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Superfluid 4He as a rigorous test bench for different damping models
in nanoelectromechanical resonators
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We have used nanoelectromechanical resonators to probe superfluid 4He at different temperature regimes,
spanning over four orders of magnitude in damping. These regimes are characterized by the mechanisms which
provide the dominant contributions to damping and the shift of the resonance frequency: tunneling two-level
systems at the lowest temperatures, ballistic phonons and rotons at few hundred mK, and laminar drag in
the two-fluid regime below the superfluid transition temperature as well as in the normal fluid. Immersing the
nanoelectromechanical resonators in fluid increases their effective mass substantially, decreasing their resonance
frequency. Dissipationless superflow gives rise to a unique possibility to dramatically change the mechanical
resonance frequency in situ, allowing rigorous tests on different damping models in mechanical resonators. We
apply this method to characterize tunneling two-level system losses and magnetomotive damping in the devices.
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I. INTRODUCTION

Nanoelectromechanical (NEMS) resonators have emerged
in many fields of physics as ultrasensitive probes of mass
and force [1]. For instance, their extreme force resolution
enabled measurements sensitive to magnetic field of a single
nuclear spin [2]. Recently, detection of a single quantized
vortex trapped on a NEMS device in superfluid 4He has been
demonstrated [3]. Trapping of a single vortex on a NEMS
device in 3He will open new avenues for exciting studies, for
example, on Majorana zero modes living in quantized vortex
cores [4], the building blocks of a topologically protected
quantum computer.

Full understanding of intrinsic device properties and
device-fluid interactions is required for detailed analysis of
high-precision measurements, e.g., on vortex dynamics, and
superfluid 4He is an excellent sandbox for studying those. In
this work we provide detailed description of device properties
and device-fluid interactions for NEMS resonators of different
sizes immersed to the superfluid 4He, and analyze our results
using existing theoretical models.

We compare the response of the same devices in vac-
uum and in superfluid, which provides additional information
about the intrinsic device properties. Density of thermal ex-
citations in superfluid 4He becomes vanishingly small at
temperatures T � 0.2 K. In absence of quantized vortices,
superfluid 4He is practically an ideal fluid with frictionless
superflow. The ideal flow of the liquid displaced by the de-
vice reduces the resonance frequency via an increase in the
effective mass of the resonator, but it does not introduce
extra damping. The ability to change both temperature and
frequency of a mechanical resonance mode in the same de-
vice allows rigorous tests on different damping models. We
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apply these tests, in particular, to tunneling two-level systems
(TTLS) and magnetomotive damping mechanisms observed
in our devices [5]. Beyond nanoelectromechanical resonators,
TTLS affect damping, noise, and decoherence in a wide range
of quantum-limited measurements [6], for example, in qubits
[7] and in optomechanical systems [8]. As the dimensions of
those devices are often smaller than the relevant phonon wave-
lengths, interest in TTLS properties in reduced dimensions
extends beyond mechanical resonators [6].

Our experiments reveal how different damping mech-
anisms scale with mass and frequency. In particular, the
damping rate due to magnetomotive damping is found to
scale with the resonance frequency f0 as � fm∝ f 2

0 ∝ 1/m
due to increase in the effective mass m of the device. The
damping rate resulting from TTLS is found to scale ap-
proximately as � fTTLS∝ f0 ∝ 1/(m f0) in the low-temperature
regime where TTLS relaxation rate is slow compared to the
device frequency. Such scaling is not expected from the cur-
rently adopted extensions of the standard tunneling model to
reduced dimensions [5,6,9] without changes in the coupling
between TTLS and phonons, characterized by the parameter
γ . We explain the observed scaling with separate coupling
parameters γ1 and γ2. The parameter γ1 describes interac-
tion of TTLS with the strain field at the device frequency,
and it changes upon immersion of the devices in the fluid.
The parameter γ2 describes TTLS relaxation via a pool of
phonons, and is expected to remain unchanged. In our devices
γ1 scales approximately as γ1 ∝ f −1/2

0 . The proposed scalings
with mass and frequency can be used as an aid when assessing
damping in geometries where current theoretical models are
not directly applicable.

A plethora of mechanical devices, including quartz tuning
forks [10,11], vibrating wires [12], grids [13], spheres [14],
and, recently, microelectromechanical systems (MEMS) and
NEMS devices [15–17] have been used to probe the properties
of the quantum fluids 3He and 4He. The pursuit for higher
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FIG. 1. (a) False-color electron micrograph of the sample N1,
and outline of the magnetomotive measurement scheme. The device
consists of two rectangular legs of length H , and a rectangular paddle
of length L connecting the two legs. The legs and paddle comprising
of thin beam sections are freestanding after isotropic HF-vapor etch
[18]. The wider sections forming the wiring and bonding pads are
anchored. (b) Schematic side view of the device of thickness d , with
a gap g to the substrate. The motion of the the paddle of width w is
directed along x̂. The dimensions (H , L, w, d , and g) for the different
devices are tabulated in Table I.

sensitivity has led to dramatic reduction in the size of the
devices, and an increase in the surface-area-to-volume ratio.
Thus, the mass enhancement from the fluid is becoming more
and more important. We hope that our systematic approach to
account for the mass enhancement in the analysis will make
comparison of results obtained with different types of devices
more straightforward.

Density of thermal excitations in superfluid 4He increases
with increasing temperature, and at T � 0.2 K, momentum
exchange with ballistic quasiparticles takes over as the dom-
inant dissipation mechanism in our devices. At T � 0.7 K,
interactions between quasiparticles become important, and
viscous drag dominates dissipation. We explain the devices’
response using existing models in all the temperature regimes,
and achieve good understanding of device-fluid interactions.
This is a prequisite for detailed analysis of vortex dynamics
in superfluid 4He, and in superfluid 3He where the physics is
more involved. Remarkably, the devices are useful thermome-
ters in all the temperature regimes, spanning over four orders
of magnitude in dissipation.

II. METHODS

Suspended �-shaped aluminum NEMS devices have been
fabricated. The device geometry is shown in Fig. 1 and the
dimensions of the devices are tabulated in Table I. The fabrica-
tion process and characterization of the devices in vacuum are
described in Refs. [5,18]. NEMS resonators are often located

TABLE I. The dimensions of the NEMS devices studied in this
work. The dimensions L, H, w are taken from electron micrographs
such as shown in Fig. 1. The thickness d is given by quartz crystal
microbalance installed in the electron beam evaporator. The tabulated
distance g is the nominal thickness of the sacrificial oxide layer (de-
vices N1 and N2) or the nominal thickness of the substrate (devices
W1 and W2).

Device N1 N2 W1 W2
L ( µm) 14.7 22.0 60 60
H ( µm) 13.0 13.2 44 60
w ( µm) 1.1 1.1 20 20
d ( nm) 150 ± 8 150 ± 8 200 ± 10 200 ± 10
g ( µm) 0.3 0.3 300 300

near surfaces, and it is important to consider whether this
proximity influences the operation of the devices in fluids. To
test the universality of different damping models, measure-
ments of devices with different aspect ratios and geometries
are required. The wide devices W1 and W2 have large as-
pect ratio w/d ≈ 100, and are fabricated on an opening in
the underlying substrate [5]. The gap below the devices, g ≈
300 µm, is determined by the thickness of the substrate. The
narrow devices N1 and N2 have aspect ratio w/d ≈ 10, and
are suspended above silicon substrate. For the narrow devices,
the gap is ideally determined by the thickness of the sacri-
ficial silicon oxide layer used in the fabrication, g ≈ 0.3 µm.
In practice, the gap is often different due to bending of the
devices [18].

Device motion is excited and measured magnetomotively,
as shown in Fig. 1. The motion of the device is driven with
the Laplace force F = IL|B|, where L is the length of the
paddle perpendicular to the magnetic field B, and I is the
AC excitation current, produced by an arbitrary waveform
generator connected in series with a resistor and the device.
The motion of the paddle with velocity ẋ induces voltage
V = ẋL|B| which is measured with a lock-in amplifier that
is phase locked with the generator. The displacement of the
device paddle from the equilibrium position is given by x(t )
and the maximum amplitude is x0. The velocity and dis-
placement amplitude are related via v0 = 2π f x0, where f
is the frequency in Hz. We deduce in-phase and quadrature
displacement amplitudes xc and xs, respectively, from the
phase-resolved measurement.

In the harmonic approximation, the resonance frequency of
the device is given by

f0 = 1

2π

√
k

m
, (1)

where the spring constant k and effective mass m are con-
stant. In general, amplitude-dependent deviations in k and m
from the low-amplitude values may arise, for instance, due
to geometric nonlinearity [19]. The corresponding dynamics
equation is

m(x)ẍ + 2π� f m(x)ẋ + k(x)x = F0 cos(2π f t ), (2)

where F0 is the amplitude of the driving force, � f is the
damping rate of the resonator, and m(x) and k(x) are the gen-
erally amplitude-dependent effective mass and spring constant
of the resonator. One known model of such nonlinearity is the
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FIG. 2. Example spectra measured in superfluid 4He at T =
20 mK. Solid and dashed lines are fits to Eqs. (4) and (5), respec-
tively. (a) Device W1, linear response. We set D = 0 in the fitting.
(b) Device N1, nonlinear response. Fitting is done with the full
equations, giving D = −0.19 Hz/nm2.

Duffing oscillator with the amplitude-dependent resonance
frequency [19]

fr =
√

f 2
0 + 2 f0Dx2

0 ≈ f0 + Dx2
0, (3)

where D is to a first approximation a constant. This model
was found to describe behavior of our devices well. We fit
the NEMS response as a function of frequency to a modified
Lorentzian, including the nonlinear frequency shift [19]

xs( f ) = F0

m

(
1

2π

)2 (� f ) f

( f 2
r − f 2)2 + (� f 2) f 2

(4)

and

xc( f ) = F0

m

(
1

2π

)2 f 2
r − f 2

( f 2
r − f 2)2 + (� f 2) f 2

. (5)

The wide devices W1 and W2 are always operated in the
linear regime, and we set D = 0 for them. The narrow devices
N1 and N2 become nonlinear at the lowest temperatures in
vacuum and in fluid. Example responses and fits are shown in
Fig. 2. We extract from the fits the linear resonance frequency
f0 and the damping rate � f of the mechanical resonators,
which give information about dissipative and reactive forces
acting on the devices. In the experiments we study how the
response is affected by the temperature, magnetic field, and
the presence of superfluid 4He.

We restrict this work to the laminar regime, and the drag
force is characterized by the term

Fd = 2π� f mẋ (6)

in the dynamics equation (2). The corresponding dissipated
power is Pd = Fd ẋ. Examples of laminar drag forces are
viscous drag at low velocities [10], drag due to momen-
tum transfer with ballistic quasiparticles [14], magnetomotive
damping [20], and intrinsic TTLS damping in the devices
[6]. At high velocities, turbulent drag force proportional to
the squared velocity is expected in superfluid 4He [21]. We
verify experimentally that we are in the laminar regime by
confirming that � f remains independent of velocity. As the
devices are operated at relatively small amplitudes, for which
| fr − f0|/ f0 < 10−3, the effect of nonlinear m(x) to the drag
force is assumed to be negligible. However, immersing the
devices in a fluid increases the effective mass substantially,

and care has to be taken when converting the parameter � f
obtained from the measurements to drag force or dissipated
power. For laminar drag, which is explicitly proportional to
the velocity, we have

� f ∝ 1/m ∝ f 2
0 (7)

for the same drag force Fd or dissipated power Pd . Quite often,
damping is characterized via the inverse quality factor Q−1 =
� f / f0, which relates the energy lost per cycle to the energy
stored in the oscillations. Mass enhancement is expected to
increase the quality factor via the additional energy stored
in the oscillations. Experimentally, the mass enhancement is
determined from the ratio of resonance frequencies in vacuum
and in fluid (

mLHe

mvac

)
=

(
f0,vac

f0,LHe

)2

. (8)

This relation follows from Eq. (1), assuming k remains con-
stant. In our experiments, a few solid layers of 4He formed
on the device surface, when immersed in superfluid 4He, are
expected to have negligible contribution to k [22].

The devices are installed in a hermetically sealed container,
which is attached to a mixing chamber stage of a dilution
refrigerator. The temperature of the mixing chamber stage
is monitored with a ruthenium oxide thermometer and con-
trolled with a resistive heater mounted on the mixing chamber
plate. The container is connected via a thin capillary to a gas
handling system at room temperature. For vacuum measure-
ments, the container is first flushed at room temperature with
helium gas, and then pumped with a turbomolecular pump
for at least 10 hours before cooling down the cryostat. The
container has on its bottom a silver sinter with area ∼10 m2

for thermalizing the fluid. In vacuum measurements, the sinter
acts as a cryopump for residual 4He gas. For fluid measure-
ments, helium gas with a nominal purity of 6.0 (impurity
content <1 ppm) is admitted to the container slowly via a
capillary filling line while the container is kept at a low tem-
perature (T < 1 K). This filling procedure is expected to limit
amount of remnant vortices in the experimental cell [12].

The samples N1 and N2 were measured at 2.6 bar and the
samples W1 and W2 were measured at 3.0 bar fluid pressure,
taken at T = 20 mK. The volume of fluid in the capillary
filling line is negligible compared to the volume in the exper-
imental cell, and while the pressure changes as a function of
temperature, fluid density is assumed to be constant. The fluid
density and velocity of sound are obtained from Ref. [23],
using for the zero-pressure reference density the value given in
Ref. [24]. For roton properties, we use results of recent high-
resolution neutron scattering experiments [25]. The normal
fluid ratio at elevated pressures is obtained by interpolating
the tabular data in Refs. [24,26], setting the normal fluid ratio
to unity at the lambda-transition temperature. The temperature
of the lambda transition at elevated pressures is obtained from
Ref. [27]. For the viscosity, we use the values at saturated
vapor pressure [24], where we scale the viscosity with the
fluid density used in our experiments, and the temperatures
with the superfluid transition temperature corresponding to
the pressure in the experiment.
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III. THEORY

Damping rate of a NEMS device has contributions from
different mechanisms, such as tunneling two-level systems
damping, magnetomotive damping, damping due to ballistic
phonons and rotons, hydrodynamic drag, and possible other
contributions, like temperature-independent clamping losses.
We assume that the different contributions to the damping rate
are additive.

In our experiments, we change the effective mass of the
resonator substantially by immersing the device in superfluid
4He. The expected effective mass enhancement in the fluid is
[10] (

mLHe

mvac

)
− 1 = β

πw

4d

ρHe

ρAl
+ BA

ρAlV

√
ρnη

π f0
, (9)

where β ∼ 1 and B ∼ 1 are geometrical parameters [28], A
and V are the area and volume of the device, ρAl, ρHe, and
ρn are the densities of aluminum, the helium fluid, and the
normal component of the fluid, and η is the viscosity of the
normal fluid component. The first term on the right-hand side
of Eq. (9) arises from potential flow of the fluid around the
moving body, which couples to the device motion. The last
term is due to viscous normal fluid clinging to the motion near
the device surface. At low temperatures, T � 0.7 K, density of
quasiparticles is low, interquasiparticle interactions leading to
viscosity are irrelevant, and the last term can be neglected.

A. Temperature-independent damping

The voltage generated by the motion of the device in a
magnetic field drives dissipative currents, which draw power
from the device. This results in magnetomotive damping [20]

� fm = amB2, (10)

where am is a device- and measuring-circuit-dependent pa-
rameter and B is the magnetic field strength. In Ref. [5], an
analytical expression for am relevant to our device geometry
is given:

am = L2d

3mρe

(
w

H + w

)2

, (11)

where ρe is the electrical resistivity of aluminum at low
temperature. At low temperatures, electrical resistivity is inde-
pendent of temperature, and consequently the magnetomotive
damping in our devices is also temperature independent [5].
Equation (11) predicts that magnetomotive damping is inde-
pendent of frequency, and should scale with the effective mass
as � fm ∝ 1/m.

In vacuum, the wide devices W1 and W2 demonstrate ad-
ditional temperature-independent contribution to the damping
[5], possibly via acoustic emission to the substrate. When a
device is immersed in a fluid, acoustic emission to the fluid
is possible as well. A dipole emission model for acoustic
emission of NEMS devices is suggested in Ref. [16], resulting
in the expression

Q−1
ac = π3

2

ρHe

ρAl

(
deff f0

c2
p

)2

, (12)

where deff ≈ w is the effective beam diameter, and cp is the
speed of sound in the fluid [23]. For our devices, this expres-
sion predicts Q−1

ac in the range 10−5–10−6, which is negligible
compared to other damping mechanisms.

B. TTLS damping

Our devices have been characterized in vacuum before
immersing into 4He. It has been found that the main dissi-
pation mechanism at low temperatures is TTLS damping [5].
In the TTLS damping mechanism, the strain caused by the
mechanical motion of the device modulates the energy levels
of the TTLSs residing in the material of the resonator, leading
to an instantaneous population inequilibrium of the TTLSs.
The population inequilibrium strives to relax by coupling to
the pool of phonon modes in the device. The thermal phonon
wavelength is λph = (hc)/(kBT ), where c = √

E/ρAl is the
speed of sound in the aluminum beams and E is the Young’s
modulus. The thermal phonon wavelength exceeds transverse
dimensions of NEMS devices at low temperatures, and the
dominant contribution to TTLS relaxation often occurs via
flexural phonon modes [5,6,9]. In the wider devices W1 and
W2, the wavelength λph exceeds only the thickness d , making
these devices quasi-two-dimendional (quasi-2D) devices. In
the narrow devices N1 and N2 the wavelength λph exceeds
also the beam width w, making them quasi-one-dimensional
(quasi-1D) devices.

At low temperatures, TTLS relaxation rate is slow com-
pared to the oscillation frequency of the device, and TTLS
damping in 1D devices is given by [5,6]

� fTTLS,1D ≈ 0.30
P0γ

4

E2

1

c1/2wd3/2

(kBT )1/2

h̄3/2 , (13)

where P0 is the TTLS density of states and γ is the coupling
between TTLS and phonons. In 2D devices the TTLS damp-
ing rate is given by [5,6]

� fTTLS,2D = π

8
√

3

P0γ
4

E2

1

cd2

kBT

h̄2 . (14)

As the temperature is increased, the TTLS relaxation
rate increases, and becomes approximately equal to the
resonance frequency at a threshold temperature T ∗ [29].
Frequency dependence of T ∗ in different dimensions is dis-
cussed in Appendix A. For temperatures above T ∗, for all the
dimensionalities, TTLS damping saturates to a temperature-
independent value [6]

� fTTLS,HT = π f0

2

P0γ
2

E
. (15)

In experiments, saturation of damping sets in at a temperature
Ts, which is expected to be close to the value T ∗.

The TTLS contribute to frequency shift of the NEMS
devices via relaxation δ frel and resonant δ fres absorption
mechanisms, and the total frequency shift is a sum of the two
effects δ f = δ frel + δ fres. The resonant absorption contributes
an increase to the resonance frequency of the device [29]

δ fres = f0 − f0,r = f0
P0γ

2

E
ln

(
T

Tr

)
, (16)
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where f0,r is the resonance frequency taken at the ref-
erence temperature Tr . In devices where TTLS damp-
ing is governed by coupling to bulk phonons, a de-
crease in the resonance frequency resulting from re-
laxation absorption becomes dominant at temperatures
T � T ∗, producing a maximum in frequency at approximately
T ∗ [29]. In 1D systems, contribution from the relaxation ab-
sorption to the frequency shift is small, and the frequency is
expected to increase past T ∗ [5,9]. To our knowledge, pre-
diction for the frequency shift in the 2D case is not found
in the literature. In our NEMS devices, a maximum in fre-
quency is observed at a temperature Tm, which corresponds
to a temperature where decrease in frequency from relax-
ation absorption of 2D or bulk phonons starts dominating
over the increase in frequency from the resonant absorption
mechanism [5].

C. Damping from ballistic quasiparticle scattering

At low temperatures, the mean-free path of thermal exci-
tations in superfluid 4He is long, and the quasiparticles do
not interact with each other at length scales smaller than
the characteristic size of the device. Thus, their propaga-
tion is ballistic. As a device moves through a superfluid at
low temperatures, quasiparticles scatter from its surfaces and
exchange momentum with it. The scattering rate of quasipar-
ticles on either side of the moving device is different, and this
results in a net drag force acting on the device [14,30,31].
The difference in scattering rates is proportional to the quasi-
particle density ρq and the volume swept by the device per
unit time. The volume is obtained by integrating the device
velocity over the area of the device

Apẋ =
∫

A
ẋ(y, z)dy dz.

Here, ẋ(y, z) is the velocity at any point on the device surface,
and ẋ (without explicit position coordinates) refers to the
velocity of the paddle. The average momentum exchanged
per quasiparticle is expected to be proportional to the average
momentum of the quasiparticles 〈pq〉 = mq〈vq〉, where mq and
〈vq〉 are the mass and average speed of the quasiparticles. We
characterize this proportionality with a scattering efficiency
Qq, which is the ratio of momentum exchanged with the de-
vice per quasiparticle. In this notation, the drag force resulting
from scattering of ballistic quasiparticles is

Fd = QqApρq〈vq〉ẋ, (17)

and the corresponding damping rate is

� fq = Qq

2π

Ap

m
ρq〈vq〉. (18)

In the so-called Landau model, the density of phonons is given
by [25]

ρp = 2π2k4
BT 4

45c5
ph̄3 (19)

and the same for rotons is

ρr = h̄k4
r (mr )1/2

3
√

2π3/2(kBT )1/2
exp

(
− �r

kBT

)
, (20)

where kr (ρHe) is the roton wave number, �r (ρHe) is the
roton gap, and mr is the effective mass of the roton. The
phonon and roton densities obtained from the above expres-
sions agree within 10% with measured densities in Ref. [25]
in the regimes where they give the dominant contribution to
the damping. For phonons, 〈vp〉 = cp, and the damping rate is

� fp = Qp
Ap

m

π (kBT )4

45h̄3c4
p

. (21)

For rotons, 〈vr〉 = √
2kBT/πmr , and the damping rate is

� fr = Qr
Ap

m

h̄k4
0

6π3
exp

(
− �r

kBT

)
. (22)

Scattering efficiencies close to unity were found for the micro-
spheres studied in Refs. [14,31]. Deviation from these values
in our devices can arise, e.g., due to different shape of the de-
vice and different scattering conditions on the device surface
(specular or diffuse).

Damping due to 3He impurities in the superfluid 4He can
be treated in a similar manner as damping from quasiparticles
[32]. The number of 3He atoms per unit volume is small,
and Maxwell-Boltzmann statistics with the dispersion rela-
tion ε3 = p2/(2m3) and average velocity v3 = √

2kBT/πm3

is assumed. Here, m3 is the effective mass of 3He particles
in superfluid 4He, which is approximately 2.4 times the bare
atom mass [33]. The contribution to the damping rate from
3He impurities is

� f3 = Q3
1

2π

Ap

m

√
2kBT

πm3
ρ3, (23)

where ρ3 is the mass density of 3He atoms. Notably, this
contribution has the same functional form on temperature as
TTLS damping in 1D devices, Eq. (13). Assuming 3He/4He
ratio 1 ppm [34], and Q3 = 1, we find that the damping pre-
dicted by Eq. (23) contributes approximately 2% increase in
the damping at low temperatures, where the major contribu-
tion to the damping is given by Eq. (13).

D. Viscous flow

When the mean-free path of excitations becomes small
compared to the device dimensions, viscous effects become
important. The viscous penetration depth, expressed here for
the normal fluid component, is [35]

δn =
√

2η

ρnω
, (24)

where η is the dynamic viscosity and ρn is the density. For
the device frequency ∼30 kHz, and at temperatures above
the λ transition, the viscous penetration depth takes a value
δn ≈ 0.5 µm, which is larger than the device thickness d , but
smaller than the device width w. Below the λ-transition tem-
perature the density of the normal fluid component decreases
with decreasing temperature and the viscous penetration depth
increases. We take the width of the beam w as the charac-
teristic size of the body, as suggested in Ref. [28]. When the
characteristic size is large compared to the viscous penetration
depth and to the oscillation amplitude, the viscous drag force
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TABLE II. The physical properties of the devices studied in this work. The tabulated resonance frequencies f0 are taken at T = 20 mK.
The parameters � fm and � fc are the temperature-independent contributions to the damping. The values of the TTLS parameters in vacuum,
P0 and γ , are taken from Ref. [5]. Relative change in TTLS phonon coupling parameter γ1, photon and roton scattering efficiencies Qp and
Qr , and the geometrical constant C describing viscous flow are obtained from the fits shown in Fig. 5. The parameters B and β are geometrical
parameters describing the mass enhancement resulting from the fluid flow, and are obtained from the fits shown in Fig. 3.

Device N1 N2 W1 W2
f0,vac (kHz) 395.2 335.5 73.8 68.0
f0,LHe (kHz) 337.8 288.9 34.4 31.0
� fm,vac (Hz) 4 ± 1 124 ± 2 67 ± 2
� fm,LHe (Hz) 2 ± 3 26.1 ± 0.5 12.8 ± 0.9
� fc,vac (Hz) 12 ± 3 4 ± 3
� fc,LHe (Hz) 8 ± 1 4 ± 1
P0,vac (10−44 J−1m−3) 0.49 ± 0.05 7.5 ± 1.3 6.3 ± 1.5
γvac (eV) 2.9 ± 0.1 0.93 ± 0.04 0.78 ± 0.05
γ1,LHe/γ1,vac

a 1.20 ±0.04 1.58 ± 0.28 1.63 ± 0.39
γ1,LHe/γ1,vac

b 1.06 ± 0.09 1.78 ± 0.39 1.82 ± 0.52
Qp [Eq. (21)] 2.24 ± 0.25 0.92 ± 0.29 1.66 ± 0.08 1.57 ± 0.10
Qr [Eq. (22)] 0.64 ± 0.08 0.91 ± 0.05 0.11 ± 0.04 0.20 ± 0.08
C [Eq. (25)] 0.94 ± 0.01 1.05 ± 0.03
B [Eq. (9)] 1.61 ± 0.08 1.64 ± 0.08
β [Eq. (9)] 1.15 ± 0.06 1.1 ± 0.1 0.82 ± 0.04 0.88 ± 0.04

aEquations (13) and (14).
bEquation (15).

arises mostly from the potential flow of the fluid around the
device. The corresponding damping rate is [10]

� fh = CS

2m

√
ρnη f0

π
, (25)

where C is a numerical constant of the order of unity, and S is
the total surface area of the oscillating body.

IV. RESULTS

The response of the devices W1, W2, and N1 has been
measured as a function of temperature and magnetic field
in vacuum and in superfluid 4He. The device N2 was mea-
sured less extensively. Its response was measured at 20 mK
in vacuum, and from 20 mK to 0.8 K in superfluid 4He.
We start our discussion from the mass enhancement in the
fluid and changes in the temperature-independent contribu-
tions, as these are used in the subsequent analysis. The
following subsections describe the temperature-dependent
damping contributions from TTLS, ballistic quasiparticles,
and viscous flow. Finally, changes in observed temperature
of frequency maxima and temperature of saturation of TTLS
damping are discussed. Physical quantities obtained from
the fits in the different temperature regimes are tabulated in
Table II.

A. Mass enhancement

The temperature dependence of the resonance frequency,
and the ratio of effective masses in vacuum and in superfluid
4He for the devices W1, W2, and N1 is shown in Fig. 3.
The mass enhancement follows well the theoretical model
[Eq. (9)], where at the lowest temperatures the last term
involving viscosity can be neglected. For the wide devices
W1 and W2, viscous effects are important at T > 0.8 K. The

geometric constants β and B are tabulated in Table II. We
were not able to measure device N1 or N2 at T > 0.8 K
in superfluid 4He, as the signal amplitude became too small
compared to the electrical background. Reliable fitting of the
data for the narrow devices N1 and N2 in the viscous regime
is not possible due to the limited temperature range. Below
0.8 K, changes in the mass ratio are within a few percent, and
for the device N2 mass ratio determined at 20 mK is used for
the whole studied temperature range.

B. Temperature-independent damping

The magnetomotive damping is determined by measuring
the device damping rate � f as a function of the magnetic
field, and fitting the measured data to Eq. (10), as shown in
Fig. 4. The prefactors am obtained from the fits for the devices
W1, W2, and N1 are tabulated in Table II. The fits show that
the magnetomotive damping is independent of frequency, as
expected from Eq. (11). The magnetomotive damping is also
independent of temperature [5], and is subtracted from the
measured damping rates for further analysis.

We fit the damping rate with magnetomotive contribu-
tion subtracted, � f − � fm, below the saturation temperature
T < Ts to the TTLS model [Eqs. (13) and (14)]. For the
narrow device N1, no extra contributions compared to Eq. (13)
are found. For the wide devices W1 and W2, an additional
temperature-independent contribution � fc is included in the
fitting. The values � fc for the devices W1 and W2 are tabu-
lated in Table II. The damping rates � fc are almost the same
in vacuum and in fluid, but the corresponding drag force Fd =
2πm� fcẋ and dissipated power Pd = Fd ẋ are much higher
in the fluid, as the device effective mass is enhanced (see
Fig. 3). This is clearly manifested as an offset between the
parallel lines in Fig. 4(b), measured at T = 20 mK, where
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FIG. 3. (a)–(c) Ratio of effective masses in superfluid 4He and vacuum, as a function of temperature. The mass ratio is determined from
Eq. (8) using the measured resonance frequencies in vacuum and in fluid. Solid lines are fits to Eq. (9). Viscous effects are negligible at
T � 0.7 K. Dashed lines are fits to Eq. (9), neglecting the viscous term. (d)–(f) Detailed view of the resonance frequency shift as a function
of temperature, measured in vacuum (empty symbols) and in the fluid (filled symbols). The observed maximum in frequency at temperature
Tm is a consequence of combined effect of resonant and relaxation TTLS mechanisms to the frequency shift [5]. Below Tm, the frequency
increases logarithmically due to the resonant TTLS mechanism. Lines are fits to Eq. (16). Notably, the slope is practically the same in vacuum
and in fluid. Above Tm, the frequency decreases as the frequency shift is dominated by the TTLS relaxation mechanism. In fluid, the resonance
frequency is lower, and relaxation process starts dominating at a lower temperature.

temperature-dependent contributions to the damping rate are
small.

Acoustic emission to the carrier silicon chip does not seem
like a reasonable explanation for the increased dissipated
power, as the carrier chip does not support acoustic modes
at the frequencies where the wide devices are operated. If the
increased dissipation was due to acoustic emission to the fluid,
we would expect to see it also in the device N1, according to
Eq. (12). In principle, the weak � f3 ∝ T 1/2 temperature de-
pendence expected from 3He impurities could be mistaken for
a temperature-independent contribution. However, at T < Ts

damping rate due to 3He impurities � f3 � 0.3 Hz, obtained
from Eq. (23), is small compared to � fc.

A possible explanation for the observed temperature-
independent contribution is that the entire carrier chip moves
due to the elasticity of the glue holding it in place. The res-
onator exerts a periodic force Fs = kx on its support, which
drives the motion of the chip. In fluid, the resonance frequency
is lower, and the peak displacement per peak device velocity is
higher [x0/v0 = (2π f )−1]. Consequently, the force Fs per unit
velocity of the device is higher in the fluid. The oscillations
of the chip are expected to be highly damped due to the
properties of the glue. For highly overdamped resonator, the
amplitude of oscillations is expected to increase towards lower
frequencies. Thus, both the force Fs driving the dissipative
mechanism and the velocity of the chip and thus the absorbed
power are expected to increase when the device is immersed
in the fluid. We conclude that oscillations of the carrier chip
driven by the device motion can qualitatively explain the
observed increase in temperature-independent contribution to
the damping in fluid.

C. TTLS regime

The damping rate as a function of temperature in vac-
uum and in fluid for the devices is shown in Fig. 5. The
temperature-independent contributions � fm and � fc dis-
cussed in the previous section, and tabulated in Table II, have
been reduced from the data, and the damping rate in the fluid
has been scaled with the effective mass m/mvac shown in
Fig. 3.

Below 0.2 K, contribution from ballistic quasiparticles to
the damping rate is negligible, and damping is governed by
the intrinsic TTLS damping mechanism. As seen in Fig. 5,
the damping rate has the same functional form in vacuum and
in fluid in this temperature regime, i.e., � f ∝ T for the wide
2D devices W1 and W2, and � f ∝ T 1/2 for the narrow 1D
devices N1 and N2. However, the drag force and the corre-
sponding dissipated power are higher in the fluid, manifested
as an offset between the parallel lines in the TTLS regime
in Figs. 5(a)–5(c). This corresponds to an increase in the
product P0γ

4 in Eqs. (13) and (14). Transition to the saturated
damping regime is somewhat masked by the contribution
from phonons and rotons in the fluid, but is still visible as a
small kink in the data around Ts. Also, the saturated damping
regime shows increased dissipation, indicating an increase in
the product P0γ

2 in Eq. (15).
We note that the value P0 describing the TTLS density of

states is a property of the TTLS distribution in the material of
the device and is not expected to change with immersion of the
device into fluid. It is also expected to be energy independent
in the relevant range. While a possible energy dependence
P0 ∝ εμ in some mesoscopic systems has been suggested, it
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FIG. 4. (a) Magnetic field dependence of the damping rate of
the device W1, measured in vacuum (empty symbols) and in
superfluid 4He (filled symbols) at T = 20 mK. Lines are fits to
Eq. (10), including in the fitting an additional constant, which
is the field-independent damping rate at that particular tempera-
ture. The damping rate decreases in the fluid due to the added
mass, as expected from Eq. (7). (b) Magnetic field dependence
of the coefficient m� f which is proportional to the drag force
in Eq. (6), in vacuum and fluid. The slopes of the fit lines are
approximately equal, showing that the drag force resulting from mag-
netomotive damping is independent of frequency, as expected from
Eq. (11).

should manifest as deviations from the observed temperature
dependencies of damping, producing � fTTLS,1D ∝ T 1/2+μ,
� fTTLS,2D ∝ T 1+μ, and � fTTLS,HT ∝ T μ [6]. Our experimen-
tal data are best fit with μ = 0.0 ± 0.1. Thus, we assume that
P0 keeps its vacuum value in the liquid. Another parameter
in Eqs. (13) and (14) which potentially changes when the
devices are immersed in the liquid is the sound velocity c.
We have considered the effect of added mass from the fluid
on the phonon dispersion relation in Appendix B, but these
corrections have proven to be small.

As a result, we are left with TTLS phonon coupling γ as
responsible for the change of the damping in helium. Before
further analysis, we note that TTLS interact with phonon
modes at very different frequencies: First, the low-frequency
mode corresponding to the device oscillations, and, in the case
of relaxation absorption, with phonon bath at high frequen-
cies (see Appendix B). In derivation of Eqs. (13)–(16) it is
assumed that the coupling γ is the same for all modes. We
generalize the approach and allow different couplings: γ1 for
the device-frequency mode and γ2 for high-frequency modes.
Then in Eqs. (13) and (14) γ 4 is replaced by γ 2

1 γ 2
2 , and in

Eq. (15) γ 2 is replaced by γ 2
1 . In vacuum, γ1 = γ2 = γvac.

In liquid, we expect γ2 not to change significantly (see Ap-
pendix B and below), and we determine value of γ1 from
the low-temperature behavior of damping, Eqs. (13) and (14),
or from the saturated value of damping, Eq. (15), assuming
P0 and γ2 to keep their values obtained in vacuum. Results
are shown in Table II, and both methods give approximately
equal values of γ1 in helium. Remarkably, we empirically
find scaling γ1 ∝ f −1/2

0 . Such scaling implies that the in-
verse quality factor Q−1 does not change on immersion of
the device to the ideal fluid. This property is verified in
Fig. 6.

We note that the frequency shift data shown in Fig. 3 sug-
gest that the product P0γ

2 does not change when the devices
are immersed in the fluid. Here, the slope of the frequency
shift at temperatures T < Tm is proportional to P0γ

2 according
to Eq. (16). TTLS at energies close to kBT give the dominant
contribution to the frequency shift [29]. Thus, the γ obtained
from the frequency shift is relevant for phonons at high ther-
mal frequencies, that is γ2 in our notation. The frequency data
thus support our assumption that γ2 does not change when the
devices are immersed to fluid.

The temperatures Ts (temperature of onset of TTLS damp-
ing saturation in Fig. 5) and Tm (temperature of the frequency
maxima in Fig. 3), are plotted as a function of the device
frequency in Fig. 7. The values of Ts are expected to scale as
T ∗ for the particular device, when the frequency of the device
changes. Also, the values Tm are expected to decrease with
frequency, but here the distinction between different regimes
is not so clear (see Sec. III B). For the 1D device N1, Ts and
Tm change more rapidly as a function of frequency than for
the 2D devices W1 and W2, as expected for the change in T ∗
(see Appendix A).

D. Ballistic regime

The roton and phonon scattering efficiencies Qp and Qr

for the different devices are extracted from the fits shown in
Fig. 5, and the values are tabulated in Table II. The phonon
scattering efficiency Qp for the different devices is between
0.9 and 2.2. On average, the values are larger than for spheres
oscillating in superfluid 4He, for which Qp has been found to
be close to unity [31]. The difference is perhaps explained by
the different geometry of the device (plane versus a sphere),
or different scattering conditions (specular or diffuse) on the
device surface. For rotons, we find that the scattering effi-
ciency Qr is smaller than unity for all the devices. Notably,
the narrow devices N1 and N2 have substantially larger roton
scattering efficiency (0.6–0.9) than the wide devices W1 and
W2 (0.1–0.2). The wide devices have large aspect ratio w/d =
100 and large gap below the device g = 300 µm, while the
narrow devices have modest aspect ratio w/d ≈ 7 and a near
surface. While the gap distance determined by the sacrificial
oxide layer thickness is g ∼ 0.3 µm, in practice, the devices
often bend due to different thermal expansion coefficients and
stress, leading to gap distances g ∼ 1 µm [18]. The proximity
to the surface could affect the damping, e.g., via a squeeze film
force, such as observed in gaseous 4He with similar devices
in Ref. [18]. On the other hand, with decreasing aspect ratio
w/d , scattering from the side walls parallel to the velocity
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FIG. 5. Damping rate � f of the devices W1 (a), W2 (b), N1 (c), and N2 (d) as a function of temperature, measured in vacuum
(empty symbols), and in superfluid 4He (filled symbols). The damping rate in the fluid is scaled with the ratio of effective masses,
with m = mLHe for the filled symbols and m = mvac for the empty symbols. Temperature-independent contributions to the damping have
been subtracted. The subtracted values are tabulated in Table II, and the missing values are treated as zero. Dashed lines are fits to
Eqs. (13)–(15). Dashed-dotted lines are fits to Eqs. (13)–(15), with additional contribution from phonons, Eq. (21), and rotons, Eq. (22),
included. The saturation temperature Ts marks the transition from temperature-dependent TTLS damping, governed by Eqs. (13) and (14),
to the saturated, temperature-independent, TTLS damping regime governed by Eq. (15). For model lines Ts is used as a fitting parameter.
(a), (b) At T � 0.8 K the damping is governed by viscous flow. Full lines are fits to the viscous drag, Eq. (25), including the constant TTLS
contribution at T > Ts. The same model works well in fluid and superfluid phases of 4He.

becomes more important, like observed in superfluid 3He for
transverse oscillations of a micromechanical plate [17]. Sys-
tematic measurements with different gap distances and aspect
ratios would be required to reliably distinguish their effect on
the scattering efficiencies.

E. Viscous regime

In the viscous regime, above 800 mK, where data on fluid
properties are readily available, we fit the device W1 and W2
response to Eqs. (9) and (25), as shown in Figs. 3 and 5.
The parameters B, β, and C are tabulated in Table II. The

FIG. 6. Inverse quality factor of the devices W1 (a), W2 (b), and N1 (c) in the TTLS damping regime in vacuum (empty symbols) and fluid
(filled symbols). Temperature-independent contributions to the damping have been subtracted. Fit lines are the same as in Fig. 5, but scaled with
the frequency of the device. At T � 0.2 K, contributions from phonons and rotons are negligible, and the quality factors obtained in vacuum
and fluid almost collapse on the same line. Thus, TTLS damping in the low-temperature regime scales approximately as � fTTLS ∝ f . At
T � 0.2 K, contribution from phonons starts visibly affecting the device response in the fluid, and the damping increases beyond the intrinsic
values.
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FIG. 7. Temperature of the frequency maximum Tm and satura-
tion temperature of damping Ts as a function of device frequency,
extracted from Figs. 3 and 6, respectively. Empty and filled symbols
mark data taken in vacuum and fluid, respectively. The saturation
damping temperature Ts is expected to scale similarly as the threshold
temperature T ∗. The lines are guides to the eye, showing the T ∗ ∝ f0

and T ∗ ∝ f 2
0 dependencies expected for 2D and 1D devices, respec-

tively (see Appendix A). The change in Ts as a function of frequency
for the 1D device N1 is much steeper than for the 2D devices W1
and W2, as expected from the theory. The frequency maximum at Tm

is expected to result from relaxation absorption. We observe that Tm

scales with the resonance frequency similarly as Ts for the devices
W1 and W2. For the device N1, the measured Tm changes more
rapidly with frequency than observed Ts and predicted T ∗.

parameter C for both devices is very close to unity, and
perhaps similar devices could be used for thermometry or
viscometry in a fluid even without free parameters. It is also
notable that the variation of the parameters B and β between
the devices is small, so the frequency could be used as an alter-
native measuring technique, perhaps without free parameters.

V. CONCLUSIONS

We have measured the damping and frequency shift of
NEMS resonators in vacuum and in superfluid 4He at tem-
peratures from 20 mK to 4 K. Our measurements span over
four orders of magnitude in damping, enabling rigorous test
on the existing models describing device-intrinsic damping
and device-fluid interactions.

The dominant device-intrinsic damping mechanism in our
devices is TTLS damping. Beyond nanoelectromechanical
resonators, TTLS affect noise, dissipation, and decoherence
in a wide range of quantum-limited measurements, e.g.,
in qubits and optomechanical systems. Immersing mechan-
ical resonators in superfluid 4He gave us the possibility to
study TTLS damping in a setting, where the frequency of
the mechanical mode could be reduced in situ by up to
about 50% via mass enhancement from the fluid without
adding extra dissipation. We find that the damping rate due
to TTLS scales approximately as � fTTLS ∝ f0, while scal-
ing � fTTLS ∝ 1/m ∝ f 2

0 is expected from mass loading only.
Thus, intrinsic drag due to TTLS is increased in the fluid. We
attribute the increased damping to a TTLS phonon coupling
parameter γ1 taken at the device frequency f0, and scaling
approximately as γ1 ∝ f −1/2

0 . In future, systematic studies on

the parameter γ1 as a function of device frequency could be
done by measurements at various fluid densities, which allows
further tuning of the frequency of the devices by up to 7%.

Another important damping mechanism in our devices is
magnetomotive damping. We find that magnetomotive damp-
ing is independent of frequency in the frequency range 30
to 400 kHz, and the corresponding damping rate is inversely
proportional to the effective mass of the resonator. In addition,
changing the frequency allowed us to study the previously
unidentified temperature-independent damping mechanism in
our devices [5], and we propose overdamped oscillations of
the carrier chip as a possible explanation for the observed
damping.

In our devices, large frequency tuning by mass loading
from fluid is achieved by making devices with large aspect
ratio, where the ratio of beam width to thickness is ∼100
in wider devices. As mechanical resonators are the most
sensitive to forces acting on the device at the mechanical
resonance frequency, the frequency tuning has many potential
applications in studying effects that occur at specific frequen-
cies. Examples of such effects are resonant Kelvin waves
on quantized vortices in superfluids [36,37], acoustic modes
in cavities [38], and vortex-core bound states in superfluid
3He [4]. Beyond superfluids, the frequency tuning could be
utilized, for instance, in NEMS based nuclear magnetic reso-
nance measurements [2].

At T > 0.2 K contributions from thermal excitations of
4He, namely, phonons and rotons, increase the damping of
the NEMS devices. Good agreement with existing theory is
found, but with some differences in the scattering efficien-
cies found between the devices, perhaps due to proximity
to surfaces and different aspect ratios. The devices are very
sensitive to the quasiparticles due to the large surface area
and small mass, and the calibrated devices could be used for
precise thermometry in superfluid 4He. As the temperature is
increased further, above T > 0.8 K, viscous effects become
important. The obtained geometrical parameters are close to
unity, as expected, and agreement between different devices
is good. The same geometrical parameters work in the normal
and superfluid states of 4He. This shows that similar devices
could be used for viscometry, and thermometry in superfluid
4He, with good precision without free parameters.

ACKNOWLEDGMENTS

We thank H. Godfrin for useful comments. We acknowl-
edge the technical support from Micronova Nanofabrication
Centre of VTT. This work has been supported by the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant
Agreement No. 694248) and by Academy of Finland (Grant
No. 332964). The research leading to these results has re-
ceived funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement
No. 824109. The experiments were performed at the Low
Temperature Laboratory, which is a part of the OtaNano re-
search infrastructure of Aalto University and of the EU H2020
European Microkelvin Platform. T.K. acknowledges financial
support from the Finnish Cultural Foundation (Grants No.
00190453, No. 00201211, and No. 00212577).

014502-10



SUPERFLUID 4He AS A RIGOROUS TEST BENCH … PHYSICAL REVIEW B 107, 014502 (2023)

APPENDIX A: TTLS SATURATION TEMPERATURE
T ∗ IN DIFFERENT DIMENSIONS

The spatially and orientationally averaged TTLS relaxation
rate is [5,6]

〈τ−1
1 (ε)〉V = 1

V
g(ε)

�2
0

ε

πγ 2

Eh̄2 coth

(
ε

2kBT

)
, (A1)

where g(ε) is the phonon density of states, and ε =√
�2

0 + �2 is the TTLS energy, �0 is the tunneling strength,
and � is the double-well asymmetry. The densities of
states for flexural phonons in 1D and 2D are given by
g1D(ε) ∝ ε−1/2 and g2D(ε) ∝ ε0, respectively [5,6], and for
bulk phonons g3D(ε) = ε2 [29]. The minimum relaxation time
τ1,min is obtained for the TTLS states with ε = �0. Inserting
the density of states in Eq. (A1), we get

τ1,min,1D ∝ ε−1/2 coth−1

(
ε

2kBT

)
∝ ε1/2|ε	kBT ,

τ1,min,2D ∝ ε−1 coth−1

(
ε

2kBT

)
∝ ε0|ε	kBT , (A2)

τ1,min,3D ∝ ε−3 coth−1

(
ε

2kBT

)
∝ ε−2|ε	kBT ,

where only the states up to ε ≈ kBT are relevant [5]. For the
states with ε = kBT , we have

τ1,min,1D(ε = kBT ) ∝ (kBT )−1/2,

τ1,min,2D(ε = kBT ) ∝ (kBT )−1, (A3)

τ1,min3D(ε = kBT ) ∝ (kBT )−3.

We require that

2π f0τ1,min(ε = kBT ∗) = 1,

which results in

T ∗
1D ∝ f 2

0 ,

T ∗
2D ∝ f0,

T ∗
3D ∝ f 1/3

0 . (A4)

The expressions are useful when comparing changes
in T ∗ within devices of the same dimensionality, but
some caution is advised if the same are to be ap-
plied to devices of different dimensionalities. It follows
from the right-hand-side terms in Eq. (A2) that in 1D,
τ1,min,1D(ε = kBT ∗

1D) is a maximum, i.e., the TTLS with
ε < kBT have shorter relaxation times. Thus, T ∗

1D marks the
temperature above which practically all TTLS have 2π f0τ1 �
1. Similarly, it follows that in 2D τ1,min,2D(ε) is almost inde-
pendent of the energy and T ∗

2D marks the temperature where
practically all TTLS have 2π f0τ1 ∼ 1. In 3D, τ1,min,3D(ε =
kBT ∗

3D) is a minimum, i.e., the TTLS with ε < kBT have longer
relaxation times and mark the temperature below which prac-
tically all TTLS have 2π f0τ1 � 1.

APPENDIX B: ADDED MASS CONTRIBUTION
TO PHONON DISPERSION RELATION

Analytical expressions for TTLS damping in reduced di-
mensions usually rely on expressions derived from phonon

dispersion relation for a simple geometry, such as a beam or
plate in vacuum [5,6,9]. Here, we extend these models from
the simplest case of a beam in vacuum to a beam in fluid,
taking into account change in the phonon dispersion relation
due to increase in the effective mass.

The dispersion relation for flexural phonons in a rectangu-
lar cantilever beam is given by

ω = k2
ph

√
EIx

ρAlwd
, (B1)

where kph is the phonon wave number, E is the Young’s
modulus, Ix = wd3/12 is the second moment of inertia, w

is the beam width, and d is the thickness. Strictly speaking,
Eq. (B1) is valid only in vacuum, and in fluid it should be
modified by the presence of the fluid via mass loading.

The flexural phonon frequencies given by Eq. (B1) are
closely related to the natural frequencies of a fixed-free can-
tilever beam. For a beam of length H , width w, and thickness
d , the natural frequencies are given by [39]

ω0 = kn

H2

√
EIx

ρAlwd
, (B2)

where kn are the roots of the equation cos(
√

kn) cosh(
√

kn) +
1 = 0, where n is the mode number. For example, for the
first three modes k1 ≈ 3.52, k2 ≈ 22.0, and k3 ≈ 61.7. The
free end of the beam is an antinode, and consequently the
eigenmodes are odd multiples of the quarter wavelength of
the corresponding flexural phonons. This is seen by setting
kph = (2n − 1)π/(2H ) in Eq. (B1), which produces values
close to that of Eq. (B2), with decreasing deviation as the
mode number n increases.

When a device is immersed in a fluid, its effective mass
increases, and its resonance frequency decreases according to
Eq. (1). Our experiments show that the mass enhancement
at low temperatures results solely from the potential flow of
the fluid [first term in Eq. (9), on the right-hand side]. The
parameter β describing the potential flow is by first principles
obtained by integrating the fluid velocity field around the
device [35]. Due to the close resemblance between flexural
phonon modes and the mechanical eigenmodes of the device,
we believe that flexural phonons with sufficiently low fre-
quencies should scale similarly as the mechanical mode, when
immersed in the fluid

ωLHe =
(

ω0,LHe

ω0,vac

)
ω. (B3)

In terms of the parameters appearing in Eqs. (13), (14),
(B1), and (B2), the change in the frequency can be conve-
niently incorporated in an effective speed of sound cLHe =
(ω0,LHe/ω0,vac)c.

At sufficiently high frequencies, the velocity along the
beam varies at a length scale which is shorter than the beam
width, which sets the relevant hydrodynamic length scale [28].
In this case, fluid can take a shortcut by moving from antinode
to antinode, rather than around the beam. With increasing
frequency the distance between antinodes decreases, and we
expect that the mass enhancement from the potential flow
diminishes. For the wide devices W1 and W2, the flexural
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phonon wavelength becomes smaller than the beam width
at around 5 MHz, and for the narrow devices N1 and N2 at
around 1 GHz. At higher phonon frequencies, the vacuum
phonon dispersion relation given by Eq. (B1) is expected to
hold.

Equations (13) and (14), describing TTLS losses in 1D and
2D devices, respectively, are derived from an integral of the
form [6]

� f ∝ 1

kBT

∫ ∞

0
dε

[
εg(ε)csch

(
ε

kBT

)]
, (B4)

where ε is the TTLS energy, and g(ε) is the phonon density of
states introduced in Appendix A. The csch(ε/kBT ) term im-
poses a temperature-dependent cutoff frequency. For the wide
2D devices W1 and W2, the dominant contribution to this

integral at T > 1 mK comes from phonons with frequency
above 5 MHz. Thus, we expect that mass enhancement in
fluid is irrelevant for the expression given in Eq. (14). For
the narrow 1D devices N1 and N2, a substantial fraction to
the integral is contributed by phonon states below 1 GHz, and
they give the dominant contribution to the integral at T <

0.2 K. The relative importance of the mass-scaled phonon
frequencies decreases with increasing temperature due to the
temperature-dependent cutoff frequency. The maximum rela-
tive error in damping resulting from using the vacuum speed
of sound in Eq. (13) for the device N1 is

1 −
√

c/cLHe = 1 − √
f0,vac/ f0,LHe ≈ −8%.

The expected effect for the narrow device N1 is on par with
other error sources.
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