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Magnetic phases of the frustrated ferromagnetic spin-trimer system Gd3Ru4Al12

with a distorted kagome lattice structure
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Magnetization and specific heat measurements were conducted on single-crystalline Gd3Ru4Al12, in which
magnetic Gd–Al layers with a distorted Kagome lattice structure and nonmagnetic Ru–Al layers are stacked
alternately along the c axis. A previous study indicated that the distorted Kagome lattice structure of Gd–Al
layers effectively translates into an antiferromagnetic (AFM) triangular lattice in association with ferromagnetic
(FM) spin trimerization at low temperatures. The present results indicate that the spin system of Gd3Ru4Al12

has two types of anisotropies: easy-plane-type and easy-axis-type anisotropies. The trimers carry magnetic
quadrupole moments when the FM directivity of the component spins is imperfect. The origin of the unusual
magnetic anisotropies that were observed can be explained by the magnetic quadrupole interactions that take
place between the trimers. The stability of a helical structure in the crystal with inversion-symmetry is discussed.
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I. INTRODUCTION

Metallic 4 f frustrated spin systems often exhibit peculiar
features at low temperatures. The ternary intermetallic com-
pounds RE3Ru4Al12 (RE: rare earth) crystallize in a hexagonal
structure of the Gd3Ru4Al12 type, which belongs to the space
group P63/mmc (No. 194) [1]. In this crystal, magnetic RE-
Al layers and nonmagnetic Ru-Al layers stack alternately
along the c axis [Figs. 1(a) and 1(b)] [2]. As shown in
Fig. 1(c), the RE ions form a distorted Kagome lattice or
a breathing Kagome lattice composed of two different sized
regular triangles and hexagons with unequal sides. The system
RE3Ru4Al12 has been investigated extensively because of the
various phenomena it exhibits at low temperatures. Specifi-
cally, La3Ru4Al12 is Pauli paramagnetic (PM) and Pr3Ru4Al12

and Nd3Ru4Al12 are FM [3–6], whereas Ce3Ru4Al12 is be-
lieved to be a valence fluctuation system [1]. When RE sites
are replaced by heavy RE ions, RE3Ru4Al12 becomes AFM.
Yb3Ru4Al12 is an XY antiferromagnet with Néel order at
TN = 1.5 K [7,8]. This compound is a heavy fermion sys-
tem with enhanced Sommerfeld coefficients γ0 = 120 mJ/(K2

Yb-mol). Dy3Ru4Al12 is an AFM compound with TN = 7 K,
which has a noncollinear spin structure [9]. Regardless of
the long–range AFM ordering, this compound has a large γ0

value of approximately 500 mJ/(K2 Dy-mol) in the temper-
ature range 7–20 K. Gorbunov et al. attributed this large γ0

value to spin fluctuations, which are induced in the Ru 4d
electrons by the exchange field resulting from Dy 4 f elec-
trons [9]. Chandragiri et al. reported spin glass characteristics
similar to the dynamics in Dy3Ru4Al12 in the AFM phase,
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which indicates a complex ground state under the influence of
geometrical frustration [10].

In 2016, Chandragiri et al. reported the magnetic behavior
of polycrystalline Gd3Ru4Al12, the magnetic susceptibility of
which follows the Curie-Weiss law above 200 K and of which
the Curie-Weiss temperature (θp) is estimated to be +80 K
[11]. The magnetic susceptibility begins to increase rapidly
as the temperature is lowered below 50 K, which implies the
development of an FM correlation between spins. However, it
exhibits a sharp peak at 18.5 K, indicating an AFM order. The
magnetic susceptibility exhibits a very small difference under
zero field cool (ZFC) and field cool (FC) conditions, whereas
the magnetic specific heat exhibits a broad maximum near
50 K, as if it were a glassy ground state. The behavior of the
magnetic susceptibility under magnetic fields mimics that is
expected for the Griffiths phase [12]. In 2018, we investigated
the low-temperature magnetic and thermodynamic properties
of single-crystalline Gd3Ru4Al12 [13]. We proposed that FM
spin trimers are formed on small Gd triangles, and that the
distorted Kagome lattice of Gd3Ru4Al12 effectively trans-
forms into an antiferromagnetic triangular lattice (AFMTL),
which induces geometrical frustration at low temperatures.
The blue arrows labeled Sr in Fig. 1 denote the resultant spin
(Sr = 21/2) formed by the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction with trimers. This Sr begins to form at
approximately 150 K and is completed below 70 K. The
binding energy is believed to be 184 K per Gd ion [13].
As the temperature further decreases, Gd3Ru4Al12 exhibits
successive AFM phase transitions at T2 = 18.6 K and T1 =
17.5 K. The magnetic entropy at T2 = 18.6 K is only 40% of
Rln8, indicating the formation of trimers. Because the binding
energy is much higher than these transition temperatures, the
FM trimers may be stable even in the ordered phases.
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FIG. 1. (a) Structure of Gd3Ru4Al12 [1,2]. The red (large), blue
(small), and light-green (medium-sized) spheres denote Gd, Ru, and
Al ions, respectively. (b) Structure projected parallel to the ab plane.
(c) A Gd–Al layer projected parallel to the c axis. The red (larger) and
light-green (smaller) spheres denote Gd and Al ions, respectively.
Bonds are drawn between the nearest neighbor and the next-nearest
neighbor of the Gd ions. The blue arrows indicate the resultant spin
Sr (Sr = 21/2) on the FM trimers. The broken rhombus indicates a
unit cell. The arrow b∗ denotes the direction of the reciprocal lattice
vector of b.

In 2019, resonant x-ray diffraction (RXD) measurements
were performed on Gd3Ru4Al12 by Matsumura et al. and
Hirschberger et al. [14,15]. The formation of FM trimers
was supported by these microscopic measurements, and they
reported that the Srs have a helical structure along the a axis.
Hirschberger et al. reported the existence of a skyrmion phase
upon exposure to magnetic fields applied along the c axis [15].
In many cases, skyrmion states are expected in crystals with
noninversion symmetry where Dzyaloshinsky-Moriya (DM)
interaction stabilize helical spin structures [16,17]. How-
ever, the crystal of Gd3Ru4Al12 has an inversion symmetry.
Gd3Ru4Al12 therefore exhibits peculiar magnetic properties;
however, the origin of the magnetic anisotropies and the origin
of the helical structure have not been clarified. The ground
state of Gd3+ carries only a pure spin. However, once the
trimers are formed at much higher temperatures than TN, the
fundamental magnetic constituent unit is no longer the Gd3+

ion but the FM trimer. In the present study, we investigated
the magnetic properties of Gd3Ru4Al12 by using thermody-
namical observations, and discuss the relationships among the
magnetic anisotropies, magnetic quadrupole moments of the
FM trimers and stability of the helical structure.

II. SAMPLE PREPARATION AND
EXPERIMENTAL METHOD

We melted 3N-Gd, 3N-Ru, and 5N-Al in a tetra-arc furnace
and pulled a single-crystal ingot. Considering the evapora-
tion loss, the initial weight of Al was increased by 1–2%

compared with the stoichiometric amount. The obtained ingot
was approximately 2–3 cm in length and 3 mm in diameter.
We determined the crystalline structure of the ingot by per-
forming x-ray diffraction with crushed powder samples. The
diffraction pattern was consistent with that of a previous report
[1]. The lattice constants of Gd3Ru4Al12 were obtained as
0.8778 nm for the a axis and 0.9472 nm for the c axis. The
length of the side of the small regular triangle was 0.3698 nm,
and that of the large regular triangle was 0.5079 nm. We cut
three crystal samples from the ingot, one for magnetization
measurements of 29.55 mg, the other one for specific heat
measurements of 7.76 mg respectively. Both samples were the
same as those used in the previous investigation [13].

The samples for magnetization measurements was approx-
imately a rectangular shape. The lengths of the sides were
1.85 mm (‖ a), 1.85 mm (‖ b∗), and 1.70 mm (‖ c). Using a
spheroid approximation, the demagnetizing field coefficients
were estimated to be Da = 0.32, Db∗ = 0.32, Dc = 0.36.
Here, we assume that the ratio of the long axis and short
axis is 1.85 : 1.70. The sample for specific heat measurements
was approximately a rectangular shape of 0.40 (‖ a) × 0.60 (‖
b∗)× and 0.52 (‖ c) mm3. We assume that the axis of rotation
is parallel to the c axis, and the demagnetizing field coeffi-
cients Da = 0.43, Db∗ = 0.29, Dc = 0.29 were obtained. In
the present paper, we present the data as functions of external
field. We did not correct the data in consideration of shape
effect.

Specific heat measurements were performed by employing
a thermal relaxation method using a commercial instrument
(PPMS-9, Quantum Design Inc.) above 2 K and a quasia-
diabatic method with a hand-made instrument below 2 K.
The magnetization was measured using two superconducting
quantum interference device magnetometers (MPMS, Quan-
tum Design Inc.).

III. EXPERIMENTAL RESULTS

A. Magnetic susceptibility and specific heat

The FM trimers (Sr = 21/2) in Gd3Ru4Al12 are considered
to form the AFMTL at low temperatures [13]. We remeasured
the magnetic susceptibilities of Gd3Ru4Al12 to determine the
anisotropic fields. Figure 2 shows the magnetic susceptibil-
ities below 80 K. The results agree well with the previous
reports [13]. The magnetic susceptibility is isotropic at high
temperatures, but anisotropy is observed below 60 K, at which
formation of the trimers is complete. This implies that the
magnetic anisotropy is induced by the formation of Sr . If
we consider the demagnetization effect, the internal fields for
H ‖ c is reduced to be 6.3% compared with the internal fields
for H ‖ a or H ‖ b∗ assuming the spheroid approximation
(see Sec. II). However, the difference between the magnetic
susceptibility for H ‖ c and H ‖ a in Fig. 2 is much larger than
this. The anisotropy observed in the magnetic susceptibility
cannot be explained only by the demagnetization effect.

The temperature dependence of the magnetic susceptibility
χb∗ (H ‖ b∗) of Gd3Ru4Al12 is shown in Fig. 3(a). The open
circles and crosses, respectively, denote data from ZFC and
FC processes in the presence of a magnetic field of 10 mT.
Both χb∗ exhibit very small differences between the ZFC
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FIG. 2. Temperature dependence of magnetic susceptibility of
Gd3Ru4Al12. The applied field is 0.1 T, and the measurements were
performed under FC process commonly.

and FC processes. Because the applied magnetic field is very
weak, these results include errors of a few percent in the
absolute values. The upward arrows in Fig. 3(a) indicate phase
transition points. Figure 3(b) shows the second derivatives of
χb∗ relative to the temperature. We identify the bending points
in χb∗ as the transition points. The weak anomalies shown in
Fig. 3(b) at 12 K are due to the conversion of the thermocouple
in MPMS, and are not essential. In this paper, we refer to
the lower and higher transition temperatures as T1 and T2,
respectively. These transition temperatures are consistent with
the previous results [13–15].

The selected temperature dependence of the magnetic sus-
ceptibility M/H at several fields is presented in Fig. 4, where
T1 and T2 are indicated throughout by the red dotted and
blue-solid lines, respectively. Figure 4(a) shows the variation
in M/H at different magnetic field strengths directed along
the a axis. The measurements were performed during the FC
processes and we identified the bending points of M/H as
the phase transition points. The application of these fields
along the a axis results in the formation of an intermediate
temperature (IMT) phase, which only appears between T1 and
T2 in the low-field range.

The magnetic susceptibility M/H measurements by vary-
ing the strength of the magnetic field directed along the b∗ axis
are presented in Fig. 4(b). The measurements were performed
during FC processes. The application of a field along the b∗
axis leads to the appearance of the IMT phase even in the high-
field range. As evident in Fig. 4(b), one of the characteristic
features of the IMT phase is the weak temperature dependence
of M/H (T ). In other words, M/H behaves as a transverse
susceptibility in the phase.

Figure 4(c) presents the selected magnetic susceptibility
M/H at various fields directed along the c axis. The measure-
ments were carried out during successive FC and field heat
(FH) processes at 0.5, 0.7, 0.8, 1, 1.2, 1.3, 1.8, and 2.5 T,
and during the FC process at 3 and 3.5 T. When the field is
directed along the c axis, M/H (T ) exhibits hysteresis loops at
T1 in the range 0.3 � μ0H � 1 T. We identified the bending

χ
χ

μ

FIG. 3. (a) Temperature dependence of magnetic susceptibility
χb∗. The open circles and crosses denote χ measured under ZFC
(5 → 25 K) and FC (25 → 5 K) processes in a presence of a mag-
netic field of 10 mT. The field is directed along b∗. The dotted-red
and solid-blue upward arrows indicate the phase transition temper-
atures. The strengths of the fields include errors of a few percent.
(b) Second derivative of χb∗ (FC) with respect to temperature. The
dotted-red and solid-blue downward arrows correspond to bending
points in χb∗.

points in the M/H as T2, and the centers of the hysteresis
loops as T1. The bold-green upward arrows denote additional
transition points. An intermediate field phase exists for H ‖ c.
As indicated in Fig. 4(c) by the black upward arrows and
the symbol T ∗, small anomalies are observed between T1 and
T2 in the field range 0.3 � μ0H � 1.5 T. Hirschberger et al.
found an unidentified phase transition at T ∗ [15]. As shown
in Fig. 4(c), the IMT phase appears over a wide range of
temperatures in the intermediate field range. In this phase,
M/H exhibits a weak temperature dependence, which appears
similar to transverse magnetic susceptibility. However, the
temperature dependence of M/H is more pronounced in the
low-temperature phase at low fields. Apparently, a component
of the longitudinal magnetic susceptibility exists in this phase
when the applied field is directed along the c axis.

The variation in the specific heat C with the field strength
along the a axis are presented in Fig. 5(a). At low field
strengths, C exhibits clear λ-shaped peaks corresponding to
the successive phase transitions at T1 and T2. In the present
study, we identified the phase transition points as the points
in the middle of the slopes to the right of the peaks. The
two peaks that appear at low fields become a single peak as
the field strength increases. This behavior of the transition
points is consistent with that observed in M/H , as shown in
Fig. 4(a).
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FIG. 4. Phase transition points of Gd3Ru4Al12 observed by mea-
suring the temperature dependence of M/H. The fields are directed
along the (a) a axis, (b) b∗ axis, and (c) c axis. The red-dotted lines
and blue-solid lines indicate T1 and T2, respectively. The bold green
arrows in panel (c) indicate other transition points. The origin of each
datapoint, except for that at 0.5 T, is shifted in step of (a) 0.3, (b) 0.5,
and (c) 0.2 μB/T, respectively, as the field increases. The positioning
of the black-thin upward arrows at T ∗ is explained in the text.

FIG. 5. Phase transition points of Gd3Ru4Al12 observed at a spe-
cific heat. The fields are directed along the (a) a axis, (b) b∗ axis, and
(c) c axis. The red-dotted lines and blue-solid lines indicate T1 and
T2, respectively. The origin of each set of data, with the exception of
0.1 T, is shifted in step of (a) 0.6, (b) 0.5, and (c) 0.4 J/K Gd-mol,
respectively, with increasing fields.

Figure 5(b) shows the specific heat C when varying the
field strength along the b∗ axis are shown. Corresponding to
the successive phase transitions at T1 and T2, clear λ-shaped
peaks are observed as well. The IMT phase is observed even
in high fields, similar to the magnetic susceptibility results
presented in Fig. 4(b).

The specific heat C presented in Fig. 5(c) was measured
by varying the strength of the magnetic field directed along
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FIG. 6. Magnetization curves of Gd3Ru4Al12 at 2 K in a field
increasing process. The fields are directed along the a, b∗, and c
axes. The broken line is a fit to the formula M(H ) = M0 + Kμ0H
in the range 5.6 < μ0H < 7 T for H ‖ c. Here, M0 is a constant that
is independent of the field, and K is a proportional constant. The
dotted lines are guides for the eye denoting M = F × 7μB(F = 1/3,
2/3).

the c axis. Clear λ-shaped peaks are observed at T1 and T2.
The IMT phase occupies a wide-temperature range in the
intermediate-field range. We could not find an indication of
the phase transition at T ∗ by measuring the specific heat. This
seems to suggest that the change in entropy associated with
this transition is small.

B. Magnetization processes

The field dependence of the magnetization M of
Gd3Ru4Al12 at 2 K is displayed in Fig. 6. The absolute values
of the magnetization contain a few percent error. Overall,
the magnetic anisotropy is clearly seen, i.e., Gd3Ru4Al12 is
easy to be magnetized when fields are applied in the ab
plane and is hard to be magnetized when fields are applied
along the c axis. A rapid increase in M is shown at 1.25 T
when the field is applied along the c axis. As shown in Fig. 6,
the anisotropy in the ab plane is very small. The intermediate
field phase observed in M/H (T ) was also observed in the
range 1.25 < μ0H < 2.4 T when the field is applied along
the c axis at 2 K. Regardless of the difference in the field
direction, M has a tendency to increase approximately lin-
early with the magnetic field in the high-field range. In this
high-field range, we assume that M can be described using
M(H ) = M0 + Kμ0H . Here, M0 is a constant that does not
depend on the field, and K is a proportional constant. The
broken line in Fig. 6 is a fit to the data for H ‖ c in the
range 5.6 < μ0H < 7 T. The obtained parameters are M0 =
7.02 μB and 4.3 × 10−2 μBT−1. The magnetization observed
exceeds 7 μB, but absolute values measured by the MPMS
contain a few percent error. To determine the accurate mag-
netization processes as field functions, a more precise and
wider range of measurement is required. As can be seen in
Fig. 6, two rapid increases appear in M for H ‖ c axis at

μ

μ
FIG. 7. (a) Data of M(H ) of Gd3Ru4Al12 for H ‖ c at 2, 5, 10,

and 15 K. The arrows indicate the phase transition points. The origin
of the left axis is shifted in step of 1 μB/Gd-ion with decreasing
temperature.

approximately 1.25 and 2.4 T. The dotted lines in Fig. 6
denote M(H ) = F × 7 μB, (F = 1/3, 2/3). The rapid in-
creases appear at the points where the magnetization is
approximately equal to these values. As shown in Fig. 7, this
ratio of magnetization changes with increasing temperature.
The lowest transition field is weakly temperature dependent,
whereas the temperature dependence of the intermediate tran-
sition field is stronger.

Figure 8(a) presents the M(H ) curve for H ‖ a at 5 K.
The blue downward arrow indicates a phase transition point
at 2.86 T. Here, we regard the reflection point as the phase
transition point. Figure 8(b) shows the second derivative of
M in Fig. 8(a) with an increasing field process. The arrow in
the figure indicates the local minimum point of the second
derivative and corresponds to the phase transition point.

Figure 8(c) shows the M(H ) curve for H ‖ b∗ at 5 K,
and Fig. 8(d) shows the second derivative of M in Fig. 8(c).
The red arrows at the lower field side and blue arrows at the
higher field side indicate the phase transition points at 2.82 T
and 3.06 T, respectively. The minimum points on the second
derivative of M are indicated in Fig. 8(d) and correspond to
the transition points in Fig. 8(c). When the fields are directed
along the b∗ axis, the intermediate field phase is observed at
5 K.

Figure 9 displays the magnetization curves in the pres-
ence of magnetic fields directed along the c axis. The solid
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FIG. 8. (a) M(H ) of Gd3Ru4Al12 for H ‖ a at 5 K. (b) Second
derivative of M in panel (a) with the elevating field process. (c) M(H )
of Gd3Ru4Al12 for H ‖ b∗. (d) Second derivative of M in panel (c).
The arrows indicate the phase transition points.

downward blue arrows in Fig. 9(a) indicate a phase transi-
tion that occurs at high fields. The magnetization curves in
the intermediate-field range exhibit small hysteresis loops, as
shown in Fig. 9(b). The upward red arrows indicate phase
transition points, and the hysteresis loops imply that this
transition is of the first order. Similar small hysteresis loops
are shown in the low-field range, as shown in Fig. 9(c).
The black-bold arrows indicate the phase transitions. In ad-
dition, the hysteresis loops imply that this phase transition is
first order as well. The additional phase is observed in the
intermediate-field range when fields are directed along the c

μ
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μ

FIG. 9. M(H ) of Gd3Ru4Al12 for H ‖ c at several temperatures.
M(H ) in the (a) high-field, (b) intermediate-field, and (c) low-field
ranges. The arrows indicate the phase transition points.

axis, which is the hard axis of magnetization. This suggests
that the additional phase is induced with spin flopping.

C. Magnetic phase diagrams

The magnetic phase diagrams of Gd3Ru4Al12 (Fig. 10)
could be drawn by analyzing the magnetic susceptibility mea-
surements, magnetization processes, and specific heat results.
We refer to the low-temperature and IMT phases as phase I
and phase II, respectively, and the intermediate-field phase
appears in the fields directed along the c axis as phase III.
The entire view of the magnetic phase diagrams presented in
Fig. 10 is anisotropic for Gd compounds. For H ‖ b∗, IMT
phase II appears in the phase diagram of Gd3Ru4Al12, and is
also shown in Fig. 10(b). The boundaries of phase I/phase
II and phase II/PM phase display double lines that do not
cross.

When the field is applied along the c axis, as shown in
Fig. 10(c), phase III appears between phase I and phase II in
the intermediate-field range, and phase II occupies a relatively
wide region in the diagram. As mentioned before, the magne-
tization exhibits hysteresis at the phase I/phase III and phase
III/phase II transition points, and therefore, both of these
transitions are of the first-order. Hirschberger et al. reported
the existence of a skyrmion lattice phase and non-identified
phase V, respectively, in the regions of phase III and phase II
in Fig. 10(c) [15]. In the present study, under the premise that
the existence of these phases was observed by microscopic
measurements, we focus on the characteristic appearance of
the magnetic phase diagrams in their totally, as determined by
macroscopic measurements.

The phase diagrams in Fig. 10 look like a superposi-
tion of two non-frustrated AFM spin systems, as depicted
in Fig. 11. In this figure, the first of these system is the
AFM spin system (TN = T2) that has an easy plane (the ab
plane)-type anisotropy, and the other (TN = T1) has an easy
axis (the c axis)-type anisotropy. The easy plane-type spin
system exhibits a simple single phase boundary regardless of
the direction in which the fields are applied. Here, the in-plane
anisotropy is assumed to be weak. The easy axis-type spin
system shows a spin-flopping-like transition when fields are
applied along the c axis. The only exception to this view is
the boundary depicted by the broken line in Fig. 11. This
is understandable if we assume that phase II is a partially
disordered phase, and phase I is a fully ordered phase. The
fully ordered phase appears as a lower-temperature phase in
relation to a partial ordered phase, but the reverse situation is
impossible. Different types of anisotropies would seem to co-
exist in Gd3Ru4Al12. The dotted line in Fig. 10(c) corresponds
to the weak anomalies at T ∗, as shown in Fig. 4(c).

IV. DISCUSSION

A. Magnetic fields with two types of anisotropies

In this section, we estimate the magnitude of the
anisotropic energies. The magnetic susceptibility in Fig. 4 and
magnetization process in Fig. 6 indicate the easy-axis–type of
anisotropy, whereas the magnetic phase diagrams in Fig. 10
imply the coexistence of different anisotropies. The magnetic
susceptibilities in Fig. 2 at low temperatures are replotted
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FIG. 10. Magnetic phase diagrams of Gd3Ru4Al12 for the (a) H ‖ a, (b) H ‖ b∗, and (c) H ‖ c axes. The red circles, blue triangles, and
black crosses indicate phase transition points determined from the specific heat and M/H (T ) and M(H ) measurements, respectively. Data for C
at zero field were taken from the reference [13]. The dotted line in the right panel corresponds to T ∗, as shown in Fig. 4(c). The horizontal-green
line segments denote transition temperature errors estimated from Fig. 5. Each length of the line segment corresponds to the difference between
the temperature at the mid point of the right-side slope of the specific heat and that at the peak of the specific heat.

in Fig. 12 on expanded scales. In this figure, the magnetic
susceptibilities are plotted as a function of T 2. Here, AFM
spin waves are expected to contribute to the magnetization
at finite temperatures. According to previous theories based
on spin wave approximation, the contribution of the AFM
spin waves propagating in three dimensions can be expressed
as M(T ) − M(0) ∝ T 2 for isotropic systems [18–20] and
M(T ) − M(0) ∝ T 1.5 exp [−(k−1

B Eg)/T ] for anisotropic sys-
tems [20] when the temperatures are sufficiently lower than
the Néel temperature. Here, M(0) is the magnetization at 0 K

FIG. 11. Superposition of schematic phase diagrams of nonfrus-
trated AFM material with an easy-plane (ab plane)-type anisotropy
(TN = T2) and that with an easy-axis (c axis)-type anisotropy (TN =
T1). The broken line is the boundary, which is not observed in actual
Gd3Ru4Al12 owing to the frustration (see text).

and Eg is the energy gap in the AFM magnon dispersion

Eg = h̄� = h̄
√

ω2
A + 2ωexωA, (1)

where � has the lowest precession frequency of magnons,
h̄ωA = 2μBSrHA is the crystal magnetic anisotropic energy of
a single trimer, where HA represents the anisotropic fields. In
addition, h̄ωex = 2JSrz is the exchange energy owing to the
exchange interactions from the nearest-neighbor Sr of number
z. When the applied external field is sufficiently weak, M can
be replaced by the molar magnetic susceptibility χ as follows:

χ (T ) − χ (0) = C1 T 2 (2)

for an isotropic system, and

χ (T ) − χ (0) = C2 T 1.5 exp
[−(

k−1
B Eg

)
/T

]
(3)

for an anisotropic system. Here, C1 and C2 are proportional
constants.

First, we estimate the energy gap of the magnon. The solid
blue and red curved lines in Fig. 12 correspond to Eq. (3). The
calculated data well reproduce the experimentally observed χa

and χb∗. The k−1
B Eg values obtained are 25 K for χa and 30 K

for χb∗, being approximately isotropic in the ab plane. The
temperature dependence of χa and χb∗ can be understood as
the contribution from spin waves (waves of Srs) propagating
in three dimensions under easy-plane–type anisotropic fields
H pl

A . Here, the directions of Srs are in the ab plane, and the
polarization of the waves is vertical to the ab plane. The
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FIG. 12. Temperature dependence of the magnetic susceptibility
of Gd3Ru4Al12. The data were obtained from Fig. 2 and were replot-
ted on a T 2 scale. The applied field is 0.1 T. The solid-curved lines
are fits to Eq. (3), and the solid-straight line is a fit to Eq. (2). These
lines also indicate the fitting regions. The magnetic susceptibility for
H ‖ c is presented in the inset on expanded scales. The fitting line is
expanded to the zero temperature in the inset.

resultant spin Srs that are directed in the ab plane are under
easy-plane–type anisotropic fields, and the energy gap of the
magnon is estimated to be 25–30 K.

Next we discuss the phase transition by the applied field,
which is directed along the c axis. As shown in Fig. 6, discon-
tinuous change in magnetization is observed at 1.3 T when
field is applied along the c axis. According to the previous
RXD, this change in magnetization corresponds to the tran-
sition from the helical structure to a conical structure of Sr

[14,15]. The observed propagation vector is k = 0.27 along
the a axis. Here, we consider two kinds of Sr structures shown
in Fig. 13. For simplicity, we approximate the propagation
vector to k = 0.25. Figure 13(a) shows a helical structure and
Fig. 13(b) shows a spiral structure in which all Srs are directed
in the ab plane. When weak field Ha is applied along the c
axis, the Sr structures in Fig. 13(a) and Fig. 13(b) change into
structures in Fig. 13(c) and Fig. 13(d), respectively. Energies
of the systems in Figs. 13(c) and 13(d) per unit volume are
expressed as

Ej (Ha) = Ej (0) − (1/2)μ0Ha · M j (Ha), ( j = c, d ). (4)

Here, M j (Ha) is the magnetization per unit volume induced
by Ha. As shown in the inset of Fig. 14, Srs, which are
directed in the ab plane in Figs. 13(a) and 13(b) are canted

θ θ

θθ

FIG. 13. Two types of structures of Sr . (a) The helical structure
of Sr along the a axis with propagation vector k = 0.25 at zero field.
(b) The spiral structure of Sr along the a axis with propagation vector
k = 0.25 at zero field. Directions of Sr are in the ab plane. (c) The
structure (a) modulated by a weak field along the c axis. (d) The
structure (b) modulated by a weak field along the c axis. [(e)–(h)]
Projection drawings of (a)–(d) along the a axis, respectively.

by Ha and magnetization directed along the c axis is in-
duced. On the other hand, Srs, which are directed in the c
axis Fig. 13(b) do not change the direction therefore do not
contribute the magnetization. The solid curves in Fig. 14 are
field dependence of Ej (Ha), ( j = c, d ). In this figure, Ed (0)
and �A are defined as zero and Ed (0) − Ec(0), respectively.
NSr is the number of Sr in unit volume. If we assume that
the �A is an easy-axis–type anisotropic energy, which works
on Srs directed along the c axis, the transition from helical
[Fig. 13(c)] to conical structure [Fig. 13(d)] is expected at

Δ

θ

Δ

FIG. 14. Field dependence of energies of the Sr structures in
Fig. 13. As shown in Fig. 13, Si

r is parallel to the ab plane at zero
filed. Applied field is directed along the c axis. The solid and broken
curves denote the energies Ec and Ed of Eq. (4), respectively. Hc is
the transition field. The inset shows the Si

r canted by the field Ha ‖ c.
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θ
θ

θ
θ

FIG. 15. (a) Tilted Si
r in Fig. 13(a) when Ha is applied along the

a axis. Here, Hex is the exchange dipole field. (b) Tilted Si
r when

Ha is applied along the c axis, where Hex is the exchange dipole
field and HA is the effective anisotropic field of easy-plane type orig-
inating from the magnetic quadrupole interaction. (c) Magnetization
process in the low field range. Here, Mc (dotted-broken line) and Md

(broken line) denote the magnetization process of the spin structure
in Figs. 13(c) and 13(d), respectively. The bold-zigzag line indicates
the actual magnetization process when the field is applied along the
c axis. Hc is the transition field from the helical structure [Fig. 13(c)]
to the conical structure [Fig. 13(d)]. Mab is the magnetization process
when Ha is applied parallel to the ab plane.

Hc. Figure 15 displays the aspect of Si
r and M in the vicinity

of Hc. The discontinuous increase in M is expected at Hc.
The easy-axis–type anisotropic energy stabilize the helical
structure at fields lower than Hc.

We estimate the anisotropic fields, which act on Srs di-
rected along the c axis. The solid-black straight line in Fig. 12
is fitted by Eq. (2). The calculated values are in good agree-
ment with the experimentally observed χc. The spin waves
excited in Srs, which are directed along the c axis, are polar-
ized vertically to the c axis, and they propagate under weak
anisotropic fields. As is evident from the inset in Fig. 12,
χc deviates from the fit below 5 K. This implies that the
anisotropic energy kB�A is approximately 5 K. As shown in
Fig. 6, a jump occurs in the magnetization at 1.3 T. The jump
in the magnetization at approximately 1.3 T in Fig. 7 becomes
less prominent at temperatures higher than 5 K. Therefore,
the anisotropic energy of the easy-axis type is estimated
to be approximately 5 K. We examined these estimations from
the another point of view. The induced magnetic moment of
single Sr at Hc = 1.3 T is obtained to be 7.2 μB per Sr as
shown in Fig. 6. Therefore, kB�A is approximately 6.2 K, and
this agrees with the obtained values mentioned above.

Here, we examine the consistency of the obtained
anisotropic energy and magnetic phase diagrams, and estimate
the anisotropic energy of the easy-plane type. When fields
are applied along the c axis, the anisotropic fields H pl

A that
are parallel to the ab plane resist changes in the directions

FIG. 16. Magnetic moments mi (mi = 7μB) on a FM trimer.
Here, the subscripts i = 1, 2, 3 denote the vertices of the triangle.
The red spheres indicate Gd ions. The vector ri j denotes the position
of vertex j relative to that of vertex i.

of Sr , and stabilize the AFM phase as a result. However,
when fields are applied parallel to the ab plane, H pl

A does
not contribute to the stability of the AFM phase, because it
is isotropic in the ab plane. In fact, the phase II/PM phase
transition field for H ‖ c at 1.8 K is increased by 0.86 T
when compared with that obtained for H ‖ b∗ at 1.8 K (see
Fig. 10). Therefore, μ0H pl

A would be approximately 0.86 T,
and this gives k−1

B h̄ωA � 12 K. On the other hand, the ex-
change energy k−1

B h̄ωex in Eq. (1) is approximately equal to
T2 = 18.6 K. Substituting k−1

B h̄ωex and k−1
B h̄ωA into Eq. (1),

k−1
B Eg � 24 K is obtained. This is in approximate agreement

with that obtained from the analysis of χ (T ). Therefore, the
anisotropic energy of the easy-plane type was estimated to
be 12 K. Consequently, the present results indicate that there
are different anisotropic fields in Gd3Ru4Al12 depending on
the directions of Srs. The first is the strong easy-plane–type
anisotropic field, and the other is the weak easy-axis–type
field.

B. Origin of the anisotropic magnetic fields

In this section, we consider the origin of the unusual
anisotropic magnetic fields in Gd3Ru4Al12. A possible origin
of the anisotropy to be examined is electromagnetic interac-
tion. Figure 16 displays an FM trimer on which three magnetic
moments mi (i = 1, 2, 3; mi = 7μB) are placed. Here, the sub-
scripts i = 1, 2, 3 indicate the number of vertices, and μB is
the Bohr magneton. The vector ri j denotes the position of
vertex j relative to that of vertex i. The flux density Bi j at
vertex j induced by mi at vertex i is given by

Bi j = − μ0

4πr3

[
mi − 3(mi · ri j )ri j

r2

]
.

When the FM trimer is formed at low temperatures, all three
magnetic moments are written as m. Therefore, the electro-
magnetic energy of the trimer is

Eem = μ0

4πr3

[
3m2 − 3

∑
i j

(m · ri j )2

r2

]

at a unit of J per Sr , where the suffix takes the values
(i j = 12, 23, 31). This energy becomes the lowest when m
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μμ

μ

θ
θ

θ

μ μ

μθ

θ θ

FIG. 17. Ferromagnetic spin trimers of Gd3Ru4Al12 with imper-
fection of directivity. The coordinates x, y, and z are taken parallel to
the a, b∗, and c axes, respectively. The origin is taken at the center of
gravity of the triangle. The bold-green arrows and symbols ⊗ and �
indicate the directions of Srs. (a) Trimer of which the Sr is directed
along the x axis. Each component spin Si (i = 1, 2, 3) forms an angle
θ with respect to the z axis. D is the length of the small triangle side.
(b) Projected drawing of the trimer in panel (a) parallel to the x axis.
The magnetic moments μ

yz
i (i = 1, 2, 3) are in-yz–plane components.

The curves with the four-leaf-clover shape represent the magnetic
quadrupole moment Qyz. (c) Trimer of which the Sr is directed along
the y axis. Each component spin Si (i = 1, 2, 3) forms an angle θ with
respect to the y axis. (d) Projected drawing of the trimer in panel
(c) parallel to the y axis. The magnetic moments μzx

i (i = 1, 2, 3)
are in-zx–plane components of component spins Si (i = 1, 2, 3). The
curves with four-leaf-clover shape represent the magnetic quadrupole
moment Qzx .

is directed in the ab plane. The electromagnetic energy Eem

gives rise to the easy-plane–type anisotropy, and it is isotropic
in the ab plane. However, the amplitude of this energy is
approximately 2.7 K per Sr . This is too small to explain
the easy-plane–type anisotropic energy that was observed.
Therefore, electromagnetic interaction is not the origin of the
anisotropic fields.

Another possible origin of the anisotropic magnetic fields
may be magnetic quadrupole interactions according to the
RKKY mechanism. The magnetic trimer occupies a much
larger area than a single Gd3+ ion. In this case, we need to
consider the effects of magnetic multipole moments and the
interactions among them, because multiple moments rapidly
enlarge as the size of the trimer increases. Generally, if the
FM directivity of the component spins of an trimer were
imperfect, the trimer would carry not only dipole moments
but also magnetic multipole moments. Actually, the previous
RXD measurements indicate the imperfections of directivity
in trimers [14]. Here, we assume an FM trimer with an imper-
fection of directivity as depicted in Fig. 17(a). In this figure,
the coordinate axes x, y, and z are parallel to the a, b∗, and
c axes, respectively. The origin was taken to be located at
the triangular center of gravity. As shown in Fig. 17(a), the
component spins Si (i = 1, 2, 3) form the angle θ with respect

to the x axis, and the resultant spin Sr is parallel to this axis.
Figure 17(b) shows a projection of Fig. 17(a) parallel to the
x axis. The red arrows μ

yz
i (i = 1, 2, 3) in this figure denote

the in-yz-plane components of the magnetic moments of Sis.
Under the condition θ 	 1, the magnitude of these magnetic
moments are commonly

μ
yz
i = 7μBθ. (5)

Calculating the magnetic quadrupole moments with
Eqs. (A1)–(A4) (Appendix A), we obtain the quadrupole
moment Qyz of the trimer as summarized in Table I.
Figure 17(c) shows the trimer of which the Sr is directed
along the y axis, and Fig. 17(d) is a projection drawing
parallel to the y axis. The trimer depicted in Fig. 17(d) carries
Qzx. The quadrupole moment of the trimer of which the Sr

is directed in the ab plane, can be represented by a linear
combination of Qyz and Qzx. When the direction of Sr is in
the ab plane, the magnetic quadrupole interaction acts on
Srs as an effective anisotropic field of the easy-plane type
(Appendices A and B).

In Fig. 18, we present three trimers of which the Srs are
directed along the c axis (z axis). The component spins shown
in Fig. 18(a) form an angle θ ′ with respect to the z axis.
Figure 18(b) shows the projection of Fig. 18(a). This trimer
carries magnetic quadrupole moment Qxy as summarized in
Table I. The trimer in Figs. 18(c) and 18(d) has a magnetic
quadrupole moment Q2

2, and the trimer in Figs. 18(e) and
18(f) carries magnetic quadrupole moment Q0

2, respectively.
The quadrupole moments the trimer can have are restricted
by the direction of Sr . The magnitudes of these quadrupole
moments are summarized in Table I. We cannot identify the
spontaneous quadrupole moment realized among Qxy, Q2

2,
and Q0

2 from the macroscopic measurements. In this paper,
our discussion assumes that Q0

2 is realized below, because a
similar argument would be valid in the case of Qxy and Q2

2.
When Sr on a trimer is directed along the c axis, it receives
no quadrupole interaction from the trimers with Qyz and Qzx.
Therefore, Sr directed along the c axis does not receive ef-
fective anisotropic fields of the easy-plane type; instead, it
receives effective anisotropic fields of the easy-axis type from
the surrounding Q0

2s (Appendix B).
Here, we discuss the frustration among magnetic

quadrupole moments. We consider two cases: the case
wherein geometrical frustration plays a dominant role and
that wherein far-near-neighbor frustration plays a dominant
role. In Fig. 19(a), three trimers with magnetic quadrupole
moments and Srs are illustrated. In this figure, all Srs are
directed in the ab plane; therefore, the quadrupole moments
are described by linear combinations of Qps (p = yz, zx).
The quadrupole interaction among the three quadrupoles is
described as

H pl
QQ = −

i, j=1,2,3∑
i �= j

G6[Q̂yz(i)Q̂yz( j) + Q̂zx(i)Q̂zx( j)] (6)

from Eq. (A5) (Appendix A). Here, assuming that isotropy
exists in the ab plane, G6 is independent of the combination
(i, j). When this quadrupole interaction is antiferromagnetic,
geometrical frustration is induced among the quadrupole mo-
ments in the triangle. This is because the quadrupole moments
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TABLE I. Magnetic quadrupole moments carried by the trimers depicted in Figs. 17 and 18, and the directions of Sr . Here, D, θ , θ ′, and
θ ′′ are the length and angles defined in these figures.

Trimers Qyz Qzx Qxy Q2
2 Q0

2 Directions of Sr

in Figs. 17(a) and 17(b) 7
√

3
2 DθμB 0 0 0 0 ‖ a

in Figs. 17(c) and 17(d) 0 7
√

3
2 DθμB 0 0 0 ‖ b∗

in Figs. 18(a) and 18(b) 0 0 7
√

3Dθ ′μB 0 0 ‖ c
in Figs. 18(c) and 18(d) 0 0 0 7

√
3Dθ ′μB 0 ‖ c

in Figs. 18(e) and 18(f) 0 0 0 0 14
√

3
3 Dθ ′′μB ‖ c

μ

μ

μ

θ

θ
θ

μ

μ

μ

θ

θ

θ

θ

μ

μ

μ

θ

θ

θ

FIG. 18. Ferromagnetic spin trimers of Gd3Ru4Al12, which have
imperfection of directivity. The coordinates x, y, and z are taken
parallel to the a, b∗, and c axes, respectively. The origin is taken at
the triangular center of gravity. The bold-green arrows and symbols
⊗ and � indicate the directions of Srs. (a) The red-thin arrows
denote the component spins Si, which form an angle θ ′ with re-
spect to the z axis. (b) Project drawing of panel (a) parallel to
the z axis. The magnetic moments μ

xy
i (i = 1, 2, 3) are in-xy–plane

components. The curves with four-leaf-clover shape represents the
magnetic quadrupole moment Qxy. (c) The red-thin arrows denote
the component spins Si, which form angle θ ′ with respect to the z
axis. (d) The projected drawing of the trimer in panel (c) parallel
to the z axis. The four-leaf-clover shaped lines denote Q2

2. (e) The
red-thin arrows represent component spins Si, which make angle θ ′′

with respect to the z axis. (f) Projected drawing of the trimer in panel
(a) parallel to the z axis. The red and blue concentric circles denote
Q0

2.

at vertex-3 in Fig. 19(a) undergo quadrupole interactions of
different signs with the quadrupole moments at vertexes-1
and 2, respectively. However, when Sr at vertex-3 changes
its direction parallel to the c axis as illustrated in Fig. 19(b),
the quadrupole moment at vertex-3 changes into Q0

2. These
changes in the quadrupole moments eliminate the frustration
among the quadrupole moments because no quadrupole inter-
action occurs between Qps (p = yz, zx) and Q0

2.
Figure 20(a) shows three trimers aligned along the a axis.

All the Srs are directed in the ab plane, and the quadrupole
moments are described by linear combinations of Qps. Here,
we assume that the quadrupole interaction between near-
est neighbor is ferromagnetic and that between next-nearest
neighbors is antiferromagnetic. In this case, the quadrupole
moment at vertex-3 in Fig. 20(a) receives quadrupole inter-
actions with different signs from the quadrupole moments
at vertexes-1 and 2, respectively, and frustration is induced
among the quadrupole moments. However, if Sr at vertex-
2 changes its direction along the c axis, as illustrated in
Fig. 20(b), the quadrupole moment at vertex-2 changes to
Q0

2, and the quadrupole frustration among the three trimers
is eliminated.

In both the frustrated cases mentioned above, trimers are
expected to gain in energy in association with the elimina-
tion of quadrupole frustration, and this induces the change in
the directions of Srs. Therefore, quadrupole interactions may
play a role as an effective twisting force that acts on Srs,
and may assist the formation of the helical structure of Srs.
In this meaning, the quadrupole interactions may supply the

FIG. 19. Trimers with magnetic quadrupole moments on a tri-
angle. (a) All Srs at the vertices are directed in the ab plane. All
the quadrupole moments are linear combinations of Qyz and Qzx .
Antiferroquadrupole interactions among the quadrupole moments
induce geometrical frustration. (b) Sr at vertex-3 denoted by � is
directed along the c axis, and the quadrupole moment at this vertex
changes to Q0

2, which is depicted as concentric circles colored blue
and red. The frustration by AFQ interactions is eliminated.
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FIG. 20. Trimers with magnetic quadrupole moments on a line.
(a) All Srs at the vertices are directed in the ab plane. All quadrupole
moments are linear combinations of Qyz and Qzx . Ferromagnetic
quadrupole interaction between the nearest neighbors and AFM
quadrupole interactions between the next-nearest neighbors induce
frustration. (b) Sr at site-2 denoted by � is directed along the c
axis, and the quadrupole moment at this site changes to Q0

2, which
is depicted as concentric circles in blue and red. The frustration by
quadrupole interactions is eliminated.

place of the DM interaction in the inversion-symmetric crystal
Gd3Ru4Al12.

C. Degrees of freedom of magnetic quadrupole moment

Figure 21 shows a trimer that carries three magnetic dipole
moments μzx

i (i = 1, 2, 3) and a magnetic quadrupole moment
Qzx. In this figure, each μzx

i is rotated by an angle φ around
the y axis with respect to that shown in Fig. 17(d). When φ

is small, the magnetic quadrupole moment Qzx rotates at an
angle φ around the y axis without changing the direction of
Sr . This implies that the degrees of freedom of the quadrupole
moment are independent of degrees of freedom of the mag-
netic dipole moment. The coexistence of different kinds of
independent degrees of freedom may lead to the generation
of complex magnetic phase diagrams with subphases and un-
usual low energy collective excitations in Gd3Ru4Al12. From
this point of view, distorted, or breathing kagome lattices
may be interesting subjects with which to study quadrupole
orderings and novel low-energy collective excitations.

μ
μ

μ π

φ

φφ
π

FIG. 21. Rotation of the magnetic quadrupole moment on a
trimer. Each μzx

i is rotated at an angle φ around the y axis (b∗ axis)
with respect to that in Fig. 17(d). The green ⊗ is Sr directed along
the y axis.

V. SUMMARY

We studied the spin system Gd3Ru4Al12, which has in-
version symmetry using macroscopic measurements. The FM
trimer Sr is stable even in ordered phases, and Gd3Ru4Al12

is found to be the AFMTL that has certain degrees of strong
anisotropies. The anisotropies appear to be generated in asso-
ciation with the formation of the FM trimer. The anisotropy
becomes remarkably strong in the ordered states, and enabled
the anisotropic magnetic phase diagrams to be determined.
We found two types of anisotropic magnetic fields: a strong
anisotropic field of the easy-plane type and a weak anisotropic
field of the easy-axis type. The magnitude of the anisotropic
energy of the former is approximately 12 K, and that
of the latter is approximately 5 K. We additionally discussed
the origin of the anisotropic fields. When the directivity of
the component spins of an FM trimer is imperfect, the trimer
carries magnetic quadrupole moments. We propose that the
magnetic quadrupole interactions are the origin of the un-
usual magnetic anisotropies of Gd3Ru4Al12. The quadrupole
interaction among the linear combination of Qp (p = yz, zx)
leads to an easy-plane–type anisotropic field, and that among
Q0

2s leads to an easy-axis–type anisotropic field. The initial
fundamental unit, namely the Gd3+ ion, is not expected to
be the origin of the magnetic anisotropy, but the FM trimer
with imperfect directivity of the component spins becomes the
origin of the anisotropy reflecting the structure of the distorted
kagome lattice. The quadrupole interactions may supply the
place of the DM interaction, and stabilize the helical structure
at low fields. The imperfect directivity of component spins in
FM trimers causes the degrees of the magnetic dipole freedom
and the degrees of freedom of the magnetic quadrupole free-
dom to become independent under certain conditions. This
may lead to additional subphase transitions and low-energy
collective excitations in Gd3Ru4Al12.
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APPENDIX A

As shown in Figs. 17 and 18, directions of Srs are fixed to
magnetic quadrupole moments Qs whose anisotropies reflect
the structure of Gd triangle. It is expected that interactions
among Qs work on Srs as effective anisotropic fields. In the
case of a hexagonal lattice, symmetric magnetic quadrupole
moments are defined by the formula

Q0
2 = 1

3

∫
ρm(r) (2z2 − x2 − y2) dr, (A1)

Q2
2 = 1

2

∫
ρm(r) (x2 − y2) dr, (A2)

Qxy =
∫

ρm(r) (xy) dr, (A3)
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FIG. 22. [(a), (b)] An expected example of arrangement of
magnetic quadrupole moments. [(c), (d)] Another example of ar-
rangement of magnetic quadrupole moments. In this figure, Q6

denotes a linear combination of Qzx and Qyz. The dotted-red arrows
indicate quadrupole interactions act on i, j, m, n sites from the near-
est neighbors on the same Gd–Al plane, which does not cancel out.
The other quadrupole interactions from the nearest neighbors on the
plane cancel with each other out. The solid green arrows, � and ⊗
filled with green color denote Sr .

and

Qp =
∫

ρm(r) p(x, y, z) dr, p(x, y, z) = yz, zx, (A4)

where ρm(r) is the density of magnetic charge. We summa-
rized the magnitude of the magnetic quadrupole moments
carried by the trimers depicted in Figs. 17 and 18 in Table I.
The magnetic quadrupole interaction is expressed as

HQQ = −
∑
i �= j

Gi j
1 Q̂0

2(i)Q̂0
2( j)

−
∑
i �= j

Gi j
5

[
Q̂2

2(i)Q̂2
2( j) + Q̂xy(i)Q̂xy( j)

]

−
∑
i �= j

Gi j
6 [Q̂yz(i)Q̂yz( j) + Q̂zx(i)Q̂zx( j)]. (A5)

Here, i and j are the indices of the trimer sites, and Gi j are the
coupling constants.

APPENDIX B

We assume arrangements of magnetic quadrupole mo-
ments shown in Fig. 22. The magnetic quadrupole inter-
actions described in Eq. (A5) induce effective magnetic
quadrupole fields (or quadrupole distributions of magnetic
potential) in the neighborhood. Figure 22 describes ex-
amples of expected arrangements of magnetic quadrupole

φ

φ φ

φ

FIG. 23. (a) Magnetic charge distribution of ρ(r′) 1
3 (2z′2 − x′2 −

y′2 ), where ρ(r′) is the function that only depends on the radius r′.
Here, ρ(r′) is normalized as described in the text. The unit vector n =
(1, 0, 0) in the x − y − z coordinate denotes the axis of rotation. The
relation between the coordinates x′ − y′ − z′ and x − y − z is defined
by Eqs. (B7) and (B8). The angle φ is the angle between z axis and
z′ axis. (b) Magnetic charge distribution of ρ(r′)(z′x′), where ρ(r′) is
the function that only depends on the radius r′. The unit vector n =
(1, 0, 0) in the x − y − z coordinate denotes the axis of rotation. The
relation between the coordinate x′ − y′ − z′ and x − y − z is defined
by Eqs. (B7) and (B8). The angle φ is the angle between the y axis
and y′ axis. Here, the y axis is in the opposite direction of the b axis.

moments. A set of Figs. 22(a) and 22(b) is an exam-
ple and that of Figs. 22(c) and 22(d) is another example.
Here, we only consider the quadrupole interactions between
the nearest neighbors in the same Gd–Al plane. The dotted red
arrows in Fig. 22 denote the quadrupole interactions, which do
not cancel with each other out. In Fig. 22(a), the interactions
from Q6-type moments to the Q0

2 on i site cancel with each
other out. Under weak applied fields along the c axis, these
Q6-type moments are tilted by the applied fields but this
cancellation is not affected. On the other hand, quadrupole
interactions between (i, i − 1) sites and that between (i, i + 1)
sites reinforce each other. The magnetic quadrupole fields at i
site is, therefore, expressed as

Qq f (i) = 2G1Q0
2, (B1)

at zero field. For the same reason, quadrupole fields at
j, k, m, n sites are expressed as

Qq f ( j) = −2G6Q6, (B2)

Qq f (m) = −2G1Q0
2, (B3)

Qq f (n) = −2G6Q6, (B4)

respectively. As shown in Fig. 22, the trimers are separated
into two groups. One carries Q0

2 moments and is under Q0
2-

type quadrupole fields, the other carries Q6 moments and
is under Q6-type quadrupole fields. Quadrupole interactions
between these subsystems of trimers are canceled with each
other out.

Here, we discuss the anisotropies induced by the
quadrupole interactions. We calculate changes in energy when
magnetic quadrupole moments are rotated artificially under
quadrupole fields to examine the anisotropies. In Fig. 23(a),
the magnetic charge distribution of ρm(r′) of Q0

2 type is il-
lustrated. In this figure z axis is parallel to the c axis. The
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distribution of magnetic charge is expressed as

ρ(r′) 1
3 (2z′2 − x′2 − y′2) (B5)

using the x′ − y′ − z′ coordinate, where ρ(r′) is the function
that depends only on the radius r′. The function ρ(r′) is
normalized as

Q0
2 = 1

3

∫
ρ(r′) (2z′2 − x′2 − y′2)dx′dy′dz′. (B6)

The direction of Sr is parallel to the z′ axis as illustrated
in Figs. 18(e) and 18(f). As shown in Fig. 23(a), we define
rotation around the unit vector n = (1, 0, 0) with a small angle
φ as

R1 =
⎛
⎝1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎞
⎠. (B7)

The relation between the two coordinates in Fig. 23(a) is given
as

(x′, y′, z′) = R1(x, y, z). (B8)

and the magnetic distribution expressed in the x − y − z coor-
dinate is

ρm(r) = R1
[
ρ(r) 1

3 (2z2 − x2 − y2)
]

= ρ(r)
[(− 1

2 + 3
2 cos2 φ

)
1
3 (2z2 − x2 − y2)

− sin2 φ 1
2 (x2 − y2) + 2 cos φ sin φ(yz)

]
. (B9)

Therefore, quadrupole moment on i site in Fig. 23(a) is de-
scribed as a function of φ in the x − y − z coordinate as

Q0
2(φ) = Q0

2

(− 1
6 + 1

2 cos2 φ
)

− sin2 φ Q2
2 + 2 cos φ sin φ Qyz. (B10)

As described in Eq. (B1), this Q0
2(φ) is under the quadrupole

field Qq f (i). The change in the energy concerning the
quadrupole interactions is described as

Ei
a(φ) = −G1

(
Q0

2

)2
cos2 φ (B11)

except for constant difference. When the sign of G1 is positive,
this indicates an effective easy-axis–type anisotropy.

Next, we discuss the anisotropy on j site in Fig. 22(b).
Figure 23(b) shows the illustration of the charge distribution
of ρm(r′) of Qz′x′ type. The magnetic charge distribution is
given by

ρm(r′) = ρ(r′)(z′x′) (B12)

in the x′ − y′ − z′ coordinate. The function ρ(r′) is normalized
as

Qzx =
∫

ρ(r′) (z′x′) dx′dy′dz′. (B13)

The direction of Sr is in the y′ axis as we can see from Fig. 17.
In Fig. 23(b), the rotation around the unit vector n = (1, 0, 0)
denotes the axis of rotation. The angle φ is defined as the
angle between y and y′ axes, and the rotation is expressed
as Eq. (B7). This rotation can be induced by a weak applied
field directed along the z axis (along the c axis). The magnetic
charge distribution in x − y − z coordinate is expressed as

ρm(r) = ρ(r)(sin φ xy + cos φ zx) (B14)

in the x − y − z coordinate. Therefore, the magnetic
quadrupole moment on j site in Fig. 22(b) is described as

Qzx(φ) = sin φ Qxy + cos φ Qzx (B15)

in this coordinate. As shown in Fig. 22(b), this moment is
under the quadrupole fields made by the quadrupole moments
on j − 1 and j + 1 sites. These moments on j − 1 and j + 1
sites are also tilted by the applied field with the angle φ.
Therefore, the quadrupole field induced on j site is given by

Qq f ( j) = 2[G5 sin φ (−Qxy) + G6 cos φ (−Qzx )]. (B16)

The change in the energy concerning the quadrupole interac-
tions is described as

E j
a (φ) = −2[G6(Qzx )2 − G5(Qxy)2] sin2 φ (B17)

except for constant difference. When the sign of [G6(Qzx )2 −
G5(Qxy)2] is negative, this gives an effective easy-plane–type
anisotropy in the range of weak applied field.

If we assume some special magnetic quadrupole arrange-
ments, trimers are separated to two sub-systems. Because
the magnetic quadrupole interactions between these subsys-
tems are weak, different magnetic anisotropies can coexist in
Gd3Ru4Al12.
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V. Petříček, N. V. Baranov, Y. Skourski, V. Eigner, M. Paukov,
J. Prokleška, and A. P. Gonçalves, Phys. Rev. B 90, 094405
(2014).

[10] V. Chandragiri, K. K. Iyer, and E. V. Sampathkumaran,
Intermetallics 76, 26 (2016).

[11] V. Chandragiri, K. K. Iyer, and E. V. Sampathkumaran, J. Phys.:
Condens. Matter 28, 286002 (2016).

[12] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).

014422-14

https://doi.org/10.1002/1521-3749(200211)628:11<2549::AID-ZAAC2549>3.0.CO;2-X
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1088/1742-6596/344/1/012023
https://doi.org/10.1016/j.ssc.2014.06.011
https://doi.org/10.1103/PhysRevB.85.064412
https://doi.org/10.1103/PhysRevB.93.024407
https://doi.org/10.7566/JPSCP.3.014004
https://doi.org/10.1103/PhysRevB.91.214426
https://doi.org/10.1103/PhysRevB.90.094405
https://doi.org/10.1016/j.intermet.2016.05.014
https://doi.org/10.1088/0953-8984/28/28/286002
https://doi.org/10.1103/PhysRevLett.23.17


MAGNETIC PHASES OF THE FRUSTRATED … PHYSICAL REVIEW B 107, 014422 (2023)

[13] S. Nakamura, N. Kabeya, M. Kobayashi, K. Araki,
K. Katoh, and A. Ochiai, Phys. Rev. B 98, 054410
(2018).

[14] T. Matsumura, Y. Ozono, S. Nakamura, and N. Kabeya, and A.
Ochiai, J. Phys. Soc. Jpn. 88, 023704 (2019).

[15] M. Hirschberger, T. Nakajima, S. Gao, L. Peng, A. Kikkawa,
T. Kurumaji, M. Kriener, Y. Yamasaki, H. Sagayama, H. Nakao
et al., Nat. Commun. 10, 5831 (2019).

[16] S. D. Yi, S. Onoda, N. Nagaosa, J. H. Han, Phys. Rev. B 80,
054416 (2009).

[17] S. Buhrandt and L. Fritz, Phys. Rev. B 88, 195137 (2013).
[18] R. Kubo, Phys. Rev. 87, 568 (1952).
[19] C. Kittel, in Quantum Theory of Solids, (John Wiley and Sons

Inc., New York, 1964) p. 62.
[20] V. Jaccarino, in Magnetism, edited by G. T. Rado and H. Suhl

(Academic Press, New York, 1965), Vol. IIA, p. 319.

014422-15

https://doi.org/10.1103/PhysRevB.98.054410
https://doi.org/10.7566/JPSJ.88.023704
https://doi.org/10.1038/s41467-019-13675-4
https://doi.org/10.1103/PhysRevB.80.054416
https://doi.org/10.1103/PhysRevB.88.195137
https://doi.org/10.1103/PhysRev.87.568

