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Here we propose a type of ferromagnetic semiconductors: ferromagnetic negative charge-transfer energy
insulator (FNCTEI). In FNCTEI, the negative charge-transfer states strongly enhance the ferromagnetic (FM)
exchange interactions and the orbital hybridization gap permits the magnetic molecular orbitals as the un-
derlying magnetic units rather than local atomic orbitals. Thus, the FM exchange interactions are rather
strong and decay slowly due to the large spreading of magnetic molecular orbitals. This is distinct from the
superexchange mechanism where FM exchange interactions are quite weak as summarized in the well-known
Goodenough-Kanamori-Anderson semiempirical rules. Through first-principle calculations with the hybrid
functional, PbO-type CrAs monolayer is mapped out to be a FNCTEI, which possesses a band gap ∼0.35 eV, FM
nearest-/next-nearest-neighbor exchange coupling strength ∼57/40 meV, and a high Tc ∼ 1500 K respectively.
It is believed that the theoretical prediction of FNCTEI supports the hypothesis by Khomskii and Sawatzky in
1997 [Solid State Commun. 102, 87 (1997)].
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I. INTRODUCTION

Ferromagnetism (FM), one of the oldest but most myste-
rious phenomena, is still intriguing intensive studies [1–5].
The existence/vanishing of charge gap with FM gives itinerant
FM/FM semiconductor (or insulator). Different mechanisms
have been proposed for itinerant FM, like the early Nagaoka’s
theorem [6,7], flat-band ferromagnetism [8–13], multior-
bital system [14,15], etc. For ferromagnetic semiconductor
(FMSC), the underlying mechanism varies for intrinsic and
extrinsic system. The extrinsic system, also known as diluted
FMSC, is obtained via doping magnetic ions into the nonmag-
netic intrinsic semiconductor [16,17]. The multiple degree
of freedoms, including charge, spin, orbital, and impurity,
make it hard to write down a unified theory [4,18–20]. At the
same time, the difficulty in manipulating magnetic impurities
greatly hinders their developments [21]. Herein we will focus
on intrinsic FMSC.

The intrinsic combination between FM and gap can trace
back to the idea of superexchange interaction, first proposed
by Kramers [22] and then developed by Anderson [23]. In
contrast with the itinerant FM where direct exchange between
correlated orbitals are possible, superexchange interaction
relies on ligand p orbitals to mediate long-range exchange
interactions. Later on several quantitative relations on FM
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and AFM superexchange interaction were unveiled, mainly by
Goodenough [24,25], Kanamori [26], and Anderson [27].

In the 1990s, Zaanen, Sawatzky, and Allen solved the
Anderson impurity model [28,29] and classified all gapped
transition metal compounds into two types: charge-transfer in-
sulator (CTI) and Mott-Hubbard insulator (MHI) (see Fig. 1).
These two insulators are indistinguishable at the ground-state
level (labelled as |dn〉), but they have different low-energy
excitations. Among the two characteristic one-particle exci-
tations in transition metal compounds: �CT = E (|dn+1L〉) −
E (|dn〉) (L means a hole on L), which describes charge trans-
fer from p to d and Ud = E (|dn+1dn−1〉) − E (|dndn〉), which
characterizes charge fluctuation inner d shell, we have �CT

< Ud in CTI while �CT > Ud in MHI. These low-energy
excitations give rise to exchange interaction (with strength
labeled by J) when the fermionic model is reduced to spin
model. Since the condition t d p � {�CT,Ud} (where t d p is the
hopping strength between d and p orbitals) is satisfied in both
CTI and MHI, a perturbative treatment of kinetic energy is
possible. Under such circumstances, the exchange interactions
can be derived in a unified form for both CTI and MHI. The
obtained semiempirical rules thus cover the aforementioned
quantitative relations by Goodenough [24,25], Kanamori [26],
and Anderson [27] and are summarized as Goodenough-
Kanamori-Anderson (GKA) semiempirical rules nowadays
[30], which lays the foundation of modern-day understanding
of superexchange interaction. However GKA semiempiri-
cal rules impose strong constraints on FM superexchange
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FIG. 1. Schematic illustration of Zaanen-Sawatzky-Allen
scheme. The grey (orange) region is metallic (insulating) phase.

coupling strength in both CTI and MHI: The antifer-
romagnetic (AFM) is generally much stronger than FM
superexchange interaction and FMSCs seldom have ambient
Curie temperature (Tc), like the long-known bulk EuS (17 K)
[31], EuO (69 K) [32], and recently discovered 2D CrI3 (45 K)
[33], Cr2Ge2Te6 (30 K) [34]. Deviations from the standard
90◦ and 180◦ d − p − d geometries are often seen in tran-
sition metal compounds. If the deviation is small, the above
GKA semiempirical rules are still available. When the devia-
tion is large, more and more exchange channels are possible,
GKA semiempirical rules are less predictive. In this situation,
first-principles calculation is a powerful tool to determine
the competition. For materials with irregular d − p − d an-
gles between 90◦ and 180◦, the AFM (FM) J is weakened
(strengthened) with reducing d − p − d angle; therefore, it is
possible to find a balance point with strong FM [35].

As room-temperature FMSCs are the core unit of next-
generation spintronic devices, such as processing-in-memory,
spin field-effect transistors, magnetic tunneling junctions, and
so on [36–38], an alternative mechanism, which can break
the inborn bottleneck in the superexchange mechanism is thus
highly needed. Nevertheless, it seems that there is no other
insulator phase besides MHI or CTI in Fig. 1. Fortunately,
this is not the case and in recent years, a hidden insulating
phase is discovered in the previously believed metallic phase
of Fig. 1 and is now known as negative CTI [39–42]. Since
the charge gap is negative, holes are self-doped to the ligand
p orbitals even at the ground-state level [39]. It is believed
that there is strong AFM direct exchange interaction between
metal cations and ligand p holes, therefore Khomskii and
Sawatzky guessed a strong emergent FM J between two metal
cations in such kind of insulators in 1997 [43] [see Fig. 5(a)].
Although been suggested for a long time, less improvements
have been made along this line [44] when comparing with the
well-established super-exchange mechanism.

In this paper, we give a systematic investigation on this
idea, which motivate us to propose the concept of ferro-
magnetic negative charge-transfer energy insulator (FNCTEI).
This is a type of FMSC with physical properties different from
that of FM CTI or MHI. This paper is organized as follows:
in Sec. II, we set the stage by introducing the multiband
Hamiltonian to describe transition metal compounds. After

a perturbative treatment on 90◦ and 180◦ d − p − d cluster
models and a mean-field treatment on the bipartite square
lattice, the basic features of FNCTEI are sketched. In Sec. III,
we focus on the the material realization of FNCTEI. In prin-
ciple, FNCTEI can be realized in any lattice structure by
varying related parameters. Here we take PbO-type monolayer
as a prototype. By choosing Cr (As) as the transition metal
(ligand), CrAs monolayer is found to be an ideal FNCTEI. In
the closure Sec. IV, a detailed comparison between FNCTEI
and FM CTI (MHI) is made. What is more, other aspects of
FNCTEI are also discussed there.

II. HAMILTONIAN FOR TRANSITION
METAL COMPOUNDS

Transition metal compounds are described by the multi-
band d − p model [45]

Ĥ = Ĥd + Ĥp + Ĥd p, (1)

where Ĥd (Ĥp) describes d (p) shell of metal cations (ligand
anions) and Ĥd p is the intershell term between d and p shells.
For simplicity, we will use “M” and “L” for metal and ligand
from now on. Each component in Eq (1) is contributed by
kinetic and interaction terms. For example, Ĥd is given by

Ĥd = εd

∑
i,m,σ

n̂(d )
imσ +

∑
i, j,m,n,σ

(
t d
im, jnd̂†

imσ d̂ jnσ + H.c.
)

+ ud

∑
i,m

∑
i,m

n̂(d )
im↑n̂(d )

im↓ + u′
d

∑
i,m 	=n

n̂(d )
im↑n̂(d )

in↓

+ u′
d − j (d )

H

2

∑
m 	=n,σ

n̂(d )
imσ n̂(d )

inσ

− j (d )
H

∑
m 	=n

(d̂†
im↑d̂im↓d̂†

in↓d̂in↑ − d̂†
im↑d̂†

im↓d̂in↓d̂in↑), (2)

where i, m, σ are indices for the site, orbital, and spin degree
of freedom, d̂†

imσ (d̂imσ ) is the creation (annihilation) operator
for a d electron labeled by site i, orbital m and spin σ . The
first term is the on-site energy (εd ) of d orbitals. The second
term is the hopping energy (t d ) between different d orbitals
at different site, which gives d bands. The left term describes
the intra-atomic Coulomb interactions expressed by Kanamori
parameters ud , u′

d and j (d )
H . To retain the rotational invariance

in real space, we have the constraint u′
d = ud − 2 j (d )

H .
As for p shell, Ĥp have a similar form as Ĥd , and the

corresponding creation (annihilation) operator is p̂†
imσ ( p̂imσ ),

with the parameters εp, t p, up, u′
p, and j (p)

H . These intra-atomic
Coulomb interactions are usually ignored, but in fact, these
terms are not small at all, especially the Hund’s coupling for
p (O: 1.2 eV) can be even larger than d orbitals.

The last component is generally taken as hopping energy
and intershell density-density interaction

Ĥd p =
∑

i, j,m,n,σ

(
t d p
im, jnd̂†

imσ p̂ jnσ + H.c
)

+ ud p

∑
〈i, j〉,m,n,σ,σ ′

n̂(d )
imσ n̂(p)

jnσ ′ , (3)
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FIG. 2. (a) Real space description of �CT in a cluster model formed by a p connecting two d orbitals. [(b)–(d)] Energy space description
of �CT for ud > �CT > 0, �CT = 0, and �CT < 0 for model in (a). Here, only εp is the variable with all other parameters fixed. (e) A schematic
phase diagram for �CT vs εd p.

where t d p is the orbital hybridization between d and p shell,
which is responsible for crystal field splitting and ud p de-
scribes the nonlocal intershell Coulomb interaction. Believed
to be small, ud p is always abandoned so only p − d hopping
are considered. However, such an interaction is important
in stabilizing charge gap in cuprates [46,47] and modifying
exchange interactions [48].

The large parameter space makes the exact solution of
Eq. (1) intractable and approximations are necessary. For ex-
ample, p shell always lies below d shell, thus it is reasonable
to treat d shell as the only active shell. Under such circum-
stance, it is reasonable to ignore Ĥp, Ĥd p in Eq. (1) and the
full model is simplified to the Anderson lattice model (ALM)
with screened ud , u′

d , and j (d )
H . What is more, if the d bands are

narrow, it is safe to ignore t d and ALM is further reduced to
Anderson impurity model, which has been solved by Zaanen
et al. as mentioned above [28,29]. However, when p and d
orbitals are both active, the above assumption fails as both p
and d orbitals should be treated as correlated.

A. Negative charge-transfer energy insulator

Since �CT describes an electron hopping from p to
d orbitals, it is a function of εd , εp and the interaction
parameters,

�CT = εd p + Eint
(
ud , j (d )

H , up, j (p)
H

)
, (4)

where εd p is the on-site energy difference between d and
p orbitals: εd p = εd − εp and Eint (ud , j (d )

H , up, j (p)
H ) describes

the interaction contribution to �CT. A general expression of
Eint (ud , j (d )

H , up, j (p)
H ) is impossible as it depends on the d

and p fillings. For the electron hopping process represented
in Fig. 2(a), we have Eint (ud , j (d )

H , up, j (p)
H ) = ud − up as p

orbital is no longer fully occupied and d orbital becomes fully
occupied [seen in Fig. 2(b)] so

�CT = εd p + ud − up. (5)

In most transition metal compounds, p orbitals are below d
orbitals and if εd p < up, the system is a CHI as depicted in
Fig. 2(b). Suppose we can tune εp to higher energy (with εd

fixed), a special point is that εd p = up − ud (or �CT = 0)
as shown in Fig. 2(c). At this point, since the transfer of the
electron from p to d orbital does not consume energy, state
|d1〉 and |d2L〉 have the same energy and the system is gapless.
If εp continues to increase, then �CT becomes negative and

the system becomes negative charge-transfer energy insulator
[NCTEI, see Fig. 2(d)]. Configuration interaction tells us the
ground state should be a linear combination of |d1〉 and |d2L〉
when t d p is included,

|GS〉 = α|d1〉 + β|d2L〉. (6)

For CTI/NCTEI, because |d1〉 has lower (higher) energy than
|d2L〉, α should be larger (smaller) than β and they coincide
with each other when �CT = 0. There results are summarized
in Fig. 2(e). The fact that |d2L〉 has lower energy than |d1〉 in
NCTEI has huge impact on the magnetic exchange coupling.
To see this point, we will use two different methods: a pertur-
bative treatment of cluster models and a mean-field treatment
of bipartite square lattice model.

B. Perturbative treatment of cluster models

Here we study the standard 90◦ and 180◦ d − p − d geom-
etry shown in Figs. 3(a) and 3(b), the parameters marked there
are inherited from Eq. (1).

It is well known that Hubbard model preserves both U(1)
charge and SU(2) spin symmetry, with electron filling given,
all the states can be classified by the spin quantum number S.
For Hubbard model with S = 0 and S = 1 sectors available, it
is convenient to define J as the energy difference,

J = E (0)
S=1 − E (0)

S=0, (7)

where E (0)
S=1, E (0)

S=0 are the energy of ground state in the S =
1 and S = 0 sector. So J < 0 (>0) indicates a FM (AFM)
exchange coupling.

Here we consider two extremes: �CT � 0 (but still in the
CTI regime) and �CT � 0 (but avoiding fully empty p orbital)
so a perturbative treatment is possible. Table I lists the main
results and the derivation can be found in Appendix B. From
Table I, it is clear that the exchange coupling mechanism
has different behavior at these two extremes. For �CT � 0,
J of both 180◦ and 90◦ cases are quartic power of t d p and
180◦ gives strong AFM while 90◦ gives weak FM, reflecting
the GKA semiempirical rules. For �CT � 0, J is no longer
quartic, but quadratic power of t d p in 180◦ cases and is not a
function of t d p but proportional to j (p)

H in 90◦ case. Thus 180◦
gives weak AFM while 90◦ gives strong FM in this situation,
totally reversing the GKA semiempirical rules.

Such a paradigm shift stems from the fact that |d2L〉 has
larger weight than |d1〉 in NCTEI as illustrated by Eq. (6).
For 180◦ with �CT � 0, the zeroth-order state for S = 0 and
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FIG. 3. (a) 180◦ d − p − d geometry and (b) 90◦ geometry used in cluster model. Zeroth-order state of (c) S = 0 sector for 180◦ with
�CT � 0 (d) S = 1 sector for 180◦ with �CT � 0 (e) S = 0 sector for 90◦ with �CT � 0 (f) S = 1 sector for 90◦ with �CT � 0 (g) S = 0
sector for 180◦ with −up < �CT � 0 (h) S = 1 sector for 180◦ with �CT � 0 (i) S = 0 sector for 90◦ with �CT � 0 (j) S = 1 sector for 90◦

with �CT � 0. The labels 1© and 2© represent the virtual electron hopping process between d and p orbital.

S = 1 have the same energy, as shown in Figs. 3(c) and 3(d).
Since hopping process marked by 1© are allowed for both S
= 0 and S = 1, they have the same energy at this level of
perturbation [see Figs. 3(g) and 3(h)]. The energy difference
between S = 0 and S = 1 comes from the second-order
perturbation where hopping process 2© is allowed in S = 0
while forbidden in S = 1 [see Figs. 3(c) and 3(d)]. In this way,
S = 0 has lower energy than S = 1 with J positive and about
(t d p)4. The situation is almost the same for 90◦ with �CT � 0,
but when 1© and 2© [see Figs. 3(e) and 3(f)] are finished, the
state in Fig. 3(i) has higher energy than Fig. 3(j) by the amount
of j (p)

H , which gives a weak negative J .
If �CT � 0, the zeroth-order state for both geometry will

be changed. For 180◦, it is Figs. 3(g) and 3(h) for S = 0 and S
= 1 sector, which is just the state with 1© finished in Figs. 3(c)
and 3(d) (here we insist �CT > −up to void empty p orbital
in the zeroth-order state). Again, at the zeroth order, S = 0
and S = 1 have the same energy, but at the first order we can
see the energy difference as hopping process 2© is allowed in
Fig. 3(g) but forbidden in Fig. 3(h). That is the reason why
J is ∼(t d p)2. While for 90◦ case, there is already an energy

difference at the zeroth order as seen from Figs. 3(i) and 3(j),
which gives a negative J ∼ j (p)

H as listed in Table I.
From the above discussion, it is clear that negative charge-

transfer energy states lead to strong FM in the system. To
further see the effect of band structure introduced by t d ,
t p, next we are going to study the phase diagram on two-
dimensional (2D) bipartite square lattice at the mean-field
level [49].

C. Mean-field study of bipartite square lattice

The bipartite square lattice is shown in Fig. 4(a). To study
both FM and (π , π )-AFM state, a

√
2 × √

2 supercell was
applied. Here we fixed εd = 0 and varied εp. For hopping
terms, t d and t d were fixed to be –0.5 eV (i.e., Wd = Wp =
4 eV) and t d p was varied. For the interacting parameters, we
fixed ud = 9 eV and up = 6 eV so ud/|t d | and up/|t p| is 18
and 12. With each d/p orbital contributes 1/2 electrons, the
total electron filling (Ne) in the supercell is 6.0. A 100 × 100
k-point grid was applied for integration and the temperature
was set to 30 K. During the mean-field simulation, 10 initial

TABLE I. Results of J for 180◦ and 90◦ d − p − d geometry for CTI and NCTI at extreme condition, here �CT is defined by Eq. (5).

Geometry �CT � 0 �CT � 0

180◦ 4(td p )4

�2
CT

(
1

ud
+ 2

2�CT+up

)
(�CT < ud ) 4(td p )2

�CT+up
(�CT > −up)

90◦ − 4(td p )4

(�CT−2up+5 j(p)
H )2

(
1

(2�CT−3up+8 j(p)
H )− j(p)

H

– 1

(2�CT−3up+8 j(p)
H )+ j(p)

H

) −2 j (p)
H
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FIG. 4. (a) Bipartite square lattice. The blue/red filled circle represents p/d orbital. The dashed square represents a
√

2 × √
2 supercell.

(b) Initial magnetic phases used in the mean-field calculation. (c) Phase diagram, here εd = 0, ud = 9 eV, and up = 6 eV. (d) Partial DOS of
points marked by stars in (c). (e) Schematic representation of hybridization gap.

magnetic phases were applied as shown in Fig. 4(b). The label
“FMd -FMp-FM” means that both d and p sublattices form FM
order and the whole magnetic order is FM. The threshold for
charge self-consistency was 10−5.

The calculated phase diagram is shown in Fig. 4(c). When
εp is far below εd , it is d orbital that is active, which forms
AFM order (as d is half filled). Therefore, the ground state is
AFMd -PMp. On the contrary, when εp is much higher than
εd , it is p orbital that is active, which gives a PMd -AFMp

ground state (as p is also treated as correlated orbital here).
These two extreme cases are in accordance with the per-
turbative treatment of cluster model. What is intriguing is
that FMd -FMp-FM straddles with intermediate εp and such
a phase is roughly symmetric with respect to εp = 3 eV (or
�CT = 0 eV) as shown in Fig. 4(c). Such a phenomena can
be understood as follows: with �CT close to zero, either d
or p orbital is away from fully occupied (especially all long-
range magnetic orders are metallic when �CT = 0 eV), which
gives the possibility of FM order in both d and p orbitals.
This is further confirmed by the fact that with large −t d p,
FMd -FMp-FM can sustain in region with large |εp|. Although
FMd -FMp-FM at εp = 3 eV is metallic, insulating phase
can be find away from εp = 3 eV. Figure 4(d) displays the
spin resolved partial density of state (DOS) of FMd -FMp-FM
phase for different εp [marked as stars in Fig. 4(c) where t d p

was fixed to –1.0 eV]. When εp is close to 3 eV, the system
remains metallic. Nevertheless, when εp is 0 or 6 eV, the
system is insulating. The mechanism for gap opening at εp =
0 eV is orbital hybridization, as illustrated in Fig. 4(e). With εp

= 0 eV, εd,↓ – εp,↓ ∼ (Wd + Wp)/2, so a moderate t d p is able

to open a large gap. However, if εd,↓ – εp,↓ � (Wd + Wp)/2,
then the system will become a CTI, which prefers AFMd -PMp

order. Meanwhile, if if εd,↓ – εp,↓ � (Wd + Wp)/2, then huge
t d p is required to open a gap, which will drive the system to
other magnetic orders.

In summary, with �CT negative or close to zero, the ex-
otic FMd -FMp-FM emerges and a moderate t d p can open
a hybridization gap under the condition that εd,↓ – εp,↓ ∼
(Wd + Wp)/2.

D. Ferromagnetic negative charge transfer energy insulator

Here we would like to call the ferromagnetic insulator like
Fig. 4(e) “ferromagnetic negative charge-transfer energy insu-
lator”. Compared with FM CTI or MHI, here the origin of gap
is due to d-p orbital hybridization [50], rather than electron-
electron correlations. Due to d-p hybridization, the obtaining
bonding and antibonding orbitals in spin down channel of
Fig. 4(e) are no longer localized d/p orbitals, but magnetic
molecular orbitals (MMOs), which are linear combination
of local d and p orbitals. These MMOs are nonlocal with
large orbital spreadings and can reproduce the origin idea of
Khomskii and Sawatzky [43]. Taken a bipartite square lattice
formed by M and L [shown in Fig. 5(b)] as example, both
the nearest (NN) and next-nearest neighbor (NNN) superex-
change interaction (J1 and J2) are emergent FM according
to Khomskii and Sawatzky [43]. In FNCTEI here, we are
treating a MMO whose orbital spreading has a characteristic
length covering both NN and NNN. Within this characteristic
length, all exchange coupling should be FM and thus both J1
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FIG. 5. (a) Schematic representation of emergent FM exchange
coupling mediated by hole on L p orbital. The black dashed line
represent strong AFM direct exchange coupling between M and L.
(b) Magnetic molecular orbital with wave function extending over
next-nearest neighbors, both J1 and J2 are FM. The large (small)
circle represent M d (L p) orbital.

and J2 are FM, in accordance with argument from Khomskii
and Sawatzky [43].

To find FNCTEI in real materials, a multiband extension
is required to take multiple d filling into consideration. At
first glance, it is reasonable to assume that all d (p) orbitals
have the same εd (εp) as the orbital splitting induced by point
charges are generally small, therefore j (d )

H ( j (p)
H ) will align

spin polarization on d (p) shell to high spin configuration,
making the picture in Fig. 4(e) still valid except that Fermi
level can be higher. This makes two major differences. Firstly,
from Fig. 4(e), it is clear that not all d filling can give a gap
order so we have the idea of “ideal d filling”: only at this
d filling that the system exhibits a gap. When the d filling
departs from “ideal d filling”, extra electron/hole then enters
antibonding/bonding orbitals of spin down channel, which
destabilize the FM order. In this sense, the FM and gap order
are synergistic in FNCTEI. Secondly, we need to consider
another case when parts of d orbitals are empty. A simple
calculation show that when �CT is close to zero or negative,
FMd -FMp-AFM will be the preferred ground state rather than
FMd -FMp-FM (see Appendix C). It is further noted that if the
local spin of M is 1/2, the coupling between d and p can lead
to bounded Zhang-Rice singlets [51], which makes the system
nonmagnetic (NM). Therefore, it is better for local spin of M
to be in the classical limit. In the following, we will consider
this situation only.

Strictly speaking, a semiconductor with FMd -FMp-AFM
order should be coined as “ferrimagnetism” rather than fer-
romagnetism. But such a ferrimagnetism is inborn in the
mechanism of FNCTEI, which is slightly different from nor-
mal ferrimagnetism where the underlying local spins come
from different transition metal cations. For this reason, we still
use “ferromagnetism” in FNCTEI.

III. MATERIAL REALIZATION

A. Material candidate

In this section, we look for material realization of FNCTEI.
In principle, FNCTEI can be realized in any lattice structure.
Here we choose PbO-type ML monolayer as an example. Such
a binary lattice structure resembles the bipartite square lattice:
the M atoms form a square lattice with L positioned in the
middle of each square, alternatively above or below the paper

plane. What is more, it is shared by ThCr2Si2- [52–55] and
ZrCuSiAs-family materials [56–59] and has been widely stud-
ied due to the raising of Fe-based superconductors [60–62].

For the M-L combinations, M = V, Cr, Mn and L = P, As,
Sb are selected. In transition metal oxides, it is well known
that �CT systematically decreases with increasing atomic
number or increasing formal valence of the metallic ions
[63]. For 3d metal cations with high-oxidation state (Cr4+,
Co3+, Ni3+, Cu3+), �CT can be very small or even negative.
Therefore, we choose L from pnictogen family, which gives
M a high oxidation M3+. Nitrogen is ignored on purpose for
its strong ionicity and weak covalent bonding with M. As for
the metal ions, V, Cr, Mn are chosen to tune d filling (n) 2 ∼ 4.
Here we focus on 3d transition metals for two reasons: firstly,
they are lighter than their 4d and 5d cousins, the relativistic
effect will be much weaker and would not drive the FM
phase to other phases like quantum spin liquid [64]. Secondly,
3d orbitals has large j (d )

H than 4d and 5d , therefore high
spin state is favored when multiple spin configurations are
possible [65].

B. Paramagnetic phase

We first turn to the PM phase. The fitted single-particle
parameter is shown in Fig. 6 (see Appendix D for model
parameters fitting). Figure 6(a) shows the band structure with-
out t d p. Due to the high oxidation state of M, p orbitals are
entangled with d orbitals, making the εd p close to 0 or even
negative. When L goes from P to Sb, both Wp and Wd get much
wider (from 4 to 8 eV). Figure 6(b) displays the strength of
different p − d hybridization channels [see Fig. 11(c) and Ta-
ble IV for the definition]. The p − d − 5 is the strongest in the
buckling-free case such as in CuO2 plane, but now it becomes
almost the smallest (only larger than p − d − 8). Thus such
buckling cannot be regarded as small geometrical deviation
here. The strongest p − d hybridization now becomes the
p − d − 1 channel, which can be as large as 1.1 eV in VP
and CrP, such a large σ -type hopping is quite astonishing. The
second largest comes from the p − d − 2, which is 1.0 eV in
VP and MnP. Such large multiple p − d hybridizations are
essential to open a hybridization gap considering the large Wp

and Wd . Seen from Fig. 6(b), as L goes from P to Sb, nearly
all p − d hybridizations become smaller. Considering the fact
that Wp and Wd get wider from P to Sb, it will be harder for
MSb to open a gap than MP and MAs in the FM phase.

Table II lists all the interaction parameters for the nine
ML monolayers. The ud is the leading energy scale, which
is around 9 eV. The up term, the Hubbard interaction on
p shell, is smaller but can be as large as 6 eV. Therefore
the electron-electron correlations on p are large enough to
form a submagnetic order. With L becoming heavier, ud and
up undergo large decreases. For example, when we go from
MnAs to MnSb, the reduction of ud (up) is up to 2.8 eV
(2.3 eV). On the contrary, the Hund’s coupling j (d )

H and j (p)
H

are less influenced by the elemental differences and remain
values proximate to 0.60 and 0.40 eV. Another noticeable fact
is the large intershell Coulomb interaction ud p, such a value is
much larger than that in iron-based superconductors [66] and
comparable with that expected in cuprates [47].
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FIG. 6. (a) Band structure of PM ML monolayer without t d p. The high symmetric k-path is �-X-M-�: (0.0, 0.0, 0.0)–(0.5, 0.0, 0.0)–(0.5,
0.5, 0.0)–(0.0, 0.0, 0.0). (b) Strength of t d p in different p − d hopping channel according to Table IV. To avoid phase dependence of t d p, the
phase is chosen so that all t d p is positive. The unit is eV.

C. Ferromagnetic phase

1. n = 3

We first consider n = 3 and take CrAs as an example.
Without p − d hybridization, both spins are metallic as shown
in Figs. 7(a) and 7(b). Compared with PM, εd p experiences
huge changes: spin up p still highly entangle with d orbitals

TABLE II. Interaction parameters obtained from cRPA calcula-
tion. The unit is eV.

System ud u′
d j (d )

H up u′
p j (p)

H ud p

VP 9.34 8.24 0.55 6.60 5.70 0.40 3.90
VAs 9.31 8.19 0.56 6.04 5.21 0.38 3.65
VSb 7.77 6.72 0.53 5.22 4.54 0.40 2.97
CrP 9.60 8.39 0.61 6.80 5.86 0.45 3.95
CrAs 8.89 7.67 0.61 6.08 5.25 0.46 3.37
CrSb 7.16 5.90 0.64 4.41 3.64 0.41 1.88
MnP 8.80 7.55 0.63 6.38 5.40 0.42 3.74
MnAs 9.39 8.07 0.66 6.34 5.47 0.47 3.66
MnSb 6.52 5.18 0.68 4.04 3.28 0.41 1.62

with several p bands higher than d bands while spin down
p are well separated from d bands. With p − d hybridization
turning on, an indirect (direct) gap ∼0.35 eV (2.82 eV) opens
in the spin up (down) channel as shown in Figs. 7(c) and
7(d), which makes FM CrAs monolayer a semiconductor. The
origin of gap in different spin channels are different, as can be
seen in the orbital projected band structure in Figs. 7(c) and
7(d). For spin up channel, both p and d orbitals have com-
peting weights on the antibonding orbitals (mainly formed
by px, py, dxz, dyz, dxy as marked by light-yellow region) and
several bonding orbitals, therefore the origin of gap here is
orbital hybridization. Due to the large t d p between px (py) and
dxz (dyz) in channel p − d − 1 and between px + py and dxy

in channel p − d − 2, we can see a global gap in the spin up
channel here. As for spin down channel, the gap is mainly
assigned to the large εd p, as the antibonding (bonding) orbitals
are dominated by the Cr 3d (As 3p) orbitals.

To see the magnetic molecular orbitals in the spin up chan-
nel, here we downfold the four antibonding magnetic Wannier
functions (MWFs) and the results are plotted in Fig. 7(e). We
find that the these MWFs consist of small CrAs clusters, rather
than individual Cr or As atoms. To be specific, WF-1 is formed
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FIG. 7. [(a),(b)] Band structure of FM CrAs monolayer without t d p for spin up/down channel. [(c),(d)] Orbital-resolved band structure
for spin up/down channel. The left/right panel is for Cr/As respectively. The antibonding bands are marked by shaded yellow region in (c).
In (c) and (d), different colors are used to stand for different atomic orbitals. (e) The four maximally localized Wannier functions for the
antibonding orbitals for up spin. Red-dashed rectangle represents unit cell. (f) Evolution of effective magnetic moment (black) and magnetic
susceptibility (blue) with respect to temperature.

by As1 px, Cr2 dxy, and Cr1 dxz while WF-2 is constituted by
As1 py, Cr2 dyz, and Cr1 dxy, the other two WFs are equivalent
to WF-1 and WF-2. Such a linear combination of orbitals
is in accordance with the orbital composition of these bands
depicted in Fig. 7(c). Two consequences come along: at first, p
orbitals are populated with non-negligible holes, which gives
a local magnetic moment –0.42 μB. Secondly, WFs are highly
non-local and even cover the NNN Cr dimmers as plotted in
Fig. 5(b). As discussed in Sec. II, both J1 and J2 should be
FM.

According to energy mapping method (see Appendix E),
the calculated J1 and J2 are –56.8 and –39.7 meV, both are
ferromagnetic. In FM MHI and CTI, one expects the J to
be rather short-range, the real surprise here is the magni-
tude of J2 over J1. The ratio J2:J1 ∼ 1/

√
2:1 strongly implies

linear-law scaling here. As both J1 and J2 are ferromagnetic,
the magnetic ground state in such a square lattice is FM,
in accordance with first-principles calculations. To determine

Tc, classical Monte Carlo (MC) simulations are performed
for a 32 × 32 × 1 supercell based on Heisenberg Hamilto-
nian with J1 and J2 [67]. During FM-PM phase transition,
magnetic susceptibility is calculated after the system reaches
equilibrium at a given temperature, then Tc corresponds to
the position of peak in magnetic susceptibility plot as shown
in Fig. 7(f). As anticipated, an ultrahigh Tc ∼ 1500 K is
obtained. For 2D magnets, strong magnetic anisotropy en-
ergy (MAE) is needed to break the Hohenberg-Merin-Wagner
theorem [68,69]. Since the highest occupied and lowest un-
occupied orbital are mainly contributed by Cr dxz/yz and dxy

in spin up [see Fig. 7(c)], the orbital angular momentum
difference (||�Lz||) between these orbitals is 1, the prefer
spin orientations of magnetic ions should be perpendicular
to out-of-plane direction [70,71]. To verify this point, spin-
orbit coupling (SOC) is taken into account in calculating the
relative energies along (001) and (100) direction. It is (100)
that is the easy axis, in accordance with orbital composition
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FIG. 8. [(a)–(c)] Band structure of FM CrP, CrAs, and MnAs monolayer. (d) A schematic phase diagram with respect to n. (e) Phonon
spectrum of FM CrAs monolayer. (f) AIMD simulation of FM CrAs monolayer at 1000 K. (g) Top and side view of snapshot taken at 5 ps in
AIMD simulation.

analysis. The calculated MAE is ∼0.37 meV/Cr, comparable
to that in CrI3 [72].

Now we count the electron filling. For the 18 electrons
from Cr d and As p orbitals, 6 of them occupy the spin down
bands and the left 12 electrons occupy the spin up bands. Seen
from Fig. 7(c), these 12 electrons just fill bands up to the
gap, which makes CrAs monolayer a semiconductor. In this
sense, n = 3 is “ideal d filling” for such a lattice structure.
Along this logic, CrP and CrSb monolayer should also belong
to FNCTEI. Figures 8(a) and 8(b) show the band structure
of FM CrP and CrSb monolayer. CrP monolayer resembles
CrAs monolayer very much, which is also a small gap semi-
conductor with similar J1 and J2 as displayed in Table III. As
for CrSb monolayer, because of larger Wp (Wd ) and smaller
t d p, there is no global gap in Fig. 8(b), which makes CrSb
monolayer a compensated half-metal. The calculated J1 and J2

(see Table III) of CrSb monolayer are smaller than CrAs and
CrP monolayer, which gives a slightly lower Tc ∼ 1260 K.

TABLE III. Exchange coupling strength and estimated Tc for
different FM monolayers.

System J1 (meV) J2 (meV) Tc (K)

CrP −55.3 −36.2 1420
CrAs −56.8 −39.7 1500
CrSb −51.7 −25.8 1260
MnAs −11.7 −32.5 1187

2. Other fillings

VL and MnL can be regarded as one hole and elec-
tron doped CrL per unit cell. Generally speaking, the extra
charge doping will mediate FM exchange interactions be-
tween localized electrons, thus enhancing FM in the system.
Nevertheless, from Fig. 4(e), the doping of holes (electrons)
will decrease (increase) the occupation of bonding (antibond-
ing) states, hence destabilizing the FM ground state (see
Appendix G for details). The compete between these two
factors may drive FM-AFM transition. To see the robustness
of FM in FNCTEI, here we go on studying VL and MnL
monolayers. For VL, no magnetic orders are found, which
maybe due to the small local magnetic moment on V. For
MnL, FM solutions are found for MnAs while MnP and MnSb
prefers AFM ground state [73]. The band structure of FM
MnAs monolayer is depicted in Fig. 8(c), which is a half-
metal. Table III lists J1 and J2 value of MnAs, it is clear that
J1 is much smaller than that in CrL, suggesting the destabi-
lization effect is much stronger than itinerant enhancement.
Such a phenomena can be taken as an indicator for FNCTEI
in experiment. With large J2 and larger magnetic moments,
the Tc of MnAs monolayer is still over 1100 K.

Figure 8(d) summarizes the results for all the FM mono-
layers. For the “ideal d filling” n = 3, FNCTEI is found
in CrAs and CrP monolayer, a nearby phase of FNCTEI is
FM compensated half-metal, as found in CrSb monolayer.
Deviating from ideal filling, no FM is obtained in n = 2 while
FM half-metal phase is possible for n = 4, like in MnAs
monolayer.
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3. Stability of CrAs monolayer

The existence of bulk CrAs in nature [74,75] suggests the
1:1 stoichiometric ratio in CrAs monolayer is charge feasi-
ble. The stability of CrAs monolayer is confirmed by both
phonon spectrum and ab-initio molecular dynamics (AIMD)
[Figs. 8(e)–8(g)], in accordance with previous report [76]. The
stability indicates an experimental preparation of CrAs mono-
layer is possible. With layered BaCr2As2 [54] and LaCrAsO
[59] synthesized in experiments, CrAs monolayer can be ob-
tained by either etching [77] or electrochemical reactions [78]
from these layered materials. Another synthetic method is
molecular-beam epitaxy and BaZrO3 (001) [or MgO (001)]
is a perfect substrate with 1:1 lattice match. Such a strategy
has shown success in CoSb monolayer preparation [79,80].

IV. DISCUSSION AND CONCLUSIONS

Up to here, we illustrate the concept of FNCTEI and sug-
gest the material realization in CrAs monolayer. FNCTEI are
different from FM CTI and MHI from the following aspects:
(1) Origin of gap. In FM CTI and MHI, the gap is origi-
nated from electron-electron correlation and is always large.
However in FNCTEI, the gap comes from d-p hybridization,
which is commonly small. Since strong orbital hybridization
reflects the covalency nature of the system, FNCTEI thus lies
at a special point where kinetic and interaction energy make
peace. In this regard, HSE06 functional is a good functional
to study FNCTEI from perspective of first-principles calcula-
tion (see Appendix A for a detailed discussion). (2) Scaling
behavior of J . In FM CTI and MHI, the building motifs of
magnetic interaction are local atomic orbitals with nearly fully
filled p orbitals, so J decays quickly with respect to distance
between magnetic pairs. However, in FNCTEI, the building
motifs are MMOs, theirs large orbital extension gives slowly
decaying J within MMOs and sudden drop beyond MMOs
(see Appendix F). (3) Response to electron/hole doping. In
FM CTI and MHI, electron or hole doping tends to bring
itinerant FM into the system and thus enhancing FM. While
in FNCTEI, extra electron or hole will destabilize the pristine
FM phase (see Appendix G for details). This may explain why
LaCrAsO occupies AFM order [59]. Replacing La by Sr, part
of Cr2+ will become Cr3+ and a AFM-FM transition may be
observed.

It is well known that Wd and Wp will becomes larger as the
system grows from 2D to 3D, thus FNCTEI is harder to be
found in pure 3D than 2D materials. In 2D materials, because
the band width and d-p hybridization are easily tuned by
external strain, a FM metal-to-insulator phase transition can
be achieved via strain engineering. Such a phenomena would
be hard to observe in FM CTI or FM MHI. What is more, as
p can be higher than d orbitals in FNCTEI, in view of band
topology, this gives band inversion and nontrivial topology
[81]. Therefore, FNCTEI is also a good platform to study
quantum anomalous Hall effect.

We believe our paper also adds a member to the family of
materials with negative charge-transfer energy. Nonmagnetic
negative charge-transfer energy insulator has been reported
in NaCuO2 [41], both nonmagnetic negative charge-transfer
energy insulator and metal in RNiO3 (R is a rare earth element)

[42], and ferromagnetic negative-charge transfer energy metal
in CrO2 [39], SrCoO3 [40]. Here CrAs monolayer represents
an ideal example of ferromagnetic negative charge-transfer
energy insulator.

In conclusion, here a different type of FMSC is proposed:
FNCTEI. It breaks the GKA semiempirical rules and the
corresponding Tc can be much higher than room temperature.
Through first-principles calculation with hybrid functional,
CrAs monolayer is mapped out to be a typical FNCTEI,
which has a band gap around 0.35 eV and a high Tc about
1500 K. Due to its exotic physical properties, it is envisioned
that FNCTEI will arouse broad interest in condensed matter
physics.
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APPENDIX

In the Appendix, we provide more details of the cal-
culation and results to support the discussion in the main
text. In Appendix A, we make a brief introduction to the
calculation details, especially we aim at explaining why the
hybrid functional is a good choice for the study of FNCTEI.
In Appendix B, we derive the results in Table I. This sec-
tion includes three subsections. In Appendix C, we extend
the mean-field results to situations with empty d orbitals.
In Appendix D, we talk about the model parameter calcu-
lation, including the single-particle part and the interacting
part. In Appendix E, we discuss the energy mapping method
where the exchange coupling strength J are calculated. In
Appendix F, we focus on the scaling behavior of J , here a
large supercell is applied and exchange coupling strengths up
to J4 are obtained. In Appendix G, we study the response of J
to both hole and electron doping.

APPENDIX A: CALCULATION DETAILS AND
FUNCTIONAL DEPENDENCE

Our first-principles calculations were performed on density
functional theory implemented in the Vienna Ab Initio Simu-
lation Package (VASP) [82]. For geometric optimization and
electronic property calculations, a plane-wave cutoff 600 eV
was used. The energy convergence criterion was 10−6 eV
and the residual force was 0.01 eV/Å. The Brillouin zone
integration was carried out with 12 × 12 × 1 k-point sampling
for paramagnetic phase with PBE functional [83]. The PBE
functional was also applied in phonon spectrum calculation
[84] and AIMD simulation at 1000 K [85].

To study the magnetic phase, a few remarks should be
made here. As discussed in the main text both p and d orbitals
are close to Fermi level, a suitable theory describing FNCTEI
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FIG. 9. Calculated band structure of FM CrAs monolayer by (a) PBE functional, (b) SCAN functional, (c) HSE06 functional, and PBE +
U method with (d) U = 3 eV, (e) U = 4 eV, and (f) U = 5 eV. (g) Dependence of magnetic moments of Cr and As with respect to different
functionals and methods. (h) Dependence of exchange coupling J1 and J2 with respect to different functionals and methods.

should contain both interaction terms of both p and d orbitals.
Especially, intershell interaction term is also needed to de-
scribe the charge correlations between d and p shells. Such
a feature impose strong constraint on theoretical approach. In
this sense, Heyd-Scuseria-Ernzerhof (HSE) functional [86,87]
should be better than functional such as PBE, SCAN [88,89]
or embedding method such as standard PBE + U [90,91].

To see the performance of different functionals and meth-
ods, we used them to study the CrAs FM phase. The results are
summarized in Fig. 9. We first consider the sequence of PBE,
SCAN and HSE06 as they lie at the second, third, and fourth
rungs in the Jacob’s ladder [92]. From Fig. 9(a), PBE gives a
itinerant FM phase, so the local magnetic moments on Cr and
As are the smallest among these four functionals and methods.
The SCAN functional is able to create a local gap for spin up
channel, but is unable to create global gap [Fig. 9(b), which
makes CrAs a compensated FM metal]. Due to the existence
of local gap, the local magnetic moments on Cr and As are
much larger than that of PBE. Finally, HSE06 corrects the gap
to a global one ∼ 0.35 eV of spin up as shown in Fig. 9(c). As
the functional becomes more and more advanced as we go
from PBE to SCAN to HSE06, the true magnetic properties
are gradually approached.

Next we consider the PBE + U method, here we only
added Hubbard U term on Cr 3d shell and U = 3, 4, and 5 eV
were applied to see the trend. Different U give a similar band
structure as shown in Figs. 9(d)–9(f). As in HSE06 functional,
a global gap is opened, but the band gap of spin up is only
about 0.10 eV, much smaller than HSE06. The local magnetic
moments of PBE + U method is much larger than SCAN and
HSE06, indicating PBE + U tends to localize the electrons. At
the same time, the insufficient description of kinetic energy of
PBE + U gives a gap much smaller than than HSE06.

Combining the above two considerations together, it can
be seen that HSE06 functional is the best functional (method)
in describing both the valency and correlation character of
FNCTEI. In the main text, the magnetic properties, including
band structure, exchange coupling strength estimation and
magnetic isotropic energy are calculated using the HSE06
functional. For the band calculation, the wave function is
preconverged from PBE functional with a 9 × 9 × 1 k-point
mesh for FM phase, and the eigenstates are then solved
along three high symmetric k-paths � (0.0, 0.0, 0.0)-X (0.5,
0.0, 0.0)-M (0.5, 0.5, 0.0)-� (0.0, 0.0, 0.0) with 20 points
along each path. For the 2 × 2 × 1 supercell used in exchange
coupling strength estimation, we use a 12 × 12 × 1 k-point
sampling.

APPENDIX B: DERIVATION OF TABLE I

In this Appendix, we derive the results in Table I. In the
following, the many-body state is written in the occupation
representation. For 180◦ geometry shown in Fig. 3(a), the
orbital order in the many-body state is dα , p, and dβ . For
90◦ geometry shown in Fig. 3(b), the orbital order in the
many-body state is dα , px, py, and dβ . For each orbital,
|0, 0〉, |↑, 0〉, |0,↓〉, |↑,↓〉 represent empty state, singly oc-
cupied state with spin up/down and doubly occupied state,
respectively.

For a 2×2 matrix as follows:[
H00 T01

T10 H11

]
. (B1)

If we are interested in H00 and the eigenvalues of H11 are
separated from H00 with a large gap, we can integrate degrees

014413-11



LIU, LI, ZHU, WANG, AND YANG PHYSICAL REVIEW B 107, 014413 (2023)

of freedom of H11 out by

Heff = H00 + T01(ε − H11)−1T10, (B2)

where ε is the eigenvalue of original 2×2 matrix. Approxi-
mating ε by eigenvalue of H00, we obtain the effective matrix
describing the degrees of freedom of H00.

If there are one more high-energy scale characterized by
H22, in other words we are treating a 2×2 matrix as follows:

⎡
⎢⎢⎢⎣

H00 T01 H02

T10 H11 H12

T20 H21 H22

⎤
⎥⎥⎥⎦. (B3)

By recursively applying Eq. (B2), we have

Heff = H00 + T01[ε − (H11 + T12(ε − H22)−1T21)]−1T10.

(B4)
The following approximation is often used to simplify the

calculation of inverse of a matrix:

(A − B)−1 ∼ A−1 + A−1BA−1, (B5)

where the eigenvalues of A separate from that of B by a large
gap.

1. 180◦ geometry

a. S = 0 sector

There are 6 states in the S = 0 sector,{
1√
2

(|↑, 0; ↑,↓; 0,↓〉−|0,↓; ↑,↓; ↑, 0〉),

1√
2

(|↑,↓; ↑, 0; 0,↓〉−|↑,↓; 0,↓; ↑, 0〉),

1√
2

(|↑, 0; 0,↓; ↑,↓〉−|0,↓; ↑, 0; ↑,↓〉),

|↑,↓; ↑,↓; 0, 0〉, |0, 0; ↑,↓; ↑,↓〉, |↑,↓; 0, 0; ↑,↓〉
}
.

For example, the many-body state 1√
2
(|↑, 0; ↑,↓; 0,↓〉

−|0,↓; ↑,↓; ↑, 0〉) describes a singlet between dα and dβ and
a doubly occupied p.

For �CT � 0, the energy of 1√
2
(|↑, 0; ↑,↓; 0,↓〉−|0,↓;

↑,↓; ↑, 0〉) is 2εd + 2εp + up, which we will take as refer-
ence energy. Accordingly, the energy of 1√

2
(|↑,↓; ↑, 0; 0,↓〉

−|↑,↓; 0,↓; ↑, 0〉) is εd − εp + ud − up, which is just the
charge transfer energy �CT defined in Eq. (5). At the same,
the state |↑,↓; ↑,↓; 0, 0〉 has energy ud . If �CT > ud , the
system lies at MHI regime and the lowest excitation energy
is ud rather than �CT. Here we are interested in CTI regime
and assume �CT < ud .

The configuration interaction matrix for the above basis is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 t d p td p 0 0 0

t d p �CT 0 −√
2t d p 0 −√

2t d p

td p 0 �CT 0 −√
2t d p −√

2t d p

0 −√
2t d p 0 ud 0 0

0 0 −√
2t d p 0 ud 0

0 −√
2t d p −√

2t d p 0 0 2�CT + up

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B6)

Here we are interested in ε ∼ 0 and take

H00 = 0,

H11 =
[
�CT 0

0 �CT

]
,

H22 =

⎡
⎢⎢⎢⎣

ud 0 0

0 ud 0

0 0 2�CT + up

⎤
⎥⎥⎥⎦. (B7)

By setting ε = 0, Eq. (B4) becomes

Heff ≈ H00 − T01
(
H11 − T12H−1

22 T21
)−1

T10. (B8)

By taking A = H11 and B = T12H−1
22 T21 in Eq. (B5), we can

further simplify the above equation as

Heff ≈ H00 − T01H−1
11 T10 − T01H−1

11 T12H−1
22 T21H−1

11 T10.

(B9)

By plugging all the matrix into above equation, we have

Heff ≈ − 2t d p

�CT
− 4(t d p)2

�CT

(
(t d p)2

ud
+ 2(t d p)2

2�CT + up

)
. (B10)

For �CT � 0 (but we insist �CT > −up), state 1√
2
(|↑,↓; ↑,

0; 0,↓〉 − |↑,↓; 0,↓; ↑, 0〉) and 1√
2
(|↑, 0; 0,↓; ↑,↓〉 − |0,↓;

↑, 0; ↑,↓〉) will have lower energy than 1√
2
(|↑, 0; ↑,↓;

0,↓〉 − |0,↓; ↑,↓; ↑, 0〉), at this time, we arrange the
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basis as {
1√
2

(|↑,↓; ↑, 0; 0,↓〉−|↑,↓; 0,↓; ↑, 0〉),
1√
2

(|↑, 0; 0,↓; ↑,↓〉−|0,↓; ↑, 0; ↑,↓〉), |↑,↓; 0, 0; ↑,↓〉,

1√
2

(|↑, 0; ↑,↓; 0,↓〉−|0,↓; ↑,↓; ↑, 0〉), |↑,↓; ↑,↓; 0, 0〉, |0, 0; ↑,↓; ↑,↓〉
}

and then the configuration interaction matrix becomes⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�CT 0 −√
2t d p td p −√

2t d p 0

0 �CT −√
2t d p td p 0 −√

2t d p

−√
2t d p −√

2t d p 2�CT + up 0 0 0

t d p td p 0 0 0 0

−√
2t d p 0 0 0 ud 0

0 −√
2t d p 0 0 0 ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B11)

Here we are interested in ε ∼ �CT and take

H00 =
[
�CT 0

0 �CT

]
,

H11 =
[

2�CT + up 0

0 0

]
,

H22 =
[

ud 0

0 ud

]
. (B12)

Plugging these terms into Eq. (B4), we have

Heff ≈
[
�CT +

(
(t d p)2

�CT
− 2(t d p)2

�CT + up

)][
1 0

0 1

]

+
(

(t d p)2

�CT
− 2(t d p)2

�CT + up

)[
0 1

1 0

]
. (B13)

b. S = 1 sector

There are 9 states in the S = 1 sector,{
|0,↓; ↑,↓; 0,↓〉, |↑,↓; 0,↓; 0,↓〉, |0,↓; 0,↓; ↑,↓〉,

1√
2

(|↑, 0; ↑,↓; 0,↓〉+|0,↓; ↑,↓; ↑, 0〉),

1√
2

(|↑,↓; ↑, 0; 0,↓〉+|↑,↓; 0,↓; ↑, 0〉),

1√
2

(|↑, 0; 0,↓; ↑,↓〉+|0,↓; ↑, 0; ↑,↓〉),

|↑, 0; ↑,↓; ↑, 0〉, |↑,↓; ↑, 0; ↑, 0〉, |↑, 0; ↑, 0; ↑,↓〉
}
.

Notice that the first three states, second three states and the
last three states are not connected via t d p, therefore, we can
work on a smaller subspace expanded by the last three states,

{|↑, 0; ↑,↓; ↑, 0〉, |↑,↓; ↑, 0; ↑, 0〉, |↑, 0; ↑, 0; ↑,↓〉}.

For �CT � 0, the configuration interaction matrix in such
a basis is

⎡
⎢⎣

0 t d p td p

td p �CT 0

t d p 0 �CT

⎤
⎥⎦. (B14)

Taking ε = 0

H00 = 0,

H11 =
[
�CT 0

0 �CT

]
,

(B15)

and making use of Eq. (B2), we have

Heff = −2(t d p)2

�CT
. (B16)

Combining Eqs. (B10) and (B16), J is calculated as

J = −2(t d p)2

�CT
+

[
2(t d p)2

�CT
+4(t d p)2

�CT

(
(t d p)2

ud
+ 2(t d p)2

2�CT + up

)]

= 4(t d p)2

�CT

(
(t d p)2

ud
+ 2(t d p)2

2�CT + up

)
. (B17)

For �CT � 0, the basis is rearranged as

{|↑,↓; ↑, 0; ↑, 0〉, |↑, 0; ↑, 0; ↑,↓〉, |↑, 0; ↑,↓; ↑, 0〉},

and the configuration interaction matrix is

⎡
⎢⎣�CT 0 t d p

0 �CT t d p

td p td p 0

⎤
⎥⎦. (B18)
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Taking ε = �CT

H00 =
[
�CT 0

0 �CT

]
,

H11 = 0,

(B19)

and making use of Eq. (B2), we have

Heff ≈
(

�CT + (t d p)2

�CT

)[
1 0
0 1

]
+ (t d p)2

�CT

[
0 1
1 0

]
. (B20)

Since Eqs. (B13) and (B20) are both 2 × 2 matrices, we
first need to diagonalize it and then J is calculated as

J =
(

�CT + 2(t d p)2

�CT

)

−
[
�CT + 2

(
(t d p)2

�CT
− 2(t d p)2

�CT + up

)]

= 4(t d p)2

�CT + up
. (B21)

Since �CT + up is positive, Eq. (B21) still gives antiferromag-
netic exchange coupling.

2. 90◦ geometry

a. S = 0 sector

There are 10 states in the S = 0 sector,{
1√
2

(|↑, 0; ↑,↓; ↑,↓; 0,↓〉−|0,↓; ↑,↓; ↑,↓; ↑, 0〉),

1√
2

(|↑, 0; ↑,↓; 0,↓; ↑,↓〉−|0,↓; ↑,↓; ↑, 0; ↑,↓〉),

1√
2

(|↑,↓; ↑, 0; ↑,↓; 0,↓〉−|↑,↓; 0,↓; ↑,↓; ↑, 0〉),

1√
2

(|↑,↓; ↑, 0; 0,↓; ↑,↓〉−|↑,↓; 0,↓; ↑, 0; ↑,↓〉),

1√
2

(|↑,↓; ↑,↓; ↑, 0; 0,↓〉−|↑,↓; ↑,↓; 0,↓; ↑, 0〉),

1√
2

(|↑, 0; 0,↓; ↑,↓; ↑,↓〉−|0,↓; ↑, 0; ↑,↓; ↑,↓〉),

|↑,↓; ↑,↓; ↑,↓; 0, 0〉, |↑,↓; ↑,↓; 0, 0; ↑,↓〉,

|↑,↓; 0, 0; ↑,↓; ↑,↓〉, |0, 0; ↑,↓; ↑,↓; ↑,↓〉
}
.

Notice that the first four states are not connected to the last six
states via t d p, to simplify the discussion, we will work in the
subspace spanned by the first four states.

For �CT � 0, the configuration interaction matrix for the
subspace is

⎡
⎢⎢⎢⎢⎢⎣

0 t d p td p 0

t d p �CT − 2up + 5 j (p)
H 0 t d p

td p 0 �CT − 2up + 5 j (p)
H td p

0 t d p td p 2�CT − 3up + 9 j (p)
H

⎤
⎥⎥⎥⎥⎥⎦. (B22)

Here we are interested in ε ∼ 0 and put

H00 = 0, H11 =
[
�CT − 2up + 5 j (p)

H 0

0 �CT − 2up + 5 j (p)
H

]
, H22 = 2�CT − 3up + 9 j (p)

H , (B23)

into Eq. (B4), we have

Heff = − 2(t d p)2(
�CT − 2up + 5 j (p)

H

)2 − (t d p)2(
�CT − 2up + 5 j (p)

H

)2

4(t d p)2

2�CT − 3up + 9 j (p)
H

. (B24)

For �CT � 0, we rearrange the subspace as{
1√
2

(|↑,↓; ↑, 0; 0,↓; ↑,↓〉−|↑,↓; 0,↓; ↑, 0; ↑,↓〉),
1√
2

(|↑, 0; ↑,↓; 0,↓; ↑,↓〉−|0,↓; ↑,↓; ↑, 0; ↑,↓〉),

1√
2

(|↑,↓; ↑, 0; ↑,↓; 0,↓〉−|↑,↓; 0,↓; ↑,↓; ↑, 0〉),
1√
2

(|↑, 0; ↑,↓; ↑,↓; 0,↓〉−|0,↓; ↑,↓; ↑,↓; ↑, 0〉)

}
,

and the corresponding configuration interaction matrix is⎡
⎢⎢⎢⎢⎢⎣

2�CT − 3up + 9 j (p)
H td p td p 0

t d p �CT − 2up + 5 j (p)
H 0 t d p

td p 0 �CT − 2up + 5 j (p)
H td p

0 t d p td p 0

⎤
⎥⎥⎥⎥⎥⎦. (B25)
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Here we are interested in ε ∼ (2�CT − 3up + 9 j (p)
H ) and put

H00 = 2�CT − 3up + 9 j (p)
H , H11 =

[
�CT − 2up + 5 j (p)

H 0

0 �CT − 2up + 5 j (p)
H

]
, H22 = 0, (B26)

into Eq. (B4), we have

Heff = (
2�CT − 3up + 9 j (p)

H

) + 2(t d p)2

�CT − up + 4 j (p)
H

+ (t d p)2(
�CT − up + 4 j (p)

H

)2

4(t d p)2

2�CT − 3up + 9 j (p)
H

. (B27)

b. S = 1 sector

There are 18 states in the S = 1 sector,{
|0,↓; ↑,↓; ↑,↓; 0,↓〉, |0,↓; ↑,↓; 0,↓; ↑,↓〉, |↑,↓; 0,↓; ↑,↓; 0,↓〉, |↑,↓; 0,↓; 0,↓; ↑,↓〉, |↑,↓; ↑,↓; 0,↓; 0,↓〉,

|0,↓; 0,↓; ↑,↓; ↑,↓〉, 1√
2

(|↑, 0; ↑,↓; ↑,↓; 0,↓〉 + |0,↓; ↑,↓; ↑,↓; ↑, 0〉),

1√
2

(|↑, 0; ↑,↓; 0,↓; ↑,↓〉 + |0,↓; ↑,↓; ↑, 0; ↑,↓〉),
1√
2

(|↑,↓; ↑, 0; ↑,↓; 0,↓〉 + |↑,↓; 0,↓; ↑,↓; ↑, 0〉),

1√
2

(|↑,↓; ↑, 0; 0,↓; ↑,↓〉 + |↑,↓; 0,↓; ↑, 0; ↑,↓〉),
1√
2

(|↑,↓; ↑,↓; ↑, 0; 0,↓〉 + |↑,↓; ↑,↓; 0,↓; ↑, 0〉),

1√
2

(|↑, 0; 0,↓; ↑,↓; ↑,↓〉 + |0,↓; ↑, 0; ↑,↓; ↑,↓〉), |↑, 0; ↑,↓; ↑,↓; ↑, 0〉, |↑, 0; ↑,↓; ↑, 0; ↑,↓〉, |↑,↓; ↑, 0; ↑,↓; ↑, 0〉,

|↑,↓; ↑, 0; ↑, 0; ↑,↓〉, |↑,↓; ↑,↓; ↑, 0; ↑, 0〉, |↑, 0; ↑, 0; ↑,↓; ↑,↓〉
}
.

Notice that the first six states, the second six states and the last six states are not connected via t d p, in other words, we can
work on one subspace. Here we will work on the last six states. What is more, notice that the first four states are also not
connected with the last two via t d p, for simplicity, we will work on the subspace spanned by the first four,

{|↑, 0; ↑,↓; ↑,↓; ↑, 0〉, |↑, 0; ↑,↓; ↑, 0; ↑,↓〉, |↑,↓; ↑, 0; ↑,↓; ↑, 0〉, |↑,↓; ↑, 0; ↑, 0; ↑,↓〉}.

With �CT � 0, the configuration interaction matrix for such a subspace is⎡
⎢⎢⎢⎢⎣

0 t d p td p 0

t d p �CT − 2up + 5 j (p)
H 0 t d p

td p 0 �CT − 2up + 5 j (p)
H td p

0 t d p td p 2�CT − 3up + 7 j (p)
H

⎤
⎥⎥⎥⎥⎦. (B28)

Here we are interested in ε ∼ 0 and put

H00 = 0, H11 =
[
�CT − 2up + 5 j (p)

H 0

0 �CT − 2up + 5 j (p)
H

]
, H22 = 2�CT − 3up + 7 j (p)

H , (B29)

into Eq. (B4), we have

Heff = − 2(t d p)2(
�CT − 2up + 5 j (p)

H

)2 − (t d p)2(
�CT − 2up + 5 j (p)

H

)2

4(t d p)2

2�CT − 3up + 7 j (p)
H

. (B30)

Combining Eqs. (B24) and (B30), J is calculated as

J = − 4(t d p)2(
�CT − 2up + 5 j (p)

H

)2

[
(t d p)2(

2�CT − 3up + 8 j (p)
H

) − j (p)
H

− (t d p)2(
2�CT − 3up + 8 j (p)

H

) + j (p)
H

]
. (B31)

With �CT � 0, the basis is rearranged as

{|↑,↓; ↑, 0; ↑, 0; ↑,↓〉, |↑, 0; ↑,↓; ↑, 0; ↑,↓〉, |↑,↓; ↑, 0; ↑,↓; ↑, 0〉, |↑, 0; ↑,↓; ↑,↓; ↑, 0〉},
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and the configuration interaction matrix now becomes⎡
⎢⎢⎢⎢⎢⎣

2�CT − 3up + 7 j (p)
H td p td p 0

t d p �CT − 2up + 5 j (p)
H 0 t d p

td p 0 �CT − 2up + 5 j (p)
H td p

0 t d p td p 0

⎤
⎥⎥⎥⎥⎥⎦.

Here we are interested in ε ∼ (2�CT − 3up + 7 j (p)
H ) and put

H00 = 2�CT − 3up + 7 j (p)
H , H11 =

[
�CT − 2up + 5 j (p)

H 0

0 �CT − 2up + 5 j (p)
H

]
, H22 = 0, (B32)

into Eq. (B4), we have

Heff = (
2�CT − 3up + 7 j (p)

H

) + 2(t d p)2

�CT − up + 2 j (p)
H

+ (t d p)2(
�CT − up + 2 j (p)

H

)2

4(t d p)2

2�CT − 3up + 7 j (p)
H

. (B33)

Combining Eqs. (B27) and (B33), we have

J = −2 j (p)
H (B34)

where higher orders are ignored.

3. Further reduction for �CT � 0

For �CT � 0, p is much deeper than d orbital, under such
circumstances, p orbital can be treated as uncorrelated one
with up = 0 and j (p)

H = 0 [but the last j (p)
H term of Eq. (3)

is kept]. So �CT = εd − εp + ud = εd p + ud and Eqs. (B17)
and (B31) are simplified to

J = 4(t d p)2

(εd p + ud )2

(
1

ud
+ 1

εd p + ud

)
,

J = − 4(t d p)2

(εd p + ud )2

(
1

2(εd p + ud ) − j (p)
H

− 1

2(εd p + ud ) + j (p)
H

)
, (B35)

in accordance with the results of Koch [93].

APPENDIX C: MULTIBAND EXTENSION

For simplicity, here we consider the case t d = 0, t p =
0. In the PM phase, p orbital lies εd p below d orbital as
shown in Fig. 10(a). Suppose now both d and p subsystem
are FM because of strong interaction, there are two possi-
ble configurations for the whole system: FMd -FMp-FM in
Fig. 10(b) and FMd -FMp-AFM in Fig. 10(c). For FMd -FMp-
AFM, since p orbital has opposite polarization with respect
to d orbital, the spin up electron will have higher energy than
spin down electron. This is the difference between Fig. 10(b)
and Fig. 10(c). In the following, we will study the two cases:
(1) d is half filled and (2) d is empty. Since the two p orbitals
are degenerate as well as the two d orbitals, in the following,
we will only consider one p and one d orbital.

1. d orbital is half filled

Now we include t d p. By fixing Ne to 3, the energy of
FMd -FMp-FM and FMd -FMp-AFM is the sum of the lowest
three energy level. For FMd -FMp-FM, we have

E (FMd − FMp − FM)

= −[εd p − (Xd − Xp)]

− [εd p + (Xd − Xp)] + √
[εd p + (Xd − Xp)]2 + 4(t d p)2

2
,

(C1)

where Xp, Xd is half of the Zeeman splitting of p and d orbital
due to the intrinsic magnetic order as shown in Figs. 10(b) and

FIG. 10. (a) Energy level in the PM phase. (b) Energy level in
the FMd − FMp − FM phase. (c) Energy level in the FMd − FMp −
AFM phase.
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10(c). On the other hand, the energy for FMd -FMp-AFM is

E (FMd − FMp − AFM)

= −[εd p − (Xd + Xp)]

− [εd p + (Xd + Xp)] + √
[εd p + (Xd + Xp)]2 + 4(t d p)2

2
.

(C2)

The energy difference between FMd -FMp-FM and
FMd -FMp-AFM can be seen as a function of Xp,

f1(Xp) = E (FMd − FMp − FM) − E (FMd − FMp − AFM)

= −Xp −
√

[εd p + (Xd − Xp)]2 + 4(t d p)2

2

+
√

[εd p + (Xd + Xp)]2 + 4(t d p)2

2
. (C3)

When Xp = 0, f1(Xp) = 0 as expected. Taking derivative on
Xp, we have

d

dXp
f1(Xp) = −1 + 1

2

1√
1 + (

2t d p

εd p+(Xd −Xp)

)2

+ 1

2

1√
1 + (

2t d p

εd p+(Xd +Xp)

)2
< −1 + 1

2
+ 1

2
= 0.

(C4)

Combing with the fact that f1(Xp = 0) = 0, we have
E (FMd − FMp − FM ) < E (FMd − FMp − AFM ) when
Xp 	= 0. This is the main reason why the ground state for
�CT closing to 0 is FMd -FMp-FM in Fig. 4(c), not FMd -FMp-
AFM.

2. d orbital is empty

Now we consider the case when d is empty, in other
words, we have Ne = 2. The energy of FMd -FMp-FM and
FMd -FMp-AFM is the sum of the lowest two energy level.
For FMd -FMp-FM, we have

E (FMd − FMp − FM) = −[εd p − (Xd − Xp)] − √
[εd p − (Xd − Xp)]2 + 4(t d p)2

2

+ −[εd p + (Xd − Xp)] − √
[εd p + (Xd − Xp)]2 + 4(t d p)2

2
. (C5)

The energy for FMd -FMp-AFM is

E (FMd − FMp − AFM) = −[εd p − (Xd + Xp)] − √
[εd p − (Xd + Xp)]2 + 4(t d p)2

2

+ −[εd p + (Xd + Xp)] − √
[εd p + (Xd + Xp)]2 + 4(t d p)2

2
. (C6)

Then f2(Xp) is given by

f2(Xp) = E (FMd − FMp − FM) − E (FMd − FMp − AFM)

=
√

[εd p − (Xd + Xp)]2 + 4(t d p)2

2
+

√
[εd p + (Xd + Xp)]2 + 4(t d p)2

2

−
√

[εd p − (Xd − Xp)]2 + 4(t d p)2

2
−

√
[εd p + (Xd − Xp)]2 + 4(t d p)2

2
. (C7)

When Xp = 0, f2(Xp) = 0 as expected. Taking derivative on Xp, we have

d

dXp
f2(Xp) = 1

2

⎛
⎜⎝ 1√

1 + (
2t d p

εd p+(Xd +Xp)

)2
− 1√

1 + (
2t d p

εd p+(Xd −Xp)

)2

⎞
⎟⎠ + 1

2

⎛
⎜⎝ 1√

1 + (
2t d p

εd p−(Xd −Xp)

)2
− 1√

1 + (
2t d p

εd p−(Xd +Xp)

)2

⎞
⎟⎠. (C8)

Since we have

εd p + (Xd + Xp) > εd p + (Xd − Xp),

εd p − (Xd − Xp) > εd p − (Xd + Xp),
(C9)

we have d
dXp

f2(Xp) > 0. Together with the fact that f2(Xp =
0) = 0, we have E (FMd − FMp − FM) > E (FMd − FMp −
AFM) when Xp 	= 0. Therefore, FMd -FMp-AFM will be the
preferred ground state for �CT closing to 0 when d is empty.

3. One d orbital is half-filled and one d orbital is empty

We now stack the above two systems together (there is no
communication between these two systems). The j (p)

H and j (d )
H

align the spins on the two d and two p orbitals along the same
direction. Now we ask which phase is more stable, FMd -FMp-
FM or FMd -FMp-AFM ? This is equivalent to calculate the
sign of the following energy:

f (Xp) = f1(Xp) + f2(Xp). (C10)
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FIG. 11. (a) PBE level PM band structure of all 9 ML monolayers. (b) The representative maximally localized WFs of PM CrAs monolayer.
(c) Eight symmetry-allowed p − d hopping channel. The dashed/bold wedge represents bonds above/below the paper plane, following the Natta
projection in stereochemistry. The p orbitals above (below) the paper plane is labelled as p1 (p2)

Obviously, we have f (Xp = 0) = 0. The derivative on Xp is

d

dXp
f (Xp) = −1 + 1√

1 + (
2t d p

εd p+(Xd −Xp)

)2
+ 1√

1 + (
2t d p

εd p+(Xd +Xp)

)2

+ 1

2

⎛
⎜⎝ 1√

1 + (
2t d p

εd p−(Xd −Xp)

)2
− 1√

1 + (
2t d p

εd p−(Xd +Xp)

)2

⎞
⎟⎠.

(C11)

As long as t d p is not too large, we will have d
dXp

f (Xp) > 0.
Therefore, FMd -FMp-AFM will be the preferred phase for
partial filled d shell in general.

APPENDIX D: MODEL PARAMETERS CALCULATION

1. Single-particle part

The single-particle parameters such as on-site energy
(εd , εp) and hopping energy (t d p, t p, t p) in Eq. (1) can be
obtained by downfolding the full Hamiltonian into the {d, p}
subspace in Wannier90 package [94]. Explicitly, the down-
folding process also allows us to obtain the following matrix
element:

Hαβ (R) = 〈φ0,α|Ĥ |φR,β〉, (D1)

where |φ0,α〉 is the maximally localized Wannier function α

in home cell (index as 0) and |φR,β〉 the maximally localized
Wannier function (MLWF) β in cell R. When R = 0, α = β,
the above matrix element orbital energy, otherwise we obtain
the hopping energy.
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TABLE IV. Symmetry permitted p-d hopping channels.

Channel d p

p − d − 1 dxz (dyz) p1x (p2y)
p − d − 2 dxy p1y + p2x

p − d − 3 dz2 p1x + p2y

p − d − 4 dxz (dyz) p2x (p1y)
p − d − 5 dx2−y2 p1x + p2y

p − d − 6 dz2 p1z + p2z

p − d − 7 dx2−y2 p1z + p2z

p − d − 8 dxz (dyz) p1z (p2z)

The PM band structure with Perdew-Burke-Ernzerhof
(PBE) functional [83] and the Wannier fitted one is shown
in Fig. 11(a). The corresponding 16 maximally localized WFs
for CrAs monolayer are displayed in Fig. 11(b). The excellent
agreement of the band structures and the small spreading
of MLWFs indicates the downfolding process is quite good,
which lays the foundation of cRPA calculation below. In
cRPA calculation, 72 bands were used with 5 × 5 × 1 k-
point meshes for Brillouin zone integration. What is more,
by setting all t d p to zero while keeping other hopping terms,
the band structure without t d p can be obtained, as shown in
Fig. 6(a) and Figs. 7(a) and 7(b).

The space group of this lattice structure is P 4
n mm, all the

p − d hybridizations can be classified into eight types (la-
belled as p − d − i, i = 1, 2, . . . , 8) displayed in Fig. 11(c).
Explicitly, the p − d − 1 composes of dxz and p1x as well
as the equivalent dyz and p2y. The p orbitals of L above and
below M plane are marked as p1 and p2 correspondingly. And
the orbital contribution to other p − d channels is listed in
Table IV. When there is no buckling in this structure, the point
group becomes D4h. Only p − d − 2, p − d − 3, p − d − 5
and p − d − 8 exist in D4h with p − d − 5 the strongest,
which can be as large as 1.3 eV in cuprates [95]. When the
structure is buckled, there are no 90◦ and 180◦ M-L-M angles
and p − d − 1, p − d − 4, p − d − 6, p − d − 7 appear.

2. Interaction term

In solid, the Coulomb potential in solid is screened by elec-
tronic polarizability and is thus renormalized. The constrained
random phase approximation (cRPA) provides a system-
atic first-principles technique for the construction of low-
energy Hamiltonians where the interaction part is calculated
[96–98].

Clearly there is a degree of freedom in choosing target
subspace. Different subspace orbitals will give different in-
teraction parameters (u, u′, jH ), at the same time, the number
of parameters are also changed as well as the on-site energy
and hopping strength. In MHI, it is often enough to choose
part of M d orbitals as the target space. In our case here, we
need to treat Eq. (1), so both M d and L p orbitals are chosen
to be target subspace.

After calculation, the value of the screened interaction
(W r) between local orbitals is expressed as 4-index interaction
matrix [66],

U (S)
m1m2m3m4

(ω) = 〈φm1φm2 |W r (ω)|φm3φm4〉, (D2)

FIG. 12. Schematic view of three ordered magnetic states. The
black/white solid sphere represents up/down spin magnetic moment,
respectively.

where ω is the frequency, which describes the dynamical
effect (only ω = 0 is used here), the |φm〉 is the localized
Wannier orbitals, and (S) is added for specifying the angular
symmetry of the localized Wannier orbitals. Here we take
cubic angular harmonics approximation so (S) is cubic. Most
matrix elements are of the order of 0.1 eV or less, except
for 2-index reduced interaction matrices [66]. Furthermore,
2-index matrix can be further simplified as scalars, which is
used in model Hamiltonian like Eq. (1). For either d or p shell,
there are three independent intrashell values,

u = 1

N

N∑
m=1

U cubic
mmmm,

u′ = 1

N (N − 1)

N∑
m 	=n

U cubic
mnmn,

jH = 1

N (N − 1)

N∑
m 	=n

U cubic
mnnm,

(D3)

where N = 5 (3) for d (p) shell. As for the intershell Coulomb
interaction, only the density-density interaction ud p is calcu-
lated as all the other interaction terms are nearly zero,

ud p = 1

15

∑
m,n

U cubic
dmpn . (D4)

APPENDIX E: EXCHANGE COUPLING STRENGTH

Here energy mapping method was applied to calculate J . In
this method, the total energies of different spin configuration
are calculated and the exchange interactions are fitted to the
energies of different spin configuration. For example, to map
J1, J2 out, three symmetric magnetic orders were considered in
a 2 × 2 × 1 supercell as shown in Fig. 12: FM with magnetic
ordering momentum q=(0, 0), checkboard AFM (c-AFM)
with q=(π, π ) and strip AFM (s-AFM) with q = (0, π ). The
spin model used here is the Heisenberg model,

H =
∑
i, j

Ji j �Si · �S j, (E1)

where summation is over J1 and J2 as defined in Fig. 12.
And the energy for these three magnetic orders are calculated
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FIG. 13. (a) Checkboard AFM configuration. (b) Strip AFM configuration. (c) Bi-strip AFM configuration. (d) Antistripe AFM configura-
tion. The up and down red arrow in (a)–(d) represents the orientation of local magnetic moments. Real space illustration of range of (e) J1, (f)
J2, (g) J3, and (h) J4. (i) Strength of J with respect to the interaction distance.

as

EFM = E0 + 16J1S2 + 16J2S2.

Ec−AFM = E0 − 16J1S2 + 16J2S2.

Es−AFM = E0 − 16J2S2. (E2)

where E0 is a reference energy. These energies are obtained
via HSE06 functional. By taking EFM, Ec−AFM and Es−AFM

into above equations, J1 and J2 can be obtained for a given S.
When S is in the classical limit, energy mapping method

has shown success in FM CHI and MHI as S is easy to define
there [67,99]. This is not the case in FNCTEI as L is also
polarized. However the net magnetic moment on L is quite
small [see Fig. 9(g)], which makes it inappropriate to denote
an integer magnetic moment attached to L. What is more, to
compensate the holes on As, extra electrons are back donated
to Cr, so the magnetic moment on Cr is a slightly larger than
that without back-donation. So here we make the following
simplification: by treating a Cr and its nearby four As as a
whole, it is possible to denote an half-integer S = 3/2 to it. In
this way, the J can be evaluated by energy mapping method.

The calculated relative energy of EFM, Ec−AFM and Es−AFM

for CrAs monolayer is 0, +0.511 and +0.632 eV/Cr, respec-
tively. By taking S = 3/2, the obtained J1 and J2 in CrAs
monolayer is –56.8 and –39.7 meV.

APPENDIX F: SCALING OF EXCHANGE INTERACTION
STRENGTH WITH RESPECT TO DISTANCE

Since the spreading of MMO provides a natural length
scale, it is interesting to see whether J have different behavior
inside and outside this length scale. To see this, we use energy
mapping method on a 4 × 4 supercell and calculate J up to J4

as shown in Figs. 13(a)–13(h). As it is difficult for HSE06 to
handle such a large supercell, here we used SCAN functional
for a compromise. The energies of the different magnetic
orders are

EFM = E0 + 32J1S2 + 32J2S2 + 32J3S2 + 64J4S2,

Ec−AFM = E0 − 32J1S2 + 32J2S2 + 32J3S2 − 64J4S2,

Es−AFM = E0 − 32J2S2 + 32J3S2,

Ebis−AFM = E0 − 32J3S2,

Eantis−AFM = E0 + 16J1S2 − 32J4S2. (F1)

The result is displayed in Fig. 13(i). It is clear that J
experiences a sharp decrease from J2 to J3. From this result,
it is reasonable to use J1 and J2 obtained in Appendix E in
evaluating Tc in the main text. For J1 and J2, their interaction
lengths are within the spreading of MMOs, while for J3 and

FIG. 14. [(a)–(d)] Band structures for different doping concentration. (e) Evolution of J1 and J2 with respect to doping. Data of pristine
CrAs is also shown for comparison.
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J4, they are beyond the spreading of MMOs. Therefore, MMO
indeed provides a natural length scale for J .

APPENDIX G: DOPING DEPENDENCE OF EXCHANGE
INTERACTION STRENGTH

Here hole and electron doping with concentration at 7 ×
1013 h(e)/cm2 [corresponds to 0.125 h(e)/unit cell] and 14 ×
1013 h(e)/cm2 [0.25 h(e)/unit cell] were considered in FM
CrAs monolayer. Such doping concentration corresponds to

moderate to heavy doping for 2D materials. The results are
displayed in Fig. 14. With hole doping, the Fermi level cuts
the Fermi pocket at � point as shown in Figs. 14(a) and 14(b).
With electron doping, the Fermi level cuts the Fermi pocket at
M point as shown in Figs. 14(c) and 14(d). Figure 14(e) shows
the dependence of J1 and J2 on doping. It is clear both J1 and
J2 decrease with either hole or electron doping. Therefore,
the FM order is destabilized when the electron filling deviates
from the ideal filling.
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