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Plasmons in three-dimensional superconductors
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We study the plasma branch of an homogeneous three-dimensional electron gas in an s-wave superconducting
state. Although a sum rule guarantees that the departure of the plasma branch always coincides with the plasma
frequency ωp, the dispersion and lifetime of plasmons is strongly affected by the presence of the pair condensate,
especially when ωp is close to the pair-breaking threshold 2�. When ωp is between 1.7� and 2�, the level
repulsion is strong enough to give the plasma branch an anomalous, downward dispersion and a dispersion
minimum strictly lower than ωp. Then for ωp > 2�, plasmons damp out in pair-breaking excitations, acquiring a
small damping rate at zero temperature, which we compute in a non-perturbative way. Finally, the density-density
response function displays a resonance near 2� (not to be confused with the amplitude mode), which can beat
with the main plasma resonance, and subsists for ωp large compared to �, thereby distinguishing charged from
neutral condensates.
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I. INTRODUCTION

Despite being a very mature experimental platform, sup-
porting numerous technical applications, superconductors still
hold some of the most fundamental open questions of many-
body physics. The impressively high critical temperature
(Tc) and the unconventional Cooper pairing in cuprates and
iron-based superconductors are the most famous of those
fascinating questions. However, even some properties of con-
ventional Bardeen-Cooper-Schrieffer (BCS) superconductors
are still intensively discussed, such as the existence of an
amplitude collective mode [1–3], reminiscent of the Higgs
mode in high-energy physics.

In fact, even for such usual behavior as plasma oscillations
(the collective modes of the electronic density), supercon-
ductors are still not fully understood. In a pioneering work,
Anderson [4] has shown that the phononic (Goldstone) branch
that exists in a neutral fermionic condensate acquires a gap
corresponding to the plasma frequency ωp in presence of
long-range Coulomb interaction. This mechanism later be-
came famous due to its analogy with the phenomenon of mass
acquisition in high-energy physics. The work of Anderson has
then been revisited in the context of high-Tc superconductivity
[5–9], and nuclear/neutronic matter [10]. While Anderson
focused on the regime of large ωp, the frequency of transverse
plasmons in layered materials (such as cuprates) softens to an
acoustic dispersion, such that in the superconducting phase an
undamped plasma branch can be expected [11–14] below the
pair-breaking threshold 2�. While a sum-rule [9] guarantees
that the branch always departs from ωp, the dispersion rela-
tion was shown [15–17] to approach the phononic law (ωq,n)

of neutral fermionic condensates as
√

ω2
p + ω2

q,n in the limit

ωp � 2�.
In both limits of large and small ωp, the dispersion of plas-

mons is thus similar to the dispersion in the normal phase, and

no significant effect of superconductivity has been reported so
far. On the contrary, our study identifies a significant distortion
of the plasma resonance caused by superconducting electrons.
The distortion is largest when ωp is close to 2�, but even
for large ωp the pair-breaking continuum bears the trace of
Coulomb interactions.

We consider the reference situation of an isotropic three-
dimensional (3D) s-wave superconductor but our study can be
readily extended to layered geometries or anisotropic pairing.
We identify three main differences between normal and su-
perconducting plasmons. First, when 1.696� < ωp < 2�, the
plasma branch is repelled by the pair-breaking threshold, and
acquires an anomalous dispersion, with a negative curvature
and thus a minimum strictly below ωp. Second, at ωp > 2�,
plasmons are damped (even at zero temperature) and decay
by breaking Cooper pairs. Last, but not least, we find a second
resonance in the low-energy region of the pair-breaking con-
tinuum, separated from the main plasma peak. This second
peak is particularly intense when ωp is near 2� and leads to
spectacular beatings in the time evolution of a perturbation
of the electronic density. The peak, however, subsists in the
regime ωp � �, and is thus a fingerprint of fermionic con-
densates with long-range interactions.

By assessing the influence of superconductivity on density
oscillations, our study can guide practical use of plasmonics to
probe and manipulate superconducting materials [14,18,19].
The low-energy plasmons we describe may also affect the
critical temperature through their zero-point motion [20].

II. DISPERSION EQUATION

We study a homogeneous electron gas evolving in a cu-
bic volume V with an average density ρ, defining the Fermi
wavenumber ρ = k3

F /3π2. Electrons interact through both the
long-range Coulomb potential VC (r) ∝ 1/r and a short-range

2469-9950/2023/107(1)/014504(8) 014504-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8589-2479
https://orcid.org/0000-0002-7918-3772
https://orcid.org/0000-0002-8478-1128
https://orcid.org/0000-0001-6054-8180
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.014504&domain=pdf&date_stamp=2023-01-10
https://doi.org/10.1103/PhysRevB.107.014504


T. REPPLINGER et al. PHYSICAL REVIEW B 107, 014504 (2023)

part, responsible for s-wave Cooper pairing, and modelled by
a contact potential of coupling constant g:

V (r1, r2) = gδ(r1 − r2) + VC (r1 − r2). (1)

In terms of the electron mass m and wavenumber q, the
Fourier transform of the Coulomb potential is VC (q) =
mω2

p/ρq2 (we use h̄ = kB = 1 throughout the article).
We imagine that the system is driven at fixed frequency

ω and wavenumber q by an external field (for example, an
electromagnetic field) and we study the collective response
within linear response theory. In more standard situations this
response can be described by London electrodynamics [21] (a
long wavelength effective theory), but for the present purpose
of describing the interplay between plasma waves and Cooper
pairing, a microscopic theory, such as the Random Phase Ap-
proximation (RPA) is unavoidable. Such an approach results
in a linear system [22] relating the density δρ and pair-field
fluctuations (in phase δθ and modulus δ|�|) to the corre-
sponding drive fields uθ , u|�|, and uρ :⎛

⎝ 2i�δθ (q, ω)
2δ|�(q, ω)|

2VC (q)δρ(q, ω)

⎞
⎠ = χ (ω, q)

⎛
⎝ uθ (q)

u|�|(q)
uρ (q)

⎞
⎠. (2)

The 3 × 3 response matrix χ , which incarnates the coupling
between density and pairing fluctuations in superconductors,
is expressed in terms of the bare propagator 	 as χ = (D −
	)−1	 with

D ≡
⎛
⎝V/g 0 0

0 V/g 0
0 0 V/2VC (q)

⎞
⎠. (3)

The spectrum of the collective modes corresponds to the
poles of χ , hence to the zeros of M = D − 	:

detM↓(zq, q) = 0. (4)

When damping mechanisms are active (for example, at ω >

2� or at nonzero temperature), a branch cut appears on the
real axis, representing the coupling to the continuum of decay
channels. In such situation, we use recently develop tech-
niques [23–25] to extract the pole in an analytic continuation
through the branch cut (in Eq. (4), M↓ denotes such an analytic
continuation of M). This study focuses on the typical weak-
coupling regime of superconductors, with � much smaller
than the Fermi energy εF , and the excitation wavelength com-
parable to the Cooper pair size ξ = kF /2m�. In this regime,
the fluctuation of the modulus of the order parameter are
decoupled from the phase-density fluctuations:

detM↓ = 0 ⇐⇒ M11,↓M33,↓ − M2
13,↓ = 0 or M22,↓ = 0.

(5)
The second condition gives rise to the “pair-breaking” or
“Higgs” modulus mode, which in the weak-coupling regime
is insensitive to Coulomb interactions [24,26]. Here, we study
the density-phase modes, fulfilling the first condition.

III. ANOMALOUS DISPERSION OF LONG
WAVELENGTH PLASMONS

We first study analytically the plasmon dispersion in the
limit q � 1/ξ , where, by analogy with the normal case [27],

FIG. 1. Dispersion parameter Re α (multiplied by �/εF to have
a finite weak-coupling limit), in function of the plasma frequency
at zero (black curve) and high temperature (red curve). The normal
dispersion 6εF /5ωp is shown by the red dotted curve. The value
where α changes sign at T = 0 is indicated by the black dotted line.
Inset: the damping parameter Im α, which becomes nonzero inside
the pair-breaking continuum [2�,+∞[ (red area).

one can expect the quadratic law [7]:

zq = ω0 + α
q2

2m
+ O(q4). (6)

A sum rule [9] (see Eq. (A8)) guarantees that the origin
ω0 of the plasma branch always coincides with the plasma
frequency

ω0 = ωp, (7)

as in the normal phase. Superconductivity, however, greatly
influences the departure of the plasma branch through its
curvature α. At zero temperature, we derive the fully analytic
expression of α:

α = 6εF

5ωp
− 32εF

15ωp

�2arcsin(ωp/2�)

ωp

√
4�2 − ω2

p

, (8)

which is shown as a black curve on Fig. 1. In the conventional
limit ωp � 2�, we recover the normal plasmon dispersion
[27] α → 6εF /5ωp. Highly energetic density waves are thus
insensitive to the weak pairing between electrons. In the op-
posite “quasiphononic” limit ωp � 2�, which corresponds
to the experimental situation of Refs. [13,16], rather than
expanding for fixed z as prescribed by Eq. (6), one should
expand [15] for q → 0 while keeping z/vF comparable to q.
This yields1

zq −→
q→0

cq/ωp fixed

√
ω2

p + c2q2, (9)

1Note that this is consistent with the behavior of α in the limit
ωp/� → 0.
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where c = vF /
√

3 is the speed-of-sound of the weakly inter-
acting condensate of neutral fermions. This bending of the
plasma branch to a linear dispersion when ωp tends to 0 is
similar to what happens in the normal phase, where the normal
plasma branch tends to zero sound (with the difference that the
velocity of zero sound is vF instead of vF /

√
3 here).

The most remarkable behavior occurs in between those two
limits. First, the repulsion of the pair-breaking threshold leads
to a squareroot divergence of Re α when approaching the pair-
breaking threshold from below. This opens an interval ωp ∈
[1.696�, 2�] where plasmons have an anomalous negative
dispersion at the origin, that is, Reα < 0. Then, at ωp > 2�,
Eq. (8) (with ωp → ωp + i0+) shows that α acquires an imagi-
nary part that describes the nonzero damping rate of plasmons.
This reflects the fact that a superconductor has pair-breaking
decay channels available even at zero-temperature (unlike
the particle-hole channels of the normal phase). Those chan-
nels are very active when ωp is just above the pair-breaking
threshold such that Imα shows a squareroot divergence when
ωp → 2�+. On the contrary, they weaken in the limit of large
ωp, such that Imα vanishes as −16π�2εF /ω3

p.
At nonzero temperature, plasmons are also sensitive to the

quasiparticle-quasihole excitations. Equation (8) generalizes
into

α = εF

�

[
6ω̄p

5
(I3 + J0 − J2) − 8

3ω̄p
I1

]
, (10)

in terms of the dimensionless parameters T̄ = T/�, ω̄p =
ωp/�, and the integrals In = ∫ +∞

0 dξ
th(ε/2T̄ )

εn(ω̄2
p−4ε2 ) and Jn =

1
2T̄ ω̄2

p

∫ +∞
0

dξ

εnch2(ε/2T̄ )
with ε =

√
ξ 2 + 1. The red curve in

Fig. 1 shows α in the vicinity of the critical temperature
T/Tc = 0.9989 (T/� = 10). We observe that α tends to its
normal limit 6εF /5ωp uniformly except in a neighborhood of
size ≈ �2/T around 2�. There, the divergence of the real
and imaginary parts is preserved whenever T < Tc, showing
that a regime of anomalous plasmon dispersion subsists until
the transition to the normal phase. In usual situations, ωp is
fixed in units of the Fermi energy εF , but the ratio ωp/�(T )
can still be adjusted by varying the temperature. The negative
plasma dispersion will thus eventually occur when increasing
the temperature provided that ωp is below 2� at T = 0.

One could be surprised that plasmons remain undamped
(Im α = 0) for ωp < 2� despite a nonzero temperature which
provides a decay channel through quasiparticle-quasihole
excitations. In fact, to absorb a plasmon (i.e., to satisfy the res-
onance condition ωp = εq+k/2 − εq−k/2) quasiparticles need
to have a wavenumber k > 2mωp/q. The plasmon lifetime
thus follows an activation law Imzq ∝ e−2mω2

p/q2T which is
exponentially suppressed in the limit �/εF , T/εF → 0 with
ωp, q of order �, 1/ξ . Plasmon damping at ωp < 2� is thus
essentially a strong-coupling effect.

IV. RESONANCE SPLITTING

Superconductivity not only bends the dispersion of the
plasma branch, it also deforms the shape of the density
response function χ33(ω) at frequencies close to the pair-
breaking threshold. Besides the Lorentzian peak centered

FIG. 2. Density-density response in function of the excitation
frequency ω at fixed wave number qξ = 0.1 and various plasma
frequencies. For visibility, we have multiplied χρρ by (ωp/� − 2)2.
The inset is a zoom on the first peak in the interval [2�, ω2]. On the
blue curve, the Dirac peak is at ω � 0.416�.

around Rezq � ωp, a second peak, shown on Fig. 2, emerges
between 2� and the second branching point [15,23]

ω2 =
√

4�2 + εF
q2

2m
, (11)

of the continuum. The peak is absent in the neutral case
(which in our case corresponds to the limit ωp → 0, see the
blue curve in Fig. 2), and starts to grow as ωp approaches
2� from below. It reaches its maximal intensity when ωp

passes 2� but the peak remarkably persists even in the regime
ωp � 2� (although its spectral weight relative to the main
plasma resonance decreases in this limit, red curve in Fig. 2).
It thus seems as if a part of the spectral weight gets captured
when ωp passes the range [2�,ω2] and remains trapped in
this range even when ωp becomes large. Similarly to the
disappearance of the phononic branch, this peak above 2� is
thus a signature of long-range interactions, with the difference
that it is specific to the superconducting state (whereas the
Anderson mechanism occurs also in the normal phase).

The behavior of this peak becomes clearer when looking at
the analytic structure of χ33. The Riemann sheet connected to
the interval [2�,ω2] of the real axis contains a unique pole of
the density-phase propagator at

zII
q = 2� − i + sign(2� − ωp)√

�

√√√√ 8

3π2

∣∣∣∣∣1 − 4�2

ω2
p

∣∣∣∣∣
(

kF q

2m

)3/2

+ O(q7/4). (12)

This pole should not be confused with the famous amplitude
“Higgs” mode [2,23,26]; although both poles lie in the same
energy range [2�,ω2], they concern excitation channels (the
density-phase channel for zII

q , the modulus channel for the
amplitude mode) which are decoupled in the weak-coupling
limit. Equation (12) exhibits an unusual noninteger power-law
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FIG. 3. (Top panel) Eigenfrequency Rezq of the plasma branch
in function of the wave vector q (in unit of the inverse pair ra-
dius ξ = kF /2m�), with ωp = 1.9�. The angular points 2� and
ω2 [Eq. (11)] are shown as dotted lines. The analytic windows are
shown in colors: white for ω < ω1 (window I), blue for ω1 < ω < ω2

(window II) and red for ω > ω2 (window III). The solution of Eq. (5)
in each window is shown as a solid line in the corresponding color.
The inset shows their schematic trajectories in the complex plane
after analytic continuation. In window II, the pair-breaking mode
(solution of M22,↓ = 0) is shown as a dashed line. The dispersion
minimum of the undamped solution below 2� is shown by the
black dot. (Bottom panel) Density-density response in function of
the excitation frequency ω at fixed plasma frequency ωp = 1.9� and
excitation wave number q = 0.2/ξ , 0.5ξ , and 1.0ξ (corresponding
to the vertical dotted lines in the top panel). The angular points 2�

and ω2(q) are marked by vertical dotted lines. Besides the Dirac
peaks below 2�, broadened peaks are visible inside the pair-breaking
continuum.

dispersion2, which contrasts with the quadratic dispersion of
the plasma and amplitude modes.

The real part of zII
q is either below 2� when ωp < 2� or

above ω2 when ωp > 2�. This explains why the associated
peak fades at low ωp (and disappears in the neutral case), and

2When ωp = 2� the quadratic law reemerges zII
q = 2� −

(0.0184 + 0.9953i) εF
�

q2

2m + O(q4). This result, like Eq. (12), is ob-
tained by expanding at low q as prescribed by Eq. (10) in Ref. [23].

−2

−1.5

−1

−0.5

0

0 10 20 30 40 50 60 70 80 90

A
(t

)

2Δt/2π

FIG. 4. Time-evolution of the amplitude A(t ) = 2VC (q)δρ(r, t )
/u0 cos(q · r) of a density wave created by a sudden excitation. We
have used here qξ = 0.1 and ωp = 2.05�.

has its maximum in ω2 for ωp > 2�, as shown by the inset
of Fig. 2. Equation (12) behaves well in the limit ωp/� →
+∞, which confirms that the peak near the continuum edge
survives in this limit.

Figure 3 summarizes the analytic structure of χ33. The
function is divided in three analyticity windows (I, II, and
III) by its two branching points 2� and ω2. Each window
is associated to a separate Riemann sheet (inset of Fig. 3)
each containing a single pole of the density-phase propagator
(respectively ωI

q, zII
q , and zIII

q ). Conversely, χ22 only has a pole
in sheet II, corresponding to the amplitude mode (dashed blue
line). Here, for ωp = 1.9�, the real pole ωI

q supports the main
plasma branch departing in ωp (while for ωp > 2� the main
branch would be supported by zIII

q ), zII
q is below 2�, and zIII

q
follows rather closely the angular point ω2.

V. BEATING OF DENSITY WAVES

In the frequency domain, we have described an unusual
splitting of the plasma resonance into a peak around ωp

and a peak in the range [2�,ω2]. To further illustrate the
originality of this phenomenon, we study its counter-part in
the time-domain, through the relaxation of abrupt density
perturbations. Namely, we suppose that at t > 0 an operator
suddenly turns on a static external field uρ (r) = u0 cos(q · r)
coupled to the electronic density. The subsequent evolution
of the density perturbation is given by the inverse Laplace
transform of the density-density response function:

δρ(r, t ) = u0 cos(q · r)

2VC (q)

∫ −∞−iη

+∞+iη

dz

2iπ

e−izt

z
χ33(z, q). (13)

This integral can be closed into a winding contour around
the branch cut [2�,+∞[ and a residue in the real pole ωI

q. The
time-evolution of δρ thus combines the contributions of the
plasmonic resonance and of the peak near the continuum edge,
which causes the system to oscillate at multiple frequencies.
As shown on Fig. 4, when the two peaks are close (we use
here ωp = 2.05�) this leads to very remarkable beatings, with
a carrier oscillating at frequency ωp ≈ 2� modulated by an
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envelope of typical frequency |ωp − 2�| � 2�. As the con-
tribution of the pair-breaking continuum to Eq. (13) decays
with time, the beatings gradually disappear and give way to
undamped oscillations at frequency ωI

q (very close to 2� here)

about the static response δρ(r, t ) = − u0 cos(q·r)
2VC (q) .

VI. CONCLUSION

We have described the low-q dispersion of supercon-
ducting plasmons in 3D, revealing a regime of anomalous
downward dispersion, and a finite lifetime due to the pair-
breaking decay channels. A new resonance also emerges near
the pair-breaking threshold, indicating a splitting of den-
sity waves into high- and low-frequency components. For a
more realistic description of plasmons in cuprates, our study
should be extended to 2D superconductors [28], or 2D-layered
electron gases [14,17,29]. Our work may also be applied to

superfluids of ultracold fermions [30] where different kinds
of long-range interactions can be engineered [31], or neutron
star matter [10].
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APPENDIX A: BARE PROPAGATOR

Here, we recall the expression of the bare propagator 	

which is used to construct the response function χ . The matrix
elements can be expressed in a generic form

	i j (z, q) =
∑

k

1

2ε+ε−

[
(1 − f+ − f−)π+

i j

z2 − (ε+ + ε−)2
− ( f+ − f−)π−

i j

z2 − (ε+ − ε−)2

]
, (A1)

with ξ± = (q/2 ± k)2/2m − μ, ε± =
√

ξ 2± + �2 and f± = 1/(1 + eε±/T ), and the (symmetric) matrices of coefficients

π+ =
⎛
⎝(ε+ + ε−)

(
ε+ε− + ξ+ξ− + �2

)
z(ε−ξ+ + ε+ξ−) −z(ε+ + ε−)

∗ (ε+ + ε−)
(
ε+ε− + ξ+ξ− − �2

) −(ε+ + ε−)(ξ+ + ξ−)
∗ ∗ (ε+ + ε−)

(
ε+ε− − ξ+ξ− + �2

)
⎞
⎠, (A2)

π− =
⎛
⎝(ε+ − ε−)

(
ε+ε− − ξ+ξ− − �2

)
z(ε−ξ+ − ε+ξ−) z(ε+ − ε−)

∗ (ε+ − ε−)
(
ε+ε− − ξ+ξ− + �2

)
(ε+ − ε−)(ξ+ + ξ−)

∗ ∗ (ε+ − ε−)
(
ε+ε− + ξ+ξ− − �2

)
⎞
⎠. (A3)

To compute the matrix M = 	 − D in long-wave limit, we perform a combinaison of lines and columns:

N =
⎛
⎝ M11 M12 zM13 + 2M11

M12 M22 zM23/� + 2M12

zM13/� + 2M11 zM23/� + 2M12 z2M33/�
2 + 4zM13/� + 4M11

⎞
⎠. (A4)

The advantage of this recombined matrix is that the whole third line and column is of order q2. Explicitly,

N13 =
∑

k

2ξ+ξ− − ξ 2
+ − ξ 2

−
2ε+ε−

[
(1 − f+ − f−)(ε+ + ε−)

z2 − (ε+ + ε−)2
+ ( f+ − f−)(ε+ − ε−)

z2 − (ε+ − ε−)2

]
, (A5)

N23 = −
∑

k

z(ξ+ − ξ−)

2ε+ε−

[
(1 − f+ − f−)(ε+ − ε−)

z2 − (ε+ + ε−)2
+ ( f+ − f−)(ε+ + ε−)

z2 − (ε+ − ε−)2

]
, (A6)

�2N33 = ρL3q2

2m

(
1 − z2

ω2
p

)
+
∑

k

(ξ+ − ξ−)2

2ε+ε−

[
(ε+ + ε−)(1 − f+ − f−)(ε+ε− − ξ+ξ− − �2)

z2 − (ε+ + ε−)2

− (ε+ − ε−)( f+ − f−)(ε+ε− + ξ+ξ− + �2)

z2 − (ε+ − ε−)2

]
. (A7)

Note that the expression of N33 has been simplified using the sum rule found in Ref. [9], namely∑
k

(1 − f+ − f−)(ε+ + ε−)(ε+ε− − ξ+ξ− − �2) − ( f+ − f−)(ε+ − ε−)(ε+ε− + ξ+ξ− + �2)

2ε+ε−
= ρV q2

2m
. (A8)

Thus, to leading order in q, the eigenenergy of the plasma
branch solves N33(zq, q) = 0, which yields immediately
Eq. (7) of the main text.

APPENDIX B: LOW-q EXPANSION
OF THE FLUCTUATION MATRIX

We give additional detail on the low-q expansion of M,
which leads to Eqs. (8) and (10) of the dispersion parameter
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TABLE I. Long-wavelength expansion of the elements of N in
terms of the function g of Eq. (B3) (at T = 0) and of the integrals In

and Jn defined below Eq. (10) (at T �= 0).

Coefficient At T = 0 At T �= 0

n(0)
33 0 0

n(2)
33

2
3 (1 − z̄2

ω̄2
p
) 2

3 (1 − z̄2

ω̄2
p
)

n(4)
33

8(4g+1)
5z̄2

8
5 (I3 − J2 + J0 )

n(6)
33

32(−8z̄g′+8(z̄2−1)g+z̄2−2)
7z̄6

n(0)
11

z̄2g
2

z̄2I1
2

n(2)
11 − 4z̄g′+4g+1

3z̄2

n(0)
13 0 0

n(2)
13 − 4g

3 − 4
3 I1

n(4)
13

8(4z̄g′−2(z̄2−2)g+1)
5z̄4

in the main text. In this Appendix, we use the dimensionless
variables q̄ = qξ , z̄ = z/� and

ni j = Ni j × (2π )3εF /k3
F L3. (B1)

Generically, the expansion of a matrix element can be written
as

ni j =
n∑

p=0

n(p)
i j (z̄)q2p + O(q2(n+1)), (B2)

and all coefficients n(p)
i j are elementary functions of z̄, of the

function

g(z̄) = =
⎧⎨
⎩

− arcsin(z̄/2)
z̄
√

4−z̄2 if z̄ < 2
argcosh(z̄/2)

z̄
√

z̄2−4
− iπ

2z̄
√

z̄2−4
if z̄ > 2,

(B3)

and its derivative. Their explicit expression is given in Table I.
At T = 0, we have derived the coefficient of the term

in q4 in the plasma dispersion (such that zq = ω0 + α
q2

2m +
β

εF
( q2

2m )2 + O(q6)):

β = ε3
F

ω3
p

h
(ωp

�

)
, (B4)

with

h(ω) = 1

1575ω2
[64ωg′(ω)(112ω2g(ω) + 63ω2 − 220)

−10(32g(ω)(56ω2g(ω)−9ω2 + 44)+27ω2 + 352)].
(B5)

This coefficient β is positive in the interval [1.696�, 2�]
where α is negative, which allows us to estimate the position
of the dispersion minimum as

qminξ ≈
√

− ε2
F

�2

α

2β
. (B6)

Figure 5 show the dependence of qmin on the ratio ωp/�, using
both (B6) and the exact numerical solution.

FIG. 5. The dispersion minimum ωqmin and the wavenumber qmin

at which it is reached in function of the plasma frequency. For
ωp < 1.696, qmin is identically 0 and ωqmin coincides with ωp (oblique
dotted line). Then for ωp > 1.696, qmin departs from 0 as described
by Eq. (B6) (dashed red curve). In the limit ωp → +∞, qmin diverges
linearly and ωqmin tends to 2�.

APPENDIX C: NUMERICAL IMPLEMENTATION

Here we give additional details on how to evaluate the
matrix M numerically at T = 0 but arbitrary values of qξ . The
associated Fortran code is available online [32]. The rigorous
way to take the BCS limit (� → 0) and to deal with the
resonance condition is explained in Ref. [24]. For � → 0 and
fixed q̄ = qξ , ω̄ = ω/�, the momentum integrals defining
the matrix element Mi j are dominated by wavevectors close
to the dispersion minimum k0 = √

2mμ � kF . We thus set
ξ̄ = ξk/�, kdk/2m� = dξ/2, and expand the integrand for
k0 � √

2m�.
The integral over ξ̄ from −∞ to +∞ is odd in the case

of M12 and M23 (which therefore vanish), and even otherwise.
The spectral density associated to mi j [the dimensionless ver-
sion of Mi j , see Eq. (B1)] takes the form

ρi j (ω̄) =
∫ +∞

0
dξ̄

∫ 1

0
duπ̄+

i j δ(ω̄ − ε̄+ − ε̄−), (C1)

with

π̄+
11 = ε̄+ε̄− + ξ̄+ξ̄− + 1, (C2)

π̄+
22 = ε̄+ε̄− + ξ̄+ξ̄− − 1, (C3)

π̄+
33 = ε̄+ε̄− − ξ̄+ξ̄− + 1, (C4)

π̄+
13 = −ε̄+ − ε̄−. (C5)

We use here (and everywhere in this Appendix) the di-
mensionless notations ξ̄± = ξq/2±k/� = ξ̄ ± uq̄ and ε̄± =√

ξ̄ 2± + 1.
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We use the Dirac delta to integrate over ξ̄ at fixed u. The
resonance condition (ω = ε+ + ε−) is studied in Annexe A.
of Ref. [24]. On the interval [0,+∞[, it yields a unique root:

ξ̄0 = ω̄

2

r2

r1
with r1 =

√
ω̄2 − 4q̄2u2

and r2 =
√

ω̄2 − 4q̄2u2 − 4, (C6)

ξ0 is real provided

u < umax =
(

ω̄2 − 4

4q̄2

)1/2

, (C7)

such that the remaining interval of integration over u is

Iu(ω) =
⎧⎨
⎩

∅ if ω̄ < 2
[0, umax] if 2 < ω̄ < ω̄2

[0, 1] if ω̄ > ω̄2

(C8)

where ω̄2 = 2
√

1 + q̄2 is the dimensionless version of
Eq. (11). After integration over ξ , we obtain

ρi j =
∫

Iu(ω)
ri j (u)du, (C9)

with the integrands ri j :

r11 = r1

4r2
(C10)

r22 = r2

4r1
(C11)

r33 = ω̄2

r3
1r2

(C12)

r13 = ω̄

2r1r2
(C13)

The angular integrals (C9) can be computed analytically
in terms of elliptic integrals (denoted in the convention of
Ref. [33]). For 2 < ω̄ < ω̄2, we set m = √

ω̄2 − 4/ω̄, and
obtain:

ρ11 = ρ33 = ω̄

8q̄
E (m) (C14)

ρ13 = K (m)

4q̄
(C15)

ρ22 = ρ11 − 2

ω̄
ρ13 (C16)

For ω̄ > ω̄2, we perform the change of variable sin φ =√
ω̄2 − 4u/2q̄. Introducing θ = arcsin(2q̄/

√
ω̄2 − 4), we

have

ρ11 = ω̄

8q̄
E (θ, m) (C17)

ρ13 = F (θ, m)

4q̄
(C18)

ρ22 = ρ11 − 2

ω̄
ρ13 (C19)

ρ33 = ρ11 −
√

ω̄2 − 4q̄2 − 4

ω̄2 − 4q̄2
(C20)

Once the spectral densities are known, the value of m at
arbitrary z is given by frequency integrals

mii(z̄) =
∫ +∞

2
dω̄

(
ρii(ω)

[
1

z̄ − ω̄
− 1

z̄ + ω̄

]
+ 1

2
√

ω̄2 − 4

)

for i = 1, 2

(C21)

m33(z̄) =
∫ +∞

2
dω̄

[
ρ33(ω̄)

[
1

z̄ − ω̄
− 1

z̄ + ω̄

]]
− 2q̄2

3ω̄2
p

(C22)

m13(z̄) =
∫ +∞

2
dω̄

[
ρ13(ω̄)

[
1

z̄ − ω̄
+ 1

z̄ + ω̄

]]
(C23)

where we have used the trick of Ref. [24] to handle the reg-
ularizing counter-term −V/g: we subtract M11(ω = 0, q) = 0
to M11(ω, q) and M22(ω = 2�, q) = 0 to M22(ω, q) and we
use the expression of the spectral densities at zero wave vec-
tor ρ22(ω̄, 0) = √

ω̄2 − 4/4ω̄ and ρ11(ω̄, 0) = ω̄/4
√

ω̄2 − 4.
We have used also the (im)parity of the spectral densities
ρii(−ω̄) = ρii(ω̄) and ρ13(−ω̄) = −ρ13(ω̄).

Note that the integral forms [Eqs. (C21)–(C23)] remain
valid in the vicinity of the real axis (z̄ = ω̄0 + i0+), in which
case they should be understood as principal parts. To deal with
the cancellation of the denominator, we write

P
∫ ω2

ω1

dω
ρi j (ω)

ω0 − ω
=
∫ ω2

ω1

dω
ρi j (ω) − ρi j (ω0)

ω0 − ω

− ρi j (ω0) log

∣∣∣∣ω0 − ω2

ω0 − ω1

∣∣∣∣. (C24)

To reach a good precision on the integrand, one should be
careful to split it at its angular point ω̄2. A change of variable
may also be needed to handle the 1/

√
ω̄ − 2 divergence at the

continuum edge.
Analytic continuation. To analytically continue M through

window II or III, we use the formula of Nozières:

m(II or III)
↓ (z, q) =

{
m(z̄, q̄), Im z > 0
m(z̄, q̄) − 2iπρ

(II or III)
↓ (z̄, q̄), Im z < 0,

(C25)
where ρ

(II or III)
↓ is the analytic continuation of the spectral den-

sity from the interval [2, ω̄2] or [ω̄2,+∞[ onto the lower-half
complex plane. In practice, it is much easier to analytically
continue ρ than M directly, which is why the formula of Noz-
ières is useful. In the present case, it is enough to complexify
the integral expression [Eq. (C9)]. This means that (i) the inte-
grand becomes complex (in particular because the resonance
energy ξ̄0 becomes complex), and (ii) the integration interval
Iu can become a contour in the complex plane. This contour
can be deformed to optimize the convergence of the integral
(as long as one stays away from the branching points of the
integrand).
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