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Abundance of Weyl points in semiclassical multiterminal superconducting nanostructures
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We show that the quasicontinuous gapless spectrum of Andreev bound states in multiterminal semi-classical
superconducting nanostructures exhibits a large number of topological singularities. We concentrate on Weyl
points in a four-terminal nanostructure and compute their density and correlations in three-dimensional parameter
space for a universal random matrix theory model as well as for the concrete nanostructures described by
the quantum circuit theory. We mention the opportunities for experimental observation of the effect in a
quasicontinuous spectrum.
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The topological properties of quantum spectra in con-
densed matter systems received considerable attention in the
past decade and are still under active consideration [1–4].
A large research field that has been formed thereby ad-
dresses gapped phases of insulators [5] and superconductors
[6] characterized by globally defined topological numbers
and the edge modes [7] at the interfaces separating such
phases. In addition to this, the spectra can exhibit topo-
logical singularities in the form of level crossings where
the topological charge is defined at the singularity rather
than globally. The simplest example of such singularity is a
Weyl point (WP) [8] corresponding to the crossing of two
levels in a point in three-dimensional (3D) space of param-
eters. Physical realizations of WPs include special points in
the bandstructure of 3D solids [9], spectra of polyatomic
molecules [10] and nanomagnets [11], and quantum transport
systems [12].

The occurrence of WPs were recently predicted in the
spectrum of Andreev bound states (ABS) of generic four-
terminal superconducting nanostructures [13] where the 3D
parameter space is formed by three independent supercon-
ducting phases of the terminals. Most important, WPs are
the crossings at zero energy that define the topology of the
ground state. These WPs in 3D give rise to two-dimensional
(2D) global Chern numbers that are directly manifested as
quantized transconductances of the nanostructure. The ideal
periodicity of the space of superconducting phases allows to
model higher-dimensional band structures with the multiter-
minal superconducting nanostructures (MTSN). These ideas
resulted in an outburst of theoretical [14–20] and experimental
[21–25] activities in the field of MTSN.

In this paper, we address semiclassical MTSN: those with
a size much exceeding the electron wave length, a large num-
ber of transport channels G/GQ � 1 (with G being a typical
conductance of the nanostructure and GQ ≡ e2/π h̄ being the
conductance quantum), and a large number of ABS. The
Hamiltonian description of semiclassical structures is hardly
practical in view of the large number of parameters: instead,
their properties are mainly determined by a handful of design

parameters. Those include the distribution of diffusive resis-
tivity over the structure, the presence of tunnel junctions and
ballistic contacts, and can be encountered for in the framework
of the finite-element quantum circuit theory [26]. The rest of
the Hamiltonian parameters are considered as random ones in
line with the general approach of mesoscopic fluctuations and
quantum chaos [27–33]. The average properties of the result-
ing quasicontinuous spectrum-like energy-dependent density
of states are determined by design parameters, the correlations
of the level positions in the spectrum are obtained by the meth-
ods of random matrix theory (RMT) taking design parameters
into account.

Recent developments concern the understanding of the
quasicontinuous spectrum in MTNS. It was predicted [34]
that this spectrum can be either gapped or gapless depending
on the design parameters of the MTSN and the point in the
space of the superconducting phases. A specific topology can
be introduced in semiclassical MTSN. It was discovered and
confirmed experimentally [35,36] that the gapped phases are
characterized by topological numbers and the gapless phase
is explained by topological protection of these numbers [37].
The protection-unprotection transition has been discussed in
this context [38].

In this paper, we reveal the abundance of zero-energy
topological singularities [Fig. 1(c)] in the parameter region of
the gapless quasicontinuous spectrum. In four-terminal struc-
tures, those are isolated WPs separated by a typical distance
lc � (G/GQ)−1/2 � 2π . The positions of WPs are randomly
determined by details of the electron interference in the struc-
ture, while their averaged density and its correlations are
determined by the structure design. We relate the density of
WPs to the parameter lc governing the universal parametric
correlations [28,29] in random matrix ensembles, show how to
compute this density for concrete nanostructures, investigate
the density correlations manifested as the transconductace
of the structure, and shortly discuss the opportunities of the
experimental detection of the WPs in semiclassical MTSN’s.
We concentrate on a realistic situation of negligible spin-
orbit interaction [37]. The research presented substantially
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FIG. 1. Weyl points in semi-classical MTSN. (a) Four-terminal
semiconducting nanostructure, three independent phases forming a
parameter space. (b) The domains of gapped and gapless phases at
ϕ3 = 0. (c) The discrete spectrum near the boundary of gapped and
gapless domains plotted along a path in 3D parametric space that
goes via the WPs. The distance between the WP’s is of the order of
the local value of lc, a parameter governing the universal parametric
correlations in the corresponding random matrix ensemble.

extends the mesoscopic fluctuation approach formulated in
[27–33,39–41].

Let us start with qualitative estimations. Given a four-
terminal nanostructure of a typical conductance G one
expects � G/GQ, GQ ≡ e2/π h̄, conduction channels, and,
correspondingly, � G/GQ discrete ABS affected by su-
perconductivity. This estimation is valid both for “short”
nanostructures with the typical size being smaller than the su-
perconducting coherence length, where these levels are spread
in the energy interval �, with � being the superconduct-
ing energy gap and “large” nanostructure where these levels
are concentrated in a much smaller energy interval ETh �
(G/GQ)δS , δS being the mean level spacing in the normal state.
The energies of these levels depend on the three supercon-
ducting phases. Owing to periodicity in phases, the spectrum
is to be considered in a Brillouin zone (BZ) of the size � 2π .
The RMT of parametric correlations suggests that the level
energies wiggle randomly. The energies change at the scale
of the level spacing at a typical distance lc in the parameter
space [28,29]. This distance is determined from a comparison
of the mean fluctuations of the derivatives of the energies with
respect to the parameters and this level spacing. For our situa-
tion, the estimation lc � √

GQ/G in the space of phases holds
for both long and short nanostructures. To understand WP’s
we concentrate on the level that is closest to zero energy. Upon
wiggling, it will reach zero at a typical distance of the order
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FIG. 2. Weyl points in concrete nanostructures. Example cir-
cuits: (a) ballistic and (b) diffusive crosses of identical arm
conductances G. The numerical histograms for dV/d (l−

c 3) for the
(c) ballistic (c) and (d) diffusive cross. In (c), we compare estimations
obtained from the analytical formula (green lines) and the actual
positions of the WPs found (red lines) to demonstrate the correspon-
dence within the statistical error. An example of (e) WP positions
found G/GQ = 50.

of lc. Therefore, the total number of WP’s in the Brillouin
zone can be estimated as Nw � (lc)−3 � (G/GQ)3/2. Similar
estimations hold for any number of terminals Nt . The Weyl
singularities are, in this case, manifolds of dimension Nt − 4
(e.g., lines for Nt = 5) and lc estimates a typical distance
between the singularities as well as their typical wiggling
scale.

Our detailed results (see Fig. 2) give

Nw = A(G/GQ)3/2 (1)

for the cross-like structures with the arm conductances G
where A = 0.40 for the ballistic conductor and A = 0.16 for
the diffusive one. The dimensionless coefficient A < 1, this is
explained by a rather small fraction of the BZ volume taken
by the gapless phase (25% for ballistic and 18% for diffusive
cross) and a relatively large numerical coefficient B for the rel-
evant lc = B(G/GQ)−1/2 [B ≈ 5(6) for the ballistic(diffusive)
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cross is determined from the maximum of the distributions
plotted in Figs. 2(c) and 2(d)].

As it was shown in [13] the transconductance of the struc-
ture is defined by a Chern number C of a plane traversing the
BZ. The difference of the two Chern numbers corresponding
to two different planes is given by the total charge of the
WP’s enclosed between the planes. If the WP positions were
uncorrelated, the estimation of the variance of this difference
would be just the number of WP’s enclosed, with 〈〈(C1 −
C2)2〉〉 � Nw � dl−3

c , 2π � d � lc being the separation of
the planes. This estimation is incorrect: the WPs do correlate
similar to ions in an electroneutral gas, so a charge of a WP
is screened by other points at the distance of the order of their
separation, that is, of lc. Therefore, only WP’s at a distance
� lc contribute to the fluctuation of the Chern number and
〈〈(C1 − C2)2〉〉 � l−2

c � (G/GQ). A typical transconductance
is thus � √

GQG.
Our quantitative results are obtained in the course of three

activities. (i) We study numerically a generic RM model to
relate the density of WPs to l−3

c and quantify the correlations
of WP’s. (ii) We develop a theory to compute l−3

c (φ) for
any MTSN described by the quantum circuit theory [26] and
derive concrete expressions for a single-node circuit. (iii) We
find numerically the positions of WP’s in the ballistic cross
junction [Fig. 2(a)] to prove the consistency of the results
obtained in the activities (i) and (ii). The details of all activities
are given in [42].

Activity A. The studies of statistics of spectral crossings
were pioneered by Wilkinson et al. [39–41]. They introduced
a convenient RMT model in a 3D parameter space {φi},

H (φ) =
3∑

i=1

(sin φiXi + cos φiYi ). (2)

In this model, Xi,Yi are 2N × 2N random Hermitian matrices
with independent normally distributed elements of variance
1/3, N � 1. Since we address the WPs in superconduct-
ing stuctures at zero energy, in distinction from [39–41],
we choose these random matrices to obey Bogoliubov—de
Gennes (BdG) mirror symmetry of the spectrum (class C
[30]). Generally, lc is defined as l−3

c = √
det〈〈viv j〉〉/δ3

S , vi ≡
∂E/∂φi, δS is the mean level spacing at the corresponding
energy. For the model in use, lc = π

√
3/2N conveniently

does not depend on φ so that the WP density is uniform. We
search the positions of WPs by an iterative minimization of
the energy of the closest to zero level. To make sure we find
all the WPs, we repeat the iteration cycle starting it from a
randomly chosen point in the parameter space. We have to do
this a number of times that by a factor exceeds the expected
number of points. The execution time of the algorithm thus
scales as N9/2 so we cannot access very large N and work
with N = 40–80. For the WP concentration, we compute

Nw/V = (0.83 ± 0.05)l−3
c . (3)

This is lower than the concentration of the level crossings
in the Gaussian unitary ensemble (GUE) [40] (2/3)

√
π l−3

c ≈
1.18l−3

c . We reproduce this result searching for the crossings
of the tenth and eleventh levels. The charge density for a WP
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FIG. 3. Correlations of Weyl points. (a) The distribution of WP
charge is “electroneutral.” Owing to this, the fluctuations of Chern
numbers in the planes 1, 2 are contributed to by WPs at the distance
� lc from the planes (in grey strips). (b) The numerical results for
the correlator of Berry curvatures and the fit. The crosses, empty,
and filled squares are the results of independent runs, their scatter-
ing characterizes the accuracy of the results. (c) The charge-charge
correlator as computed from the fit.

realization is defined by

Q(r) =
∑

i

qiδ(r − ri ), (4)

with qi = ±1, ri being the charges and positions of the WPs.
We address the correlator of the charge density 〈〈Q(0)Q(r)〉〉,
with r being the vector distance in units of lc. To enhance
the statistics, we evaluated an equivalent correlator of Berry
curvatures of the closest-to-zero level. The results of 105 runs
per point are presented in Fig. 3 and can be fitted with

〈Bα (0)Bβ (r)〉 = δαβB(r), rB(r) ≈ 10.4e−2.8r−3.3r2
. (5)

Since the charge density of WPs is given by the divergence of
Berry curvature ([43,44])

〈〈Q(0)Q(r)〉〉 = (4π )−2∇2B(r), (6)

see Fig. 3(c) for the plot. By virtue of the electroneutrality of
WP gas

∫
dr〈〈Q(0)Q(r)〉〉 = −Nw/V . The fluctuations of the

Chern number over a surface of the size � lc are governed by
D ≡ − ∫

drr〈〈Q(0)Q(r)〉〉,

〈〈C2〉〉 = D
∫

dS l−2
c (φ), (7)

with dS being an area element of the surface D ≈ 0.5 from
our calculations.

Activity B. While there are no perturbative methods to
compute the density of WPs directly, they are available for the
mesoscopic parametric correlations [31,32]. With those, one
can compute l−3

c for any system characterized by electronic
Green’s functions. We make use of the quantum circuit theory
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[26] that is a powerful finite-element technique for electronic
Green’s functions. In quantum circuit theory, the structure is
subdivided into reservoirs and nodes, the network is formed
by connectors of various kinds, for instance, ballistic, tun-
nel, or diffusive. The Green’s functions are presented by the
matrices Ĝa, Ĝ2 = 1, TrĜ = 0 defined in the nodes and the
reservoirs. The semi-classical solution is obtained by mini-
mization of an action with respect to Ĝ in the reservoirs at
fixed Ĝ in the nodes.

The mesoscopic parametric correlations for a general cir-
cuit theory were derived in [33]. For this, one substitutes
to the action Ĝ of double dimension, two diagonal blocks
corresponding to the parameter sets 1, 2. Near the minimum,
the action can be expanded up to quadratic terms with respect
to nondiagonal deviations of Ǧ, M̌ being the matrix character-
izing the quadratic expansion. The correlator of mesoscopic
fluctuations of the action values at two parameter sets reads
[33]

〈〈S1S2〉〉 = ln det′M̌, (8)

where “prime” excludes the zero eigenvalues of M̌ from the
determinant.

We implement this general technique to compute l−3
c for

concrete superconducting nanostructures. It is known [27]
that the energies of Andreev bound states are expressed in
terms of the effective scattering matrix SS∗, with S being the
electron scattering matrix in the space of all channels coming
to the nanostructure, S∗ being the hole scattering matrix, the
superconducting phases included. The circuit-theory action
at the imaginary energy � sin θ (see, e.g., [45]) before the
averaging over the mesoscopic fluctuations can be expressed
in terms of eigenvalues SS∗ → −eiλ of the effective scattering
matrix, these eigenvalues coming in ± pairs

−S (θ,φ) =
∑

λ

ln

(
1 − cos2 θ cos2 λ

2

)
≈

∑
λ

ln(θ + iλ),

(9)

the last equality holding for close-to-zero
energies/eigenvalues. The correlator of the velocities in
this limit is related to the correlator of the action values

〈〈∂αS (θ )∂βS (θ ′)〉〉 = π
〈〈vαvβ〉〉ρλ

|θ | + |θ ′| . (10)

The action can be represented in a quantum circuit theory of
2 × 2 matrices and the correlator is to be computed with the
aid of Eq. (8). In the Supplemental Material [42], we derive
an explicit expression of l−3

c for a single-node structure.
We concentrate on two simplest example MTSN [Figs. 2(a)

and 2(b)]: a chaotic cavity connected to four leads by ballistic
conductors of the same conductance G, ballistic cross, and
the corresponding diffusive structure, diffusive cross. With
the expressions obtained, we compute the distribution of l−3

c ,
and consequently, the WP density, over the phase space, by
evaluating l−3

c in random points and collecting the data into
histograms: this gives a fraction of the phase-space volume
dV/d (l−3

c ) at a given l−3
c . The histograms for these two ex-

amples are qualitatively similar but distinct. Summing up the
histograms and employing the result (1) gives the already
mentioned estimations of the number of WP’s, Eq. (3).

Activity C. We explicitly compute the WP positions for
random chaotic cavities. For this, we pick up the electron
scattering matrix S from the circular orthogonal ensemble and
find all phase settings at which SS∗ has an eigenvalue −1
[27]. We find 75–95 WPs for N = G/GQ = 50 conform to
the results of the activities A and B and verify the scaling
of the number of points with N . We also perform a more
thorough check evaluating l−3

c in the random positions found
and collecting the data to the histogram. The resulting estima-
tion of dV/d (l−3

c ) that involves 2686 WP’s coincides with the
results of activity B within the statistical error [Fig. 2(c)]. In
Fig. 2(e), we plot the positions of WP’s found for a realization
of S at G/GQ = 50. We choose the coordinate system in the
space of phases to be consistent with the symmetry of the
structure

χ1 = 1
2 (φ1 − φ2 − φ3), (11)

where χ2,3 are defined by the above relation with cyclically
permuted indexes. In these coordinates, the BZ is the trun-
cated octahedron, as for a fcc lattice. The gapped region is in
the center of the BZ, the gapless region encloses its boundary
[46]. The special points where the gapless region becomes in-
finitesimally thin [38] are located in the centers of the squares
and hexagons, and, as seen in the figure, the WPs are mostly
concentrated in the corners of the BZ.

Let us shortly discuss the methods of experimental detec-
tion of WPs in MTSN. For sufficiently large level splitting
G � GQ, the WPs can be found spectroscopically as the zeros
of the lowest ABS. For G � GQ where the level splitting is
small not exceeding kBT , the detection is more challenging.
We envisage three methods. (i) Noise measurement of a re-
sponse. We note that each of the two states forming a WP
cone gives a response, both inductive and Berry curvature,
that diverges near the point. The divergencies are of opposite
signs so thermal averaging cancels those in the average-in-
time signal. However, the divergences are observable either
as a telegraph signature in the time trace of a signal or in the
divergent noise amplitude at frequencies of the order of the
inverse switching time between the states. (ii) Transconduc-
tance (noise) measurements. We predict a transconductance
� √

GGQ. While in the presence of thermal averaging this
transconductance is not quantized, its value, and the noise of
this value, will exhibit fluctuations as a function of the control
phase [13] that can be used for scanning the WP positions.
(iii) Transport spectroscopy. If the MTSN is in a weak tunnel
contact with a normal lead, the differential conductance of this
tunnel junction exhibits anomalies at the WP positions, both
at a low and high voltage bias [47].

In conclusion, we showed how to quantify the density and
correlations of Weyl singularities in a quasicontinuous spec-
trum of a semiclassical MTNS of a given design combining
RMT and quantum circuit theory. The source code and the raw
data can be found at [48]. The field is open for experimental
investigations.

This project received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant Agreement No.
694272).
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