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High-angular-momentum topological superconductivities in twisted bilayer quasicrystal systems
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The electron states in the quasicrystal (QC) are hot topics recently. While previous attentions were focused
on such intrinsic QCs as the Penrose lattice, the recent “twistronics” provides us with a new type of QC, i.e.,
the extrinsic QC, including the 30◦-twisted bilayer graphene and 45◦-twisted bilayer cuprates as two synthesized
examples, unifiedly dubbed as TB-QC. Here we build an efficient microscopic framework to study electron-
electron interaction driven superconductivities (SCs) in these extrinsic QCs, and find that their nature sits in
between those of crystals and intrinsic QCs. Remarkably, our microscopic calculations on the three exemplar
TB-QCs reveal various novel topological SCs carrying high angular momenta and high Chern numbers protected
by their unique QC symmetries, absent in conventional crystalline materials. The nature of SCs in these extrinsic
QCs is also fundamentally different from those in intrinsic QCs in the aspect of pairing-symmetry classifications
and topological properties.
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I. INTRODUCTION

The quasicrystal (QC) indicates a special type of struc-
ture which hosts long-range order and rotation symmetry,
but lacks of translation period [1,2]. Presently, most stud-
ies in this area [3–34] were performed on intrinsic QCs
such as the Penrose lattice, which hosts the quasiperiodic
nature by itself. On the other front, the rapid development
of the “twistronics” [35–81] provides us with another type
of QC, i.e., the extrinsic QC, made through stacking two
identical crystalline monolayers with the largest possible twist
angle [82–88], dubbed as the twisted bilayer QC (TB-QC)
here. Synthesized examples of TB-QC include the 30◦-
twisted bilayer graphene [82–86] and the 45◦-twisted bilayer
cuprates [87,88]. Different from intrinsic QCs, the struc-
ture of TB-QCs is periodic within each monolayer, and the
quasiperiodic nature appears only in the perturbational cou-
pling between the two layers. Since the structures of TB-QCs
sit in between those of crystals and intrinsic QCs, one might
conjecture that the physical properties of TB-QCs should
also sit in between them in some sense. The single-particle
properties of some TB-QCs have been investigated [82,83,89–
93], and such intriguing states as the 12-fold resonant spa-
tially localized states have been revealed [89]. However, the
electron-electron (e-e) interaction driven properties in the TB-
QCs have not been microscopically investigated.

In this paper, we build an efficient microscopic frame-
work based on a revised version of the perturbational-band
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theory [82,83,94,95], to study e-e interaction driven instabil-
ities in extrinsic QCs, with a focus on possible topological
superconductivities (TSCs) in the TB-QCs. Our k-space ap-
proach enables examination of the distribution of the pairing
gap function on the Fermi surface (FS), and thus is more
convenient and intuitive than real-space approaches in the
studies of the pairing symmetries and topological properties.
A classification of the pairing symmetries suggests that, due
to the doubly enlarged rotation symmetry group relative to
its monolayer, various high-angular-momentum (HAM) TSCs
absent in conventional crystalline materials can emerge in the
TB-QCs. In short, as a crystal can host at most sixfold rotation
axes, only the p + ip or d + id TSCs with pairing angular mo-
mentum L = 1 or L = 2 are allowed by the symmetry; while
the three exemplar TB-QCs studied here exhibit novel g + ig-
(L = 4), h + ih- (L = 5) and d + id- TSCs respectively, as
revealed by our microscopic calculations. In the aspect of
topology, these HAM TSCs are associated with higher Chern
numbers than twice of those realized in each monolayer, due
to a FS reconstruction caused by the interlayer coupling. The
pairing-symmetry classification and the topological properties
of these TSCs are also fundamentally different from those in
intrinsic QCs. Our microscopic framework can also be used to
study other electron instabilities in extrinsic QCs.

The following parts of the paper are organized as follow.
In Sec. II, we provide our microscopic framework for the suc-
ceeding studies. In Sec. III, a pairing-symmetry classification
is performed based on irreducible representations (IRRPs)
of the point group. In Sec. IV, we provide the results of
our systematic microscopic calculations on the three exem-
plar systems, including the 30◦-twisted bilayer graphene, the
30◦-twisted bilayer BC3 and the 45◦-twisted bilayer cuprates.
In Sec. V, we study the topological properties of the HAM
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TSCs obtained by our microscopic calculations. In Sec. VI,
we arrive at our conclusion after some discussions.

II. MICROSCOPIC FRAMEWORK

The tight-binding (TB) Hamiltonians of the TB-QCs stud-
ied here take the real-space single-orbital form of

HTB =
∑
ijσ

tijc
†
iσ cjσ . (1)

Here σ labels spin and tij represents the hopping integral
between the sites i and j which can locate in either the same or
different layers. The concrete formula of tij for the interlayer
hopping is given as [89]

tij = tijπ

[
1 −

(
Rij · ez

R

)2
]

+ tijσ

(
Rij · ez

R

)2

, (2)

with

tijπ = tπe−(Rij−a)/r0 , tijσ = tσ e−(Rij−d )/r0 .

Here, Rij is the length of the 3D vector Rij pointing from i
to j, and ez is the unit vector perpendicular to the layer. The
parameters a, d , r0, tπ , tσ denote the lattice constant, interlayer
spacing, normalization distance, in-plane hoping, and vertical
hoping, respectively. These parameters for the three exemplar
systems are given separately in the following. The formulas
of intralayer hopping integrals for the three exemplar systems
are also provided separately below.

As treated in the perturbational-band theory [82,83,94,95],
this Hamiltonian is decomposed into the zeroth-order in-
tralayer hopping term H0 and perturbational interlayer tunnel-
ing term H ′ as

H0 =
∑

kμασ

c†
kμασ ckμασ ε

μα

k ,

H ′ =
∑

kqαβσ

c†
ktασ cqbβσ T αβ

kq + H.c. (3)

Here, k/q, μ [= t (top), b (bottom)], and α/β label the mo-
mentum, layer, and band, respectively. ε

μα

k is the monolayer
dispersion and the tunneling matrix element T αβ

kq is given
by [52,94,95]

T αβ

kq = 〈
kα(t)

∣∣HTB

∣∣qβ (b)
〉
. (4)

Here |kα(μ)〉 represents a monolayer state on the layer μ,
which is an eigenstate of H0. In thermal dynamic limit, the
nonzero T αβ

kq requires the revised momentum-conservation

condition k + G(t) = q + G(b) [82,83,94,95]. Here G(t/b) rep-
resent the reciprocal lattice vectors for the t/b layers. Under
this condition, we have T αβ

kq ∝ t (k + G(t) ), which decays

promptly with |k + G(t)| [82,83,94,95]. Therefore each top-
layer eigenstate |kα(t)〉 can only couple with a few isolated
bottom-layer eigenstates |qβ (b)〉, and vice versa, which justi-
fies the perturbational treatment of the interlayer coupling.

To build a framework convenient for involving local e-e
interactions in the TB-QCs, one should start from a finite
lattice, on which the revised momentum-conservation con-
dition cannot be exactly satisfied between the two mutually

FIG. 1. (a) Band structure along the high-symmetry points and
(b) FS for δ = 0.1 hole doping of the cuprates monolayer. (c) Band
structure and (d) FSs of the corresponding 45◦-twisted bilayer. The
colors in (c) and (d) represent layer component. The Fermi energy EF

is marked in (a) and (c). The inset of (c) exhibit the band splitting.
In plotting (d), the interlayer coupling has been doubly enlarged to
enhance the FS splitting so as to enhance the visibility.

incommensurate sets of momenta points on the two layers.
Therefore, for each top-layer state |kα(t)〉, we ignore this
condition and directly use Eq. (4) to find the bottom-layer
states |qiβ

(b)
i 〉 which obviously couple with it. Then, for these

|qiβ
(b)
i 〉 states, we find again all the |k′

jα
(t)
j 〉 states which

obviously couple with them. Gathering all these states related
to |kα(t)〉 as bases to form a close sub-space, we can diagonal-
ize the Hamiltonian matrix in this subspace to obtain all the
eigenstates. Among these states, the one having the largest
overlap with |kα(t)〉 is marked as its perturbation-corrected
state |k̃α(t)〉, whose energy is marked as ε̃tα

k . Similarly, we get

|˜qβ (b)〉 and ε̃
bβ
q . We have checked that different | ˜kα(μ)〉 thus

obtained are almost mutually orthogonal, qualifying {| ˜kα(μ)〉}
as a good set of single-particle bases, in which the TB Hamil-
tonian can be diagonalized as

HTB =
∑

kμασ

ε̃
μα

k c̃†
kμασ c̃kμασ . (5)

Here the operator c̃†
kμασ (c̃kμασ ) creates (annihilates) the

eigenstate | ˜kα(μ)〉 with spin σ .
The set of dispersion relation ε̃

μα

k defines a band structure,
associated with a FS for a given filling fraction. It’s remark-
able that, despite the QC structure, there still can be well
defined band structure and FS in the TB-QC, due to its weak
interlayer coupling. What’s more, the band structure and FS of
a TB-QC can possess higher-fold rotation symmetry absent in
a crystal. Let’s take the 45◦-twisted bilayer cuprates as an ex-
ample. Figures 1(a) and 1(b) show the band structure and the
associated quartic symmetric FS for δ = 0.1 hole-doping of
the separate bottom layer. Then the top layer is stacked above
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TABLE I. IRRPs of D2n and corresponding pairing-symmetry classification. The first column gives the names of the IRRPs. The second
and third columns provide the matrix representations of the two generators, up to an arbitrary unitary transformation. In the fourth column,
the basis function(s) of each IRRP is provided. In the fifth column, the symmetry-transformation properties of the ground-state gap function is
given. Here P̂θ denotes the rotation by the angle θ = π

n about the z axis.

IRRPs D(C1
2n ) D(σy ) Basis functions Ground-state gap functions

1D A1 I I 1 P̂θ	 = 	, σ̂y	 = 	

A2 I −I (C1
n xn−1y − C3

n xn−3y3 + . . . ) ∗ (xn − C2
n xn−2y2 + . . . ) P̂θ	 = 	, σ̂y	 = −	

B1 −I I xn − C2
n xn−2y2 + . . . P̂θ	 = −	, σ̂y	 = 	

B2 −I −I C1
n xn−1y − C3

n xn−3y3 + . . . P̂θ	 = −	, σ̂y	 = −	

2D E1 I cos π

n − iσy sin π

n σz (x, y) P̂θ	 = e∓i π
n 	, σ̂y	 = 	∗

. . . . . . . . . . . . . . .

EL I cos Lπ

n − iσy sin Lπ

n σz (xL − C2
LxL−2y2 + . . . , C1

LxL−1y − C3
LxL−3y3 + . . . ) P̂θ	 = e∓i Lπ

n 	, σ̂y	 = 	∗

. . . . . . . . . . . . . . .

En−1 I cos (n−1)π
n − iσy sin (n−1)π

n σz (xn−1 − C2
n−1xn−3y2 + . . . ,C1

n−1xn−2y − C3
n−1xn−4y3 + . . . ) P̂θ	 = e∓i (n−1)π

n 	, σ̂y	 = 	∗

the bottom one with the relative twist angle 45◦. In Fig. 1(c),
the band structures of the separate top layer (green dashed),
the separate bottom layer (red dashed) and the coupled bi-
layer (solid lines with the color changing with momentum,
representing layer component) are laid together. The inset of
(c) exhibits that, while the two uncoupled band structures
cross at the X point (or more generally, the 
-X lines), such
band crossing is split upon the interlayer band hybridization,
forming into two new coupled band structures. Meanwhile,
the FSs from the two separate layers are 45◦-rotation related
and cross, which are split by the interlayer hybridization into
two octagonal symmetric FSs, as shown in Fig. 1(d). The
two new FSs can be viewed as the interlayer bonding and
antibonding FSs. Such fascinating high-symmetric FSs are
forbidden in conventional crystalline materials.

The above single-particle bases {| ˜kα(μ)〉} provide us with
an efficient framework to conveniently treat with the e-e in-
teractions in the k space, using which we can study various
instabilities. Here we focus on the SC. Concretely for a given
system, the effective pairing interaction obtained in the real
space is transformed to this k-space bases. Considering only
intraband pairing between opposite momenta, we get the fol-
lowing effective BCS Hamiltonian,

HBCS = HTB + 1

N

∑
kμα

qνβ

c̃†
kμα↓c̃†

−kμα↑c̃−qνβ↑c̃qνβ↓V μν

αβ (k, q),

(6)
where V μν

αβ (k, q) is the effective pairing interaction. Un-
der the mean-field (MF) treatment involving 	μα (k) ≡
1
N

∑
qνβ V μν

αβ (k, q)〈c̃−qνβ↑c̃qνβ↓〉 as the pairing gap function,
we obtain the following linearized gap equation near the su-
perconducting Tc [96]:

− 1

(2π )2

∑
νβ

∮
dq‖

V μν

αβ (k, q)

v
νβ
F (q)

	νβ (q) = λ	μα (k). (7)

This equation is solved to yield the largest pairing eigenvalue
λ and corresponding eigenvector 	μα (k). The former and
latter determine the Tc and the gap function respectively.

Under this framework, we study the pairing states in three
examples, including the 30◦-twisted bilayer graphene, 30◦-
twisted bilayer BC3 and 45◦-twisted bilayer cuprates. For the
30◦-twisted bilayer graphene and 45◦-twisted bilayer cuprates
with intermediate and strong e-e interactions, we adopt the
t-J models, treated by the Gutzwiller MF approach [97]. See
more details in Appendix A. For the 30◦-twisted bilayer BC3,
we adopt the small-U Hubbard model treated by the random-
phase-approximation (RPA) approach [96]. See more details
in Appendix B. Physically, each monolayer of these TB-QCs
has been known or proposed to host SC via certain pairing
mechanism, and these TB-QCs can acquire SC through the
interlayer Josephson coupling. Our approach can investigate
the nature of the pairing states thus obtained in the TB-QCs,
including the pairing symmetry and topological properties.

III. PAIRING-SYMMETRY CLASSIFICATION

Our k-space microscopic framework brings convenience
for the pairing-symmetry classification as we can intuitively
examine the distribution of the pairing gap function on the FS.
Remarkably, the TB-QCs allow for more pairing-symmetry
classes than crystals due to their doubly enlarged rotation
groups relative to their monolayers.

The pairing symmetries are classified according to the IR-
RPs of the point group [98]. For a TB-QC formed by two
Dn-symmetric crystalline monolayers, the point group is Dnd ,
isomorphic to D2n. As listed in Table I, the D2n point group has
four 1D IRRPs, i.e., A1, A2, B1, and B2, and n − 1 2D ones EL

(L ∈ [1, n − 1]). For the 1D IRRPs, the basis function of the
identity representation A1 is 1, those of B1 and B2 are the real
and imaginary parts of (x + iy)n, and their product gives that
of A2. The two basis functions of the 2D IRRP EL are the real
and imaginary parts of (x + iy)L, respectively.

For each 2D IRRP EL, the two degenerate basis gap
functions would generally be mixed as 1 : ±i to lower the
free energy. The resultant gap function 	

(±)
L (k) transform

as 	
(±)
L (k) → e∓iL	φ	

(±)
L (k) under a 	φ = π/n rotation on

the FS, corresponding to a chiral TSC with pairing angular
momentum L � n − 1. The four 1D IRRPs correspond to the
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nontopological A1,2 pairing symmetry with L = 0 and B1,2

one with L = n. Here L � n is unifiedly defined as

L ≡ 	θ

	φ
, (8)

where 	θ represents the change of the pairing-gap phase
upon every 	φ rotation. This pairing-symmetry classifica-
tion informs us: while an n (� 6)-fold symmetric crystal can
only carry chiral TSCs with L � n/2 − 1 � 2, the TB-QC
can host chiral TSCs with L = 1, . . . , 5 among which L � 3
leads to novel HAM TSCs absent in conventional crystalline
materials.

The point groups relevant to the three examples studied
here include the D12 and D8. Concretely, the 30◦-twisted bi-
layer graphene and the 30◦-twisted bilayer BC3 host the D6d

isomorphic to D12 and the 45◦-twisted bilayer cuprates hosts
the D4d isomorphic to D8. For D12, the 1D IRRPs include the
A1 (s-wave, L = 0), the A2 (i∗i′, L = 0), the B1, B2 (i and i′,
L = 6); and the 2D IRRPs include the EL (L = 1, . . . , 5) (p,
d , f , g, h). For D8, the 1D IRRPs include the A1 (s-wave,
L = 0), the A2 (g∗g′, L = 0), the B1, B2 (g and g′, L = 4); and
the 2D IRRPs include the EL (L = 1, 2, 3) (p, d , f ).

The pairing-symmetry classification in the TB-QC is also
fundamentally different from that in the intrinsic QC. Here

each | ˜kα(μ)〉 pairs with | ˜−kα(μ)〉. Therefore, for a spin- singlet
(triplet) pairing, the Pauli’s exclusion principle requires that
the pairing gap function 	μα (k) should be even (odd), corre-
sponding to even (odd) L. However, on the intrinsic QC, due
to complete loss of translation symmetry, whether L is even
or odd is independent from the spin statistics [26]. The reason
lies in that the Pauli’s principle only relates the spin statistics
to the center-of-mass angular momentum of the Cooper pair,
instead of the L relative to the fixed coordinate origin. Only
the latter labels the pairing-symmetry classes in the intrinsic
QC.

IV. THREE EXAMPLES

In this section, we provide the results of our systematic
microscopic calculations for three exemplar TB-QC systems,
including the 30◦-twisted bilayer graphene, the 30◦-twisted
bilayer BC3 and the 45◦-twisted bilayer cuprates. It will be
seen that novel g + ig, h + ih, and d + id TSCs with HAM
L = 4, 5, 2 would emerge in these systems.

A. The 30◦-twisted bilayer graphene

The first example is the 30◦-twisted bilayer graphene. It has
been long to search for SC in the graphene family. Previously,
the chiral d + id TSC has been proposed in the mono-layer
graphene [99–107], driven by e-e interaction near the van
Hove (VH) doping. Recently, this material has been suc-
cessfully doped to the beyond-VH regime [108], which puts
on the agenda the search for the exotic d + id chiral TSC.
Meanwhile, the 30◦-twisted bilayer graphene has been syn-
thesized recently, whose dodecagonal symmetric QC structure
has been verified by various experiments [82–86]. It’s timely
now to investigate what exotic pairing states can be induced
by the interlayer Josephson coupling in this TB-QC.

For this TB-QC, both the intralayer and interlayer hopping
integrals are provided by Eq. (2), with the related parameters
given by a ≈ 0.142 nm, d ≈ 0.335 nm, tπ ≈ 2.7 eV, tσ ≈
−0.48 eV, and r0 ≈ 0.0453 nm. These band-structure param-
eters are taken from Ref. [89]. We adopt the following t-J
model Hamiltonian for this intermediate-correlated system,

H = HTB + HJ = −
∑
ijσ

tijc
†
iσ cjσ +

∑
i,j

JijSi · Sj, (9)

with Jij = 4t2
ij/U . The interaction parameter U = 10 eV is

taken from Ref. [109]. Note that the no-double-occupance
constraint has been imposed on the Hilbert space of this
model. We use the Gutzwiller MF approach to solve this
model, see Appendix A.

The band structure of the 30◦-twisted bilayer graphene
(solid) is shown in Fig. 2(a) along the high-symmetric lines
in the Brillouin zone (BZ), in comparison with the uncou-
pled band structures (dashed) from the two separate layers.
The FSs for the electron doping δ = 0.32 are shown in
Fig. 2(b). Obviously, there are band and FS splitting in-
duced by the interlayer hybridization, as displayed in the
insets of Figs. 2(a) and 2(b). Intriguingly, the two sextuple-
symmetric FSs from the two separate layers cross on the 
-X
lines and are split by the interlayer hybridization into two
dodecagonal-symmetric FSs, i.e., the inner and outer pockets,
with each FS containing equal components from both layers.
Such fascinating dodecagonal symmetric FSs are forbidden in
crystals.

Figure 2(c) shows the doping δ dependence of the pairing
eigenvalue λ for the four leading pairing symmetries in the
experiment-relevant doping regime δ ∈ (0, 0.4), with the VHS
regime near δv = 1

4 excluded, as the divergent DOS there
might have led to other instabilities. Figure 2(c) shows that
due to the FS-topology change across the VHS, the leading
pairing symmetry changes from the degenerate (dx2−y2 , dxy)-
wave beneath δv to the degnerate (gx4+y4−6x2y2 , gx3y−xy3 )-wave
beyond δv. The distributions of the degenerate d-wave and
g-wave pairing gap functions on the two Fermi pockets are
shown in Fig. S2 in Ref. [110].

The two components of the d- or g-wave pairings are
mixed as 1 : eiθ , and consequently the ground-state energies
shown in Fig. 2(d) are minimized at θ = ±π/2, leading to
fully-gapped dx2−y2 ± idxy (d + id) or gx4+y4−6x2y2 ± igx3y−xy3

(g + ig) TSCs. The distributions of their gap phases on the
dodecagonal-symmetric inner pocket are shown in Figs. 2(e)
and 2(f), and those on the outer pocket are provided in Fig. S3
in Ref. [110]. Clearly, the pattern in (e) ((f)) for the d + id
(g + ig) is twofold (fourfold) rotation symmetric reflecting
the pairing angular momentum L = 2 (L = 4), because from
Eq. (8), upon every 2π/L symmetric rotation, the change of
the pairing-gap phase would accumulate to 2π . The pattern
exhibited in (e) or (f) yields the winding number W = 2 or
W = 4. The g + ig TSC with L = 4 belongs to E4 IRRP of
D12, which is a novel HAM TSC absent in conventional crys-
talline materials, because the point groups of periodic lattices
only have E1 and E2 IRRPs, supporting the p + ip (L = 1) and
d + id (L = 2) TSCs.
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FIG. 2. Results for the 30◦-twisted bilayer graphene. (a) Band structure along the high-symmetry lines: solid (dashed) lines for the coupled
bilayer (two uncoupled monolayers). (b) FSs for δ = 0.32 electron doping. The colors in (a) and (b) represent layer component. Inset in (a):
band structure near the X point and that in (b): FSs crossing the 
-X line (grey solid). (c) The λ ∼ δ relations for the four leading pairing
symmetries, with the VHS regime (grey) excluded. (d) Mixing-phase-angle θ dependencies of the energies for the degenerate d- and g-wave
pairings. The energies of the s- and i-wave pairings are also shown in comparison. The distributions of the gap phases for the d + id- (e) and
the g + ig- (f) TSCs on the inner Fermi pocket. The real-space distributions of the spontaneous super current (g) and a typical Majorana zero
mode (h). In (g), the color and orientation of the arrows indicate the amplitude and direction of the super current. The doping level for (d)–(h)
is δ = 0.32.

B. The 30◦-twisted bilayer BC3

The second example is the 30◦-twisted bilayer BC3. The
BC3 is a D6-symmetric genuine 2D material already synthe-
sized [111]. While the undoped BC3 is a band insulator, it can
be electron-doped through chemical absorption with lithium
adatoms. The low-energy DFT band structure of electron-
doped BC3 is well fitted by a single Boron-pz-orbital TB
model on the honeycomb lattice [112]. Remarkably, at the
critical filling fraction δv ∼ 1/2 for the lower band, its FS
goes through a Lifshitz transition at which it has six saddle
points kv satisfying kv �= −kv, as shown in Fig. 3(a), form-
ing the type-II VH singularity (VHS) [113]. The combined
renormalization-group and RPA approaches predict p + ip
TSC near δv via the Kohn-Luttinger pairing mechanism [112].
Now it’s interesting to investigate the pairing states induced by
interlayer Josephson coupling in this TB-QC.

For this TB-QC, the intralayer hopping integrals are
provided by Ref. [112], including the nearest-neighbor
(NN) hopping intergal t1 = −0.62 eV, the next-nearest-
neighbor (NNN) one t2 = 0, and the next-next-nearest-
neighbor (NNNN) one t3 = 0.38 eV. The interlayer hopping
integrals take the formula of Eq. (2), with the related pa-
rameters given by a ≈ 0.297 nm [111], d ≈ 0.7 nm, tπ =
−0.62 eV, tσ = 0.1 eV, and r0 = 0.095 nm, respectively. We
adopt the following weak-U Hubbard model,

H = HTB + U
∑

i

ni↑ni↓, (10)

with the repulsive interaction U = 0.5 eV [112]. This model
is solved by the RPA approach, see Appendix B.

The band structure and FSs of this material provided in
Fig. S4 in Ref. [110] illustrate similar splitting caused by

FIG. 3. Results for the 30◦-twisted bilayer BC3. (a) FSs of the monolayer BC3 doped to its type-II VHS at δv ∼ 1
2 . The grey-colored regime

is filled. (b) The λ ∼ δ relations for the four leading pairing symmetries around the VHS regime (grey). The distributions of the gap phases for
the p + ip- (c) and the h + ih- (d) TSCs on the inner Fermi pocket.
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interlayer hybridization. The point group and pairing-
symmetry classification of this material are identical with
those of the 30◦-twisted bilayer graphene. The λ ∼ δ relations
shown in Fig. 3(b) shows that the leading pairing symmetry
around δv is the h + ih, with the p + ip to be a close com-
petitor which can also be the leading one away from δv. The
distributions of their gap phases on the inner pocket are shown
in Figs. 3(c) and 3(d), and those on the outer pocket are given
in Fig. S5 in Ref. [110]. Clearly, the change of the pairing-gap
phase of p + ip shown in Fig. 3(c) accumulates to 2π for
each run on the FS, leading to the winding number W = 1.
Note that since 2π/5 is not a symmetry rotation of the lattice,
the pattern in (d) is not exactly fivefold rotation symmetric.
However, the winding number W = 5 for the h + ih TSC is
clearly visible. The h + ih TSC with L = 5 belongs to E5

IRRP of the D12 point group, which is also a novel HAM TSC
absent in crystals.

C. The 45◦-twisted bilayer cuprates

The third example is the 45◦-twisted bilayer cuprates.
The DFT calculations predicted the stability of this struc-
ture [114], which was recently experimentally fabricated,
and definite evidences for coherent interlayer Josephson
tunneling were detected [87,88]. In the theoretical aspect,
although the G-L theory has predicted d + id TSC in this
system [114–116], more information on the pairing state, such
as the Chern number, should be determined by microscopic
calculations. Presently, such microscopic calculations are lim-
ited to commensurate twisted angles. For general twisted
angles, particularly the exact 45◦, our perturbational-band the-
ory based microscopic framework applies.

For this TB-QC, the hopping integrals appearing in Eq. (1)
are set as follow. For the intralayer hopping integrals, we
only keep the NN one set as t1 = 0.2 eV and the NNN one
set as t2 = −0.2t1. For the interlayer hopping integrals, we
take the formula of Eq. (2), with the related parameters given
by a ≈ 0.54 nm, d ≈ 1.2 nm, tπ ≈ 0.68 eV, tσ ≈ 30 meV,
and r0 ≈ 0.211 nm. The interlayer hopping integrals {tij} thus
obtained are exactly the same as those given in Ref. [114]. We
adopt the same t-J model as Eq. (9), with the super exchange
interaction coefficients set as Jij = 4t2

ij/U . Here U = 2 eV is
the charge-transfer energy between the Cu-3d orbitals and the
O-2p orbitals. This model is solved by the Gutzwiller MF
approach.

The band structure and the octagonal-symmetric FSs have
been shown in Figs. 1(c) and 1(d). The Tc ∼ δ relations for
various pairing symmetries belonging to the D8 IRRPs shown
in Fig. 4(a) suggests that the degenerate (dx2−y2 , dxy) doublets
are the leading one, which are further mixed as 1 : ±i to
lower the energy, forming the fully gapped d + id TSC. The
distribution of its gap phase on the inner pocket shown in
Fig. 4(b) is twofold rotation symmetric, exhibits a winding
number 2, so does that on the outer pocket shown in Fig. S6(f)
in Ref. [110]. It’s interesting that, starting from the nontopo-
logical d-wave pairing in each monolayer, we arrive at the
d + id TSC in the corresponding TB-QC.

More details of the results for the above three examples are
provided in Ref. [110]. These HAM TSCs can be identified by
phase sensitive experiments [117], see Fig. S7 in Ref. [110].

FIG. 4. Results for the 45◦-twisted bilayer cuprates. (a) Doping
dependence of the Tc of the three leading pairing symmetries for the
hole doping, with that for the g-wave enlarged by 100 to enhance
the visibility. (b) The distribution of the gap phase of the obtained
d + id-wave pairing on the inner pocket.

V. TOPOLOGICAL PROPERTIES

Our k-space microscopic framework possesses clear ad-
vantages over the real-space approaches in the study of the
topological properties of TSCs in extrinsic QCs. In the weak
pairing limit which applies to most superconductors, the
Chern number for a fully-gapped pairing state equals the
sum of the pairing-phase winding numbers around all elec-
tron pockets minus that around all hole pockets [118,119]. In
our first example, the distributions of the gap phases of the
obtained d + id and g + ig TSCs on the inner pocket shown
in Figs. 2(e) and 2(f) exhibit patterns characterized by the
winding numbers 2 and 4, respectively. The gap functions
for the two states on the outer pocket shown in the Fig. S3
in Ref. [110] exhibit the same winding numbers. Hence the
Chern numbers of the d + id- and g + ig- TSC states are 4 and
8, respectively. The Chern numbers of the obtained TSC states
in the remaining two examples can be obtained similarly.

The HAM TSCs obtained in the TB-QCs are novel because
they not only belong to new IRRPs of the point groups, but
also usually carry high Chern numbers which are rare in
conventional crystalline materials. For examples, the Chern
numbers of the obtained g + ig or h + ih TSCs in the first or
second examples are 8 or 10, respectively, which are higher
than the sum of the Chern numbers of the d + id or p + ip
pairing states in the two separate layers. This change of the
Chern number is caused by the FS reconstruction induced by
the interlayer hybridization. For example, the FS of the 30◦-
twisted bilayer graphene is shown in Fig. 2(b) for the doping
δ = 0.32. While each separate monolayer hosts one pocket
around the 
 point, the Fermi pockets from the two separate
layers cross and are split by the interlayer hybridization into
the inner and outer pockets. Such FS reconstruction brings
chance to change the pairing-phase winding number on the
FSs and hence the Chern number.

The difference between the topological properties of the
TSCs on extrinsic and intrinsic QCs is clarified here. It’s
illustrated in Ref. [26] that in the Penrose intrinsic QC, the
lack of translational symmetry causes spontaneous bulk super
current in chiral TSCs. However, as shown in Fig. 2(g) for the
chiral g + ig TSC obtained with open boundary condition, the
current only distributes at the edge with chiral pattern. Physi-
cally, the bulk current vanishes in the case of intraband pairing
between opposite momenta, caused by the nearly translation
symmetry here. Similarly, the Majorana zero modes are also
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localized at the edge, as shown in Fig. 2(h). These topological
properties make the TSCs on extrinsic QCs different from
those on intrinsic QCs.

VI. DISCUSSIONS AND CONCLUSION

In conclusion, we have established an efficient microscopic
framework in the k space to study e-e interaction driven
properties of the TB-QC, based on our revised version of the
perturbational-band theory. The advantage of this framework
lies in that the presence of the well-defined FS brings conve-
nience and intuition to analyze the low-energy physics in this
kind of extrinsic QCs. Remarkably, the FS of the TB-QC can
exhibit rotation symmetries absent in conventional crystals,
such as the octagonal or dodecagonal symmetry. Moreover,
the enlarged rotation symmetries in the TB-QCs allow for
more pairing-symmetry classes, among which the TSCs with
HAM L � 3 are novel TSCs absent in conventional crystalline
materials. The pairing-symmetry classification and the topo-
logical properties of the pairing states in this kind of QC are
also different from those in intrinsic QCs. Therefore, due to its
special structure, the physical properties of the extrinsic QCs
sit in between those of the crystals and the intrinsic QCs.

Note that on periodic lattices, HAM TSCs can also emerge
as the higher-harmonics basis function of a given IRRP [72].
However, in such cases it would generally be strongly mixed
with the low-angular-momentum one belonging to the same
IRRP, unless the mixing weight of the latter happens to be
very small, which is rare. Here our obtained HAM TSC is
protected by the QC symmetry not to mix with other pairing
states.

Our microscopic framework also applies to arbitrary large
twist angle involving e-e interactions. For example, we have
adopted it to study the three examples in our work and found
that the pairing gap functions and topological properties of the
obtained HAM TSCs are robust against slight deviation of the
twist angle from the largest one. Particularly, for the twisted
bilayer cuprates, when the twisted angle slightly deviates from
45◦, our resultant Chern number is still 4. This result is con-
sistent with Ref. [114] with corresponding parameters.

Our microscopic framework can also be used to study other
instabilities. One example is the spin density wave (SDW)
in the VH-doped 30◦-twisted bilayer graphene induced by
the weak coupling between the chiral SDW orders [105] in
the two monolayers. Furthermore, since our approach is fully
microscopic, we can use it to control electron phases through
tuning such parameters as the interlayer coupling or the dis-
placement field, to achieve more exotic phases.
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APPENDIX A: GUTZWILLER-MF FOR THE t-J MODEL

The t-J models in the 30◦-twisted bilayer graphene and
the 45◦-twisted bilayer cuprates are studied by the following
Gutzwiller mean-field (MF) [97] approach.

The Hamiltonian of the t-J model reads

H = −
∑
ijσ

tijc
†
iσ cjσ +

∑
i,j

JijSi · Sj, (A1)

with Jij = 4t2
ij/U . The parameters U for the two systems will

be presented in the SI. Here the no-double-occupance (or no-
hole-occupance for the electron doping) constraint is imposed
on the Hilbert space. In the Gutzwiller-MF treatment [97],
such constraint can be reflected by renormalizing the hopping
integral by the doping δ,

HG-TB = −δ
∑
ijσ

tijc
†
iσ cjσ = δ

∑
kμασ

ε̃
μα

k c̃†
kμασ c̃kμασ . (A2)

As the AFM superexchange interaction in the t-J model
favors spin-singlet pairings, we reorganize it as

HJ =
∑
(i,j)

JijSi · Sj → −3

4

∑
(i,j)

Jij	
†
ij(0,0)	ij(0,0),

	ij(0,0) = 1√
2

(ci↑cj↓ − ci↓cj↑). (A3)

This interaction can be transformed to the {| ˜kα(μ)〉} bases to
get the following BCS Hamiltonian:

H (eff) = 1

N

∑
kμα

qνβ

c̃†
kμα↓c̃†

−kμα↑c̃−qνβ↑c̃qνβ↓V μν
αβ (k, q),

V μν
αβ (k, q) = −3

2N

∑
(i,j)

JijRe(ξ̃i,kμαξ̃ ∗
j,kμα )Re(ξ̃i,qνβ ξ̃ ∗

j,qνβ ).

(A4)

Here (ξ̃kμα ) represents the wave function of the state | ˜kα(μ)〉.
Here we only consider the intra-band pairing between op-
posite momenta and spin, i.e., the pairing between the

time-reversal pair | ˜kα(μ) ↑〉 and | ˜−kα(μ) ↓〉.
Finally, MF treatment of Eq. (A4) yields the following

linearized gap equation near the Tc [96],

−1

(2π )2

∑
νβ

∮
dq‖

V μν
αβ (k, q)

v
νβ
F (q)

	νβ (q)

= δλδ	μα (k) ≡ λ	μα (k), (A5)

where v
νβ
F (q) is the bare Fermi velocity and q‖ denotes the

component along the tangent of the FS. For each δ, the pairing
symmetry is determined by the 	μα (k) corresponding to the
largest pairing eigenvalue λ solved for this equation. The
MF pairing temperature T ∗ is related to λδ via the relation
T ∗ ∼ e−1/λδ . In the Gutzwiller-MF theory, as T ∗ reflects the
MF gap 	MF which is related to the real gap 	SC via the
renormalization relation 	SC ≈ δ	MF, we have Tc ≈ δT ∗ ∝
δe−1/λδ ∝ δe−δ/λ.
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APPENDIX B: RPA FOR THE HUBBARD MODEL

The Hubbard model adopted in the study of 30◦-twisted
BC3 is treated by the following RPA approach. The Hamilto-
nian reads

H = −
∑
ijσ

tijc
†
iσ cjσ + U

∑
i

ni↑ni↓. (B1)

Here U > 0 means repulsive interaction.
The bare susceptibility χ (0) is defined as [26]

χ
(0)
i,j (iωn) =

∫ β

0
dτeiωnτ 〈Tτ c†

i (τ )ci(τ )c†
j (0)cj(0)〉

= 1

N2

∑
k,q

μναβ

ξ̃ ∗
i,kμαξ̃j,kμαξ̃i,qνβ ξ̃ ∗

j,qνβF qνβ

kμα

F qνβ

kμα
= n f

(
ε̃

μα

k − μc
) − n f

(
ε̃

νβ
q − μc

)
ε̃

νβ
q − ε̃

μα

k + iωn

. (B2)

The renormalized susceptibility χ in the RPA level reads

χ = (I − Uχ (0) )−1χ (0). (B3)

Here χ and χ (0) are viewed as matrices, whose (i, j) elements
are just χi,j or χ

(0)
i,j . In our calculations, we have just taken the

zero-frequency component of χi,j. Then, through exchanging
particle-hole excitations, a cooper pair can acquire effective
attraction via the real-space Kohn-Luttinger mechanism [26],

leading to the following effective Hamiltonian:

HRPA-eff =
∑

kμασ

ε̃
μα

k c̃†
kμασ c̃kμασ + U

∑
i

c†
i↑ci↑c†

i↓ci↓

− U 2

2

∑
i,j

σσ ′

c†
iσ ciσ ′c†

jσ ′cjσχij. (B4)

The following MF treatment of Eq. (B4) is parallel to that
of the above t-J model. Concretely, we shall first transform

this real-space Hamiltonian into the k space in the {| ˜kα(μ)〉}
bases. Then through a MF study, we obtain the linearized gap
equation at Tc similar with Eq. (A5), with only the V μν

αβ (k, q)
replaced by

V (s)μν
αβ (k, q) = U

N

∑
i

|ξ̃i,kμαξ̃i,qνβ |2 + U 2

N

∑
(i,j)

χij

× Re(ξ̃i,kμαξ̃ ∗
j,kμα )Re(ξ̃i,qνβ ξ̃ ∗

j,qνβ ) (B5)

for the singlet pairing and

V (t )μν
αβ (k, q) = −U 2

N

∑
(i,j)

χijIm(ξ̃i,kμαξ̃ ∗
j,kμα )Im(ξ̃i,qνβ ξ̃ ∗

j,qνβ )

(B6)

for the triplet one. The leading pairing symmetry is deter-
mined by the pairing eigenvector(s) corresponding to the
largest pairing eigenvalue λ, which is related to the Tc via
Tc ∝ e−1/λ.
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