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The superconducting state of Sr2RuO4 was once thought to be a leading candidate for p-wave superconduc-
tivity. A constant Knight shift below the transition temperature provided evidence for spin-triplet pairing, and
a π phase shift observed in Josephson junction tunneling experiments suggested odd-parity pairing, both of
which are described by p-wave states. However, with recent experiments observing a significant decrease in the
Knight shift below the transition temperature, signifying a spin-singlet state, the odd-parity results are left to
be reconciled. In this work, we show that an even-parity pseudospin-singlet state originating from interorbital
pairing via spin-orbit coupling can explain what has been assumed to be evidence for an odd-parity state. In the
presence of small mirror symmetry breaking, interorbital pairing is uniquely capable of displaying odd-parity
characteristics required to explain these experimental results. Further, we discuss how these experiments may be
used to differentiate the proposed pairing states of Sr2RuO4.
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I. INTRODUCTION

The puzzle of superconductivity in Sr2RuO4 (SRO) has
been a long-standing problem with many seemingly contra-
dictory experimental results [1–4]. Once a leading candidate
for (p + ip)-wave spin-triplet superconductivity [5,6], re-
cent experiments show a drop in the Knight shift below
the superconducting transition temperature, potentially rul-
ing this state out [7–9]. Other notable experiments suggest a
two-component order parameter [10–12] which breaks time-
reversal symmetry [13–16] and features gap nodes [17–19].
Attempts to explain these results have led to the recent pro-
posals of various multicomponent, even-parity pairing states
[20–28].

The proposed even-parity states are capable of explaining
many experimental results; however, little progress has been
made in explaining the experimental data supporting odd-
parity superconductivity [29–32]. Primarily, phase-sensitive
Josephson junction experiments observe a π phase shift of
the superconducting order parameter under inversion [29].
Previous studies have shown these results to be consistent with
odd-parity pairing [33,34], whereas conventional even-parity
spin-singlet states have remained in contradiction with these
observations. Conventional even-parity superconductors with
inversion symmetry breaking have been shown to display
both even- and odd-parity character in noncentrosymmetric
superconductors [35,36]; however, this effect would be much
smaller in SRO.

In this work, we study even-parity intraband pseudospin-
singlet superconductivity, evolved from interorbital spin-
triplet pairing via spin-orbit coupling (SOC) in the presence
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of small mirror symmetry breaking hoppings as a route to
reconcile these remaining contradictions. The mirror symme-
try breaking hopping term we introduce occurs near surfaces,
interfaces, or strain as sketched in the experimental setup
shown in Fig. 1(a) in Sec. II. We then explain the setup
of the Josephson junction calculations in Sec. III and show
the current-phase relations for conventional even- and odd-
parity pairing states. Finally, in Sec. IV we present interorbital
pairing and show that signatures of pairing states which fea-
ture gap nodes in the tunneling direction may match those
expected of an odd-parity state. This behavior is made pos-
sible by the multiorbital nature of SRO and the intraband
pseudospin-singlet pairing evolved from interorbital spin-
triplet pairing.

II. MICROSCOPIC HAMILTONIAN

The Josephson junction consists of a conventional single
band s-wave superconducting region, a normal insulator re-
gion, and the superconducting SRO region. A schematic of
the regions is shown in Fig. 1(a), and they are denoted A, B,
and C, respectively, in the equations below. Within regions A
and B we use the single band kinetic Hamiltonian, written here
for region A,

HA =
∑

k,iy,δy,σ

ξA(k, δy)c†
A,k,iy,σ

cA,k,iy+δy,σ , (1)

where ξA(k, δy) is the electron dispersion in region A between
slabs at positions iy and iy + δy, and c†

A,k,iy,σ
creates an electron

in slab iy of region A with momentum k = (kx, kz ) and spin
σ . The form of all dispersion terms as well as the values
of the hopping parameters are given in Appendix A. The
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FIG. 1. (a) Schematic of the Josephson junction setup showing
the s-wave superconductor, insulator (I), and SRO regions, denoted
A, B, and C in the main-text equations, labeled here in parentheses. In
experiment, SRO and the s-wave superconductor are separated in the
z direction by SiO, and no tunneling occurs at this interface, signified
by the filled black region here. (b) One example of interorbital hop-
ping which is only allowed where mirror symmetry is broken. When
a z-mirror plane exists, the orbital overlap is 0, but when broken, the
overlap is finite.

superconductivity in region A is described by

HSC
A =

∑
k,iy

eiφA�Ac†
A,k,iy,↑c†

A,−k,iy,↓ + H.c., (2)

where �A is the s-wave order parameter, and φA is the super-
conducting phase. Hopping between regions A and B is taken
to have the same parameters as hopping within either of the
regions.

The normal state Hamiltonian of region C is

HC =
∑

k,iy,a,σ

ξ a
C (k, δy)ca†

C,iy,k,σ
ca

C,iy+δy,k,σ

+
∑

k,iy,a �=b,σ

ξ ab
C (k, δy)ca†

C,k,iy,σ
cb

C,k,iy+δy,σ
+ H.c. + HSOC,

(3)

which includes intraorbital and interorbital dispersions,
ξ a

C (k, δy) and ξ ab
C (k, δy), respectively, where a and b are the

orbital indices representing the yz, xz, and xy orbitals, as well
as SOC terms. Finally, the Hamiltonian describing hopping
between regions B and C, where the interface occurs between
iy = 1 and 2, has the form

Hint =
∑
k,a,σ

ξ a
int(k)ca†

C,k,2,σ cB,k,1,σ + H.c., (4)

which features orbital dependence in the SRO region, as de-
noted by ξ a

int(k).
We also consider the effects of mirror symmetry breaking

in the z direction (out-of-plane direction). This effect is largest
near the surface normal to the z direction, but imperfections of
the interface leading to a broken mirror plane in the z direction

have previously been proposed to occur [37], where it was
shown that the experimental results may be explained by a
(dxz + idyz )-wave state if the tunneling directions tilt out of
the xy plane. Additionally, the growth of Au0.5In0.5 directly
onto SRO to create the junction may cause strain in SRO.
Any deformations of the lattice that this leads to may further
contribute to broken mirror symmetry throughout the sample.
Dislocations may also contribute to this mirror symmetry
breaking, and have been found to occur near interfaces [38].
The lack of mirror symmetry in the z direction means that
hopping between the xy and xz (yz) orbitals is allowed to be
finite in the y (x) direction. An example of such hopping is
shown in Fig. 1(b) for the xy to xz interorbital hopping. These
hoppings have the form

hISB
k = − α

[
2i sin kx

(
cyz†

k,iy,σ
cxy

k,iyσ
− cxy†

k,iy,σ
cyz

k,iy,σ

)
− (

cxz†
C,k,iy,σ

cxy
C,k,iy+1,σ

− cxy†
C,k,iy,σ

cxz
C,k,iy+1,σ + H.c.

)]
,

(5)

where α represents the hopping integral, which depends on the
strength of the mirror symmetry breaking, and the use of δy =
1 here represents nearest-neighbor hopping between slabs.

In the next section, we describe the setup for the Joseph-
son tunneling calculations and apply it with conventional s-
and p-wave superconducting states in the SRO region. Then,
we consider interorbital superconductivity and show how the
current-phase relation (CPR) is affected by the mirror sym-
metry breaking terms introduced here, showing that they may
behave like the conventional s-wave state, or potentially more
like the p-wave state, depending on the nodal structure as well
as the strength of the mirror symmetry breaking.

III. JOSEPHSON CALCULATIONS

To calculate the Josephson CPR, we use the lattice Green’s
function method presented in Ref. [34], which considers only
p-wave pairing to explain experimental results. Semi-infinite
Green’s functions are obtained for the s-wave and SRO re-
gions using the recursive Green’s function approach [39]. A
single layer of the normal insulator is added on the surfaces of
both of these regions by the Dyson equations,

ĜB
0 (k, iωl ) = [

iωl − û0(k) − t̂0,−1ĜA
−1(k, iωl )t̂−1,0

]−1
, (6)

ĜB
1 (k, iωl ) = [

iωl − û1(k) − t̂1,2ĜC
2 (k, iωl )t̂2,1

]−1
, (7)

where the interface is in the xz plane. Here, Ĝm
n (k, iωl ) is the

Green’s function of layer n in region m, ûn(k) is the part
of the Hamiltonian of layer n, and t̂n,n+1 is the part of the
Hamiltonian featuring hopping in the y direction, represent-
ing hopping between layers n and n + 1. The left and right
systems are combined using the two equations

Ĝ00(k, iωl ) = {[
ĜB

0 (k, iωl )
]−1 − t̂01ĜB

1 (k, iωl )t̂10
}−1

, (8)

Ĝ11(k, iωl ) = {[
ĜB

1 (k, iωl )
]−1 − t̂10ĜB

0 (k, iωl )t̂01
}−1

. (9)

These are then used to obtain the nonlocal Green’s functions

Ĝ01(k, iωl ) = ĜB
0 (k, iωl )t̂01Ĝ11(k, iωl ), (10)

Ĝ10(k, iωl ) = ĜB
1 (k, iωl )t̂10Ĝ00(k, iωl ). (11)
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FIG. 2. (a) Schematic of the setup for CPR calculations, show-
ing the left and right interfaces between the s-wave SC and SRO.
(b) Current-phase relations for both s-wave SC/I/SRO interfaces
with the SRO region modeled using an intraorbital s- and p-wave
pairing state.

From this, the CPR, I (�φ), is obtained:

I (�φ) = iet

h̄

∫ π

−π

Tr′
1

β

∑
l

[Ĝ01(k, iωl ,�φ)

− Ĝ10(k, iωl ,�φ)]dk, (12)

where Tr′ represents a trace over only the electron space, β =
1

kBT , t is the nearest-neighbor hopping integral in the normal
region, and �φ = φA − φC represents the phase difference in
the superconducting phase of the s-wave and SRO regions.

To understand the CPRs of the Josephson π junction, we
first review conventional superconducting states. First, we use
an intraorbital s-wave state in the SRO region,

HSC
C,s =

∑
k,iy,a

eiφC �a
Cca†

C,k,iy,↑ca†
C,−k,iy,↓ + H.c., (13)

where the order parameter, �a
C , exists within all three or-

bitals. The explicitly written superconducting phase, φC , is
kept the same between all three orbitals, and calculations were
performed with �

yz
C = �xz

C = −�
xy
C , similar to intraorbital s-

wave contributions found in Ref. [40]. Figure 2(b) shows the
CPR at the left and right interfaces of the π junction for
the s-wave pairing state in blue. This shows no phase shift
between the two interfaces, as expected for an even-parity
pairing state.

Next, we use an intraorbital (px + ipy)-wave pairing state,

HSC
C,p =

∑
k,iy,a

eiφC da
z

(
2 sin kxca†

C,k,iy,↑ca†
C,−k,iy,↓

+ ca†
C,k,iy,↑ca†

C,−k,iy+1,↓ − ca†
C,k,iy,↑ca†

C,−k,iy−1,↓
) + H.c.

(14)

Again, the phase is kept the same between all three orbitals,
and the same sign convention is used as in the s-wave pairing
state. Figure 2(b) shows the CPR at the left and right interfaces
for the p-wave pairing state in red. Now, the π phase shift
is observed between the interfaces, characteristic of the odd-
parity state.

These two results show a clear distinction between even-
and odd-parity pairing. Since the current measured through
the entire junction in experiment depends on the addition of
these two curves, the odd-parity phase difference corresponds
to a minimum current through the junction, as measured in
Ref. [29], whereas the even-parity state would correspond to
a maximum. While this allows for straightforward differentia-
tion between intraorbital pairing states, in the next section we
consider how this changes when interorbital pairing is instead
considered, in the presence of broken mirror symmetry.

IV. INTERORBITAL SUPERCONDUCTIVITY

Equipped with the techniques, we now perform the
Josephson calculations in multiorbital superconductors. In
multiorbital systems, the orbital degree of freedom allows for
additional types of pairing which satisfy the antisymmetric
fermion wave-function requirement. In addition to even-parity
spin-singlet and odd-parity spin-triplet pairings, even-parity
spin-triplet and odd-parity spin-singlet pairings are possible
when the wave function is antisymmetric with respect to the
orbital index. The possibility of interorbital pairing occurring
in SRO has been considered in previous studies [40–51],
and, importantly, has recently been discussed as a micro-
scopic route to the proposed (s + idxy)-wave [24], (dx2−y2 +
igxy(x2−y2 ) )-wave [25,28], and (dxz + idyz )-wave pairing states
[21].

The general form of the interorbital superconducting state
is written

�̂
l†
a/b = 1

4N

∑
k,iy

[iσ̂ yσ̂ l ]σσ ′
(
ca†

k,iy,σ
cb†
−k,iy,σ ′ − cb†

k,iy,σ
ca†
−k,iy,σ ′

)
.

(15)

Here, the interorbital pairing is a constant in k space, i.e., s
wave. However, momentum dependence may be revealed after
transforming into the band basis due to momentum-dependent
SOC or a combination of dispersion terms and SOC [24,25].

To understand the momentum dependence of the intraband
gap that arises in the presence of broken mirror symmetry, let
us first consider a bulk two-orbital model which features SOC
and a mirror symmetry breaking hopping term. We use the
basis �

†
k = (ψ†

k , T ψT
k T −1) where T represents time reversal,

and ψ
†
k = (cxz†

k,↑, cxz†
k,↓, cxy†

k,↑, cxy†
kk,↓). The kinetic and SOC parts

of the Hamiltonian are

Hk = 1
2ξ+(k)ρ3τ0σ0 + 1

2ξ−(k)ρ3τ3σ0 + λ(k)ρ3τ2σ3

+ t (k)ρ3τ1σ0 + α(k)ρ3τ2σ0,
(16)

where ρ, τ , and σ are Pauli matrices representing the
particle-hole, orbital, and spin bases, respectively. The orbital
dispersions are ξ±(k) = ξ xz(k) ± ξ xy(k), the SOC is λ(k), the
orbital hybridization is t (k), and mirror symmetry breaking
hopping α(k). The precise momentum dependence of each
of these terms is left unspecified for this analysis, but all are
given in Appendix A for the numerical calculations performed
below. Importantly, the mirror symmetry breaking hopping is
an odd function in k, α(−k) = −α(k), while all other terms
are even functions of the form f (−k) = f (k).

The interorbital-singlet spin-triplet pairing with a d vector
in the z direction is written as HSC = �zρ1τ2σ3. Transforming

014506-3



AUSTIN W. LINDQUIST AND HAE-YOUNG KEE PHYSICAL REVIEW B 107, 014506 (2023)

HSC to the band basis, i.e., the basis in which Hk is diagonal,
the intraband pseudospin-singlet and pseudospin-triplet pair-
ing can both be identified,

HSC = �S (k)
(
�̂α

k,0 − �̂
β

k,0

) + �T (k)
(
�̂α

k,z − �̂
β

k,z

)
,

(17)
where the pairing operators are written �̂α

0(z)(k) =
cα
−k,↓cα

k,↑ ∓ cα
−k,↑cα

k,↓. The pseudospin-singlet and -triplet
coefficients are given by

�S (k) = −i�zλ(k)√
ξ−(k)2 + 4t (k)2 + 4λ(k)2

+ · · · (18)

and

�T (k) = i�zα(k)√
ξ−(k)2 + 4t (k)2 + 4λ(k)2

+ · · · , (19)

where (· · · ) represents higher order terms in the Taylor
expansions. Further details of these equations are given in Ap-
pendix B. Importantly, there exists a pseudospin-singlet gap
contribution proportional to λ(k)�z, as well as a pseudospin-
triplet contribution proportional to α(k)�z, both of the same
order. Note that the momentum dependence of these two gap
coefficients are independent, and locations of nodes in the
singlet gap do not necessarily correspond to nodes in the
triplet gap.

For comparison, this same analysis is applied to an intraor-
bital superconducting (SC) state of the form

H ′
SC = �+(k)ρ1τ0σ0 + �−(k)ρ1τ3σ0, (20)

where �±(k) = 1
2 [�xz(k) ± �xy(k)] in this two-orbital

model. Again transforming this into the band basis, the pairing
Hamiltonian is rewritten in terms of the intraband contribu-
tions,

H ′
SC = �S′

1 (k)
(
�̂α

0 + �̂
β

0

) + �S′
2 (k)

(
�̂α

0 − �̂
β

0

)
+ �T ′

(k)
(
�̂α

z − �̂β
z

)
.

(21)

The first singlet coefficient remains unchanged between the
bases, �S′

1 (k) = �+(k). The other singlet coefficient is

�S′
2 (k) = �−(k)ξ−(k)√

ξ−(k)2 + 4t (k)2 + 4λ(k)2
+ · · · , (22)

and the triplet coefficient,

�T ′
(k) = 4�−(k)α(k)ξ−(k)λ(k)

[ξ−(k)2 + 4t (k)2 + 4λ(k)2]3/2
+ · · · . (23)

In this case, the odd-parity contribution is very small since
it only shows up at a higher order expansion. Additionally,
since the momentum dependence of the gap is encoded in
�−(k), any nodes that appear within the pseudospin-singlet
pairing gap must also be nodes in the pseudospin-triplet gap.
Therefore, the effect of the mirror symmetry breaking hopping
term on an intraorbital pairing state is not expected to be
significant for small α(k). The contrast between these two
cases is important. For an interorbital SC state, it is possible
to induce a nonzero odd-parity gap where the original even-
parity gap has a node. However, for an intraorbital SC state,
the induced odd-parity gap must have nodes wherever the
original even-parity state has nodes.

Based on Eqs. (18) and (19), there are three significant
contributions to the CPR at a given interface that we can write
qualitatively,

I (φ) ∼ c1[�λ(k)] sin φ + c2[�α(k)] sin 2φ

+ c3[�α(k)] sin φ, (24)

where ci are the coefficients of the various contributions.
The first, c1[λ(k)�z], describes Josephson tunneling from the
pseudospin-singlet state of SRO to the spin-singlet state of the
s-wave superconductor. The contributing gap is even parity
and therefore this term does not feature a π phase shift be-
tween opposite interfaces. Next, c2[α(k)�z] describes the first
pseudospin-triplet to spin-singlet tunneling process. Since this
is direct pseudospin-triplet to spin-singlet tunneling, this term
features a sin 2φ dependence. If the intermediate region is
insulating, then the sin 2φ contribution is small, and in the
presence of SOC, there is again a sin φ with the coefficient
c3[α(k)�z] term that contributes. This term is due to the
odd-parity gap and therefore features a π phase shift between
opposite interfaces.

The overall behavior depends on the relative size of these
coefficients. The largest coefficient is generally c1[λ(k)�z]
since |λ(k)| > |α(k)| is expected, but when λ(k) features
nodes, this is not always true. For the dxy- and gxy(x2−y2 )-wave
states, nodes exist along the x and y directions, so an interface
in the (010) direction may feature competition between the
λ(k)�z gap and the α(k)�z due to a small λ(k). Alternatively,
the (dxz + idyz )-wave state is gapless in the z = 0 plane and
therefore any tunneling direction perpendicular to the c axis
would feature this competition. In both cases, if the interme-
diate region is insulating, the c2[α(k)�z] contribution is small
compared to the c3[α(k)�z] allowing for a path to a π phase
shift from one of these even-parity states.

To confirm the above analysis works for the three-orbital
model of SRO, calculations were performed on the full
three-orbital system using various superconducting states.
Figure 3(a) shows the CPR for the s-wave state. The addition
of the mirror symmetry breaking hopping has no significant
effect on the CPR and is omitted in these plots. This is con-
sistent with expectations from the two-orbital analysis above,
since the pairing state does not feature nodes along the (010)
direction. Figure 3(b) shows the CPR for the gxy(x2−y2 )-wave
pairing state. The effect of α is much more significant here,
and a π phase shift is observed for a large enough value of
α. Figure 3(c) uses the (dxz + idyz )-wave pairing state where
again the effect of α is significant. In this case, the π phase
shift does not occur via a simple sign change of the amplitude,
but rather as a gradual phase shift due to competition between
the contributions from the dxz and dyz components. This shows
that a π phase shift is possible even when the pairing is even
parity, as long as nodes are present in the gap structure and a
small mirror symmetry breaking hopping is allowed.

The dx2−y2 - and dxy-wave states are not plotted, but appear
very similar to the s- and gxy(x2−y2 )-wave states, respectively.
This is expected based on the nodal structure of each of
these states in the (010) direction. Note that if the tunneling
direction were instead in the (110) direction then behavior of
the dx2−y2 - and dxy-wave states is expected to switch, with
dx2−y2 instead showing the π phase shift. In such a case,
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FIG. 3. Current-phase relations for an interorbital SC/I/s-wave
interface with a varying mirror symmetry breaking hopping, increas-
ing linearly from 0 to 0.005 in units of 2t = 1 between the blue and
red curves. The left column represents the left interface, and the right
represents the right interface. The SRO region is considered here with
interorbital (a) s-, (b) gxy(x2−y2 )-, and (c) (dxz + idyz )-wave pairing.
Only the α = 0 curve is shown with the dashed line in (a) as no
significant change is observed in the presence of α. The dx2−y2 - and
dxy-wave CPRs (not shown) are qualitatively similar to the s- and
gxy(x2−y2 )-wave curves, respectively.

the combined (dx2−y2 + igxy(x2−y2 ) )-wave state is expected
to exhibit a π phase shift, similar to the (dxz + idyz )-wave
state.

V. DISCUSSION AND SUMMARY

A full understanding of the superconductivity of SRO has
remained elusive despite vast interest, as well as a wide ar-
ray of experiments performed on the material. Recent results
have pushed the community towards potentially adopting an
even-parity spin-singlet pairing state, although conventional
states of this nature are not able to consistently explain all
observations. Interorbital superconductivity has recently been
shown to provide a microscopic route to various multicom-
ponent pairing states, each capable of explaining a subset of
the experimental results [21,24,25,28]. However, Josephson
junction experiments capable of detecting the phase change
of a superconducting order parameter between interfaces ob-
serve a π phase shift at opposite interfaces of SRO [29].
While this is expected in odd-parity superconductors, these
even-parity proposals are left to provide some explanation for
this observed behavior.

We have shown that using even-parity interorbital pairing,
it is possible to observe a π phase shift between opposite in-
terfaces in these Josephson junction experiments. The s-wave
nature of the interorbital pairing in the orbital basis provides a

route to finite odd-parity pseudospin-triplet pairing in the band
basis, induced by mirror symmetry breaking. Importantly, the
induced odd-parity pairing can have a nodal structure inde-
pendent of the even-parity state since the even- and odd-parity
intraband pairings arise from interorbital pairing via different
orbital mixing terms. Due to this, Josephson tunneling current
in the direction of the even-parity nodes is dominated by the
induced odd-parity behavior. This is in contrast to the intraor-
bital pairing states, where any induced odd-parity character
features nodes in the same positions as the original even-parity
state, meaning the odd-parity character does not dominate.
While the precise tunneling direction within the xy plane
was not determined in experiment [29], the (dxz + idyz )-wave
state is completely gapless within the plane, and therefore
these results are expected to hold for any tunneling direction.
The other proposals discussed here feature more complex gap
structures and therefore would be more sensitive to the tun-
neling direction. If the multicomponent nature of the SC state
is due to an accidental degeneracy, the precise gap structure
where tunneling occurs may also be influenced significantly
by surface effects.

Experimental determination of the directional dependence
of the phase shift would differentiate the proposed pairing
states and could provide crucial information for identifying
the superconducting pairing of SRO. Specifically, we expect
to see no π phase shift when tunneling occurs in a direction far
from the in-plane nodes of both gap components. We therefore
propose these phase-sensitive Josephson junction experiments
with a known orientation of the a and b axes as a route to
differentiate the various pairing symmetry proposals.

Although only one type of mirror symmetry breaking hop-
ping is considered here, others may contribute to this effect
depending on the precise geometry of the surface. Here we
focus on the phase shift observed in the Josephson junction ex-
periment [29]; however, experiments observing half-quantum
vortices also provide evidence for odd-parity spin-triplet pair-
ing, but use samples with a different geometry [31,32]. These
results may also occur due to interorbital pairing with mirror
symmetry breaking, but more work is needed to determine if
these results are compatible with the pairing states discussed
here. Additionally, spatially varying strain in a system with
dx2−y2 - and gxy(x2−y2 )-wave degeneracy has been proposed as
being able to explain these half-quantum vortices [23]. While
work still remains to distinguish the various multicomponent
even-parity pairing proposals, we believe that directionally
resolved phase-sensitive measurements can provide an impor-
tant piece of puzzle of superconductivity in SRO.
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APPENDIX A: TIGHT-BINDING MODEL

The form of the microscopic Hamiltonian is introduced in
Sec. II. Here, we provide the dispersion terms used within
that model, as well as the values used for various hopping
parameters throughout this work. The dispersion of the s-wave
and normal insulator regions are given by

ξA(B)(k, 0) = −μA(B) − 2t cos kx,

ξA(B)(k, 1) = t − 2t ′ cos kx. (A1)

All hopping terms are limited to next-nearest neighbor, such
that the slab setup for the surface Green’s function features
one layer of atoms at a time.

Next, the dispersion terms in the SRO region are given by

ξ
yz(xz)
C (k, 0) = −μ1D − 2t2(1) cos kx,

ξ
xy
C (k, 0) = −μxy − 2t3 cos kx,

ξ
yz(xz)
C

(
k,

1

2

)
= 4t1D

z cos
kx

2
cos

kz

2
,

ξ
xy
C

(
k,

1

2

)
= 4t xy

z cos
kx

2
cos

kz

2
,

ξ
yz(xz)
C (k, 1) = −t1(2),

ξ
xy
C (k, 1) = −t3 − 2t4 cos kx,

ξ
yz/xz
C

(
k,

1

2

)
= 4t6i sin

kx

2
cos

kz

2
,

ξ
yz/xy
C

(
k,

1

2

)
= −4t7 sin

kx

2
sin

kz

2
,

ξ
xz/xy
C

(
k,

1

2

)
= 4t7i cos

kx

2
sin

kz

2
,

ξ
yz/xz
C (k, 1) = 2t1Di sin kx. (A2)

Here, δy = 1
2 occurs with interlayer hopping in the z direction

due to the offset between layers. We also include the A1g, B2g,
and Eg SOC terms,

HSOC = iλ
∑
k,iy

∑
abl

εablc
a†
C,k,iy,σ

cb
C,k,iy,σ ′ σ̂

l
σσ ′

+ i
∑
k,iy

λB2g (kx )σ y
σσ ′

(
cxz†

C,k,iy,σ
cxy

C,k,iy+1,σ ′

− cxz†
C,k,iy,σ

cxy
C,k,iy−1,σ ′

)
− i

∑
k,iy

λB2g (kx )σ x
σσ ′

(
cyz†

C,k,iy,σ
cxy

C,k,iy+1,σ ′

− cyz†
C,k,iy,σ

cxy
C,k,iy−1,σ ′

)
+ i

∑
k,iy

λEg,x(k)σ z
σσ ′

(
cxz†

C,k,iy,σ
cxy

C,k,iy+(1/2),σ ′

+ cxz†
C,k,iy,σ

cxy
C,k,iy−(1/2),σ ′

)
− i

∑
k,iy

λEg,y(k)σ z
σσ ′

(
cyz†

C,k,iy,σ
cxy

C,k,iy+(1/2),σ ′

− cyz†
C,k,iy,σ

cxy
C,k,iy−(1/2),σ ′

)
, (A3)

TABLE I. Tight-binding parameters used in all of the calcula-
tions presented in this work. The parameters for the SRO region
were obtained from the DFT calculations presented in Ref. [25], but
limited to nearest and next-nearest neighbor terms.

t1 t2 t3 t4 t5

0.51 0.06 0.5 0.18 0.02

t6 t7 t1D
z t xy

z μ1D

−0.01 0.009 −0.025 0.002 0.52

μxy λ λB2g λEg t
0.63 0.1 −0.02 −0.0025 0.5

t ′ μ1 μ2 t yz
B/C txz

B/C

0.2 0.18 −10 0.05 0.5

t xy
B/C t ′yz

B/C t ′xz
B/C t ′xy

B/C

0.5 0.02 0.2 0.2

where εabl is the completely antisymmetric tensor; the
momentum-dependent B2g SOC, λB2g (kx ) = 2iλB2g sin kx;
and the momentum-dependent Eg SOCs, λEg,x(k) =
4λEg sin kx

2 sin kz

2 and λEg,y(k) = 4iλEg cos kx
2 sin kz

2 . Finally,
the hopping between regions B and C has the form

ξ a
B/C (kx ) = t a

B/C − 2t ′a
B/C cos kx. (A4)

The SRO tight-binding parameters used in all of the cal-
culations presented here were obtained from Ref. [25], and
are listed in Table I. The SOC values used here are chosen
to be similar to the values at which higher angular momentum
pairings were found to exist. The Fermi surface obtained using
the listed tight-binding parameters is shown in Fig. 4 for the
kz = 0 plane.

The irreducible representation of each of the pairing states
discussed in this work in terms of the interorbital parameters
shown in Eq. (15) can be found in Ref. [25]. In all calcula-
tions presented here we fix the magnitude of the | ��xz/xy| =
| ��l

yz/xy| = 1 × 10−3 for consistency. In the s-wave case which
also features finite |�z

yz/xz|, this value is set to 5 × 10−4, all

−π 0 π
−π

0

π

FIG. 4. Fermi surface of SRO shown in the kz = 0 plane, for the
tight-binding parameters presented in Table I.
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in units of 2t = 1. Note that while the interorbital terms are
chosen to be equal for all interorbital pairing states, this does
not mean that the gap size is equal, as the gap size and nodal
structure are determined by various parameters such as the
SOC and dispersion terms.

APPENDIX B: TWO-ORBITAL ANALYSIS

Insights into the mechanism by which the odd-parity be-
havior appears can be gained by considering a two-orbital
model which can be solved analytically. The two-orbital
Hamiltonian is presented in Eq. (16) shown in Sec. IV. Fol-
lowing the procedure presented in Ref. [25], this Hamiltonian
is transformed into the band basis using[

ca
k,σ

cb
k,σ

]
=

[
fkσ −gkσ

gkσ f ∗
kσ

][
cα

k,σ

cβ

k,σ

]
. (B1)

The bands are denoted by α and β, index, and the transforma-
tion coefficients are

fkσ = −t (k) − i[ησλ(k)] − α(k)√
t (k)2 + [ησλ(k) − α(k)]2

√
1

2

(
1 + ξ−(k)

E ′
σ (k)

)
,

gkσ = −
√

1

2

(
1 − ξ−(k)

E ′
σ (k)

)
. (B2)

Here, ησ = ±1 for σ =↑,↓ and E ′
σ (k) =√

ξ−(k)2 + 4{t (k)2 + [ησλ(k)2 − α(k)2]} where the energy
eigenvalues are E±

σ (k) = 1
2 [ξ+(k) ± E ′

σ (k)].
In the orbital basis, the pairing Hamiltonian is written

HSC = �z
(
cb
−k,↓ca

k,↑ − ca
−k,↓cb

k,↑ + cb
−k,↑ca

k,↓ − ca
−k,↑cb

k,↓
)
.

(B3)

This is transformed into the band basis using the same trans-
formation described above. Since we are only interested in
the intraband pairing we neglect pairing terms between the α

and β bands. The pairing in the band basis is simplified using
f ∗
−k↓ = fk↑ and g−k↓ = gk↑, and appears as

Hpair =i�z
a/b

{
Im[gk↑ fk↑ + g−k↑ f−k↑][�̂α

0 (k) − �̂
β

0 (k)]

+ Im[gk↑ fk↑ − g−k↑ f−k↑][�̂α
z (k) − �̂β

z (k)]
}
. (B4)

Since fkσ and gkσ are neither even nor odd in the presence of
α(k), we perform a Taylor expansion of 1

E ′
↑(k) for small α(k).

Im[ fk↑gk↑] = − λ(k) − α(k)

2E ′
↑(k)

= 1

2
[λ(k) − α(k)]

×
{

1√
ξ−(k)2 + 4[t (k)2 + λ(k)2]

+ 4λ(k)α(k)

{ξ−(k)2 + 4[t (k)2 + λ(k)2]}3/2

+ O[α(k)2]

}
. (B5)

Now, writing the even-parity pseudospin-singlet and odd-
parity pseudospin-triplet terms is straightforward, and are
shown in Eqs. (18) and (19), respectively. Equations (22)
and (23) are obtained by instead assuming that the finite
expectation value exists only in the intraorbital spin-singlet
pairing channel. The same Taylor expansion is performed for
the coeffiecients | fk↑|2 or |gk↑|2; however, the lack of α(k) in
the numerator of these terms leads to odd-parity contributions
only arising from higher order terms.
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[37] I. Žutić and I. Mazin, Phase-Sensitive Tests of the Pairing
State Symmetry in Sr2RuO4, Phys. Rev. Lett. 95, 217004
(2005).

[38] Y. A. Ying, N. E. Staley, Y. Xin, K. Sun, X. Cai, D. Fobes, T. J.
Liu, Z. Q. Mao, and Y. Liu, Enhanced spin-triplet supercon-
ductivity near dislocations in Sr2RuO4, Nat. Commun. 4, 2596
(2013).

[39] A. Umerski, Closed-form solutions to surface Green’s func-
tions, Phys. Rev. B 55, 5266 (1997).

[40] C. M. Puetter and H.-Y. Kee, Identifying spin-triplet pairing in
spin-orbit coupled multi-band superconductors, Europhys. Lett.
98, 27010 (2012).

[41] S. Hoshino and P. Werner, Superconductivity from Emerg-
ing Magnetic Moments, Phys. Rev. Lett. 115, 247001
(2015).

[42] S. Hoshino and P. Werner, Electronic orders in multiorbital
Hubbard models with lifted orbital degeneracy, Phys. Rev. B
93, 155161 (2016).

[43] A. Ramires and M. Sigrist, Identifying detrimental effects for
multiorbital superconductivity: Application to Sr2RuO4, Phys.
Rev. B 94, 104501 (2016).

[44] A. K. C. Cheung and D. F. Agterberg, Superconductivity in the
presence of spin-orbit interactions stabilized by Hund coupling,
Phys. Rev. B 99, 024516 (2019).

[45] A. Ramires and M. Sigrist, Superconducting order parameter of
Sr2RuO4: A microscopic perspective, Phys. Rev. B 100, 104501
(2019).

[46] W. Huang, Y. Zhou, and H. Yao, Exotic Cooper pairing in
multiorbital models of Sr2RuO4, Phys. Rev. B 100, 134506
(2019).

[47] O. Gingras, R. Nourafkan, A. M. S. Tremblay, and
M. Côté, Superconducting Symmetries of Sr2RuO4 from

014506-8

https://doi.org/10.1038/29038
https://doi.org/10.1016/S0921-4526(00)00414-2
https://doi.org/10.1103/PhysRevLett.97.167002
https://doi.org/10.1038/s41567-021-01182-7
https://doi.org/10.1143/JPSJ.73.1313
https://doi.org/10.1103/PhysRevX.7.011032
https://doi.org/10.1073/pnas.1916463117
https://doi.org/10.1103/PhysRevLett.123.247001
https://doi.org/10.1103/PhysRevResearch.2.032023
https://doi.org/10.1038/s41535-020-0245-1
https://doi.org/10.1103/PhysRevB.104.054518
https://doi.org/10.1103/PhysRevResearch.3.013001
https://doi.org/10.1103/PhysRevB.104.104512
https://doi.org/10.1103/PhysRevB.104.064507
https://doi.org/10.1103/PhysRevResearch.4.033011
https://doi.org/10.1103/PhysRevB.106.134512
https://doi.org/10.1126/science.1103881
https://doi.org/10.1126/science.1133239
https://doi.org/10.1126/science.1193839
https://doi.org/10.1103/PhysRevB.105.224510
https://doi.org/10.1103/PhysRevB.67.184505
https://doi.org/10.1103/PhysRevB.95.174518
https://doi.org/10.1016/j.physc.2007.11.065
https://doi.org/10.1103/PhysRevB.89.174505
https://doi.org/10.1103/PhysRevLett.95.217004
https://doi.org/10.1038/ncomms3596
https://doi.org/10.1103/PhysRevB.55.5266
https://doi.org/10.1209/0295-5075/98/27010
https://doi.org/10.1103/PhysRevLett.115.247001
https://doi.org/10.1103/PhysRevB.93.155161
https://doi.org/10.1103/PhysRevB.94.104501
https://doi.org/10.1103/PhysRevB.99.024516
https://doi.org/10.1103/PhysRevB.100.104501
https://doi.org/10.1103/PhysRevB.100.134506


RECONCILING THE π PHASE SHIFT IN … PHYSICAL REVIEW B 107, 014506 (2023)

First-Principles Electronic Structure, Phys. Rev. Lett. 123,
217005 (2019).

[48] S.-O. Kaba and D. Sénéchal, Group-theoretical classification
of superconducting states of strontium ruthenate, Phys. Rev. B
100, 214507 (2019).

[49] A. W. Lindquist and H.-Y. Kee, Distinct reduction of Knight
shift in superconducting state of Sr2RuO4 under uniaxial strain,
Phys. Rev. Res. 2, 032055(R) (2020).

[50] A. W. Lindquist, J. Clepkens, and H.-Y. Kee, Evolution of
interorbital superconductor to intraorbital spin-density wave in
layered ruthenates, Phys. Rev. Res. 4, 023109 (2022).

[51] O. Gingras, N. Allaglo, R. Nourafkan, M. Côté, and A. M. S.
Tremblay, Superconductivity in correlated multiorbital systems
with spin-orbit coupling: Coexistence of even- and odd-
frequency pairing, and the case of Sr2RuO4, Phys. Rev. B 106,
064513 (2022).

014506-9

https://doi.org/10.1103/PhysRevLett.123.217005
https://doi.org/10.1103/PhysRevB.100.214507
https://doi.org/10.1103/PhysRevResearch.2.032055
https://doi.org/10.1103/PhysRevResearch.4.023109
https://doi.org/10.1103/PhysRevB.106.064513

