edge barrier effects on the
vortex motion are negligible [19].

Measurements of ρ(H ) at fixed T (Fig. 4 in Appendix B)
were performed with heavily filtered wiring (see Appendix B)
due to the extreme sensitivity of the SC state to external radi-
ation [9]. The ρ(H ) data were used to determine Tc(H ) (i.e.,
the corresponding field Hc for a given T ) and the upper critical
field Hc2(T ), which we define as the magnetic field where
ρ = 0.95 ρN at a given T (ρN = 0.17 m� cm is the normal-
state resistivity). Since Tc(H ) depends on the experimental
resolution, it does not necessarily allow one to determine the
real boundary between the liquid and solid phase, nor the
possible transition to an orientational liquid phase.

To explore the melting of the VL, we extract ρ(T ) curves
at fixed H [Fig. 1(a); see also Fig. 5(a)]. A rapid, orders-
of-magnitude change of ρ with T , observed for fields below
about 12 T and with no sign of saturation at low T , suggests
an exponential ρ(T ) dependence. Indeed, the Arrhenius law,

ρArrh = ρ0 exp

(
−U (H )

T

)
, (3)

is often used to describe the linear resistivity in the vortex
liquid regime at low enough T [20]. In this picture of a ther-
mally assisted flux flow (TAFF), vortices move collectively

FIG. 1. (a) ρ(T ) at selected H , extracted from the data in Fig. 4
for sample 1. The dashed lines guide the eye. (b) ρ(T ) fitted with
the Arrhenius (red dashed line) and VFT (blue dotted line) laws for
H = 5 T; the fits are performed for the data points within the two red
arrows, although the VFT describes the data also at higher T . Here
T̃0 = (3.42 ± 0.01) K [the fit to Eq. (2) gives T0 = (3.37 ± 0.01) K].
Inset: The data for H = 11 T are well described by ρArrh (or ρVFT with
T̃0 ≈ 0 K), as shown by the red dashed line. The excitation current
Iexc = 100 nA for H = 5 T and Iexc = 10 nA for H = 11 T.

and overcome pinning barriers via thermal excitations when
T � U (H ). Although ρ is nonzero, V -I remains non-Ohmic
(i.e., nonlinear) for I �= 0 [23]. We note that Eq. (3) assumes
ρ is finite at all nonzero T . However, when the superfluid
phase sets in, which corresponds to a solid phase for the
VL, ρ vanishes, so deviations from (3) should be observed
whenever the critical temperature is finite and the transition is
not strongly first-order (i.e., in the absence of a large, abrupt
jump).

We have performed fits of the ρ(T ) data, for fixed H , ac-
cording to ρArrh. Two examples are shown in Fig. 1(b), one for
a low field (H = 5 T) and another for a high field (H = 11 T).
While at high H the Arrhenius fit works extremely well down
to Tc, at low fields we systematically find significant devia-
tions (see also Fig. 6 in Appendix C), with a faster suppression
of ρ than predicted by ρArrh. Interestingly, such deviation can
be captured very well by the VFT law, Eq. (1). Since we are
interested in the vortex diffusivity, we have also performed
fits to ρ(T ) = (h/2e)2nvDv/(kBT ), where nv = B/�0 is the
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FIG. 2. (T, H ) phase diagram (sample 1). T0(H ) (blue dots) are
obtained from the VFT fits, whose range of validity is marked by
the shaded blue “VFT” region; the error bars reflect the standard
errors of the fits and T0 = T̃0. For H � 9 T, ρ can only be fitted
with the Arrhenius law in the shaded orange “Arrhenius” region.
Here the isotropic vortex liquid freezes into an amorphous vortex
glass at T = 0. The purple dot-dashed line shows the high-T extent
of the VFT and Arrhenius fits. Green triangles: the upper critical field
Hc2(T ); here ρ reaches 95% of its normal-state value. Red diamonds:
Tc(H ), where ρ drops below the experimental noise floor. Error bars
in Tc(H ) and Hc2 are the uncertainty in defining the magnetic field
corresponding to each quantity within our experimental resolution.

vortex density (�0 = h/2e is the quantum of magnetic flux
attached to a single vortex, h is Planck’s constant, and e is
electron charge), kB is the Boltzmann constant, and Dv is
given by Eq. (2). For both (1) and (2), the fitting parameters
were extracted using global minimization, and were typi-
cally found to be the same within error [see, e.g., Figs. 1(b)
and 6]; in particular, T0 = T̃0. The parameters Z̃ and Z are the
same within the proportionality constant between ρ and Dv ,
consistent with the exponential term dominating ρ(T ). Hence,
hereafter we present only the VFT fitting parameters obtained
using Eq. (2).

Figure 2 shows T 0(H ), Tc(H ), Hc2(T ) [see also Fig. 5(b)
in Appendix B], and the range of T where the VFT and the
Arrhenius fits are effective (see Fig. 7 in Appendix C for
all the fitting parameters as a function of H). We find that
for fields below H∗ � 9 T the VFT fit gives a significantly
better description of the data. With increasing H , however,
T0 decreases gradually, and vanishes near H∗ � 9 T. For
9 � H � 12.5 T, T0(H ) = 0 within experimental error and,
indeed, ρ(T ) curves are well described by the Arrhenius fits,
consistent with T0 = 0 (see Fig. 8). In this regime, we find that
U (H ) = U0 ln(H0/H ) (see Fig. 9 in Appendix C), as expected
from the TAFF model and the logarithmic vortex-vortex inter-
actions in 2D [20]. The behavior observed in the high-field
(H > H∗, “Arrhenius” in Fig. 2 with T0 = 0, T > Tc) regime
is, therefore, consistent with the thermally activated collective
motion of vortices in the presence of strong pinning, similar
to previous studies of disordered SC films, including a-MoGe

[21,22]. This conclusion is further supported by our measure-
ments of the differential resistance (dV/dI) versus dc current
bias Idc at fixed H (see Appendix D for a detailed discussion).
In particular, the non-Ohmic (nonlinear) V -I characteristic
observed for Idc �= 0 at low enough T [Figs. 10(a) and 10(b)
in Appendix D] is expected from the motion of vortices in
the presence of disorder, i.e., it is a signature of a viscous
vortex liquid [23]. As T increases, nonlinear behavior is no
longer observed [Figs. 10(c) and 10(d) in Appendix D]. As
T < Tc, where ρ drops below our noise floor, a finite Idc is then
needed to depin a measurable number of vortices [Fig. 10(e)
in Appendix D]. Our transport results thus suggest that in this
regime, an isotropic vortex liquid freezes into an amorphous
vortex glass as T → 0, i.e., the solid phase is only realized at
T = 0.

In the normal state (H > Hc2), V -I characteristics are
Ohmic [Figs. 10(b) and 10(e) in Appendix D], as expected.
In the low-field (H < H∗, T0 �= 0, T > Tc) regime (“VFT”
in Fig. 2), we also find Ohmic behavior [Fig. 10(f) in Ap-
pendix D]. The key question is the origin of the observed VFT
behavior.

Within the context of glasses, one can define a temperature
T0, where the relaxation time diverges and the configurational
entropy vanishes [15]. T0 is below the temperature Tg where
the dynamical glass transition occurs, the value of which de-
pends on the sensitivity of the probe. The VFT fit allows one
to overcome such an experimental upper bound and to infer
T0, that is, the temperature scale at which the residual entropy
is comparable to that of the ordered state. In our experiment,
the role of Tg is then played by Tc, where the resistance
drops below the measurable threshold, while T0 corresponds
to the transition to the truly superfluid phase where Dv (or
ρ) vanishes. In that case, we expect that the “VFT” region
above Tc shows the extent of the dynamically heterogeneous
vortex liquid in the (T, H ) phase diagram (Fig. 2). Analogies
to glasses were used to propose the VFT law (1) to describe
the slowing down and freezing of the strongly disordered 3D
vortex matter [24,25], but in our a-MoGe films the disorder-
dominated high-field regime (T0 = 0) is described, in contrast,
by the TAFF model (3). Thus our results strongly suggest
that quenched disorder is not the main origin of the VFT
suppression of the vortex diffusivity observed at lower H .

III. MONTE CARLO SIMULATIONS

To explore the possibility that the presence of orienta-
tional correlations may give rise to dynamical heterogeneities
and the VFT behavior, we performed Monte Carlo (MC)
simulations on the 2D XY model in a transverse field. Its
Hamiltonian reads

HXY = −J
∑

i,μ=x̂,ŷ

cos
(
θi − θi+μ + Fμ

i

)
, (4)

where θi represents the SC phase of the condensate, J
is the effective Josephson-like interaction between nearest-
neighboring sites, and Fμ

i = 2π
�0

∫ ri+μ

ri
Aμ

i drμ is the Peierls
phase resulting from the minimal substitution prescription.
The intensity of the magnetic field Bẑ = 	∇ × 	A can be ex-
pressed in terms of the quantum-flux fraction f passing
through a unitary plaquette f = Ba2/�0, where a = 1 is the
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FIG. 3. (a) MC results of the T -dependence of the superfluid stiffness Js and the G6 orientational order parameter. The insets show snapshots
of the VL at temperatures T = 0.02, 0.04, 0.07 from left to right, respectively. Blue dashed line: the temperature T0 where the VFT fit of Dv

shown in panel (b) vanishes. Gray dot-dashed line: the isotropic to the hexatic liquid transition temperature Thex obtained from χ6 (see Fig. 11
in Appendix E). Below T � T0, a pinned solid exists, with true quasi-long-range positional and long-range orientational order, as identified
by a finite Js and G6 � 1. Above T0, the quasi-long-range positional order is lost due to the appearance of dislocations, formed by bound
pairs of disclinations with opposite sign (marked with blue and orange dots in the VL snapshots). As T further increases above Thex, isolated
disclinations appear, leading to a fully isotropic liquid with vanishing orientational order. (b) T -dependence of the vortex diffusion constant
Dv, extracted from the diffusive regime of the mean-square displacement shown in the inset. The dashed lines in the inset mark the linear fits
〈	r2(t )〉 ∼ Dvt at selected T . In the main figure, the dashed blue line is a fit of Dv with the VFT law (2), while the continuous red line is the
Arrhenius fit Dv,Arrh = D0

v exp(−Uv/T ). The vertical gray dot-dashed line indicates Thex.

lattice spacing. Within the model (4), vortices are topological
excitations of the phase variable θi, allowing for the direct
characterization [26–31] of the static properties of the solid-
to-liquid transition, via computation of the phase rigidity.
Dynamical effects, however, have been mainly studied via
effective models where vortices are mapped into individual
particles [10,32–34]. Here we show how model (4) allows us
to address both aspects. Indeed, the solid phase can be identi-
fied via the superfluid response, and the dynamical properties
of vortices can be characterized by tracking the diffusion of
each individual vortex in time at a given T.

To establish the superfluid phase, we computed the su-
perfluid stiffness Js, namely the global phase rigidity of the
condensate (see Appendix E). At the same time, to establish
the orientational order of the VL, we computed the sixfold
orientational order parameter G6 (see Appendix E). The T
dependence of Js and G6 is shown in Fig. 3(a), along with
prototypical images of the corresponding VL; T is expressed
in units of J/kB. We can identify three distinct phases: a low-T
SC phase, where the VL is a pinned solid with a complete
hexagonal order (G6 � 1); a disordered non-SC phase at high
T , where the VL has melted into an isotropic liquid (G6 � 0);
and an intermediate phase, which is a liquid (Js = 0) but
with a persistent orientational order of the VL (G6 �= 0) (see
also Fig. 12 in Appendix E). The isotropic to hexatic liquid
critical temperature Thex in Fig. 3 has been identified from the
orientational susceptibility χ6 (see Fig. 11 in Appendix E).

Our study of vortex dynamics reveals all the typical fin-
gerprints of the hexatic phase, as identified in 2D soft-colloid
systems [35–39]. We tracked in time each individual vor-
tex, and we computed the vortex mean-square displacement
〈	r2(t )〉, where 〈· · · 〉 denotes the thermal average and the av-
erage over 10 independent numerical simulations, at several T

[see Fig. 13(b) in Appendix E and inset of Fig. 3(b)]. At high
T , we find 〈	r2(t )〉 directly crosses over from a short-time
subdiffusive regime to the typical long-time diffusive regime,
where 〈	r2(t )〉 ∼ Dvt , with Dv the vortex diffusion con-
stant. However, at the verge of the isotropic- to hexatic-liquid
transition, an additional subdiffusive regime appears with a
strong suppression of 〈	r2(t )〉 at intermediate timescales.
This hallmark of dynamical heterogeneities is due to the
caging mechanism provided by the finite orientational order
in the hexatic phase (see also Video S1 of the Supplemental
Material [40], described in Appendix G). The signatures of the
dynamical heterogeneities persist at longer timescales, with
a marked reduction at these temperatures of the asymptotic
diffusion coefficient, defined as Dv = 1

4 limt→∞〈	r2(t )〉/t .
The resulting T -dependence of Dv(T ) is shown in

Fig. 3(b). It is clear that Arrhenius law strongly deviates
from the data at low T , and the VFT law provides a good
description of the data, similar to our experimental findings in
the lower-field regime. Also, we see an internal consistency
between the static characterization and the vortex dynamics
in the description of the transition from solid to liquid, i.e., T0

extracted from the VFT fit almost coincides with the T where
Js vanishes [see Fig. 3(a)].

IV. DISCUSSION AND CONCLUSIONS

Our study has revealed similarities between the thermal
melting of a 2D VL in weakly pinned a-MoGe films and the
behavior of fragile glass-forming liquids. The results of our
numerical work strongly support the existence in our samples
of heterogeneous dynamics whose origin can be mainly at-
tributed to the presence of orientational correlations, while
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below T0 a true superfluid state is recovered, in contrast to
early conclusions [41].

Using the analogy with strong and fragile glasses [15], we
can argue that the decrease of T0 with increasing H signals a
crossover from a fragile to a strong glass (with T0 = 0). This
is consistent with the magnetic field increasing the effective
disorder [23], which suppresses the orientational correlations
leading to a disordered state where the dynamics is no longer
heterogeneous and the Arrhenius trend is recovered. The ex-
trapolation of T0(H ) to zero at H∗ � 9 T also suggests the
existence of a quantum critical point separating the dissipa-
tionless solid (for H < H∗) from the SC vortex glass phase
that only exists at T = 0. A similar field-tuned transition
between two SC ground states with different ordering of the
vortex matter, a vortex solid at lower H and a T = 0 vortex
glass at higher H , has been observed also in underdoped
copper-oxide high-Tc superconductors [42,43], which are rela-
tively clean quasi-2D systems. In this context, it is interesting
to speculate whether the low-temperature part of the T0(H )
line corresponds to the so-called order-disorder transition that
has been observed in numerous experiments on various SC
materials [44].

Our work establishes an additional paradigm for the 2D
vortex dynamics in the presence of weak quenched disorder,
in close analogy with fragile glass dynamics of the 2D melt-
ing in soft-matter systems. Further insight into the physical
mechanisms responsible for such heterogeneous dynamics of
the melting of a 2D VL could come from experiments on more
disordered thin films and theoretical exploration of its evolu-
tion in the presence of finite disorder. Moreover, thin films
of other relatively clean amorphous SC materials could be
tested with similar transport measurements to verify the gen-
eral character of the resulting phase diagram. Other probes,
such as scanning tunneling spectroscopy at various tempera-
ture and magnetic field ranges, could provide a more detailed
understanding of such transitions. At the same time, our work
establishes the 2D weakly pinned vortex lattice systems as an
alternative platform to systematically investigate the fragile-
to-strong glass crossover with the significant advantage of a
single tuning parameter, the magnetic field H . This is a re-
markable result since typically the well-known Angell plot is
realized comparing different materials, each one being either a
fragile or a strong glass. Our findings offer a fresh perspective
on the universal emergence of glassy behavior in different
research areas, ranging from SC vortex physics to soft-matter
colloidal systems and physisorbed atom layers [45].
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APPENDIX A: SAMPLES

a-MoGe films with thickness t = 22 nm were grown on
surface-oxidized Si substrate through pulsed laser deposition.
The reported chemical stoichiometry of these thin films, as
seen from the dispersive x-ray analysis, is Mo71±1.5Ge29±1.5;
their properties have been described in detail elsewhere
[8,9,17]. The films were capped with a 2-nm-thick Si layer to
prevent surface oxidation, and patterned in Hall bar geometry
using a shadow mask. Detailed measurements were performed
on two samples with dimensions 0.36 mm (width)×2.8 mm
(length), and 1.1 mm distance between the voltage contacts.
The two samples exhibited an almost identical behavior. For
sample 1, the voltage contact width is 0.05 mm and the zero-
field Tc = (7.70 ± 0.05) K; for sample 2, the voltage contact
width is 0.025 mm and Tc = (7.50 ± 0.05) K. Tc is defined as
the temperature at which the resistivity starts to rise above the
experimental noise floor (∼3.6 × 10−4 m� cm or ∼0.5 � in
resistance). Gold leads (≈50 μm in diameter) were attached to
the samples (on top of a Si layer) using two-component EPO-
TEK-E4110 epoxy. The resulting contact resistances were
∼200 � each at room temperature.

APPENDIX B: MEASUREMENTS

Resistance was measured using the standard four-probe
ac technique (∼13 or 17 Hz) with either SR 7265 lock-
in amplifiers or an LS 372 resistance bridge. Some of the
measurements were performed using a dc reversal method
with a Keithley 6221 current source and a Keithley 2182A
nanovoltmeter. The excitation current densities were 0.1–4
A cm−2, depending on the temperature, and low enough to
avoid Joule heating. Specifically, a current of Iexc = 10 nA
(density ∼0.1 A cm−2) was used for measurements at T <

1 K, while most of the T > 1 K measurements were done
with 100 nA (density ∼1 A cm−2), making sure that the data
are still in the Ohmic regime (i.e., that the V -I response at low
currents is linear.) dV/dI measurements were carried out by
applying a dc current bias Idc and a small ac current excitation
(∼13 Hz) through the sample (Iac = 1 μA at T > 1 K and
Iac = 10 nA at T < 1 K), while measuring the ac voltage
across the sample for 150 s and recording the average value
for each Idc.

Several cryostats were used to cover a wide range of tem-
peratures and fields: a HelioxVL 3He system (0.25 � T �
200 K) with H up to 9 T; a dilution refrigerator (0.02 � T �
1 K) and a 3He system (0.3 � T < 60 K) in superconducting
magnets with H up to 18 T; and a variable-temperature insert
(1.8 < T � 200 K) in a Quantum Design PPMS with H up
to 9 T. The fields, applied perpendicular to the film surface,
were swept at constant temperatures. A low sweep rate of 0.1
T/min was used to avoid heating of the sample due to eddy
currents. Measurements in the dilution refrigerator and the
HelioxVL 3He system were equipped with filters, consisting
of a 1 k� resistor in series with a π -filter [5 dB (60 dB) EMI
reduction at 10 MHz (1 GHz)] in each wire at the room tem-
perature end of the cryostat to reduce high-frequency noise
and heating by radiation. Furthermore, the dilution refrigera-
tor and the 3He system measurements in 18 T magnets were
carried out in the Millikelvin Facility of the National High
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FIG. 4. Resistivity of a 22-nm-thick a-MoGe film at different T,
ranging from 0.017 to 14 K, as a function of H. The data are shown
for sample 1.

Magnetic Field Laboratory, which is an electromagnetically
shielded room.

The resistivity curves obtained as a function of the applied
magnetic field for different temperatures are shown in Fig. 4.
The same curves are shown as a function of the temperature
at different fields in Fig. 5(a). Figure 5(b) shows the resulting
T -H phase diagram, shown on a linear scale in Fig. 2, on a
log-T scale.

APPENDIX C: FITTING PROCEDURES

The T -dependence of the resistivity ρ at various fixed
H was fitted to the Arrhenius and VFT forms: ρArrh =
ρ0 exp(−U (H )

T ) and ρVFT = Z̃ exp(− W̃ (H )
T −T̃0(H )

), respectively, as

described in the main text. We find that, at low H , ρVFT

provides a better description of the data than ρArrh. This is
illustrated in Fig. 1(b). Here we present also examples for two
more fields (3 and 8.2 T) for which the VFT and the Arrhenius
fits were performed (Fig. 6). The low-field, H = 3 T resistiv-
ity data within the two red arrows follow the VFT fit (blue
dotted line), and the data are pretty far from the Arrhenius
fit (red dashed line). The high-field, H = 8.2 T resistivity
data still follow the VFT fit better, but the deviation from the
Arrhenius fit is getting smaller.

To compare with the results of numerical simulations, we
also performed fits to the diffusion coefficient, Dv , using
ρ(T ) = (h/2e)2nvDv/(kBT ), where nv = B/�0 is the vortex
density and Dv = Z exp(− W (H )

T −T0(H ) ). For both this fit and ρVFT,
we implemented MATHEMATICA’s global minimization fea-
ture to obtain the fitting parameters. In both cases, the fitting
parameters were found to be the same within error, consis-
tent with the exponential term dominating ρ(T ). The results
for T 0(H ) obtained using fits to the diffusion coefficient are
shown in Fig. 5(b), along with the values of Tc(H ) and Hc2(T )
(see also Fig. 2 in the main text). We note that, when com-
paring the fits, we paid attention not only to the quality of the
fit, but also to the range of temperatures where either one was
effective—those ranges are shown in Fig. 2 of the main text.

Figure 7 shows all the parameters obtained from fits to the
diffusion coefficient.

In Fig. 8, we compare the parameter W from fits to the
diffusion coefficient with the parameter U from the ρArrh fit
for different values of H . For H � 9 T where T0 = 0, the two
parameters are equal within error (Fig. 8), thus confirming the
consistency of the analysis.

At these fields, the resistance R (or ρ) exhibits an orders-
of-magnitude drop with decreasing T , and thus it can be fitted
well with the Arrhenius form, as shown in Fig. 9(a). The
parameters obtained from such ρArrh fits for various fields

(a) (b)

FIG. 5. Resistivity and the (T, H ) phase diagram of a 22-nm-thick a-MoGe film. The data are shown for sample 1. (a) ρ(T ) at different
H over a range of temperatures (0.017 � T � 14 K), shown on a linear scale. Dashed lines guide the eye. (b) T -H phase diagram in a log -T
scale: Tc (red diamonds), Hc2 (green triangles), and T0 (blue dots) represent the superconducting transition temperature, dependent on our
experimental resolution, the upper critical field, and the transition to a vortex solid, respectively. The error bars in T0 reflect the standard error
from the VFT fits; error bars in Tc(H ) and Hc2 represent the uncertainty in defining the magnetic field where resistance rises above the noise
floor or reaches 95% of the normal state resistance, respectively. The color map corresponds to dρ/dT .
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FIG. 6. Comparison of the Arrhenius and VFT fits of ρ(T ). The data are shown for sample 1; Iexc = 100 nA. (a) H = 3 T; T̃0 = (4.71 ±
0.02) K. (b) H = 8.2 T; T̃0 = (1.25 ± 0.06) K. In both panels, the Arrhenius (red dashed lines) and VFT (blue dotted lines) fits are performed
to the data shown within the two red arrows. The VFT form describes the data better, especially at the lowest T . Since T̃0 decreases with
increasing H , the difference between the two fits also decreases at higher fields. For the same data, fits to the diffusion coefficient [Eq. (2)
in the main text] yield T0 = (4.69 ± 0.02) and (1.14 ± 0.06) K for 3 and 8.2 T, respectively; these values are the same within error as the
corresponding T̃0.

are shown in Fig. 9(b). The activation energy U shows a
logarithmic dependence on H as expected from the TAFF
model and the logarithmic vortex-vortex interaction in 2D
[20].

APPENDIX D: NONLINEAR TRANSPORT

We find that the V -I characteristic at low enough T remains
non-Ohmic (i.e., nonlinear) for Idc �= 0, and dV/dI increases
with Idc [Figs. 10(a) and 10(b)]. Such nonlinear transport
is expected from the motion of vortices in the presence of
disorder, i.e., it is a signature of a viscous vortex liquid [23].
As T increases, nonlinear behavior is no longer observed

FIG. 7. The VFT fitting parameters T0, W , and ln Z . The data are
shown for sample 1. The error bars represent standard errors obtained
from the nonlinear fits of ( 2e

h )2kBρT to the VFT law in Eq. (2) of the
main text. A strong correlation between W (purple triangles) and ln Z
(magenta squares) is observed (ln Z is multiplied by 2.5 on the y-axis
for clarity). T0 (blue dots) is independent of the other two parameters.

[Figs. 10(c) and 10(d)]. At T < Tc, where ρ drops below our
noise floor, a finite Idc (i.e., a critical current) is then needed
to depin a measurable number of vortices [Fig. 10(e)]. Since
ρ(T ) in the liquid phase at high fields can only be fitted
with the Arrhenius law ρArrh = ρ0 exp(−U (H )

T ), our transport
results suggest that in this regime an isotropic vortex liquid
freezes into an amorphous vortex glass as T → 0, i.e., the
solid phase is only realized at T = 0.

In the normal state (H > Hc2), V -I characteristics are
Ohmic, i.e., we find a linear response [Figs. 10(b) and 10(e)],
as expected. In the low-H (H < H∗, T0 �= 0, T > Tc) regime
(“VFT” in Fig. 2 of the main text), we also find Ohmic

FIG. 8. Comparison of the parameters W (from the VFT fit) and
U (from the Arrhenius fit). The data are shown for sample 1. W
(purple triangles) and U (black diamonds) are equal, within error,
for H � 9 T where T0 = 0, thus confirming the consistency of the
analysis. Dashed lines guide the eye. The error bars for W and U are
standard errors from the nonlinear fit of ( 2e

h )2kBρT to the VFT form
and the linearized fit of ρ to the Arrhenius form, respectively.
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FIG. 9. Arrhenius R(T ) in the high-field (T0 = 0) regime. The data are shown for sample 1. (a) Resistance R vs 1/T for fixed fields.
Dashed lines are linear least-squares fits. (b) The fitting parameters from (a), i.e., activation energy U (black diamonds) and ln R0 (blue dots),
vs H . The error bars represent standard errors obtained from the linearized fits in (a). U (H ) = U0 ln(H0/H ), where U0 = (31.5 ± 0.4) K and
H0 = (12.4 ± 0.5) T. The red dashed line is a linear least-squares fit.

behavior [Fig. 10(f)]. However, since this regime is measured
only at relatively high T , in analogy with the Arrhenius region
we speculate that any nonlinear transport that might be present
for small Idc at lower T is experimentally inaccessible.

APPENDIX E: MONTE CARLO SIMULATIONS

We have performed Monte Carlo (MC) simulations on a
spin system on a square grid with lattice spacing a = 1, lin-
ear size L = 56, and uniform magnetic field, whose intensity
can be expressed in terms of the quantum-flux fraction f
passing through a unitary plaquette f = Ba2/�0. Here we
considered f = 1/L, which results in Nv = f L2 = 56 vortices
with a given vorticity. Although the system size simulated is
smaller than in other numerical simulations of particle sys-
tems [10,34–37,39], it is the state of the art for numerical
simulations of vortex lattices within XY models. Each MC
step consists of the local updating of all spins of the lattice by
means of the Metropolis-Hastings algorithm. All observables
have been computed at equilibrium, as achieved after a certain
number t̄ of MC steps. For temperatures above T0, we identify
t̄ with the entrance into the diffusive regime, while below T0

we estimated that t̄ � 108 MC steps provides a stable result.
After discarding the first t̄ steps, we reset the Monte Carlo
time and proceed with the measurements of both the statical
and the dynamical observables.

The superfluid stiffness Js is defined as the linear response
to an infinitesimal phase twist in a given direction, say μ, and
it reads

Jμ
s = Jμ

d − Jμ
p , (E1)

Jμ

d = J

L2

〈∑
i

cos
(
θi − θi+μ + Fμ

i

)〉
, (E2)

Jμ
p = J2

T L2

〈[∑
i

sin
(
θi − θi+μ + Fμ

i

)]2〉

− J2

T L2

〈∑
i

sin
(
θi − θi+μ + Fμ

i

)〉2

. (E3)

It accounts for two contributions: the diamagnetic part Jμ

d ,
proportional to the energy density of the system, and the
paramagnetic part Jμ

p , given by the connected current-current
response function. Here and in what follows, 〈· · · 〉 stands for
both the thermal average, performed at equilibrium over all
the MC steps, and the average over 10 independent numerical
simulations.

The local orientational order parameter ψ6 j is obtained by
means of a Delaunay triangulation of the VL. It is defined for
hexagonal symmetry as

ψ6 j = 1

Nj

Nj∑
k=1

e6iθ jk , (E4)

where Nj is the number of nearest neighbors of the jth vortex,
and θ jk is the angle that the bond connecting the two neigh-
boring vortices j and k forms with respect to a fixed direction
in the plane. The global sixfold orientational order parameter
G6 is then obtained by summing over all the Nv vortices and
by computing its average, i.e., G6 = 〈 1

Nv

∑N
j=1 ψ6 j〉. The sus-

ceptibility of the orientational order parameter χ6 is defined
as

χ6 = 〈
�2

6

〉 − 〈�6〉2, (E5)

where �6 = 1
Nv

∑Nv
j=1 ψ6 j , with ψ6 j defined in (E4). The tem-

perature dependence of χ6 (Fig. 11) exhibits a peak at T =
0.05 that we identify as the critical temperature Thex between
the hexatic and the isotropic liquid phase.
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FIG. 10. Differential resistance dV/dI as a function of dc current Idc in different regimes. (a) In the “Arrhenius” region (Fig. 2) at T = 1.3 K
and H = 9 T, a strong nonlinearity is observed, consistent with the motion of vortices in the presence of disorder; Tc(H = 9 T) = 1.1 ± 0.2 K.
(b) Similar nonlinear dV/dI vs Idc in the “Arrhenius” region for H = 12.7 T and T = 0.017 K. At a much higher field (H = 18.0 T > Hc2),
in the normal state, dV/dI vs Idc is Ohmic. The nonlinear behavior becomes unobservable also as T increases, as shown in (c), for H = 9 T
at T = 1.5 K, and (d), for H = 9 T at T = 1.75 K, at lower currents than in (a). (e) The evolution of dV/dI vs Idc with increasing H , as
shown, at T = 0.017 K. The data for H = 18.0 and 12.7 T are the same as in (b). When ρ drops below the noise floor, e.g., for H = 12.25 T, a
finite Idc � 2 μA, i.e., a critical current, is needed to depin a measurable number of vortices. At somewhat higher H = 12.5 T, ρ is nonzero at
low current bias, consistent with the vortex creep due to thermal fluctuations. The depinning effect becomes observable at the critical current
Idc ∼ 0.1 μA, which is lower than that for H = 12.25 T, as expected. (f) dV/dI vs Idc is Ohmic at T ≈ 5.5 K and H = 2.5 T, where ρ(T )
obeys the VFT law. At this field, T0 ≈ 5 K and Tc ≈ 5.37 K (Fig. 2). The error bars in all panels correspond to ±1 SD obtained from averaging
the ac voltage over 150 s at a fixed Idc. Dashed lines guide the eye. The T fluctuations for these measurements were less than 5 mK.

Due to the small size of our system, we cannot discriminate
between a floating solid [29,33] and a hexatic liquid based
on the static properties. Nonetheless, the dynamic features of
the vortices show all the typical fingerprints of the hexatic
phase, as they have been identified in 2D soft-colloidal sys-
tems [35–39].

1. Monte Carlo simulations: Static characterization
of the vortex lattice

To further characterize the three phases found, we have
computed the structure factor of the vortex lattice defined as

S(k) = 1

2N2
v

∑
i, j

exp[ik · (ri − rj)]〈ν(ri)ν(rj)〉, (E6)

where Nv is the total number of vortices, ν(ri) is the local
vortex density, equal to 1 if a vortex occupies the site ri and
zero otherwise, and k is the vortex lattice reciprocal vector.
In Fig. 12, we show S(k) computed at three different temper-
atures: T = 0.02, 0.04, 0.07, corresponding, respectively, to

the solid, hexatic-liquid, and isotropic-liquid phase. At high
T , the structure factor presents the typical circular symme-
try of an isotropic liquid. Decreasing the T , such symmetry
breaks down and the Bragg-peaks structure appears showing
six well-defined spots. Finally, in the solid state the Bragg
peaks become well-defined even at large k. Let us high-
light that the structure-factor anisotropy observed at low T is
due to the commensurability of the VL with respect to the
underlying square lattice of spins. The VL has indeed two
ways to align with respect to the underlying square lattice:
to be perfectly commensurate with either the x̂-axis or the
ŷ-axis.

To identify the isotropic to hexatic liquid transition,
we have computed the orientational susceptibility χ6. The
susceptibility of the orientational order parameter χ6 is
defined as

χ6 = 〈
�2

6

〉 − 〈�6〉2, (E7)

where �6 = 1
Nv

∑Nv
j=1 ψ6 j with ψ6 j defined in Eq. (E4) above.
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FIG. 11. Orientational order parameter and susceptibility. Ori-
entational order parameter G6 and the corresponding orientational
susceptibility χ6 as a function of the temperature in units of the
coupling constant of the XY model J . The peak of the orientational
susceptibility identifies the temperature Thex separating the hexatic
from the isotropic liquid phase.

2. Monte Carlo simulations:
Signatures of heterogeneous dynamics

The heterogeneous nature of the vortex dynamics in the
hexatic phase has its fingerprints in different observables. To-
gether with the mean-square displacement 〈	r2(t )〉, discussed
in the main text, we also computed the self-part of the inter-
mediate scattering function Fs(|k∗|, t ), and the non-Gaussian
parameter α2(t ). The resulting trends in time for different
temperatures are shown in Fig. 13, where the time variable
t labels the discrete MC steps. To highlight the onset of the
hexatic phase, the curves at the verge of the isotropic-liquid to
the hexatic-liquid transition (T = 0.05) have been plotted in
gray.

The self-part of the intermediate scattering function is a dy-
namical autocorrelation function for the VL, and it is defined
as

Fs(|k∗|, t ) = 1

Nv

Nv∑
j=1

1

(tM − t )

tM−t∑
t0=0

1

Nk

×
∑

k:|k|=|k∗|
exp{ik[r j (t0 + t ) − r j (t0)], (E8)

where |k∗| = 2π/av (with av the lattice spacing of the VL)
is the reciprocal vector at which the structure factor shows
its first peak (see Fig. 12), r j (t ) is the position of the jth
vortex at the MC time t , and tM is the largest MC time used
in the simulations. The thermal average is thus the sum over
all the possible t0 for a given time t , while (· · · ) stands for the
average over 10 independent simulations. From Fig. 13(a),
one can see that, in the isotropic liquid phase, Fs(|kmax|, t )
decays exponentially to zero with a unique relaxation time.
On the other hand, as the hexatic phase is approached, it starts
showing a plateau, which increases with decreasing T . This
two-step relaxation decay is another typical signature of a

(a)

(b)

(c)

FIG. 12. Structure factor of the vortex lattice in the three phases.
Structure factor computed for a given sample at three different
temperatures corresponding to the three different phases: T = 0.07
isotropic liquid phase; T = 0.04 hexatic liquid phase; T = 0.02 solid
phase. To highlight the main features of the structure factor, we have
fixed S(k = 0) = 0.

caging mechanism [15] due in this case to the onset of the
hexatic phase. The mean-square displacement, already shown
in the inset of Fig. 3(b) and in Fig. 13(b), is defined as

〈	r2(t )〉 = 1

Nv

Nv∑
j=1

1

(tM − t )

tM−t∑
t0=0

|r j (t0 + t ) − r j (t0)|2. (E9)
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(a) (b) (c)

FIG. 13. Dynamic characteristics of the liquid phase. (a) The self-part of the intermediate scattering function computed at |k∗| = 2π/av,
with av the lattice spacing of the VL; (b) the mean-square displacement; and (c) the non-Gaussian parameter as a function of the MC time for
different temperatures. The two arrows, which indicate entry into and exit from the cage, refer to the temperature T = 0.05 plotted in gray. In
all panels, gray lines correspond to the hexatic critical temperature Thex = 0.05.

As briefly introduced in the main text, 〈	r2(t )〉 is com-
puted for each individual vortex at several T . At high T ,
〈	r2(t )〉 directly crosses over from the short-time subdiffu-
sive regime (due to the presence of the numerical square grid)
to the typical long-time diffusive behavior, where 〈	r2(t )〉 ∼
Dvt , with Dv the vortex diffusion constant. However, at
the verge of the isotropic- to hexatic-liquid transition, an
additional subdiffusive regime appears with a strong sup-
pression of 〈	r2(t )〉 [see Fig. 13(b) and Fig. 3(b), inset]
at intermediate timescales that is the hallmark of dynamical
heterogeneities (see also Video S1 in the Supplemental Ma-
terial [40]). This signals an inhibition of the particle motion
due to the cage formed by the neighboring particles, similar
to what happens in supercooled liquid and glassy systems.
The signatures of the dynamical heterogeneities persist at
longer timescales, with a marked reduction at these tem-
peratures of the asymptotic diffusion coefficient, defined as
Dv = 1

4 limt→∞〈	r2(t )〉/t .
The intermediate plateau observed both in the mean-square

displacement and in the intermediate scattering function sig-
nals the emergence of a heterogeneous dynamics within a
certain timescale. To further investigate this behavior, we have
computed the non-Gaussian parameter

α2(t ) = 1

2

〈	r4(t )〉
〈	r2(t )〉2

− 1, (E10)

which quantifies the heterogeneity of the dynamics in terms
of strength and extent in time [46]. We find [Fig. 13(c)]
that, at very short times, the VL displays a strongly hetero-
geneous dynamics for all the temperatures analyzed. This
anomalous behavior is due to the underlying squared grid of
spins that forces vortices to move only along four possible
directions: ±x̂ and ±ŷ. With increasing time, the direction
of motion becomes less sensitive to the underlying grid, and
α2(t ) decreases. Apart from the initial heterogeneity, at high
temperatures the VL shows a homogeneous dynamics. On the

other hand, at the onset of the hexatic phase, the non-Gaussian
parameter starts displaying a dome at longer timescales. This
additional signature of heterogeneity is another indication of a
caging mechanism triggered by the onset of the hexatic phase.
With decreasing T , the height of the dome increases, signaling
the increase of the heterogeneous dynamics strength. At the
same time, the peak of the dome moves to longer times, re-
flecting the increase of the timescale at which vortices escape
from their cage.

APPENDIX F: BRIEF DESCRIPTION OF THE
SUPPLEMENTAL VIDEO

Supplemental Video S1: Heterogeneous vortex motion in
the hexatic phase [40]. Images of the vortex motion at T =
0.045 for different MC times. In this regime, the dynamics is
strongly heterogeneous in both space and time. The vortices
remain indeed trapped for a long time in the cage formed by
their neighbors before exiting in a collective burst along the
symmetry axis of the vortex lattice.

In the video, the vortices are represented as colored disks,
centered at a given position xi at time ti. Each frame shows
vortex evolution over 10 consecutive discrete time steps ti. To
help visualize the time evolution, we assigned to each disk
a radius ri that is increasing with increasing time ti. As a
consequence, larger disks identify the vortex position at larger
times. In addition, we add a solid black line connecting the
centers of the disks to help visualize the vortex motion as a
function of time. The gray lines in the background show the
trails left by the vortices during the whole simulation. The
horizontal line at the bottom of the image indicates the time
flow. Note that the time steps ti are not equally spaced with
respect to the MC time. Indeed, for the sake of the memory al-
location, we have stored the data each tMC = int(Aq) + kANq ,
with q ∈ [0, Nq], k ∈ [0, Nk], and A = 1.3.
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