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Ferrochiral, antiferrochiral, and ferrichiral skyrmion crystals in an itinerant honeycomb magnet
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Topological spin textures, such as a skyrmion crystal, are a source of unusual physical phenomena owing to
the interplay between magnetism and topology. Since physical phenomena depend on the topological property
and the symmetry of underlying spin structures, the search for new topological spin textures and emergent
phenomena is one of the challenges in condensed matter physics. In this study, we theoretically explore
topological spin textures arising from the synergy between spin, charge, and sublattice degrees of freedom in
an itinerant magnet. By performing simulated annealing for an effective spin model of the honeycomb Kondo
lattice model, we find a plethora of skyrmion crystal instabilities at low temperatures, whose topological spin
textures are classified into three types: ferrochiral, antiferrochiral, and ferrichiral skyrmion crystals. We show
that the obtained skyrmion crystals are the consequence of the spin-orbit-coupling-free honeycomb structure.
Our results reveal the potential for itinerant honeycomb magnets to host a wide variety of skyrmion crystal and
emergent phenomena.
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I. INTRODUCTION

Noncoplanar spin structures with nontrivial topology
(topological spin textures) have attracted much attention,
since they give rise to fascinating physical phenomena aris-
ing from their emergent electromagnetic fields [1–5]. The
most familiar topological spin texture is a skyrmion, whose
topological property is characterized by the skyrmion num-
ber Nsk = pv; p and v represent the polarity and vorticity
of the skyrmion, respectively [1]. Since the different sets
of (p, v, Nsk ) result in different types of skyrmions, as
shown in Figs. 1(a)–1(f), they become a source of a va-
riety of quantum transports and dynamics including the
topological Hall and Nernst effects and skyrmion Hall
effect [6–15].

The appearance of each skyrmion is dependent on a micro-
scopic interaction. Specifically, the vorticity is determined by
types of spin interactions. In centrosymmetric magnets, the
competing exchange interactions in frustrated magnets lead
to the crystal formation of the skyrmion (SkX) with v = ±1
[16–21], while the long-range higher-order exchange interac-
tion in itinerant magnets favors the SkX with both v = ±1 and
±2 depending on the magnetic field [5,22,23]. The degener-
acy in terms of v is lifted by anisotropic exchange interactions
originating from the spin-orbit coupling [24–27] or dipolar
interactions [28,29]. Meanwhile, the polarity is determined by
the magnetic field direction; p = +1 (−1) is favored under the
field along the −z (+z) direction. In this way, a key essence
of engineering (p, v, Nsk ) of the skyrmion has been clarified
based on the microscopic interaction.

In the present study, we explore SkXs by focusing on the
sublattice degree of freedom. The effect of the sublattice de-
gree of freedom has been studied in the 120◦ three-sublattice
structure on the triangular lattice [30], honeycomb structure
[31,32], kagome structure [33], diamond structure [34], and

multilayer structure [35–41]. One of the typical examples
characteristic of the sublattice structure is the antiferromag-
netic SkX on a bipartite lattice with sublattice α = A, B,
where sublattice A forms the SkX with (pA, vA, NA

sk ) =
(−1,+1,−1) in Fig. 1(a) and sublattice B forms that with
(pB, vB, NB

sk ) = (+1,+1,+1) in Fig. 1(b). In this case, no
topological Hall effect occurs due to the staggered skyrmion
number NA

sk = −NB
sk, while the topological spin Hall effect is

expected [31].
To realize a variety of topological spin textures in mul-

tisublattice systems, we focus on the synergy among the
spin, charge, and sublattice degrees of freedom in an itin-
erant magnet. By performing simulated annealing for an
effective spin model of the honeycomb Kondo lattice model
(KLM), we find that the synergy gives rise to five new
SkXs with different (NA

sk, NB
sk ): two antiferrochiral SkXs with

FIG. 1. Skyrmions characterized by (p, v, Nsk ). The arrow and
color show the spin direction and z component, respectively, where
red (blue) corresponds to the positive (negative) z component.
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(NA
sk, NB

sk ) = (−1,+1) and (−2,+2), two ferrochiral SkXs
with (NA

sk, NB
sk ) = (−1,−1) and (−2,−2), and a ferrichiral

SkX with (NA
sk, NB

sk ) = (−1,+2).
The rest of this paper is organized as follows. In Sec. II,

we introduce the effective spin model and the simulation
method. The ground-state phase diagram in the model without
(with) the magnetic field is shown in Sec. III A (Sec. III B).
We summarize our results in Sec. IV. In addition, we show
details of our results: derivation of the effective spin model
in Appendix A, SkXs in models with different parameters in
Appendix B, analytical calculation at zero field in Ap-
pendix C, and field-induced trivial phases in Appendix D.

II. MODEL AND METHOD

We consider the honeycomb lattice with sublattices A and
B shown in the inset of Fig. 2(a). The effective spin model,
which is obtained in the weak-coupling regime of the honey-
comb KLM, is given by

Heff = −2J
∑

η

�η(X ) + 2
K

N

∑
η

�η(X )2, (1)

where �η(X ) = ∑
α,β X αβSαQη

· Sβ−Qη
; Sαq with the wave

vector q and sublattice α = A, B is the Fourier transform
of the localized spin, X αβ represents the form factor of the
interaction in terms of the sublattice, X AA = X BB and X AB =
(X BA)∗, and N is the number of unit cells. The first term rep-
resents the bilinear interaction with J > 0, which corresponds
to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[42–44]. We only consider the dominant contributions at
specific Qη, which gives the largest eigenvalue of the bare
magnetic susceptibility of itinerant electrons in momentum
space. We choose threefold symmetric ordering vectors so as
to satisfy the honeycomb lattice symmetry: Q1 = (0, π/3),
Q2 = (−√

3π/6,−π/6), and Q3 = (
√

3π/6,−π/6), where
we set the lattice constant as unity. Then, the form factor sat-
isfies X αβ = (X αβ )∗ due to the mirror symmetry with respect
to the xz plane [27]. The second term represents the posi-
tive biquadratic interaction with K > 0, which corresponds to
the higher-order RKKY interaction and tends to favor non-
coplanar spin textures including the SkX [5,22,23,45]. The
derivation of the effective spin model is shown in Appendix A.

In contrast to the previous effective spin model for the
triangular KLM [23], the present model includes the effect of
the intersublattice RKKY and biquadratic interactions owing
to the multisublattice honeycomb structure. Thus, the present
model can describe the multiple-Q instability that arises from
the synergy between the spin, charge, and sublattice degrees
of freedom. In the following, we study the general case of
the interactions by setting X AA ≡ cos2 � and X AB ≡ ± sin2 �

while changing � (0 < � � π/2) as well as K . We set J = 1
as the energy unit. It is noted that the form factors in the first
and second terms in Eq. (1) are usually different from each
other, while the results are qualitatively similar even when
considering different form factors (see Appendix B).

First, we discuss the ground state at K = 0. Then, the
model in Eq. (1) exhibits the instability toward the single-Q
spiral state on each sublattice irrespective of �. When X AB �=
0 (� > 0), both spirals are characterized by the same Qη and

the same spiral plane for both positive and negative X AB. The
sign dependence of X AB is found in the relative spiral angle;
the B spin at RBi is (anti)parallel to the A spin at RBi + d∗

η for
positive (negative) X AB, where RBi is the position vector at
site i on sublattice B and d∗

η (d∗
η · Qη = 0) is the displacement

vector for three nearest-neighbor bonds shown in the inset
of Fig. 2(a). In other words, positive (negative) X AB tends to
favor the (anti)ferromagnetic spin alignment for sublattices A
and B.

Next, to investigate the ground state for nonzero K , we
perform simulated annealing combined with the standard
Metropolis local updates for the system size with N = 362.
We gradually reduce the temperature with a rate Tn+1 = αTn,
where Tn is the temperature at the nth step. We set the initial
temperature T0 = 1 and the coefficient α ≈ 0.999539589. A
final temperature Tf = 0.01 is reached after a total of 106

Monte Carlo steps (MCSs), where we perform 102 MCSs at
each temperature Tn. The following results are obtained by
using other α and the number of MCSs unless α is much
smaller than 1. After 105 MCSs for the thermalization at Tf ,
we perform 106 MCSs for measurements, where 104 samples
are used for average. To determine the phase boundary, we set
the spin configuration obtained near the phase boundary as the
initial spin configuration and perform the simulated annealing
starting at low temperatures (T0 = 0.02–0.05).

We identify magnetic phases from the spin structure factor,
magnetization, spin scalar chirality, and skyrmion number in
each sublattice. The spin structure factor for sublattice α =
A, B is defined as

Sμ(α, q) =
〈

1

N

∑
j,k

Sμ
α jS

μ

αkeiq·(Rα j−Rαk )

〉
, (2)

where μ = x, y, z, Rα j is the position vector at site j on
sublattice α, N is the number of unit cells, and 〈· · · 〉 is the
average over the Monte Carlo samples. We also calculate the
in-plane spin structure factor, S⊥(α, q) = Sx(α, q) + Sy(α, q).
The magnetization for sublattice α is defined as

Mα =
〈

1

N

∑
j

Sz
α j

〉
. (3)

The local spin scalar chirality of the triangle on sublattice α is
defined as

χαr = Sα j · (Sαk × Sαl ), (4)

where the position vector r represents the triangle center and
the triangle consists of ( j, k, l ) sites labeled in counterclock-
wise order. The uniform spin scalar chirality of sublattice α is
given by

χ sc
α =

〈
1

N

∑
r

χαr

〉
. (5)

The skyrmion density at the triangle r on sublattice α [46] is
defined as

tan

(
	αr

2

)
=

[
Sα j · (Sαk × Sαl )

1 + Sα j · Sαk + Sαk · Sαl + Sαl · Sα j

]
. (6)
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Then, the skyrmion number for sublattice α is given by

Nα
sk = 1

4πNm

〈∑
r

	αr

〉
, (7)

where Nm is the number of magnetic unit cells.
To judge whether the obtained spin configurations are topo-

logically nontrivial, we compute a total skyrmion number
(N tot

sk ) and a staggered skyrmion number (N stagg
sk ) as

N tot
sk = ∣∣NA

sk + NB
sk

∣∣, (8)

N stagg
sk = ∣∣NA

sk − NB
sk

∣∣. (9)

By using them, we categorize a topological property into four
types: ferrochiral (FC) SkX with N tot

sk �= 0 and N stagg
sk = 0,

antiferrochiral (AFC) SkX with N tot
sk = 0 and N stagg

sk �= 0, fer-
richiral (FerriC) SkX with N tot

sk �= 0 and N stagg
sk �= 0, and trivial

states with N tot
sk = 0 and N stagg

sk = 0.

III. RESULTS

A. Zero-field phase diagram

Figure 2(a) shows the phase diagram on the �-K (|X AB|-K)
plane obtained by simulated annealing. By introducing K ,
the single-Q spiral state shows the instabilities toward three
multiple-Q states: chiral stripe (CS) I, CS II, and FC (AFC)
SkX II for positive (negative) X AB. The spin configurations of
two CS states are characterized by a double-Q superposition
of the spiral wave at Qspiral

α ≡ Qη and the sinusoidal wave at
Qsin

α ≡ Qη′ (η �= η′) in each sublattice α [23,47–49]. Although
their sinusoidal component is the same for sublattices A and
B in both CS states, i.e., Qsin

A = Qsin
B , the spiral components

are different from each other: Qspiral
A �= Qspiral

B for CS I and
Qspiral

A = Qspiral
B for CS II. The CS states are the trivial states

without N tot
sk and N stagg

sk .
Meanwhile, FC (AFC) SkX II appears for K � 0.095 and

positive (negative) X AB, which indicates that a nonzero but
small � � 15.5π/240 (|X AB| � 0.041) is enough to stabilize
the SkXs. In both SkXs, the spin configurations on each
sublattice are characterized by the triangular lattice of the
skyrmion, while the constituent skyrmions are different, as
shown in Figs. 2(b) and 2(c): (pα, vα, Nα

sk ) = (−1,+2,−2)
for α = A, B [Fig. 1(d)] in FC SkX II and (pA, vA, NA

sk ) =
(+1,+2,+2) [Fig. 1(e)] and (pB, vB, NB

sk ) = (−1,+2,−2)
[Fig. 1(d)] in AFC SkX II. In the end, FC SkX II has the uni-
form skyrmion number as N tot

sk = 4 and N stagg
sk = 0, whereas

AFC SkX II has the staggered skyrmion number as N tot
sk = 0

and N stagg
sk = 4. The key ingredients for FC and AFC SkX

II are the (anti)ferromagnetically coupled bipartite structure
and itinerant nature giving nonzero positive K . We find that
AFC SkX II is regarded as the antiferromagnetic SkX since
the opposite sign on the skyrmion number arises from the
opposite polarity. Note that such an antiferromagnetic SkX
with a high topological number has not been found so far.
Furthermore, our mechanism does not require a multilayer
structure to stabilize the antiferromagnetic SkX [31,50]. The
phase diagram in Fig. 2(a) is discussed by using analyti-
cal calculations based on the spin ansatz in each phase in
Appendix C.

FIG. 2. (a) Phase diagram on the �-K (|X AB|-K ) plane at T =
0.01. CS, FC SkX, and AFC SkX represent the chiral stripe state,
ferrochiral SkX, and antiferrochiral SkX, respectively. Inset: The
honeycomb structure with sublattices A (white) and B (gray). d∗

η

(η = 1–3) is the vector of three nearest-neighbor bonds. Snapshots
of the (b) FC and (c) AFC SkXs II at � = π/12 and K = 0.4.
Upper left (right) panel: Spin (Si) and chirality (χr) configurations on
sublattice A (B). Lower panel: Spin configuration on the honeycomb
lattice. The arrows, contours of arrows, and contours of circles show
the xy spin component, z spin components, and spin scalar chirality,
respectively. (pα, vα, Nα

sk ) and (N tot
sk , N stagg

sk ) are shown in the upper
and lower panels, respectively.

B. Finite-field phase diagram

We further show rich topological spin textures by introduc-
ing the magnetic-field term HZeeman = −H

∑
α,i Sz

αi, where
we set H > 0 favoring the negative polarity of the skyrmion.
Figure 3(a) shows the �-H phase diagram at fixed X AB < 0
and K = 0.4. We find multiple SkX instabilities driven by the
magnetic field for � � π/4 (|X AB| � 0.5): FC SkX I, AFC
SkX I, and FerriC SkX. We discuss the details of the spin
configurations in each field-induced SkX in the following. We
detail the other trivial phases denoted as I–V in Appendix D.

FC SkX I is constituted of the skyrmion with
(pα, vα, Nα

sk ) = (−1,+1,−1) [Fig. 1(a)] for both sublattices
(α = A, B), as shown in Fig. 3(b), whose vorticity and the
skyrmion number are halved compared to FC SkX II in
Fig. 2(b), i.e., N tot

sk = 2 and N stagg
sk = 0. Meanwhile, FC SkX

I is stabilized even for negative X AB, which is qualitatively
in contrast to FC SkX II stabilized only for positive X AB.
The emergence of FC SkX I is due to the different skyrmion
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FIG. 3. (a) Phase diagram on the �-H plane at X AB < 0, K = 0.4, and T = 0.01. FC SkX, AFC SkX, and FerriC SkX represent the
ferrochiral SkX, antiferrochiral SkX, and ferrichiral SkX, respectively. I–V are nontopological phases. Snapshots of (b) FC SkX I at � = π/8
and H = 0.5, (c) AFC SkX I at � = π/8 and H = 0.4, and (d) FerriC SkX at � = π/8 and H = 0.375, which corresponds to Figs. 2(b)
and 2(c).

core positions to gain the energy by JX AB; the skyrmion
core at sublattice B represented by the circle is separated
from that at sublattice A by the triangle so as to form
the honeycomb network, as shown in Fig. 3(b). A similar
shift of core positions has been found in three-sublattice
SkXs in the antiferromagnetic triangular and kagome
systems [30,33].

AFC SkX I consists of the skyrmions with (pA, vA, NA
sk ) =

(−1,+1,−1) [Fig. 1(a)] and (pB, vB, NB
sk ) = (−1,−1,+1)

[Fig. 1(c)], as shown in Fig. 3(c), which results in N tot
sk =

0 and N stagg
sk = 2. In contrast to AFC SkX II, the opposite

sign of Nα
sk in AFC SkX I is owing to the opposite vorticity

in the constituent skyrmions instead of the polarity; the A-
sublattice SkX is characterized by the skyrmion spin texture
with vA = +1, while the B-sublattice one is described by the
antiskyrmion spin texture with vB = −1 in the upper panels
of Fig. 3(c). Thus, AFC SkX I is regarded as a coexisting
state of the skyrmion and antiskyrmion, where they are de-
generate in the present model without the spin-orbit coupling.
Although the domain structure of the skyrmion and anti-
skyrmion has been found [16,21], their coexisting ordered
state has not been discovered without the multilayer structure
so far [38]. The (anti)skyrmion cores in AFC SkX I are aligned
in a one-dimensional way, breaking the threefold rotational
symmetry.

The FerriC SkX sandwiched by AFC SkX II and AFC
SkX I is formed by the skyrmions with (pA, vA, NA

sk ) =
(−1,+1,−1) [Fig. 1(a)] and (pB, vB, NB

sk ) = (−1,−2,+2)
[Fig. 1(f)], as shown in Fig. 3(d). Thus, this state has nonzero
N tot

sk = 1 and N stagg
sk = 3 with a ferritype alignment of Nα

sk.
The appearance of the FerriC SkX might be owing to the
multisublattice system in itinerant magnets since the SkX
with |Nα

sk| = 2 is only realized for nonzero K . Indeed, such
instability has not been reported in the isotropic localized
spin model. The FerriC SkX is quite different from the other
sublattice SkXs reported in the present study and previous
studies: In the previous findings, the spin configurations on

each sublattice are usually energetically degenerate, while the
FerriC SkX consists of two SkXs with different energy. The
stabilization of this novel intermediate state between AFC
SkX I and AFC SkX II is a consequence of the competition
between the effective spin interactions and Zeeman effect: The
former tends to favor the SkX with |Nsk| = 2, while the latter
tends to favor the SkX with |Nsk| = 1 [22,51].

IV. SUMMARY

To summarize, we theoretically propose a rich variety of
SkXs in the itinerant honeycomb magnet by the synergy
of the spin, charge, and sublattice degrees of freedom. By
constructing the ground-state phase diagram of the effective
spin model for the honeycomb KLM, we find five topological
spin textures with different topological properties: ferrochiral
SkXs I and II, antiferrochiral SkXs I and II, and ferrichiral
SkX. We demonstrate that the essence lies in the competition
among the bilinear interaction between different sublattices,
positive biquadratic interaction, and magnetic field. Since the
total (staggered) skyrmion number is closely related to the
emergence of the topological Hall (spin Hall) effect, one ex-
pects a variety of transport phenomena driven by the emergent
electromagnetic field. The important conditions to induce the
present multiple SkX instabilities are the positive biquadratic
interaction arising from the itinerant nature, the bipartite lat-
tice structure, and the negligibly small spin-orbit coupling.
These conditions imply that itinerant magnets with other bi-
partite lattice structure are also candidates for topological spin
textures, such as an antiferromagnetic hedgehog lattice in the
diamond structure.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
SPIN INTERACTIONS

We derive the effective spin model in Eq. (1) in the main
text by starting from the honeycomb KLM. The honeycomb
KLM is given by

HKLM = −
∑
α,β

∑
i, j,σ

tαβ
i j c†

αiσ cβ jσ

+ JK

∑
α

∑
i,σ,σ ′

c†
αiσ σσσ ′cαiσ ′ · Sαi. (A1)

Here, c†
αiσ (cαiσ ) is a creation (annihilation) operator of an

itinerant electron with spin σ at site i on sublattice α = A, B,
and Sαi is a classical spin (|Sαi| = 1) at site i on sublattice
α. The first term represents the electron hopping. The second
term represents the spin-charge coupling between the itiner-
ant electron spin and localized spin at the same site, where
σσσ ′ = (σ x, σ y, σ z )σσ ′ is a vector of the Pauli matrices. We
rewrite the model in Eq. (A1) in momentum space as

HKLM =
∑
α,β

∑
k,σ

ε
αβ

k c†
αkσ

cβkσ

+ JK√
N

∑
α

∑
k,q,σ,σ ′

c†
αkσ

σσσ ′cαk+qσ ′ · Sαq. (A2)

Here, ε
αβ

k = −∑
i tαβ

i0 e−ik·(Rαi−Rβ0 ) = (εβα

k )∗ and N is the
number of unit cells. The first term is diagonalized by the
unitary matrix Uk as

λa
k =

∑
α,β

(
U aα

k

)†
ε

αβ

k U βa
k , (A3)

where a = 1, 2 is the band index, and

Uk = 1√
2

(
1 εAB

k /
∣∣εAB

k

∣∣
−εBA

k /
∣∣εBA

k

∣∣ 1

)
, (A4)

λ1
k = εAA

k − ∣∣εAB
k

∣∣, (A5)

λ2
k = εAA

k + ∣∣εAB
k

∣∣. (A6)

Then, the KLM in the new basis is given by

HKLM =
∑

a

∑
k,σ

λa
kd†

akσ
dakσ

+ JK√
N

∑
a,b

∑
k,q,σ,σ ′

d†
akσ

σσσ ′dbk+qσ ′ ·

×
∑

α

(
U aα

k

)†
SαqU

αb
k+q, (A7)

where d†
akσ

= ∑
α c†

αkσ
U αa

k and dakσ = ∑
α (U aα

k )†cαkσ .
In Eq. (A7), we regard the second term (H′) as the pertur-

bation to the first term by assuming small JK. When expanding

the free energy with respect to H′, the second- and fourth-
order contributions are given by

F (2) = − T

2!

∫ 1/T

0
dτ1

∫ 1/T

0
dτ2〈T H′(τ1)H′(τ2)〉con, (A8)

F (4) = − T

4!

∫ 1/T

0
dτ1

∫ 1/T

0
dτ2

∫ 1/T

0
dτ3

∫ 1/T

0
dτ4

×〈T H′(τ1)H′(τ2)H′(τ3)H′(τ4)〉con, (A9)

respectively. Here, T is temperature, τ is the imaginary time,
T is the time-ordered product, and 〈· · · 〉con means the average
over the connected Feynman diagrams. After taking the aver-
age over the connected Feynman diagrams and calculating the
integral, they are written as

F (2) = T
J2

K

N

∑
q

∑
α,β=A,B

∑
μ=x,y,z

∑
k,ω

Fβα

k Sμ
αqFαβ

k+qSμ

β−q, (A10)

F (4) = T

2

J4
K

N2

∑
q1,q2,q3,q4

∑
α,β,γ ,η=A,B

∑
μ,ν,ξ,ρ=x,y,z

∑
k,ω

×δq1+q2+q3+q4,0(δμ,νδξ,ρ − δμ,ξ δν,ρ + δρ,μδν,ξ )

×F ηα

k Sμ
αq1

Fαβ

k+q1
Sν

βq2
Fβγ

k+q1+q2
Sξ

γ q3
F γ η

k+q1+q2+q3
Sρ

ηq4
,

(A11)

with

Fk = Uk

(
G1k(iω) 0

0 G2k(iω)

)
U †

k , (A12)

where Gak(iω) = 1/(iω − λa
k + μ) is the noninteracting

Green’s function, ω is the Matsubara frequency, and μ is the
chemical potential. As shown in the following, the RKKY (bi-
quadratic) interaction in Eq. (1) is obtained from F (2) [F (4)].

From the second-order contributions, we obtain the RKKY
interaction as

F (2) = −J2
K

∑
q

∑
α,β

X̃ αβ
q Sαq · Sβ−q, (A13)

where

X̃ AA
q = X̃ BB

q

= 1

4

∑
k

(
χ11

kq + χ22
kq + χ12

kq + χ21
kq

)
, (A14)

X̃ AB
q = (

X̃ BA
q

)∗

= 1

4

∑
k

εAB
k+q∣∣εAB
k+q

∣∣
(
εAB

k

)∗∣∣εAB
k

∣∣ (
χ11

kq + χ22
kq − χ12

kq − χ21
kq

)
,

(A15)

χab
kq = −

∑
ω

T

N
Gak(iω)Gbk+q(iω)

= 1

N

f (λak) − f (λbk+q)

λbk+q − λak
> 0. (A16)

In the main text, we set JX AA = J2
KX̃ AA

Qη
= cos2 � and

JX AB = J2
KX̃ AB

Qη
= ± sin2 � with 0 < � � π/2. According

to Eqs. (A14) and (A15), X̃ AA
q is positive and larger than

014417-5
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|X̃ AB
q |. Thus, the region for 0 < � < π/4 is connected to

the honeycomb KLM in Eq. (A1), while that for � � π/4
is described by additionally introducing the direct exchange
interaction between sublattices A and B, which can modulate
X AB so as to be larger than X AA effectively.

Among the fourth-order contributions, we focus on the
biquadratic interactions with the form of (Sαq · Sβ−q)(Sγ q ·
Sη−q) in the main text by supposing the strong nesting prop-
erty at a particular set of q. Then, the fourth-order term in
Eq. (A11) is explicitly written down as

F (4)
1 = 2

J4
K

N
CAAAA

1 [(SAq · SA−q)2 + (SBq · SB−q)2], (A17)

F (4)
2 = 2

J4
K

N
CBABA

1 (SAq · SB−q)2, (A18)

F (4)
3 = 2

J4
K

N
CABAB

1 (SBq · SA−q)2, (A19)

F (4)
4 = 2

J4
K

N

(
CAABB

1 + CBAAB
1 + 2CAABB

2 − CBABA
2

−CABAB
2

)
(SAq · SA−q)(SBq · SB−q), (A20)

F (4)
5 = 4

J4
K

N
CAABA

1 [(SAq · SA−q)(SAq · SB−q)

+(SBq · SB−q)(SAq · SB−q)], (A21)

F (4)
6 = 4

J4
K

N
CAAAB

1 [(SAq · SA−q)(SBq · SA−q)

+(SBq · SB−q)(SAq · SA−q)], (A22)

F (4)
7 = 2

J4
K

N

(
CAABB

1 + CBAAB
1 − 2CAABB

2 + CBABA
2

+CABAB
2

)
(SAq · SB−q)(SBq · SA−q), (A23)

where

Cαβγ η

1 = T

N

∑
k,ω

Fαβ

k Fβγ

k+qF γ η

k F ηα

k+q, (A24)

Cαβγ η

2 = T

N

∑
k,ω

Fαβ

k Fβγ

k+qF γ η

k+2qF ηα

k+q. (A25)

In the main text, we simplify Cαβγ η

1 and Cαβγ η

2 as follows:

K (X AA)2 = 2J4
KCAAAA

1

= 2J4
K

(
CAABB

1 + CBAAB
1 + 2CAABB

2

− CBABA
2 − CABAB

2

)
, (A26)

K (X AB)2 = 2J4
KCBABA

1 = 2J4
KCABAB

1

= 2J4
K

(
CAABB

1 + CBAAB
1 − 2CAABB

2

+ CBABA
2 + CABAB

2

)
, (A27)

KX AAX AB = 4J4
KCAABA

1 = 4J4
KCAAAB

1 . (A28)

The other cases with different sets of Cαβγ η

1 and Cαβγ η

2 are left
for future studies.

TABLE I. Critical magnetic fields Hc1, Hc2, Hc3, and Hc4 for
multiple topological transitions at specific �. Here, we find AFC
SkX II at 0 � H < Hc1, the FerriC SkX at Hc1 < H < Hc2, AFC SkX
I at Hc2 < H < Hc3, and the FC SkX I at Hc3 < H < Hc4.

� Hc1 Hc2 Hc3 Hc4

Case (i) 5π/48 0.3875 0.4125 0.4825 0.8625
Case (ii) π/6 0.2625 0.3375 0.4625 0.9125
Case (iii) 7π/48 0.3375 0.3625 0.5375 0.9625

APPENDIX B: SKYRMION CRYSTALS IN THE MODELS
WITH DIFFERENT FORM FACTORS

We consider the effective spin model with different form
factors for the RKKY and biquadratic interactions, which is
given by

Heff = − 2J
∑

η

∑
α,β

X αβSαQη
· Sβ−Qη

+ 2
K

N

∑
η

⎛
⎝∑

α,β

X αβ

K SαQη
· Sβ−Qη

⎞
⎠

2

− H
∑
α,i

Sz
αi. (B1)

Here, X αβ and X αβ

K are the form factors for the RKKY in-
teraction and biquadratic interaction, respectively. Although
we consider the case of X αβ = X αβ

K in the main text for
simplicity, the form factors are usually different. In this sec-
tion, we show that the SkX phases in Fig. 3 also appear
even for X αβ �= X αβ

K . Specifically, we consider three differ-
ent X αβ

K while fixing X AA ≡ cos2 � and X AB ≡ − sin2 � to
cover various situations: (i) X AA

K ≡ cos2 � and X AB
K ≡ sin2 �,

(ii) X AA
K ≡ sin2 � and X AB

K ≡ − cos2 �, and (iii) X AA
K ≡

sin2 � and X AB
K ≡ cos2 �. By following the same manner of

the simulation in the main text, we find FC SkX I, AFC SkXs
I and II, and FerriC SkX in various � and H . For example,
we show critical magnetic fields for multiple topological tran-
sitions at K = 0.4 in Table I, where AFC SkX II appears at
low fields including H = 0, FerriC SkX appears above Hc1,
AFC SkX I appears above Hc2, FC SkX I appears above Hc3,
and other trivial states appear above Hc4 while increasing H .
In this way, a variety of SkXs discussed in the main text are
ubiquitously stabilized in the effective spin model with the
antiferromagnetic intersublattice RKKY interaction and the
positive biquadratic interaction irrespective of the form factor
X αβ

K .

APPENDIX C: ANALYTICAL CALCULATION
AT ZERO FIELD

We discuss the instability toward the CS and SkX states
in the ground states at zero field in Fig. 2(a) in the main
text by using analytical variational calculations. We consider
the model in Eq. (1) with X AA = X BB = cos2 � and X AB =
X BA = σ sin2 � (σ = ±1). Variational states for each σ are
two types of single-Q (1Q) spiral states, two types of CS
states, and SkX II. After giving the variational states and
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calculating their energies, we discuss the instability toward
the CS and SkX states from the 1Q spiral states.

1. Single-Q spiral state

We define 1Q spiral I and II states as the variational states
and calculate their energies. The 1Q spiral I state is defined by

S1QI
Ai = ex cosQ1

Ai − ey sinQ1
Ai, (C1)

S1QI
Bi = ex cosQ2

Bi − ey sinQ2
Bi, (C2)

where Qη
αi = Qη · Rαi and eμ is the unit vector along the

μ = x, y, z direction. In this state, the ordering wave vector for
sublattice A is different from that for sublattice B. Their spiral
planes are arbitrary due to continuous rotational symmetry in
spin space and are independent of each other. The energy per
unit cell is given by

E1QI = −2JX AA + K (X AA)2. (C3)

The 1Q spiral II state is defined by

S1QII
Ai = ex cosQ1

Ai − ey sinQ1
Ai, (C4)

S1QII
Bi = ex cos

(
Q1

Bi + �
)

−(ey cos θ + ez sin θ ) sin
(
Q1

Bi + �
)
, (C5)

where � and θ are variational parameters. The energy per unit
cell is given by

E1QII(�, θ ) = − 2J

(
X AA + X AB cos2 θ

2
cos �

)

+ 2K

(
X AA + X AB cos2 θ

2
cos �

)2

. (C6)

For σ = +1 (σ = −1) and K/J < 0.5, E1QII(�, θ ) has
the minimum energy at � = 0 (� = π ) and θ = 0. Then,
the minimum energy is given by E1QII = −2J + 2K . Thus,
the ordering wave vectors and spiral planes are the same be-
tween the sublattices and the spins at RAi and RBi = RAi + d∗

η

are parallel (antiparallel) in the 1Q spiral II state, where d∗
η

is the displacement vector for three nearest-neighbor bonds
shown in the inset of Fig. 2(a) in the main text.

2. Chiral stripe state

We consider the energies for the CS I and II states, which
are obtained by numerical calculations in Fig. 2(a) in the main
text. The CS I state for the model with σ = ±1 is expressed
as the superposition of the 1Q spiral I and sinusoidal waves,
whose spin configuration is given by

SCSI
Ai =

√
1 − b2 sin2 Q3

Ai

(
ex cosQ1

Ai − ey sinQ1
Ai

)
+ ezb sinQ3

Ai, (C7)

SCSI
Bi =

√
1 − b2 sin2 Q3

Bi

(
ex cosQ2

Bi − ey sinQ2
Bi

)
+ ezσb sinQ3

Bi, (C8)

where the variational parameter b (0 < b < 1) represents the
amplitude of the sinusoidal wave [23,47]. In this state, the
ordering wave vectors for the spiral (sinusoidal) wave are
different (the same) between the sublattices; the sinusoidal
wave oscillates along the direction perpendicular to the spiral
plane. It is noted that the CS I state is continuously connected
to the 1Q spiral I state by b → 0. To calculate the energy,
we use the following Fourier transform of the CS I spin
configuration:

SCSI
AQ1

=
√

N

2
C0(ex − iey), (C9)

SCSI
AQ3

= i

√
N

2
bez, (C10)

SCSI
BQ2

=
√

N

2
C0(ex − iey), (C11)

SCSI
BQ3

= i

√
N

2
σbez, (C12)

where N is the number of unit cells and C0 = 1 − b2/4 −
3b4/64 + O(b6). The energy per unit cell is

ECSI(b) = −2J

[
X AAC2

0 + b2

2
(X AA + σX AB)

]

+ 2K

[
1

2
(X AA)2C4

0 + b4

4
(X AA + σX AB)2

]
,

= −2J

[
X AA

(
1 − b2

2
− b4

32

)
+ b2

2

]

+ K

[
(X AA)2

(
1 − b2 + 3

16
b4

)
+ b4

2

]
+ O(b6),

(C13)

where we use X AA + σX AB = 1.
Next, we consider the energy for the CS II state. By

introducing the sinusoidal-wave modulation to the 1Q spi-
ral II state, we describe the CS II state for the model with
σ = ±1 as

SCSII
Ai =

√
1 − b2 sin2 Q2

Ai

(
ex cosQ1

Ai − ey sinQ1
Ai

)
+ ezb sinQ2

Ai, (C14)

SCSII
Bi = σ

√
1 − b2 sin2 Q2

Bi

(
ex cosQ1

Bi − ey sinQ1
Bi

)
+ ezσb sinQ2

Bi, (C15)

with 0 < b < 1. In this state, the ordering wave vectors for the
spiral (sinusoidal) wave, the spiral planes, and the oscillation
directions of the sinusoidal wave are the same between the
sublattices. As well as the CS I state, the sinusoidal wave
oscillates along the direction perpendicular to the spiral plane
and the CS II state is continuously connected to the 1Q spiral
II state by b → 0. The energy per unit cell is

ECSII(b) = −2J (X AA + σX AB)

(
C2

0 + b2

2

)

+ 2K (X AA + σX AB)2

(
C4

0 + b2

4

)
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= −2J

(
1 − b4

32

)

+ 2K

(
1 − b2 + 7

16
b4

)
+ O(b6). (C16)

3. Skyrmion crystal II state

The SkX II for the model with σ = ±1, which also appears
in Fig. 2(a) in the main text, is expressed as the superposition
of three sinusoidal waves as

SSkXII
Ai = 1

NAi

(
cosQ1

Aiex + cosQ2
Aiey + cosQ3

Aiez
)
, (C17)

SSkXII
Bi = σ

NBi

(
cosQ1

Biex + cosQ2
Biey + cosQ3

Biez
)
, (C18)

where Nαi =
√∑3

η=1 cos2 Qη
αi. The SkX II with σ = 1 (σ =

−1) corresponds to the FC (AFC) SkX II. We approximately
give the Fourier transform of this configuration as

|SAQη
| = |SBQη

| =
√

N

6
(1 − δ), (C19)

where we introduce the variational parameter δ to take into
account the higher harmonics of the sinusoidal wave [23]. The
energy per unit cell is given by

ESkXII(δ) = −2J (X AA + |X AB|)(1 − δ)2

+ 2
3 K (X AA + |X AB|)2(1 − δ)4

≈ −2J (X AA + |X AB|)(1 − 2δ)

+ 2
3 K (X AA + |X AB|)2(1 − 4δ)

= −2J (1 − 2δ) + 2
3 K (1 − 4δ). (C20)

4. Energy comparison

We discuss the instability toward the CS and SkX states
from the 1Q spiral state. The model in Eq. (1) has three
parameters σ (sign of X AB), �, and K/J at zero field, while
the energies in Eqs. (C3), (C6), (C13), (C16), and (C20) do not
depend on σ . In other words, the phase boundary in Fig. 2(a)
is irrespective of σ , as discussed in the main text. Therefore,
we focus on � and K/J dependencies of the energy in the
following. First, we identify a parameter region I (II) where
the 1Q spiral I (II) state is more stable than the 1Q spiral II
(I) state. By solving E1QI − E1QII = 0 with respect to K , we
obtain

Kc(�)

J
= 2(1 − X AA)

2 − (X AA)2
= 2 sin2 �

2 − cos4 �
. (C21)

Then, region I (II) is defined by K > Kc(�) [K < Kc(�)]. We
show Kc(�) with the solid line in Fig. 4(a), where the Kc(�)
curve is qualitatively consistent with the phase boundary be-
tween the CS I and II phases. This is because the CS I (II)
state is continuously connected to the 1Q spiral I (II) state.
Furthermore, this result means that the spiral state at K = 0 in
Fig. 4(a) is the 1Q spiral II state. Figure 4(a) shows that the CS
I (II) and SkX II states have lower energy than the 1Q spiral I
(II) state in region I (II) at K �= 0, which we will confirm by
variational calculations in the following.

FIG. 4. (a) Phase diagram at zero field with Kc(�). The Kc(�)
curve divides the phase diagram into regions I and II. (b) K depen-
dence of the energy difference between the SkX II and 1Q spiral I
states for � = π/60 (black), � = π/30 (red), � = π/20 (orange),
� = π/15 (pink), and � = π/12 (blue), where we set δ = 0.025
based on the simulation results. We plot the data in region I, i.e.,
K > Kc(�).

a. Region I

The energy difference between the CS I and 1Q spiral I
states is given by

ECSI(b) − E1QI = − b2[J (1 − X AA) + K (X AA)2]

+ b4

16
[JX AA + 3K (X AA)2 + 8K]. (C22)

The energy difference becomes negative when

0 < b2 < 16
J (1 − X AA) + K (X AA)2

JX AA + 3K (X AA)2 + 8K

= 16
J sin2 � + K cos4 �

J cos2 � + 3K cos4 � + 8K
, (C23)

which means that the CS I state with infinitesimal b is more
stable than the 1Q spiral I state in region I. This result is
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FIG. 5. First (fourth) column: Spin (Sαi) and chirality (χαr) configurations on sublattice A (B) of (a) the trivial state I at � = π/24 and
H = 0.3, (b) the trivial state II at � = π/24 and H = 1, (c) the trivial state III at � = 5π/48 and H = 1, (d) the trivial state IV at � = π/6
and H = 1, and (e) the trivial state V at � = π/4 and H = 1. The arrows, contours of arrows, and contours of circles show the xy spin
component, z spin component, and spin scalar chirality, respectively. Second and third (fifth and sixth) columns: The in-plane [S⊥(α, q)]
and out-of-plane [Sz(α, q)] spin structure factors for sublattice A (B) in momentum space, respectively. The circle and square highlight the
dominant and subdominant peaks, respectively. The hexagons with a solid line show the first Brillouin zone. The q = 0 component is removed
for better visibility.

consistent with the ground-state phase diagram, where the 1Q
spiral I phase does not appear.

The energy difference between the SkX II and 1Q spiral I
states is given by

ESkXII(δ) − E1QI = − 2J[1 − 2δ − X AA]

+ K

3
[2 − 8δ − 3(X AA)2]. (C24)

The energy difference monotonically decreases while increas-
ing � for K/J < 1. This behavior explains that the SkX II
appears for the larger � region in Fig. 4(a). Figure 4(b) shows
the K dependence of the energy difference for various � at
δ = 0.025, where we use a typical value of δ obtained from
the numerical simulation. The result shows that the SkX II
state becomes stable in a larger K region, which is consistent
with the simulation results in Fig. 4(a). It is noted that the
discussion based on Eq. (C24) overestimates the stability of
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the SkX II state because the CS I state has a lower energy than
the 1Q spiral I state.

b. Region II

The energy difference between the CS II and 1Q spiral II
states is

ECSII(b) − E1QII = −2b2K + 1
16 b4(J + 14K ). (C25)

The stable condition for the CS II state is

0 < b2 <
32K

J + 14K
. (C26)

This explains the behavior that the 1Q spiral II state at K = 0
changes into the CS II state by introducing an infinitesimal K
in Fig. 4(a).

The energy difference between the SkX II and 1Q spiral II
states is given by

ESkXII(δ) − E1QII = 4Jδ − 4
3 K (1 + 2δ). (C27)

The SkX II has lower energy when

K

J
>

3δ

1 + 2δ
. (C28)

The absence of the � dependence is consistent with the sim-
ulation result. Specifically, the stable condition for the SkX
II state is K/J > 0.071 for δ = 0.025, which is qualitatively
consistent with the ground-state phase diagram in Fig. 4(a).
Similar to the case between the 1Q spiral I and SkX II states,

the overestimation of the stable condition might arise due to
not taking into account the CS II state.

APPENDIX D: TRIVIAL PHASES I–V

In Fig. 3, we find the field-induced trivial phases de-
noted as I–V with N tot

sk = N stagg
sk = 0. We show their spin

configurations, chirality configurations, and spin structure
factors in Fig. 5. Since all the phases exhibit the triple-Q
peaks at Q1 = (0, π/3), Q2 = (−√

3π/6,−π/6), and Q3 =
(
√

3π/6,−π/6) in the spin structure factor, they are re-
garded as triple-Q states. The trivial spin configurations I
and II are characterized by the double-Q in-plane spin struc-
ture factor and the single-Q out-of-plane one, as shown in
Figs. 5(a) and 5(b), respectively, where the peak positions
depend on the sublattices. The trivial state I is character-
ized by the sublattice-dependent in-plane spin structure factor
and sublattice-independent out-of-plane one: S⊥(A, Q1) >

S⊥(A, Q2) and Sz(A, Q3) for sublattice A and S⊥(B, Q2) >

S⊥(B, Q1) and Sz(B, Q3) for sublattice B. The trivial phase
II shows the sublattice-dependent in-plane and out-of-plane
spin structure factors: S⊥(A, Q3) > S⊥(A, Q2) and Sz(A, Q1)
for sublattice A and S⊥(B, Q1) > S⊥(B, Q2) and Sz(B, Q3)
for sublattice B. Meanwhile, the trivial spin configurations
III–V show the sublattice-independent in-plane and out-
of-plane spin structure factors: S⊥(α, Q1) = S⊥(α, Q2)
and Sz(α, Q3) for α = A, B in phase III, S⊥(z)(α, Q1) =
S⊥(z)(α, Q2) = S⊥(z)(α, Q3) for α = A, B in phase IV, and
S⊥(α, Q2) > S⊥(α, Q1) = S⊥(α, Q3) and Sz(α, Q1 − Q3) >

Sz(α, Q2) for α = A, B in phase V.
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