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Degeneracy between even- and odd-parity superconductivity in the
quasi-one-dimensional Hubbard model and implications for Sr2RuO4
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Based on a weak coupling calculation, we show that an accidental degeneracy appears between even- and
odd-parity superconductivity in the quasi-one-dimensional (1D) limit of the repulsive Hubbard model on the
square lattice. We propose that this effect could be at play on the quasi-1D orbitals Ru dzx and dzy of Sr2RuO4,
leading to a gap of the form �even + i�odd which could help reconcile several experimental results.
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I. INTRODUCTION

The presence of multiple components in the supercon-
ducting (SC) order parameter (OP) can lead to a flurry
of interesting phenomena, like the spontaneous breaking of
time-reversal symmetry (TRS) and the appearance of topo-
logical edge states [1–3]. Multicomponent superconductivity
can either be symmetry imposed, corresponding to a mul-
tidimensional irreducible representation (irrep) of the point
group, or it can be accidental, when two SC orders are ac-
cidentally close to degenerate. The latter scenario, although
somewhat undesirable since it often requires fine tuning, has
been invoked for a variety of superconductors [4–6] for which
a multidimensional irrep is in apparent contradiction with
certain experiments or when such an irrep does not exist
altogether.

This paper is motivated by Sr2RuO4, for which the na-
ture of the SC order remains an open question even 25
years after its discovery [7–14]. This material sounds like
a perfect testbed to study unconventional superconductivity
since its phase above Tc is a well-behaved, albeit renormal-
ized, Fermi liquid, for which Fermi surfaces (FSs) have been
measured with extreme accuracy [15–18]. However, the theo-
retical study of this material has been hampered by several
complications, including the presence of multiple orbitals
[the quasi-one-dimensional (1D) orbitals dxz and dzy and the
quasi-two-dimensional (2D) orbital dxy] and their coupling
via spin-orbit interaction. Despite the challenges, achieving
a consistent match between theory and experiments for this
material would be an important milestone and could shed light
on a flurry of other unconventional superconductors.

The evidence for TRS breaking [19–21] and multicompo-
nent superconductivity [22–24] in Sr2RuO4 would naturally
point toward a �d = (px + ipy)ẑ state. However, such a state is
in contradiction with the drop of spin susceptibility observed
recently in nuclear magnetic resonance (NMR) [25,26].
Several other candidates have thus been proposed [6,27–
32]. Accidental degeneracies between nonsymmetry-related
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orders have been considered, like d + ig [6] or s′ + id [29].
Nevertheless, there is at least one experimental fact which
seems difficult to explain for any candidate OP: the absence of
a specific heat anomaly [33] at the putative second transition
under [1, 0, 0] strain revealed by muon spin resonance (µSR)
[21].

In this paper, we propose another candidate for a combi-
nation of accidentally degenerate states with the potential to
resolve several of these issues: states of the form �e + i�o,
where �e is even parity and �o is odd parity. This proposal
is based on our solution of the small-U Hubbard model on
a square lattice in the quasi-1D limit. We provide an analyt-
ical proof that this model exhibits an accidental degeneracy
between even- and odd-parity representations (as previously
pointed out in Ref. [34]). Since the Ru dzx and dzy orbitals
in Sr2RuO4 have a strongly 1D character, our hypothesis is
that this mechanism could be at play on these orbitals, lead-
ing to a mixed-parity OP on them. Remarkably, �e and �o

have the same magnitude everywhere on the FS, leading to
a parametrically small specific heat jump. This mechanism
therefore provides a microscopic justification for an accidental
degeneracy, along with a justification for a parametrically
small second specific heat jump.

In Sec. II, we provide an exact analytical solution for weak
coupling superconductivity in the repulsive Hubbard model
for a quasi-1D band on the square lattice. We show that there
is an accidental degeneracy between even- and odd-parity SC
orders across the entire spectrum and that this degeneracy is
robust to changes in the dispersion relation. In Sec. III, we
use a Ginzburg-Landau (GL) analysis to study the possible
combinations of even- and odd-parity SC orders. We find that
states of the type �e + i�o are favored. We then study two
thermodynamic properties of these states: specific heat and
spin susceptibility. In Sec. IV, we assume this mechanism is
at play on the quasi-1D bands of Sr2RuO4 and discuss the
consequences for experiments.

II. WEAK COUPLING CALCULATION

We study a single-orbital repulsive Hubbard model on a
square lattice, with nearest neighbor hoppings tx along the x
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FIG. 1. Nearly degenerate dominant gap functions in the even-
parity (left) and odd-parity (right) sector, evaluated at the Fermi
surface, for tx = 1, ty = 0.1, and μ = 1. The size of the dots gives
the gap magnitude, and the color gives the sign. The gap functions
are well approximated by the analytical form of Eq. (8) (�m=1,e and
�m=1,o) obtained in the limit of ty/tx → 0.

direction and ty along the y direction. The Hamiltonian reads

H =
∑

k

ξ (k)(nk,↑ + nk,↓) +
∑

x

Unx,↑nx,↓, (1)

with a dispersion relation given by

ξ (k) = −2tx cos(kx ) − 2ty cos(ky) − μ. (2)

We are interested in the quasi-1D limit: ty � tx. In that limit,
the FSs are given by slightly corrugated vertical lines (see
Fig. 1):

kF(ky) = kF + 2ty cos(ky)

vF
+ O

(
t2
y

)
, (3)

with kF = arccos(−μ/2tx ) and vF = 2tx sin(kF).
Following the standard weak coupling approach [34–48],

valid in the limit U/t → 0, we must solve the following
eigenvalue problem:

1

(2π )2

∫
FS

dk̂2

v(k̂2)
V (k̂1 − k̂2)�(k̂2) = λ�(k̂1), (4)

where the integral is over the FS, V is the effective interaction
in the Cooper channel, and v(k̂) is the norm of the Fermi
velocity at momentum k̂. Each solution with negative eigen-
value λ corresponds to a SC order with gap function �(k) and
critical temperature Tc ∝ We1/λ, with W the bandwidth. The
dominant OP has the most negative eigenvalue.

Since we are taking two limits (U/t → 0 and ty/tx → 0), it
is important to specify the order in which they are taken. We
first take the weak coupling limit before taking the quasi-1D
limit, which means that the system above Tc behaves as a 2D
Fermi liquid (as opposed to a Luttinger liquid if the other
order of limits had been chosen). This order of limits therefore
allows us to use a weak coupling approach in a quasi-1D
system, even though this approach is not valid in a strictly
1D system [49]. Note that the present model also differs from
the case of small-U multileg Hubbard ladders [50] since we
work directly in the thermodynamic limit in both the x and y
directions.

In a single-orbital model, V takes a simple form [34,51]:

Ve(k̂1 − k̂2) = U + U 2χ (k̂1 − k̂2),

Vo(k̂1 − k̂2) = −U 2χ (k̂1 − k̂2), (5)

in the even- and odd-parity channel, respectively, and where
χ (q) is the Lindhard susceptibility:

χ (q) = −1

(2π )2

∫
dk

n[ξ (k)] − n[ξ (k + q)]

ξ (k) − ξ (k + q)
, (6)

with n[ξ ] the Fermi-Dirac distribution.
As explained in the Appendix, Eq. (4) is analytically solv-

able in the limit of ty/tx → 0, leading to the following negative
eigenvalues:

λm = − U 2

2(2π )2v2
F

1

m
, (7)

for m = 1, 2, 3, . . . . The most negative eigenvalue thus corre-
sponds to m = 1. Each eigenvalue is doubly degenerate, with
an even-parity eigenvector and an odd-parity eigenvector. For
odd m, these eigenvectors are given by

�m,e = cos(mky),

�m,o = cos(mky)sign(kx ). (8)

For even m, we find

�m,e = sin(mky)sign(kx ),

�m,o = sin(mky). (9)

For each m, we therefore have two degenerate eigenvectors
which are simply related by a sign change between the left and
right branches of the FS. The source of this degeneracy can
be understood easily [34]. In the quasi-1D limit, the almost
perfect nesting of the FSs leads to a strong peak in χ (q) for
qx = ±2kF. This means that the dominant type of scattering
occurs between the two branches of the FS. By flipping the
relative sign of the gap on the two branches, one can therefore
effectively flip the sign of the effective interaction. This sign
change exactly cancels out the sign difference for the U 2 term
in the effective interaction between even and odd parity [see
Eq. (5)] [52].

Whereas the analytic results provided so far were obtained
in the limit of ty/tx → 0, we also numerically studied the case
of small but finite ty/tx. As shown in Fig. 2, the dependence on
ty is extremely weak, and our analytic solution is therefore a
good approximation for a broad range of ty/tx. The main effect
of a finite ty is to generate a small splitting between even-
and odd-parity states which, for m = 1, favors the even-parity
state. However, as shown in the right panel of Fig. 2, the split-
ting remains extremely small even for ty/tx 	 0.1, which is the
range relevant for Sr2RuO4. The effect of finite ty/tx on eigen-
vectors is also small: They are still very well approximated by
the simple cosine form given above even at ty/tx = 0.1. We
also checked that changing the chemical potential does not
produce any qualitative changes to these results.

III. GL ANALYSIS AND THERMODYNAMIC PROPERTIES

In the previous section, we learned that the dominant SC
orders in the quasi-1D Hubbard model are given by the two
nearly degenerate m = 1 states:

�e ≡ �m=1,e = cos(ky),

�o ≡ �m=1,o = cos(ky)sign(kx ). (10)
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FIG. 2. Left: Four dominant eigenvalues in the even- and odd-parity sectors, for tx = 1 and μ = 1. The points at ty = 0 were obtained
analytically from Eq. (7), whereas the points at ty > 0 were obtained by numerically solving Eq. (4). The splitting between even- and odd-parity
eigenvalues is so small that it is barely visible. Right: Splitting between the dominant (i.e., m = 1) even- and odd-parity eigenvalues, normalized
by λe. The splitting increases quadratically with ty but remains extremely small for a wide range of ty.

In this section, we use a GL analysis to study the possible
combinations of these two OPs.

A combination of a singlet and triplet OP is nonunitary
unless the relative phase between them is ±i. Complex com-
binations of singlets and triplets are therefore generically
favored [53]. We will thus consider the following OP:

�(k) ≡ �↑↓(k) = ψe�e(k) + iψo�o(k), (11)

with ψe and ψo real parameters, leading to |�(k)|2 =
|ψe�e(k)|2 + |ψo�o(k)|2 [54]. A typical GL free energy
functional reads [55]

F = −aeψ
2
e − aoψ

2
o + b

(
ψ2

e + ψ2
o

)2 + b′(ψ2
e − ψ2

o

)2
, (12)

with ae(T ) ∝ (Tc,e − T ), ao(T ) ∝ (Tc,o − T ), where Tc,e and
Tc,o are the critical temperatures for each component when
considered in isolation.

For b′ < 0, the system favors having only one component
at a time, whereas for b′ > 0, the system favors a combination
of the two. We will see below that b′ is positive for the OPs
obtained in the previous section, so we will focus on that case.
The small splitting between eigenvalues which slightly favors
the even-parity order (see Fig. 2) translates into a small differ-
ence between the critical temperatures: Tc,e = Tc,o + δ, with
δ > 0 small. In this scenario, the ψe component arises at the
first transition Tc,e, and the ψo component arises at a second
transition T ∗ given by T ∗ = Tc,o − δ b−b′

2b′ . We give a derivation
of these results based on a GL analysis in Appendix B. An im-
portant approximation which was used in that analysis is that
we assume the linear coefficients for ae(T ) ∝ (Tc,e − T ) and
ao(T ) ∝ (Tc,o − T ) are equal. This assumption is justified by
the fact that the two OPs have essentially the same magnitude
everywhere on the FS, as we now discuss.

Whereas the GL analysis presented so far is standard, what
is unusual about �e and �o is that they have the same magni-
tude everywhere on the FS (see Fig. 1):

|�e(k)|2 	 |�o(k)|2 ∀ k ∈ FS. (13)

This property is really unique since one usually considers
combinations of OPs that gap out different parts of the FS [like

px + ipy or dx2−y2 + ig(x2−y2 )xy]. The main consequence is that
the parameter b′ is parametrically small (in ty/tx), in contrast
to standard two-component OPs for which it is of order one.
This can be deduced from the following microscopic formula
[56] for b′:

b′

B
= 1

2

(
1

2
〈|�e|4〉 + 1

2
〈|�o|4〉

)
− 1

2
〈|�e|2|�o|2〉, (14)

where B = 7ζ (3)
16π2(kBTc )2 ρ and where 〈. . . 〉 is a FS average de-

fined by

〈 f 〉 = 1

ρ

1

(2π )D

∫
FS

dk̂
1

v(k̂)
f (k̂), (15)

with ρ the density of states (DOS) at the Fermi level. The
difference in Eq. (14) is usually of order one [e.g., for px +
ipy or dx2−y2 + ig(x2−y2 )xy], but in our case, it is parametrically
small. In other words, a unique feature of the current scenario
is that the small parameter ty/tx leading to the near degeneracy
of critical temperatures also leads to a small b′ parameter.

A. Specific heat

An important consequence of a small b′ is that the jump
in specific heat at the second transition T ∗ is parametrically
small. As shown in Appendix B 1, the ratio of specific heat
jumps is given by

�CT ∗

�CTc

= 〈|�(k)|2YT ∗ (k)〉
〈|�(k)|2〉

b′

b
, (16)

with

YT (k) = 1

4

∫ ∞

−∞
dx

1

cosh
[

1
2

√
x2 + β2|�(k)|2]2 (17)

the k-dependent Yosida function and β = 1/kBT . When de-
riving Eq. (16), we made the approximation that |�e(k)|2 =
|�o(k)|2 ≡ |�(k)|2.

From Eq. (16), we learn that two separate effects can lead
to a reduction of the second specific heat jump: the effect
of the Yosida function and the effect of a small b′/b ratio.
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The first effect is always present for any two-component OP
and would act in the same way in this case [6]. However,
this effect can only give a substantial reduction of the second
specific heat jump if T ∗ is much smaller than Tc,e. On the other
hand, the effect of b′ � b is unique to the current scenario
and naturally leads to a parametric difference between the
two specific heat jumps. As an illustration, for the numerical
solution at ty/tx = 0.1 obtained in the previous section, we
find that b′/b ∼ 10−5.

B. Spin susceptibility

The even- and odd-parity components have of course dif-
ferent effects on the spin susceptibility since the former is a
spin singlet and the latter is a spin triplet (we neglect spin-orbit
coupling for the time being). Taking advantage of the SU (2)
symmetry of the Hubbard model, we did not have to specify
the orientation of �d for the odd-parity, spin-triplet component
in the previous discussion (see, e.g., Ref. [57] for a definition
of �d). It is however now necessary to specify it to discuss
the spin susceptibility χ . Whereas the susceptibility of a spin
singlet goes to zero for any orientation of the magnetic field �H ,
the situation is more complex when a spin triplet component
is present. When �H is parallel to �d , the singlet and triplet
components lead to the same decay of χ , with zero residual
spin susceptibility. When �H is perpendicular to �d , the spin
susceptibility is given by (see Appendix C for a derivation):

χ (T )

χN
= 〈YT (k)〉 +

〈 |ψo�o(k)|2
|�(k)|2 [1 − YT (k)]

〉
, (18)

with χN the normal state Pauli susceptibility. At T = 0, one
finds YT (k) = 0, leading to

χ (T = 0)

χN
=

〈 |ψo�o(k)|2
|�(k)|2

〉
	 |ψo|2

|ψe|2 + |ψo|2 , (19)

where we made the approximation that |�e(k)|2 = |�o(k)|2
in the last step. Assuming |ψo|2 	 |ψe|2 at T = 0 (which is
expected if the two critical temperatures are close to each
other), this leads to a residual susceptibility of 1

2 for �d ⊥ �H .

IV. APPLICATION TO STRONTIUM RUTHENATE

As mentioned in the introduction, the main motivation be-
hind this paper is the study of superconductivity in Sr2RuO4.
The Hamiltonian studied above provides a good model for the
quasi-1D Ru orbital dzx (and of course for dzy after a π/2
rotation) of Sr2RuO4, if it could be considered in isolation.
In this section, we will make the assumption that the above
mechanism for accidental mixed-parity superconductivity is
at play on each of these two orbitals, and we will analyze the
consequences for experiments. We should emphasize that this
assumption is purely empirical: We do not claim to have a
microscopic justification for neglecting the coupling between
the two quasi-1D orbitals, and between the quasi-1D orbitals
and the dxy orbital.

As thermodynamic measurements give evidence for a SC
order of similar size on the three orbitals, we also need to
make an assumption about the OP on the dxy orbital (which
contributes mostly to the γ band). Since there is no reason

to expect a degeneracy between even- and odd-parity com-
ponents for dxy (because it is not quasi-1D), we assume that
only one component, the even one, is present on that orbital.
To sum up, the proposed scenario is the following: An even-
parity �e component appears at the first transition on all three
orbitals, and an odd-parity component �o appears at a second
transition only on the quasi-1D orbitals.

Before discussing in more detail the form �e and �o

could take within a three-orbital model, we can already dis-
cuss the general properties of a state of the type �e + i�o.
Such a state has several desirable features as a candidate
for multicomponent superconductivity in Sr2RuO4. First, the
accidental degeneracy between the two components has a
microscopic justification based on the small parameter ty/tx.
Second, the OP is still nodal even though it forms a complex
linear combination since both components have cosine nodes
at ky = ±π/2 (resp. kx = ±π/2) for dzx (resp. for dzy). (The
presence of nodes in the SC gap is well established [58–62],
although their location remains controversial.) Third, the fact
that |�e(k)|2 = |�o(k)|2 everywhere on the FS leads to a
parametrically small second specific heat jump, as required
by recent measurements [33].

Another problem facing most proposals of TRS-breaking
OPs is that it contradicts the absence of measurable edge
currents revealed by magnetometry measurements [63]. Even
though several effects have been predicted to reduce these
currents [64–67], this remains a challenge for most OPs with
TRS breaking, like p + ip or d + id . By contrast, a state of
the type �e + i�o provides a natural way of breaking TRS
without having edge currents (in a centrosymmetric crystal).
Indeed, the gradient terms which usually lead to spontaneous
edge currents are not allowed in this case since they do not
respect parity [68]:

F �⊃
∫

dx (∂xψ
∗
e )(∂yψo) + c.c., (20)

where ψo and ψe are the components as defined in Eq. (11).
If no edge currents are expected, what is the manifestation

of TRS breaking for mixed parity states? It actually manifests
itself through the spin degree of freedom rather than the
orbital one. Indeed, mixed even-odd parity superconductors
experience a spontaneous magnetization at any nonhomogen-
ities, like domain walls, edges, and defects [69–71]. The
intuition is that the relative i phase is between two different
spin (or rather helicity) components rather than two different
orbital components (e.g., px and py). The orientation of the
spontaneous magnetization depends on the orientation of �d
and of the inhomogeneity. For example, for a state of the type
dx2−y2 + i(px − py)ẑ (as proposed below), the following term
would be allowed by symmetry [70]:

F ⊃
∫

dx mzψ
∗
e (∂x + ∂y)ψo, (21)

where mz is the z component of the magnetization. This term
would create a spontaneous ẑ magnetization localized around
inhomogeneities of the OP.

More generally, a magnetization �m localized around ex-
tended defects like domain walls or dislocations could explain
the presence of a signal in µSR [19,21] (regardless of the
orientation of �m) and in the Kerr effect [20] (if �m has an
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out-of-plane component). It could also explain the absence
of a signal in scanning superconducting quantum interfer-
ence device magnetometry measurements [63] since a surface
magnetization does not produce stray fields. Note also that
the scale of the magnetization would depend on microscopic
details and is probably directly related to the strength of
spin-orbit coupling. An additional phenomenon to consider
when studying µSR is that the muon itself could create a local
magnetization in a mixed-parity superconductor since it can
be seen as a charged defect.

Additionally, the behavior of superconductivity in
Sr2RuO4 under [1, 0, 0] strain could also be explained
by the current scenario. First, no cusp of Tc at zero strain
is expected for an accidental degeneracy [72]. Second, it is
natural to expect the even-parity component to undergo a
large increase of Tc as the γ band approaches the van Hove
singularity since the even-parity component is by assumption
nonzero on that band and is antinodal at the van Hove point
[73]. By contrast, one would only expect a small variation of
the onset temperature for the odd-parity component since it
only resides on the quasi-1D bands, which are comparatively
little affected by strain. This would be consistent with the
small variation of the onset temperature of the µSR signal
observed in Ref. [21].

Further, the presence of an odd-parity, pseudospin triplet
component would help explain a number of experiments
which have been interpreted that way, like Josephson junction
tunneling [74–76], the observation of half-quantum vortices
[77], and Sr2RuO4-ferromagnet heterostructures [78].

In the next two subsections, we will discuss in more detail
the different ways in which the two components �e and �o

obtained in the simple model of Sec. II could be incorporated
into a three-orbital model of Sr2RuO4. We will also examine
the implications for other experiments, namely, the measure-
ment of the Knight shift [25,26] and the jump in elastic moduli
[22–24].

A. Nature of the even-parity component

Assuming that a gap of the form cos(ky) [resp. cos(kx )] is
favored on dzx (resp. dzy), there remains the question of the
relative phase between the gaps in the two orbitals. If this
phase is +1 [resp. (−1)], the resulting gap is in the A1g (resp.
B1g) representation:

A1g : [�e,dzx ,�e,dzy ] = [cos(ky), cos(kx )],

B1g : [�e,dzx ,�e,dzy ] = [cos(ky),− cos(kx )], (22)

where �e,dzx (resp. �e,dzy ) is the even-parity component on
the dzx (resp. dzy) orbital. The difference between A1g (s′)
and B1g (dx2−y2 ) only becomes important along the diago-
nals ([1, 1, 0] and [1,−1, 0] directions) since the B1g gap has
symmetry-imposed nodes along the diagonals, while the A1g

gap does not. By contrast, the cosine nodes at kx = ±π/2 and
ky = ±π/2 are present for both A1g and B1g.

Within a two-orbital model, the splitting between A1g and
B1g is a second-order effect since it only depends on the
hybridization between the two orbitals, which is mostly lo-
calized in a small region along the diagonals. In fact, a close
competition between these states has been reported in previ-
ous work, even in three-orbital models [29,79]. Both s′ and

dx2−y2 should therefore be considered as candidates for the
even-parity component.

B. Nature of the odd-parity component

We expect the odd-parity order to only arise on the dzx

and dzy orbitals since the degeneracy between odd- and even-
parity states relies on the quasi-1D limit. Starting from the
sign(kx ) cos(ky) form found in the single-orbital model, two
choices have to be made: the spin orientation of Cooper pairs
(parameterized by �d) on each orbital and the relative phase of
the OPs between the two orbitals. Each choice corresponds to
a different D4h representation:

Eu :
[ �ddzx , �ddzy

] = ẑ[ηx sign(kx ) cos(ky), ηy sign(ky) cos(kx )],

A1u :
[ �ddzx , �ddzy

] = [x̂ sign(kx ) cos(ky), ŷ sign(ky) cos(kx )],

A2u :
[ �ddzx , �ddzy

] = [ŷ sign(kx ) cos(ky),−x̂ sign(ky) cos(kx )],

B1u :
[ �ddzx , �ddzy

] = [x̂ sign(kx ) cos(ky),−ŷ sign(ky) cos(kx )],

B2u :
[ �ddzx , �ddzy

] = [ŷ sign(kx ) cos(ky), x̂ sign(ky) cos(kx )],

(23)

where �ddzx (resp. �ddzy ) is the �d vector on the dzx (resp. dzy

orbital) and ηx and ηy are free parameters. All these represen-
tations are degenerate for the SU (2)-symmetric single-orbital
toy model considered in Sec. II. They would, however, be split
by spin-orbit coupling in a realistic model, as studied in previ-
ous work (see Ref. [79] and references therein). Here, we will
take a phenomenological approach and discuss the different
representations in light of available experimental results.

1. Eu state

The favored Eu state can either be [1, 0, 0]-nematic
{px, py}, [1, 1, 0]-nematic px ± py, or chiral px ± ipy.
Whereas a chiral state is usually favored since it does not have
any symmetry-imposed nodes, the situation is different here
due to the presence of the even-parity component. It is indeed
favorable for both px and py components to have a relative
±i phase with respect to the even-parity component (to form
a unitary state), which is of course incompatible with having
a relative i phase between px and py. A nematic state could
therefore be favored due to the presence of the even-parity
component. Since a 100-nematic state seems unlikely due to
the fact that it would only gap out one of the two quasi-1D
orbitals, the most likely scenario would be a [1, 1, 0]-nematic
state: px ± py. Combining this with the above candidates for
the even component, the OP would be of the form dx2−y2 +
i(px ± py)ẑ or s′ + i(px ± py)ẑ.

Neglecting spin-orbit coupling and assuming an equal am-
plitude of singlet and triplet components on the α and β

bands at T = 0, we can obtain an estimate of the residual spin
susceptibilities based on Sec. III B:

χ‖(T = 0)

χN
= 1

2

ρα,β

ρ
	 0.2,

χ⊥(T = 0)

χN
= 0, (24)
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for in-plane and out-of-plane magnetic fields, respectively,
where ρα,β is the DOS at the Fermi level for the α and β bands,
and ρ = ρα,β + ργ is the total DOS. Quantum oscillation
measurements give ρα,β

ρ
	 0.4 [10]. A residual susceptibility

of 0.2 was consistent with earlier Knight shift measurements
[25,26] but is inconsistent with the upper bound of 0.1 re-
cently reported by Chronister et al. [80]. Based on our current
estimate for the residual susceptibility, a mixed �e + iEu

state is therefore inconsistent with the latest Knight shift
experiments. A more accurate estimate of χ/χN based on a
microscopic calculation with spin-orbit coupling and multi-
band effects is, however, warranted before the possibility of
such a state is discarded altogether.

Regarding ultrasound experiments, an Eu component
would explain the presence of a jump in the B2g elastic mod-
ulus [22–24] but could also potentially have a jump in the
B1g channel, which was not observed (although there could
be some microscopic reasons why the B1g jump has a smaller
prefactor).

2. Helical states (A1u, A2u, B1u, B2u)

Helical states have a �d vector that rotates in plane as one
moves around the FS. An accurate calculation of the spin
susceptibility is beyond the scope of this paper, but we can
already obtain an estimate as follows. Assuming an approx-
imately isotropic orientation of �d within the plane, helical
states would have the following residual spin susceptibilities:

χ‖(T = 0)

χN
= 1

4

ρα,β

ρ
	 0.1,

χ⊥(T = 0)

χN
= 1

2

ρα,β

ρ
	 0.2, (25)

for in-plane and out-of-plane magnetic fields, respectively. To
the best of our knowledge, these values are compatible with
current NMR experiments but could potentially be disproved
by further measurements [25,26].

It does not seem possible at this point to explain a jump
in the B2g elastic modulus without invoking an accidental
combination of two different helical states, like B1u and
A2u. However, a thorough analysis of possible couplings be-
tween elasticity and mixed even-odd OPs might reveal other
possibilities, especially if inhomogeneities of the OP are con-
sidered.

A necessary (though not sufficient [81]) criterion to see
a Kerr signal is to break TRS and all vertical mirror planes
[82]. If inhomogeneities (e.g., domain walls) can be invoked
to break certain mirror symmetries, the Kerr signal cannot
discriminate between different helical states. However, if one
requires all vertical mirror symmetries to be broken by the
bulk OP, the presence of a Kerr signal imposes restrictions on
the possible helical states: assuming that the even component
is in A1g or B1g, only combinations of the type A1g + iA1u or
B1g + iB1u would break all vertical mirrors.

V. DISCUSSION

We have established an accidental degeneracy be-
tween even-parity [�e = cos(ky)] and odd-parity [�o =
cos(ky)sign(kx )] SC orders in the quasi-1D limit (ty/tx → 0)

of the Hubbard model, in the weak U limit. Moving away
from the purely 1D limit creates a small splitting between
these orders by favoring the even-parity one. A GL analysis
then revealed that a linear combination of the type �e + i�o

can become favorable at a second transition. Remarkably, the
degenerate orders have essentially the same gap magnitude
over the entire FS, leading to a parametrically small b′ coef-
ficient in the GL free energy. This leads to a parametrically
small specific heat jump at the second transition.

In Sec. IV, we assumed that this mechanism is at play on
the quasi-1D orbitals of Sr2RuO4, and we analyzed the con-
sequences for experiments. A state of the type �e + i�o has
several desirable features. It explains the presence of nodes
[58–62] in a TRS-breaking state, and it predicts a paramet-
rically small specific heat jump [33]. It also reconciles the
breaking of TRS [19,20] with the absence of edge currents
[63]. Further, the presence of an odd-parity, pseudospin triplet
component would help explain a number of measurements
which have been interpreted as such [74,75,77,78].

Whereas our solution of the single-orbital Hubbard model
is exact, its application to Sr2RuO4 was purely empirical since
we do not have a microscopic justification for neglecting
interorbital effects. These effects have been studied exten-
sively in the literature [34,45,79,83–87] and can often impact
crucially the predictions of theoretical models. Our ambition
with this paper was much smaller: We wanted to find a toy
model which exhibits a second transition to a TRS-breaking
state with a parametrically small specific heat jump, which
we have found. A more realistic calculation which includes
multiple orbitals and spin-orbit coupling would be necessary
to go beyond this proof of principle. The main effect which
could create substantial splitting between even- and odd-
parity SC orders is interorbital interaction, as already observed
in Ref. [34]. A thorough study of the fate of this degeneracy as
a function of J/U is therefore warranted (where J is Hund’s
coupling, and U is the intra-orbital Hubbard interaction).

Additionally, the quasi-1D regime of the square lattice
Hubbard model is relevant to a variety of materials, includ-
ing Bechgaard salts [44,88,89] and Li0.9Mo6O17 [90]. This
model can be generalized to the case of longer-range inter-
action and finite U/t , which leads to a variety of interesting
SC phases, including odd-frequency superconductivity and
Fulde-Ferrell-Larkin-Ovchinnikov phases [91–94]. Moving
beyond the quasi-1D regime, an accidental degeneracy be-
tween even- and odd-parity superconductivity is an interesting
possibility to consider [95], in the context of Sr2RuO4 and
other systems. In fact, the proximity to a quantum critical
point was shown to provide another mechanism for a nearly
degenerate pairing in even and odd channels [96–102].

One defining feature of a mixed-parity state is of course
the breaking of inversion symmetry, which could be probed
by nonlinear optical effects like second-harmonic generation
[103–105]. Another way to measure a breaking of inversion
symmetry is provided by phase-sensitive measurements which
probe opposite sides of the sample [74]. A study of the na-
ture of edge modes in a mixed-parity state could also reveal
interesting properties and could be compared with existing
experimental data [106]. Finally, the most direct way to put
the present proposal to the test is probably the Knight shift
[25,26]: The presence of a spin-triplet component could be
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disproved if a residual susceptibility smaller than the ones
predicted in Eq. (24) or (25) was measured.

Note added. As we were completing this paper, we received
a manuscript by Chronister et al. [80] reporting Knight shift
measurements in Sr2RuO4. These measurements provide a
more constraining upper bound on the spin susceptibility of
the condensate than previous work. Based on our estimates
for the residual susceptibility, the results of Chronister et al.
[80] do not rule out the possibility of a mixed-parity OP.
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APPENDIX A: ANALYTIC SOLUTION
OF THE WEAK COUPLING EQUATION

Within a weak coupling analysis of the SC instability, we
must solve the following equation:

1

(2π )2

∫
dk̂2

|v(k̂2)|V (k̂1 − k̂2)�(k̂2) = λ �(k̂1), (A1)

where

Ve(k̂1 − k̂2) = U + U 2χ (k̂1 − k̂2),

Vo(k̂1 − k̂2) = −U 2χ (k̂1 − k̂2) (A2)

are the effective interactions in the even and odd sectors, χ is
the Lindhard susceptibility, and k̂1, k̂2 live on the FS. In this
Appendix, we will provide an analytic solution that is valid in
the limit of ty/tx → 0.

In this limit, the FSs are given by two sheets at kx =
±kF(ky), with

kF(ky) = kF + 2ty cos(ky)

vF
+ O

(
t2
y

)
, (A3)

where vF = 2tx sin(kF) and kF = arccos(−μ/2tx ).

1. Lindhard susceptibility

Since the FS is given by two separate sheets at kx 	 kF, we
only need the value of χ (qx, qy) in two regimes: qx 	 0 (for
intrasheet scattering) and qx 	 2kF (for intersheet scattering).
For intrasheet scattering, one easily finds that

χ (qx 	 0, qy) = ρ + O(ty), (A4)

with ρ the DOS at the Fermi level in the vanishing ty limit.
We can therefore forget about intrasheet scattering since this
constant term will only give a contribution in the trivial s-wave
channel.

The intersheet case is more interesting: We will find that

χ (qx 	 2kF , qy) = C(ty) + f (qy) + O(ty), (A5)

FIG. 3. The blue region shows a typical example of zone 2 de-
fined in Eq. (A7). The Fermi surface is shown in red. Parameters are
kF = 0.5, ty/tx = 0.1, qy = 0, and qx = 1.

where C(ty) is an unimportant constant since it will only give
a contribution in the trivial s-wave channel, and f (qy) is a
nontrivial function that is independent of ty and will need to
be diagonalized to solve the problem at hand.

As a reminder, the susceptibility is defined as

χ (q) = − 1

(2π )2

∫
dp

n[ξ (p)] − n[ξ (p + q)]

ξ (p) − ξ (p + q)
. (A6)

The numerator is nonzero in two disjoint regions, one for
which ξ (p) > 0 and ξ (p + q) < 0 (zone 1) and one for which
ξ (p) < 0 and ξ (p + q) > 0 (zone 2). Since these two zones
give the same contribution to the integral, we will only focus
on zone 2. For a given ky, the zone limits for zone 2 are
kx,start � kx � kx,end with

kx,start(ky) = max[kF(ky + qy) − qx,−kF(ky)],

kx,end(ky) = min[−kF(ky + qy) + qx, kF(ky)]. (A7)

A typical example of zone 2 is shown in Fig. 3.
We are now interested in the locus of points k̃x where the

denominator vanishes [i.e., where ξ (p) − ξ (p + q) = 0] since
the integrand will be peaked there. It is given, to leading order
in ty, by

k̃x(ky) = −kF + 1
2 [kF(ky + qy) − kF(ky) − (qx − 2kF)].

(A8)

It will be useful to define k∗
y as

kF(k∗
y + qy) = −kF(k∗

y ) + qx. (A9)

In other words, k∗
y (qx, qy) is the value of ky on the left branch

such that k + q sits exactly on the right branch at ky + qy. With
this parameterization, we find qx = kF(k∗

y + qy) + kF(k∗
y ).
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Now we can expand the denominator D(px, py) ≡ ξ (p) −
ξ (p + q) linearly along the kx direction:

D(px, py) 	 (px − k̃x ) (∂px D)|k̃x
+ O[(px − k̃x )2]. (A10)

To leading order in ty, we find (∂px D)|k̃x
= −2vF; thus,

D(px, py ) 	 (px − k̃x )2vF.
Now the integral becomes

χ (q) = − 2

(2π )2

∫
d py

∫ kx,end(py )

kx,start (py )
d px

1

−2vF(px − k̃x )

= 2

2vF(2π )2

∫
d py{ln[kx,end(py) − k̃x(py)]

− ln [kx,start(py) − k̃x(py)]}

	 − 2

2vF(2π )2

∫
d py ln[kx,start(py) − k̃x(py)], (A11)

where in the last line, we used the fact that, in the small
ty limit, kx,start(py) − k̃x(py) goes to zero, while kx,end(py) −
k̃x(py) is finite. We also find that

kx,start(py) − k̃x(py)

= |k̃x − [−kF(py)]|

= 1

2
|kF(py) + kF(py + qy) − kF(k∗

y + qy) − kF(k∗
y )|

= 2ty
vF

1

2
| cos(py) + cos(py + qy)

− cos(k∗
y + qy) − cos(k∗

y )| + O
(
t2
y

)
, (A12)

which finally leads to

χ (q) = −2
1

2vF(2π )2

∫
d py ln

[
2ty
vF

1

2
| cos(py)

+ cos(py + qy) − cos(k∗
y + qy) − cos(k∗

y )|
]
. (A13)

After some algebra, we find the simple relation:

χ (k̂2 − k̂1) = χ ′
0 − 1

2vF(2π )
ln [cos(ky,2 − ky,1) + 1],

(A14)

with χ ′
0 = 1

2vF(2π ) ln(
√

2vF/ty) an inconsequential constant
since it will only give a repulsive contribution in the m = 0
channel (see below).

2. Diagonalization

Starting from the initial eigenproblem [Eq. (A1)], we can
make a further set of approximations which are valid to
leading order in ty. We can omit constant terms in the effec-
tive interaction since they will only contribute to the m = 0
sector, which is always repulsive. This includes the U term
in Eq. (A2), the intrasheet scattering (i.e., when k̂1 and k̂2

are on the same FS sheet), and the χ ′
0 term in Eq. (A14).

Finally, to leading order, we can take the Fermi velocity to be
constant: v(k) = vF. After all these approximations, the even-
and odd-parity sector eigenproblems both simplify to the same

equation:

1

(2π )2vF
sy

∫ π

−π

dky,2 χ (ky,1 − ky,2)�(ky,2) = λ �(ky,1),

(A15)

where χ (ky,1 − ky,2) is given in Eq. (A14), and sy is the sign
change of � under the y → −y mirror symmetry.

Since χ only depends on ky,2 − ky,1, we can always diag-
onalize Eq. (A15) with Fourier series, leading to four sets of
eigenvectors:

�m,1,1(kx, ky) = cos(mky),

�m,−1,1(kx, ky) = cos(mky)sign(kx ),

�m,1,−1(kx, ky) = sin(mky),

�m,−1,−1(kx, ky) = sin(mky)sign(kx ), (A16)

for m � 1 (it is easy to check that the m = 0 states are repul-
sive). Using the relation:

1

2π

∫ π

−π

dky ln [cos(ky) + 1] cos(mky) = (−1)m+1

m
, (A17)

valid for m � 1, one finds all the negative eigenvalues:

λm = − U 2

2(2π )2v2
F

1

m
, (A18)

for m � 1. Each of these eigenvalues is doubly degenerate.
For odd m, the eigenvectors are given by

�m,e = �m,1,1(kx, ky ) = cos(mky),

�m,o = �m,−1,1(kx, ky) = cos(mky)sign(kx ). (A19)

For even m, we find

�m,e = �m,−1,−1(kx, ky) = sin(mky)sign(kx ),

�m,o = �m,1,−1(kx, ky) = sin(mky). (A20)

APPENDIX B: GL ANALYSIS

We consider the following mixed-parity OP:

�(k) ≡ �↑↓(k) = ψe�e(k) + iψo�o(k), (B1)

with ψe and ψo real parameters, leading to |�(k)|2 =
|ψe�e(k)|2 + |ψo�o(k)|2. The free energy is given by

F = −aeψ
2
e − aoψ

2
o + b

(
ψ2

e + ψ2
o

)2 + b′(ψ2
e − ψ2

o

)2
,

(B2)

with ae(T ) = a0(Tc,e − T ), ao(T ) = a0(Tc,o − T ), where Tc,e

and Tc,o are the critical temperatures for each component when
considered in isolation.

The first transition occurs at Tc,e, and the second transition
occurs at T ∗ given by

T ∗ = Tc,o − (Tc,e − Tc,o)
b − b′

2b′ . (B3)
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The solution for the OP is [
ψ2

e,0 = ae

2(b + b′)
, ψ2

t,0 = 0

]
, (B4)

for T ∗ < T < Tc,e and [
ψ2

e,1 = 1

2

(
ae + ao

4b
+ ae − ao

4b′

)
, ψ2

o,1 = 1

2

(
ae + ao

4b
− ae − ao

4b′

)]
, (B5)

for T < T ∗.

1. Specific heat discontinuity

The specific heat discontinuity at a temperature T is given by [57]

�C = N0
β

4

∫
dξ

〈
1

cosh(βE/2)2

[
−

(
∂|�(k)|2

∂T

)
T−

+
(

∂|�(k)|2
∂T

)
T+

]〉
FS

, (B6)

with

〈 f (k)〉FS = 1

N0

1

(2π )D

∫
FS

dk̂
1

v(k)
f (k̂),

N0 = 1

(2π )D

∫
FS

dk̂
1

v(k)
, (B7)

and where T+ and T− are approaching T from above and below, respectively.
At the first transition, this leads to

�CTc,e = N0
β

4

∫
dξ

1

cosh(βE/2)2

〈
−

(
∂|�(k)|2

∂T

)
T−

〉
FS

= N0
β

4

∫
dξ

1

cosh(βξ/2)2
〈|�e(k)|2〉FS

a0

2(b + b′)

= N0〈|�e(k)|2〉FS
a0

2(b + b′)
, (B8)

where we used ∫
dξ

1

cosh(βξ/2)2
= 4

β
. (B9)

At the second transition, we find

�CT ∗ = N0
β

4

∫
dξ

〈
1

cosh(βE/2)2

[
−

(
∂|�(k)|2

∂T

)
T−

+
(

∂|�(k)|2
∂T

)
T+

]〉
FS

= N0
β

4

∫
dξ

〈
1

cosh(βE/2)2
|�(k)|2

〉
FS

[
a0

2b
− a0

2(b + b′)

]

= N0
〈
YT ∗ (k)|�(k)|2〉FS

[
a0

2b
− a0

2(b + b′)

]
, (B10)

where we made the approximation that |�e(k)|2 = |�o(k)|2 ≡ |�(k)|2.
Equation (16) of the main text is obtained by taking the ratio of the two specific heat discontinuities, combined with the

approximation |�e(k)|2 = |�o(k)|2 ≡ |�(k)|2.

APPENDIX C: SPIN SUSCEPTIBILITY

In this Appendix, we calculate the spin susceptibility of a mixed singlet-triplet superconductor when the �H field is perpen-
dicular to �d . Without loss of generality, we choose �H ‖ ẑ and �d = −iψo�o(k)ŷ. For a given k value, the BCS Hamiltonian reads
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[57]

H = [c†
↑(k) c†

↓(k) c↑(k) c↓(k)]

⎡
⎢⎢⎢⎢⎣

ξ (k) + h 0 ψo�o(k) ψe�e(k)

0 ξ (k) − h −ψe�e(k) ψo�o(k)

ψo�o(k) −ψe�e(k) −[ξ (k) + h] 0

ψe�e(k) ψo�o(k) 0 −[ξ (k) − h]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c↑(k)

c↓(k)

c†
↑(k)

c†
↓(k)

⎤
⎥⎥⎥⎥⎥⎦, (C1)

where h is the Zeeman splitting. The resulting magnetization can be calculated analytically by performing a Bogolyubov
transformation, and the magnetic susceptibility is read off from the linear-in-h term.

Up to an overall multiplicative constant, the magnetic susceptibility is found to be

χ =
∑

k

β

4

1

cosh( 1
2βE )2

{
1 − |ψo�o(k)|2

E2

[
1 − sinh(βE )

βE

]}

= 1

(2π )D

∫
dξ

∫
dk̂

1

v(k)

β

4

1

cosh( 1
2βE )2

{
1 − |ψo�o(k)|2

E2

[
1 − sinh(βE )

βE

]}

= N0〈YT (k)〉 − N0

〈
β

4

∫
dξ

1

cosh( 1
2βE )2

|ψo�o(k)|2
E2

[
1 − sinh(βE )

βE

]〉

= N0〈YT (k)〉 + N0

〈 |ψo�o(k)|2
|�(k)|2 [1 − YT (k)]

〉
, (C2)

with |�(k)|2 = |ψo�o(k)|2 + |ψe�e(k)|2.
Since the normal state susceptibility is given by N0 in our units, one recovers Eq. (18) from the main text.
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