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Anomalous Hall conductivity and quantum friction
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The anomalous Hall effect in high conductivity region is studied using a two-dimensional network model. We
find that the off-diagonal conductivity comprises two parts: one which reflects the bulk properties as obtained
by the Kubo formula and another which is sensitive to boundary conditions imposed on the network. In the fully
coherent limit, the latter scales with the width of the conducting channel, while for real-world samples, it is
controlled by the coherence length. It provides an alternative interpretation of the observed behavior in the clean
limit which is otherwise attributed to the skew scattering. We highlight analogies to friction in viscous fluids
responsible for Couette flow. In the present case, this quantum effect is governed by wave interference.

DOI: 10.1103/PhysRevB.107.014425

I. INTRODUCTION

Scattering is an essential ingredient to many transport
phenomena. The anomalous Hall conductivity σAH of ferro-
magnetic systems provides a notable exception to this rule but
only in certain region: most materials with moderate longitu-
dinal conductivity σ0 show almost constant σAH as scattering
strength and hence σ0 is varied. This property seems to be
well understood in terms of the Berry curvature of occupied
electronic bands representing properties of ideal Bloch sys-
tems, also called the intrinsic region of the anomalous Hall
effect (AHE). This interval of roughly 104 to 106 inverse
� cm is surrounded by regions in which σAH(σ0) becomes
scattering dependent as reviewed by Nagaosa et al. [1]. While
suppression of σAH for stronger disorder is natural, its linear
increase with σ0 in high conductivity regions [2] is, at least,
surprising. It is generally accepted that it is caused by skew
scattering [3–7], asymmetric scattering of electrons on impu-
rities induced by their nonzero spin. Its effect increases with
decreasing impurity concentration. A seemingly inevitable
consequence of this argumentation is that anomalous Hall
conductivity in clean systems is driven by negligible impurity
concentration while in this limit intrinsic values obtained for
ideal Bloch systems could be expected. With few notable
exceptions, the effect of Berry phases [see Eq. (4) below] is
ignored in the context of skew scattering and even if it is not
[8], the lack of generality [see Eq. (A7) in Appendix] leads
to the contradiction mentioned above. The main aim of the
present treatment is to suggest another possible origin of the
observed increase of the Hall conductivity with sample purity
which does not rely on skew scattering.

Basic condition for the observation of AHE in magnetic
systems is the existence of nonzero orbital momentum [9],
which can be induced by spin-orbit interaction or noncoplanar
magnetic order [10]. It is responsible for the violation of
time reversal symmetry, a necessary condition for nonzero
Hall effect. Transport properties are measured on stripes, Hall
bar samples, and orbital momentum of atomic-type wave

functions causes the space current density oscillating across
the stripe. It can be represented by current paths with al-
ternating current directions [11]. Physically acceptable paths
at edges should be of the chiral type leading current along
opposite directions and the total net current thus vanishes in
the equilibrium. Voltage drop applied between stripe edges
induces changes of the electron concentrations within cur-
rent paths. It leads to the polarization of the system which
is a typical property accompanying the anomalous Hall ef-
fect [12–14]. Coupling between current paths is generally
represented by their mutual friction. It defines momentum
transfer between edges as well as Hall current through the
stripe cross section. In quantum coherent systems such fric-
tion is controlled by the wave interference. The main aim of
our approach to AHE is to show that quantum friction [15]
between chiral current paths can be responsible for a linear
increase of the anomalous Hall conductivity with σ0 in the
high conductivity region. It is an extrinsic contribution due to
the finite sample dimensions.

To verify this idea, a two-dimensional network model [16]
will be used. It allows to apply theory of quantum graphs [17]
ideally suited for studies of interference effects. It contains all
basic ingredients necessary for the existence of AHE. Cou-
pling between atomic orbitals is defined by S matrix, which
is convenient for application of the scattering matrix approach
invented by Landauer [18]. Detailed model description and
its basic properties are presented in Sec. II. The subsequent
section is devoted to the properties of edge states. It will be
shown that chiral edge states crossing energy gaps which are
responsible for the quantum Hall effect [19] can be created
or removed by tuning the boundary conditions. Contrary to
the case of external rational magnetic fields [20], chirality is
not determined by wave function properties at the Brillouin
zone boundaries. The key part of our treatment is described in
Sec. IV where scattering matrix approach is applied to obtain
intrinsic Hall conductivity and enhanced Hall current given by
friction between chiral current paths. In Sec. V, a brief sum-
mary of experimental works on anomalous Hall conductivity
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FIG. 1. Two-dimensional network model of coupled orbitals
with positive orbital momenta controlled by parameter δ. Arrows are
indicating direction of the electron motion and φ range of amplitudes
a, b, c, d is defined in Table I.

in all three regions is given and a two band model is used to
obtain its qualitative features for a large range of the system
disorder strength. It is shown that the experimentally observed
behavior of σAH(σ0) can be reproduced without invoking the
skew scattering mechanism. The paper will be completed by
summary of main results and concluding remarks.

II. TWO-DIMENSIONAL NETWORK MODEL

In strictly two-dimensional systems, spin-orbit interaction
having form Lzsz, Lz being orbital momentum, separates
electrons into two independent groups having spin sz = 1/2
and −1/2, respectively. Atomic state of the orbital number
m and spin sz has the same energy as that with −m and
−sz. Degeneracy of corresponding bands is removed by ex-
change interaction which will be approximated by an effective
Zeeman splitting. To estimate general features of the anoma-
lous conductivity, the simple two-dimensional network model
sketched in Fig. 1 has been used [16]. It allows to employ
theory of graphs [17] for single-mode quantum structure with
δ-type coupling between orbitals [21]. Such type of model
graphs (e.g., Chalker-Coddington model [22]) has already

TABLE I. Definition of a, b, c, d for piecewise constant A(φ)
pertaining to the ring at �Ri, j .

amplitude for φ ∈

ai, j (0, π/2)
bi, j (π/2, π )
ci, j (π, 3π/2)
di, j (3π/2, 2π )

been applied to describe localization effect in quantum Hall
systems [23] and properties of quantum spin-Hall systems
[24].

Let us briefly recapitulate main ideas and basic properties
of the used model [16] on which our treatment is based. Scat-
tering matrix for individual contacts defines the transmission
probability |t |2 representing the overlap integral entering the
standard tight-binding approach. The spin quantum number
allows to distinguish energy bands and define anomalous Hall
conductivity for each of the spin subsystems. For the sake of
simplicity, the spin parts of wave functions will not be shown
explicitly in the following treatment. We keep in mind that a
typical AHE setting will entail two copies of the network with
opposite spins and counter-propagating wave functions, i.e.,
ones composed of orbitals with opposite angular momentum.

Atomic orbitals on individual lattice sites �Ri, j are modeled
by rings of the radius R formed by one-dimensional con-
ductors. Each electron subsystem (spin up and spin down) is
represented by a one-way conductor. Their eigenenergies and
eigenfunctions

Em = h̄2m2

2m0R2
, ψm(φ) = 1√

2πR
eimφ, (1)

where φ ∈ (0, 2π ) is the polar angle are labeled by the
quantum number m = 0,±1, . . ., which defines angular mo-
mentum. The assumption that electrons can orbit within rings
in one direction only leads to a nonzero orbital momentum,
and consequently removes the time reversal symmetry which
is a necessary condition for the Hall effects to emerge.

In the square lattice shown in Fig. 1, each of the rings
has four contact points with its neighbors which separate the
domain of the wave function amplitude A(φ) exp(iδφ) into
four sections listed in Table I. These allows to define four
complex amplitudes a, b, c, d per lattice site fully determining
the wave function for given δ.

Considering the positive orbital momenta of the atomic-
type orbitals, δ > 0, the amplitudes are controlled by the
following relations:

e−iδπ ai, j = r eiδπ di, j + t bi+1, j,

bi, j = r ai, j + t eiδπ ci, j+1,

ci, j = r bi, j + t eiδπ di−1, j,

di, j = r ci, j + t e−iδπ ai, j−1,

(2)

where t denotes transition coefficient of the wave entering
adjacent orbital while r represents part of the wave continuing
the orbital motion. For the considered δ-type coupling, they
are of the following general form [21]

t = iα

1 − iα
, r = 1

1 − iα
, |r|2 + |t |2 = 1, (3)

where α is a real parameter, which is supposed to be an energy
independent constant for the sake of the simplicity.

For infinite periodic network, the wave functions are of the
Bloch form

|m, �k〉 ≡ 	m,�k (�r) = eiθm (�k)

√
N

N∑
i, j=1

ei�k �Ri, j

√
1

2πR

×Am,�k (φ) eiδ�kφδ(|�r − �Ri, j | − R) ≡ ei�k�r um,�k (�r), (4)
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FIG. 2. Energy branches for a stripe subjected to different bound-
ary conditions, N = 20, |t |2 = 0.3, and α > 0. Thick full and
dashed lines represent edge states at lower and upper stripe edges,
respectively.

where m and �k are the band number and the wave vector,
respectively, θm(�k) denotes the Berry phase [25] and um,�k (�r)
stands for the periodic part of Bloch functions. Wave function
amplitudes Am,�k (φ) are subject to the following Bloch condi-
tions:

ci, j+1 = eiky ci, j , ai, j−1 = e−iky ai, j,

bi+1, j = eikx bi, j , di−1, j = e−ikx di, j,
(5)

where the wave vector components kx,y range from −π to
π pursuant to the choice of units, lattice constant a0 = 1.
Zero determinant of the resulting equations for wave function
amplitudes yields the spectral condition for dimensionless
parameter δ�k

cos kx + cos ky = −2 cos δ�kπ − 1 − α2

α
sin δ�kπ, (6)

which can be transformed into dispersion relation for eigenen-
ergies using

E�k =
2h̄2δ2

�k
m0

(7)

in analogy to (1). This implicit expression for energy E�k
corresponds to the kinetic energy of wave function (4).

For any energy-independent value of the parameter α, the
spectrum comprises a series of nonoverlapping bands linked
to states having orbital number m. Dispersions of the dimen-
sionless parameter δ ∼ √

E are periodic with the period 2.
Change of δ by one gives the same dispersion but shifted in �k
space by ��k = (π, π ). All these features can be seen in spec-
trum obtained for a stripe samples shown in Fig. 2. Energy
gaps become closed for |t |2 approaching the value |t |2 = 0.5
(α = ±1) at which the bandwidth equals to that defined by
�δ = 1. Fixed-energy contours (see Fig. 2 in Ref. [16]) are
identical to the case of cosine band dispersion produced by

the well-known square-lattice tight-binding model but energy
scaling (7) is different.

In most real-world systems, the coupling between adja-
cent atomic orbitals is weaker than that to the atomic core
and crystal formation lowers energy of electron states. For
these reasons |t |2 < 0.5 and α > 0 satisfying the above re-
quirements will be preferred in the following treatment. For
|t |2 > 0.5, electrons “orbit the stars” rather than the circular
orbitals around �Ri, j , i.e., they are pushed into the interstitial
positions. In these cases, the coupling gives rise to energy
of electron states. For |t |2 = 1 − |r|2 = 0 and 1, the limit of
isolated orbitals is achieved whereupon the dispersions reduce
to flat bands.

III. EDGE STATES

Quantization of the anomalous Hall conductivity has also
been observed on systems endowed with nonzero orbital mo-
mentum [26–28]. Generally it is attributed to the existence
of chiral edge states within gap regions, i.e., states having
opposite velocity at opposite sample edges. The existence
of such states has been first predicted for two-dimensional
systems subjected to a strong external magnetic field. In this
case, there are two scaling areas, the area per unit magnetic
flux Aφ and the unit cell area A0. For rational values of A0/Aφ ,
the eigenfunctions are of the Bloch form but the correspond-
ing translation symmetry differs from that at zero magnetic
field. As it has been shown by Thouless et al. [20] number
of chiral edge states, Chern number, is fully determined by
eigenfunction properties at the Brillouin zone boundary. The
external magnetic field induces orbital momentum of atomic
type states leading to an increase of the system energy. Chiral
edge states are induced to minimize it. For this reason, they
are insensitive to the boundary conditions at the sample edges
[29]. These general arguments are not applicable in the zero
field limit. Using a two-dimensional network model, the de-
cisive role of boundary conditions for the existence of chiral
edge states will be shown.

A stripe open along the x̂ direction parallel to main crys-
tallographic axis will be considered. Bloch conditions in the x̂
direction, bi+1, j = eikx bi, j and di−1, j = e−ikx di, j , inserted into
the basic equation set (2) give

−e−iδπ ai, j + t eikx bi, j + r eiδπ di, j = 0,

r e−iδπ ai, j − e−iδπ bi, j + t ci, j+1 = 0,

r e−iδπ bi, j − e−iδπ ci, j + t e−ikx di, j = 0,

t ai, j−1 + r eiδπ ci, j − eiδπ di, j = 0.

(8)

For a given kx, the eigenvalue problem reduces to the problem
for a single column of orbitals. It is independent of its position
defined by the index i. Two types of boundary conditions
in the ŷ direction will be considered: (i) hard walls leaving
circular orbitals untouched and (ii) those which cut orbitals
in half as shown in Fig. 1 by dashed lines. Electrons are thus
skimming or skipping along stripe walls.

Branch dispersions representing the case (i) for the col-
umn composed of N = 20 circular orbitals controlled by the
boundary conditions bi,N = ai,N and di,1 = ci,1 are shown in
Fig. 2(a). At any band energy, the electron path at the up-
per edge (· · · → ai,N → bi,N → ai−1,N → · · · ) and that at the
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lower edge (· · · → ci,1 → di,1 → ci+1,1 → · · · ) carry skim-
ming electrons in opposite directions, see Fig. 1.

As for case (ii), chiral edge states crossing the energy
gaps appear. For stripe of the width Na0, the boundary
conditions eiδπ di,N+1 = ci+1,N+1 = eikx ci,N+1 and eiδπ bi,1 =
ai−1,1 = e−ikx ai,1 correspond to hard walls cutting the orbitals
in half on both sides of the sample. Resulting branch dis-
persions are shown in Fig. 2(c) for N = 20. In real space,
electrons at edge current paths are skipping along stripe walls
flowing in opposite directions compared to the previous case
of skimming electrons.

There exists a peculiar possibility of imposing mixed
boundary conditions, type (i)/(ii) at the lower/upper edge,
giving rise to energy dispersions shown in Fig. 2(b). In this
case, the symmetry leading to the presence of chiral edge
states is lost and for chemical potential within the gap region
the current flow is allowed only along one edge. It represents
an ideal diode. Comparison of all three cases suggests that
edge states are exclusively determined by boundary condi-
tions. This conclusion is supported by a close connection of
the anomalous Hall effect to the polarization which is known
to be affected by boundary conditions. Opposite to the case of
external magnetic fields (corresponding to rational values of
A0/Aφ), the appearance of chiral edge states is not determined
by the Chern number which in our case has zero value. Nec-
essary conditions for their appearance are the chiral symmetry
of the current distribution across the stripe, i.e., oscillating
currents are surrounded by current paths at the stripe edges
leading currents in opposite direction, and relevant boundary
conditions.

Note that for transition probability |t |2 > 0.5 edge states
crossing energy gaps appear only at edges for which hard
wall leaves circular orbitals untouched. Nevertheless general
conclusions remain unchanged.

IV. ELECTRONIC TRANSPORT: SCATTERING MATRIX
APPROACH

Corbino disk samples can be used to measure conductivity
components directly, at least in principle. In the limit of the
infinite disk radius, it is equivalent to a stripe open in one di-
rection (in our case x̂) coinciding with a main crystallographic
axis. A voltage drop applied to the opposite stripe edges in-
duces current which has two components, perpendicular and
parallel with the edges representing longitudinal (i.e., along
ŷ) and Hall currents, respectively. Scattering matrix approach
[18,30] will be used to evaluate corresponding conductivi-
ties, σyy and σxy, for the already described two-dimensional
network model. It represents response to the electron concen-
tration gradient of the fully coherent system, i.e. no dissipation
is allowed within stripe interior. Dissipation is supposed to
take place at the source and drain only where electrons are
subjected to the equilibration processes. Stripe width can
thus be identified with the equilibration length λe. Electron
wave functions are thereby also losing information about their
phases and the coherence length λc thus coincides with the
stripe width as well.

Stripe interior is composed of electron paths leading cur-
rents along positive or negative x̂ direction. To analyze
conductivity contributions within the stripe, it is natural to
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FIG. 3. Scheme of four possible boundary conditions applied
to a single column. Source and drain are marked in red and blue,
respectively.

choose one of the electron paths as the source and another as
the drain, shown in figures by red and blue lines, respectively.
Among the four possibilities sketched in Fig. 3, there are two
qualitatively distinct cases. Source and drain paths can be
chosen to carry current along the same direction (we choose to
call it the Born-von Kármán case) or their currents have oppo-
site direction (the chiral case). These two cases will be treated
separately in following sections and the Hall conductivity of
very clean but not fully coherent systems will be discussed in
the last section.

Bloch conditions along x̂ direction reduce problem to scat-
tering within the single column of orbitals for each of the wave
numbers kx. Wave function amplitudes are defined by Eq. (8)
accompanied by appropriate current currying conditions. Av-
eraging over kx gives relevant results. To get smooth enough
dependence on the parameter δ defining the energy a large
number of kx values has to be used. Usually 104–105 kx values
uniformly spread through the interval kx ε (−π, π ) are consid-
ered. Results of the scattering matrix approach do not depend
on the column position (i.e., index i) and unless necessary, this
index will be skipped for brevity. For the presented numeri-
cal examples, unless explicitly stated, the model parameters
α > 0 and |t |2 = 0.3 will be considered.

A. Born-von Kármán cases

Let us first consider source and drain paths at which elec-
tron velocity along x̂ direction is positive, as sketched in
Fig. 3(a). Electrons are supposed to be injected into strip
region via the lower path, d1 = 1, while they are absorbed by
upper path and the condition cN = 0 ensures zero injection
from this side. Equation set (8) together with these conditions
define uniquely all amplitudes within the column. Transition
coefficient for given kx is given by the amplitude dN (kx, δ).
Total transition probability T (δ) defining current flow through
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FIG. 4. Conductance g0(δ) and anomalous Hall conductivity
σxy(δ) obtained by using scattering matrix approach in the Born-von
Kármán case. Magenta and green curves correspond to the column
lengths N = 15, 25 and |t |2 = 0.3. Smooth thick lines are Kubo
formula results for unbounded systems.

a single column along ŷ direction reads

T (δ) ≡ h

e2
g0(δ) = 〈|dN (kx, δ)|2〉kx , (9)

where g0(δ) stands for conductance per single column. In
this case, transitions between orbitals are independent on their
position. Except for fluctuations due to the size quantization it
is independent of the considered column length (N − 1/2)a0

as the green and magenta curves in Fig. 4 show. Consider-
ing an energy independent relaxation time represented by the
parameter γ , the Kubo formula for longitudinal conductivity
σ0(δ) given by Eq. (A9) can formally be fit to approximate
g0(δ), as shown in Fig 4.

Current flow along x̂ direction representing Hall current
is not uniformly spread through the sample cross-section in-
dicating the decisive role of wave function phases. Hall
conductivity can be defined as follows:

σAH ≡ σxy(δ) = e2

h

N∑
j=1

〈|d j (kx, δ)|2− |a j (kx, δ)|2〉kx

≈ σ (int)
xy (δ), (10)

where the sum over j defines current into the right hand
side column through coupling points enhanced by the cur-
rent within drain path defined by setting aN (kx, δ) = 0. Drain
contribution decreases with rising column length and currents
through coupling points becomes dominant. Again, except for
the size quantization effect, the obtained results are indepen-
dent on the column length and they are close to the intrinsic
Hall conductivity σ (int)

xy (δ) given by Eq. (A8), as shown in
Fig. 4. This comparison entails no fitting procedure. Note that
conductance g0(δ) defines the current through the unit cell
cross-section and corresponding density is thus much larger
than the Hall current density.

Another possibility is to choose source and drain paths
leading electrons along negative direction as shown in
Fig. 3(b). In this case (a1 = 1 and bN = 0), the conductance

g0(δ) defined by probabilities |aN (kx, δ)|2 coincides with that
determined in the previous case. To obtain Hall conductivity
instead of the drain path contribution the current of the source
path has to be added by setting d1(kx, δ) = 0. In this case,
Eq. (10) gives for energy gap regions quantum value −e2/h.
This edge state effect has to be subtracted to obtain Hall
conductivity within the bulk. Resulting δ dependence then
coincides with that of the previous case.

B. Chiral cases

Transport between source and drain electron paths which
carry current in opposite directions leads to qualitatively
different results. Considering columns of length Na0, the rele-
vant conditions are d1 = 1 and bN = 0 or a1 = 1 and cN = 0,
as sketched in Figs. 3(c) and 3(d), respectively.

Except for fluctuations caused by size quantization, the
transition probability in both cases is once more independent
of the column length. Compared to the Born-von Kármán
case, conductance g0 per single column is β-times smaller.
This ratio is only weakly |t |-dependent, for example, for
|t |2 = 0.3 and |t |2 = 0.2 the ratio β equals to 0.83 and 0.87,
respectively.

Essential difference from the Born-von Kármán case is the
dependence of the Hall conductivity on the distance between
source and drain Nsa0, which reads

σ (±Ch)
xy (δ) = 〈

σ (Ch)
xy (δ)

〉 ± Nsσ
(qf)
xy (δ)

≡ 〈
σ (Ch)

xy (δ)
〉 ± �σ (Ch)

xy (δ), (11)

where 〈
σ (Ch)

xy (δ)
〉 ≈ β σ (int)

xy (δ) (12)

denotes the average value of both chiral cases, (c) and (d).
Plus and minus sign correspond to scattering problems with
opposite chirality of current paths as sketched in the inset of
Fig. 5. It is determined by velocity sign of electrons within
the path attached to the source path. Contribution per unit
cell σ

(qf)
xy (δ) represents average friction between the nearest

current paths. For large enough Ns it reaches a constant value
as illustrated in Fig. 5.

The ratio β for the intrinsic part 〈σ (Ch)
xy (δ)〉 turns out to be

the same as for the longitudinal conductance. Its deviation of
from one is the result of wave interference modified by the
change of the boundary conditions.

Hall current enhancement �σ (Ch)
xy (δ) entering Eq. (11) can

be understood using the analogy with the viscous flow in clas-
sical fluids. The largest current is flowing via the path attached
to source. It is stirring currents within adjacent stripe paths
forcing them to move along the same direction. It explains
the origin of the enhanced Hall current and in particular, its
direction. In the fully coherent systems, the friction between
current paths is determined not only by average coupling |t |2
but it is modified by the wave interference which determines
coupling between distant current paths.

C. Anomalous Hall effect in high conductivity region

Let us first discuss Hall conductivity within a coherent area
of infinite systems. It has been found that the conductance
g0(δ) between paths leading current in opposite directions
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and σ (qf)
xy (δ)/β obtained by using scattering matrix approach with

chiral type boundary conditions. The two chiral scenarios are
sketched in the inset whereas the letters refer to situations shown in
Fig. 3. Magenta and green curves correspond to N = 15, 25, scaling
factor β = 0.83 is discussed in the text and |t |2 = 0.3. Smooth thick
line is the Kubo formula result.

[chiral cases (c) and (d) in Fig. 3] is smaller than that for
which they are flowing along the same direction [Born-von
Kármán cases (a) and (b) in the same figure]. The occupation
of neighboring paths leading current in opposite directions,
has to be appropriately modified to unify both current den-
sities. This polarization accompanying anomalous Hall effect
allows electron transfer without enforced dissipation due to
the current differences. It also ensures that intrinsic parts of
the Hall conductivity is the same in both cases. Resulting
Hall conductivity is given by average value of all four con-
tributions discussed in previous two sections. They are of the
same probability to appear and consequently sum of friction
contributions depending on the column length is averaged out.
Resulting anomalous Hall conductivity approaches intrinsic
values given by the Kubo formula.

Different results are obtained for stripe samples shown in
Fig. 1 with two types of boundary conditions discussed in
the previous Sec. III as (i) and (ii) cases. They are composed
of columns containing integer number of unit cells. In these
cases, the edge electron paths carry current in opposite direc-
tions. Let us assume that attached source and drain prepared
from the same material are coherently coupled to the stripe
electron system which corresponds to scattering problems
shown in Figs. 3(c) and 3(d). In the fully coherent case the
Hall current enhancement defined by Eq. (11) is proportional
to the stripe width Nsa0 which for large enough Ns dominates.

Because of equilibration processes within source and drain,
electrons are losing all information about their past. The stripe
width Nsa0 can be thus identified with the equilibration length
λe. Longitudinal conductivity σ0 ≡ σyy can be approximated
by the conductance per square area N2

s a2
0, σ0 = Nsg0, and the

Hall conductivity enhancement defined by Eq. (11) increases
with σ0 as observed in the high conductivity region.

Classical analogy of this effect is Couette flow observed in
fluids placed between two plates. Motion of one plate induces
fluid flow along the same direction which in the stationary
case decreases linearly towards fixed one. In our case, the role
of the moving plate is played by the current path attached to
the electron source.

Dissipation processes are minimizing deviation from the
equilibrium. They are thus trying to suppress enhanced Hall
current by electron transitions into paths leading current in
opposite direction. For strong enough dissipation, it can be
thus expected that quantum friction contributions will be aver-
aged out giving rise to intrinsic values of the Hall conductivity.
Since current enhancement originates in wave interference
even low angle inelastic scattering can be quite effective. It
can be expected that corresponding relaxation time τq f could
be much smaller than τe ∝ λe which controls the longitudinal
conductivity. Contrary to the case of unbounded systems the
effect of transitions between chiral paths giving rise to op-
posite directions of the Hall current enhancements cannot be
averaged out since for considered stripes their numbers differ
by one. For corresponding current contribution, Eq. (11) can
be used with a0Ns replaced by the coherence length λc ∝ τq f .
Anomalous Hall conductivity measured on a stripe of width
w is thus given by averaged current density and we get

σ (±Ch)
xy (δ) ≈ σ (int)

xy (δ) ± σ (qf)
xy (δ)

λc

w
, (13)

where plus and minus sign correspond to boundary condi-
tions for which electrons are skimming or skipping along
strip edges, respectively. Note that for |t |2 > 0.5, the Hall
conductivity has opposite sign but its general features remain
unchanged.

Estimation of the measured Hall conductivity given by
Eq. (13) has to be viewed as a rough approximation based on
the assumption that the enhanced current distribution is spread
uniformly through width w. If it becomes concentrated within
a slab of the width wq f at the edge vicinity the measured σxy

becomes affected by the ratio wq f /w. This problem desires
a more advanced theoretical description based, for example,
on the application of nonequilibrium Green’s functions [31]
employed in finite size systems.

Note that analyzed Hall currents are spin polarized. For
negative values of δ, the orbital momentum and the Hall
conductivity change their sign. Consequently, the spin polar-
ization of Hall currents is changed as well.

V. TWO-BAND MODEL

As already mentioned in the introduction three regions of
the anomalous Hall conductivity σAH in dependence on the
disorder strength represented by the longitudinal conductivity
σ0 can be identified [1]. Scaling σAH ∝ σ ν

0 in the dirty-metal
region with ν ≈ 1.6 has received considerable attention for
σ0 down below units of inverse � cm [2,32,33]. Phonon as-
sisted hopping between impurity localized states [34] gives
the observed scaling. Empirically, there appears a transition
from σAH ∝ σ ν

0 to the intrinsic region, σAH ∼ const., for σ0

between 103 and 104 inverse � cm [7]. It is attributed to
suppression of the band overlaps with decreasing disorder
strength [35,36]. Calculations of intrinsic σAH values for inter-
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FIG. 6. Anomalous Hall conductivity for two band model as
function of the disorder strength represented by the parameter γ

(|t |2 = 0.3). Recall that σxx ∝ 1/γ and width of the unperturbed
band is taken as its unit. Sketch in the inset shows δ dependence
of the intrinsic σ (int)

xy of both bands.

mediate σ0 (often in terms of Berry curvature) are a popular
topic for ab initio studies of ideal crystal structures [37–45]
and even alloys [46,47] have been considered. While there
is abundance of experimental data for systems falling into
these two categories, data for high conductivity regions for
which conductivity is well above 105 (� cm)−1 are scarce
[2,48–51,53]. They require crystal structures with minimum
lattice imperfections and low temperatures to suppress dy-
namical disorder due to the electron scattering with phonons
and magnons. Outstanding bulk samples of iron [48] with σ0

in excess of 108 (� cm)−1 showed an increase of σAH with σ0,
and the same was observed [49] for thin layers of somewhat
lower quality. Newer study [2] confirms this and reports a
decrease of σAH for cobalt rather than the increase seen in
iron. This work shows almost constant σAH for nickel down
to the lowest σ0 achieved but better-conductivity samples [51]
still show some increase in σAH.

To illustrate qualitative features of the measured anoma-
lous Hall conductivity dependencies on disorder strength
covering all three regions, the overlap of energy bands has
to be taken into account. For the considered two-dimensional
network model, two bands having opposite orbital momentum
as well as spin orientation will only be considered for simplic-
ity. Corresponding intrinsic Hall conductivities have opposite
sign but their absolute values are supposed to be the same as
shown in the inset of the Fig. 6. Their shift due to exchange
interaction is approximated by a Zeeman splitting to obtain
a nonzero Hall conductivity given by the sum of both band
contributions

σ̄xy(δμ) = 〈σ ↓
xy(δμ)〉av + 〈σ ↑

xy(δμ)〉av. (14)

The effect of the disorder will be approximated by potential
energy fluctuations. Assuming their Gauss distribution the

ensemble averaging reads

〈σ ↓,↑
xy (δμ)〉av = 1

γ
√

2π

∫
e

(δ−δμ )2

2γ 2 σ ↓,↑
xy (δ) dδ, (15)

where the dimensionless parameter γ ∼ � = h̄/τe in units of
the unperturbed bandwidth, Eq. (A10), is assumed to be en-
ergy independent. Sum of both Hall conductivities decreases
with increasing band overlap caused by the band broadening
and for considered |t |2 = 0.3 we find σxy ∝ γ −1.75 as shown
in Fig. 6. Unperturbed band separation and Fermi level posi-
tion are sketched in the inset. Within intrinsic region the effect
of the band broadening vanishes.

The sum of quantum friction contributions of both bands,
Eq. (13), multiplied by γ has been taken as a fitting param-
eter. The linear dependence of τq f ∝ λc on a relaxation time
τe ∼ 1/γ representing longitudinal conductivity has been as-
sumed through the whole range of disorder strength. It has
been chosen to obtain the experimentally observed range of
the intrinsic region covering approximately two orders of
σxx ∝ 1/γ as presented in Fig. 6. This assumption is too
simple to illustrate effect of quantum friction precisely. Like
in the classical Couette flow, the friction desires some time
to evolve. If it is much larger than the relaxation time τq f no
effect can be expected. For this reason, the transition between
intrinsic and high conductivity regions should be sharper.

Under conditions for which electrons are skimming along
strip edges the friction contribution enhances Hall conduc-
tivity. They are expected to take place when electrons are
orbiting close to atomic nuclei and are only tight-bounded to
their neighbours. This is typical for d states (considering most
transition metals, for example, the s states do not contribute
to the AHE) and orbitals can only be slightly perturbed by the
surface.

In exceptional cases [2], the Hall conductivity even
changes its sign upon further decrease of the dissipation. Such
a behavior can be explained within our analysis for electrons
skipping along surfaces; the friction contribution has opposite
sign and Hall conductivity decreases as shown in Fig. 6 by the
dashed line. Skipping orbits appear if electron orbitals within
bulk are of the radius larger than the interatomic distance of
if they are orbiting around interstitial positions, i.e., |t2| > 0.5
and this can occur in gapped materials [52]. Possibility that the
coherence length of minority electrons within the upper band
is larger than that within lower band cannot also be excluded
as origin of this effect.

Despite of the model simplicity it gives qualitative features
of scaling relations between anomalous Hall conductivity and
longitudinal one. It is result of the competition between Hall
currents of all overlapping bands. They are spin polarized and
in high conductivity regions one of them dominates because
of the quantum friction effect. Consequently the resulting Hall
current becomes strongly spin polarized.

VI. SUMMARY AND CONCLUDING REMARKS

Existence of the quantum friction in fully coherent systems
is the main message of our treatment [15]. The basic condition
of its appearance is chirality of edge current paths within
stripe samples. This effect persists even in not fully coherent
systems for which the resulting Hall current enhancement is
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determined by the coherence length λc. This extrinsic contri-
bution to the measured anomalous Hall conductivity due to
the finite sample dimensions dominates in high conductivity
regime. It represents a quantum analog of the classical Couette
flow in fluids. It can be expected that it influences the observed
spin Hall effect [53] in a similar way.

Presented view to the origin of the Hall current enhance-
ment suggests that all scattering events affect all conductivity
components but they do so with different efficiency. Electrons
flowing along the voltage drop are subjected to dissipative
processes which can be characterized by a relaxation time
τe ∝ λe determining longitudinal conductivity. On the other
side, the enhanced Hall current decreases with disrupting
the effective wave interference responsible for the coupling
between current paths. Corresponding relaxation time τq f ∝
λc can thus be substantially different from τe. Temperature-
dependent inelastic scattering of electrons by phonons and
magnons is destroying phase coherence but its effect to τe

is weaker. This is consistent with existence of the intrinsic
Hall conductivity plateau. Also an increase of the diffusion
scattering of electrons at sample surfaces gives rise to the
much larger suppression of τq f than τe as observed on high
conductivity Ni samples [51]. Ratio of the electrical and ther-
mal conductivity components has been studied for pure Fe
samples [50] doped by Co and Si. In the limiting case of
vanishing temperature where residual resistivity dominates,
the validity of the Wiedemann-Franz law has been confirmed
for ratios of diagonal as well off-diagonal components. It
indicates that elastic scattering affects all components in a
similar way and the much shorter τq f is proportional to τe.
On the other side, a more complicated relation between both
times can be expected for inelastic scattering. Unfortunately,
there are not enough experimental data for full understanding
of the electron transport in the high conductivity regions. Fur-
ther detailed investigations of scattering effects in this regime
are thus desired. A better understanding of the distribution
of the enhanced Hall current across stripe and the possible
dependence of the measured Hall conductivity on the sample
width can help to map the evolution of the quantum friction
effect in real systems.

Our analysis of quantum friction predicts that the increase
of σAH (anomalous Hall conductivity) in the high-conductivity
regime should be sensitive to the Hall bar width w. It is
supported by experimental data for iron samples. Opposite
to thin layers [2], an increase of σAH in massive crystals of
comparable conductivity was not observed [48]. Nevertheless,
more detailed measurements of the relationship between σAH

and w are desirable to confirm our prediction and experimen-
tally exclude skew scattering as the origin of σAH increasing in
the high conductivity region. We stress that the investigation
of relationship (13) calls for measurements on a set of devices
spanning a large range of w.

Direction of the Hall current enhancement is controlled by
the orientation of the current paths just touching strip edges
which is determined by the boundary conditions. At least in
cases for which suppression of the anomalous Hall effect is
observed, the analysis of the current distribution at the sample
edges is needed to verify origin of this effect. It would be ideal
to be able to vary boundary conditions. If orbitals of magnetic
impurities periodically distributed within nonmagnetic host

lattice are of the radius larger than the distance between atoms
this might be possible at least in principle. In these cases stripe
edges can cut orbitals in half forcing electrons to skip or leave
them untouched. Systems like Bi2Te3 family of topological in-
sulators with univalent 3d magnetic ions [28] seem to be good
candidates. In these systems skipping electrons are giving
rise to chiral edge states crossing energy gap responsible for
the observed quantum Hall effect. Creation of such systems
with mixed boundary conditions might lead to new types of
spintronic devices, diodes, allowing current flow along one
direction only. In this case periodic distribution of ions is not
necessary condition. Although this sounds as science fiction
today we believe that technological progress will allow to
realize such systems in the future.
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APPENDIX: KUBO FORMULA RESULTS

Quantum theory of the linear response of unbounded
systems to electric field at zero temperature leads, for
diagonal conductivity components, to the well known Kubo-
Greenwood formula [54]

σii(μ) = πe2h̄〈 Tr{viδ(μ − H )viδ(μ − H )} 〉av, (A1)

and for off-diagonal components the following expression
derived by Bastin et al. [55]:

σi j (μ) = ih̄e2

×
μ∫

−∞

〈
Tr

{
δ(η − H )

[
vi

dG+

dη
v j − v j

dG−

dη
vi

]}〉
av

dη, (A2)

where H denotes a single-electron Hamiltonian, vi are com-
ponents of the velocity operator and delta-function operator is
defined as

δ(η − H ) = − lim
ε→0+

G+(η) − G−(η)

2π i
,

G±(η) = 1

η − H ± iε
. (A3)

For crystals with substitutional impurities the ensemble
averaging 〈· · · 〉av represents averaging over impurity config-
uration. Generally it is a complicated problem [56] which
can be simplified by neglecting vertex corrections allowing
to replace averaged product of resolvents G(z) by product of
their averaged operators

〈G(z)〉av ≡ 1

z − Heff (z)
, (A4)

where z is the complex energy variable. It has the full crystal
symmetry independently on the character of the scattering
events, asymmetric scattering is not an exception. Effective
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Hamiltonian Heff (z) is non-Hermitian and energy dependent
but it is analytic in both complex half-planes, Heff (z∗) =
H+

eff (z). Its standard form reads

Heff (z) = H0 + �(z) , �(z) = �(z) − i�(z), (A5)

where H0 = 〈H〉av represents virtual crystal and �(z) is the
energy-dependent self-energy determined by the coherent po-
tential approach [57], as the best known theory to estimate
effect of alloying.

The inverse value of its imaginary part represents a fi-
nite electron life-time τ . Note that matrix elements of �(z)
are diagonal in representation given by eigenfunctions of
the Hamiltonian H0. Using this representation and neglecting
�(η) entering one of the δ operators in Eq. (A1), we get

σii(μ) = e2h̄
∑
n,�k

|〈n, �k|vi|n, �k〉|2
�n,�k (μ)

δ(E ′
n,�k (μ) − μ), (A6)

where E ′
n,�k (η) = E (0)

n,�k + �n,�k (η), n and �k denotes band num-
ber and wave vector, respectively. This expression coincides
with the solution of the Boltzmann equation for longitudinal
conductivity.

Neglecting vertex corrections in Eq. (A2) for the Hall con-
ductivity, using equality dG(η)/dη = −G2(η) and having in
mind that velocity matrix elements are diagonal in �k we get

σi j (μ) = e2h̄

π

n �=n′∑
n,n′

∑
�k

μ∫
−∞

�n,�k (η)

[η − E ′
n,�k (η)]2 + �2

n,�k (η)

×2 Im

{
〈n, �k|vi|n′, �k〉〈n′, �k|v j |n, �k〉
[η − E ′

n′,�k (η) + i�n′,�k (η)]2

}
dη. (A7)

With decreasing impurity concentration � decreases as well
and the dominant contributions are those for which η-values
are close to E ′

n,�k (η). If there is no band overlap the en-

ergy difference η − E ′
n′,�k (η) ≈ E ′

n,�k (η) − E ′
n′,�k (η) dominates

the denominator value and �n′,�k (η) can be neglected if it is
much smaller than the energy difference. This approach thus
excludes significant effect of the decreasing impurity concen-
tration to the Hall conductivity. This conclusion is general
since in the pure crystal limit vertex corrections are vanishing
in principle. Note that in this limit Eq. (A7) gives finite values
even in the case of the band overlap [38,42,44].

Evaluation of the anomalous Hall conductivity for the con-
sidered ideal network model (� → 0) is straightforward since
the energy spectrum is for given spin subsystem composed of
nonoverlapping bands and we have

σxy(μ) = e2h̄
m �=m′∑
m,m′

∑
�k

f0(Em,�k − μ)

×2Im

{
〈m, �k|vx|m′, �k〉〈m′, �k|vy|m, �k〉

[Em,�k − Em′,�k]2

}
, (A8)

where f0(E − μ) denotes Fermi-Dirac distribution. Eigenen-
ergies Em,�k are functions of the dimensionless δ�k defined by
Eq. (7) and velocity operator does not include spin-orbit term
because of the one-dimensional character of electron orbitals,
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FIG. 7. Intrinsic anomalous Hall conductivity as function of the
dimensionless parameter δμ ∼ √

μ for several values of |t |2 (α > 0).

�v = −ih̄ �∇�r/m0. Contributions for m − m′ = ±2 vanish be-
cause periodicity of wave function amplitudes. The dominant
contribution originates in elements with m − m′ = ±1.

Assuming anticlockwise motion of electrons on circular or-
bitals (δ > 0) the obtained anomalous Hall conductivities are
shown in Fig. 7 for several values of the transition probability
|t |2. Note that their dependence on dimensionless parameter
δμ ∼ √

μ is the same for all bands. Increase of |t |2 above 0.5
changes sign of the orbital momentum since orbiting of elec-
trons around interstitial positions becomes dominant. Their
average radius is smaller than that for circular orbitals leading
to smaller value of the orbital momentum. Except of the sign
change the lower values of the Hall conductivity can thus be
expected.

For opposite direction of the orbital motion, δ → −δ,
representing subsystem of the opposite spin orientation the
anomalous Hall conductivity changes its sign. Resulting Hall
conductivity is given by the sum of both subsystem conduc-
tivities and its nonzero value can thus only appear if the spin
band degeneracy is removed.

To get longitudinal conductivity the simplest approach
reducing effect of the disorder to an energy-dependent imagi-
nary part �(μ) of the self-energy will be used

σ0(μ) = e2h̄
∑

�k
δ(E�k − μ)

�(μ) |vx(�k)|2
(E�k − μ)2 + �2(μ)

= e2

h

1

2πγ (μ)

∮
F.S.

∣∣∣∣dδ�k
dkx

∣∣∣∣
2 dS�k√∣∣∣ dδ�k

dkx

∣∣∣2
+

∣∣∣ dδ�k
dky

∣∣∣2
, (A9)

where dimensionless parameter γ (μ) relates to �(μ) as fol-
lows:

�(μ) ≡ 4h̄2δμ

m0
γ (μ). (A10)

It has good physical meaning if its value is compared with the
bandwidth represented by the range of available δ values.
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