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Generation of modulated magnetic structures based on cluster multipole expansion:
Application to α-Mn and CoM3S6
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We present a systematic method to automatically generate symmetry-adapted magnetic structures for a given
crystal structure and general propagation vector k as an efficient approach of the analysis of complex modulated
magnetic structures. The method is developed as an extension of the generation scheme based on the multipole
expansion, which was demonstrated only for the propagation vector k = 0 [M.-T. Suzuki et al., Phys. Rev. B
99, 174407 (2019)]. The symmetry-adapted magnetic structures characterized with an ordering vector k are
obtained by mapping the multipole magnetic alignments on a virtual cluster to the periodic crystal structure with
the phase factor for the wave vector k. This method provides all magnetic bases compatible with irreducible
representations under a k group for a given crystal structure and wave vector k. Multiple-k magnetic structures
are derived from a superposition of single-k magnetic bases related to the space group symmetry. We apply the
scheme to deduce the magnetic structures of α-Mn and CoM3S6 (M = Nb, Ta), in which the large anomalous
Hall effect has recently been observed in antiferromagnetic phases, and identify the magnetic structures inducing
anomalous Hall effect without net magnetization. The physical phenomena originating from emergent multipoles
in the ordered phases are also discussed based on the Landau theory.
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I. INTRODUCTION

Magnetic materials with complexly arranged magnetic mo-
ments in crystal provide a platform for exploring various
exotic phenomena and potential device applications. The de-
tails of magnetic structures play a crucial role for intriguing
physical phenomena, such as the anomalous/topological Hall
effect, nonreciprocal charge transport, and magnetoelectric
effect. Therefore the characterization of magnetic structures
is a key to understanding such physical phenomena in mag-
netically ordered phases.

A systematic generation and characterization scheme of
symmetry-adapted basis set based on the multipole expansion
combined with group theory has been proposed in our pre-
vious studies [1,2]. In this method, the multipole expansion
for macroscopic electromagnetic fields is extended to describe
the configuration of magnetic moments in general magnetic
orderings using multipolar moments with irreducible repre-
sentations (IRREPs) under crystallographic point group. This
enables us with an efficient analysis of electronic properties
and macroscopic responses in antiferromagnets. It has been
elucidated that the magnetic structure in a noncollinear an-
tiferromagnet Mn3Sn can be viewed as a magnetic octupole
with use of this method [1,3]. The magnetic octupole scenario
provides a unified understanding of anomalous responses in

Mn3Sn such as the large anomalous Hall effect (AHE) [4],
anomalous Nernst effect (ANE) [5], and magneto-optical Kerr
effect (MOKE) [6]. The analysis based on multipoles deepens
insights into AHE, ANE, and MOKE beyond the conventional
understanding that these phenomena are induced by net mag-
netization with spin-orbit coupling [7].

There are also advantages of using symmetry-classified
magnetic structures in respect to prediction for stable and/or
metastable magnetic states. Many experimental studies imply
that most of magnetic structures are specified by a small
number of IRREP [8], which classify possible transforma-
tion property of magnetic structures for the space group
operation of crystal [9–11]. Actually, the recent benchmark
calculation using a high-throughput prediction scheme of
magnetic structure making use of the multipole expansion
shows that the symmetrically classified magnetic structures
are efficient candidate of initial magnetic structures em-
ployed in the first-principles calculations for given crystal
structures [12].

In our magnetic structure generation method proposed
previously [1,2,12], we only considered magnetic structures
which have no spatial modulation over an interunit cell, that is,
magnetic structures having propagation vector k = 0. Mean-
while, many of attracting magnetic structures such as a helical
magnetic order, a spin density wave, and skyrmion crystals
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have finite propagation vector k [13]. In this paper, we de-
velop a generation scheme of symmetry-adapted magnetic
structures with interunit cell spatial modulation quantified by
propagation vector k, along the line of the scheme proposed in
Refs. [1,2]. Our algorithm based on the multipole expansion
largely reduces the degree of freedom of generated magnetic
structures and efficiently provides magnetic structures sym-
metrically adapted to the crystal structures with getting around
under- and overgeneration of basis set that produces too few
or too many basis vectors [14,15]. The method paves a way to
explore the intricate magnetic structure by making full use of
symmetry information.

In Sec. II, we provide general formulation of the generation
scheme of symmetry adapted magnetic structures with finite k
vectors. We introduce the multipole expansion of the magnetic
structure on an atomic cluster in Sec. II A and discuss how
to define the virtual atomic cluster on which the multipole
expansion is defined in Sec. II B. We then show how to gen-
erate symmetry adapted magnetic structures with single wave
vector (Sec. II C) and with multiple wave vectors (Sec. II D).
We further discuss possible magnetic structures of α-Mn and
CoM3S6 (M = Nb, Ta), which are known to exhibit large
anomalous Hall responses in the antiferromagnetic (AFM)
phases, by applying the generation scheme of magnetic struc-
tures in Sec. III. Finally, we summarize the paper and give
a future perspective for design of magnetic materials in
Sec. IV.

II. METHODS

A. Multipole expansion

We first review the multipole expansion of vector potential
A(r) and its application to magnetic structure introduced in
Ref. [2]. As is well known, a spatial distribution of vector
potential A(r) outside its sources is systematically character-
ized by magnetic (M) and magnetic toroidal (MT) multipole
moments, Mlm and Tlm, as follows [16–18]:

A(r) =
∑
lm

[√
4π (l + 1)

(2l + 1)l
Mlm

Y l
lm(r̂)

irl+1

−
√

4π (l + 1)Tlm
Y l+1

lm (r̂)

rl+2

]
, (1)

where the Coulomb gauge ∇ · A(r) = 0 is imposed and Y l ′
lm(r̂)

(l � 1, −l � m � l , l ′ = l − 1, l, l + 1) represents the vector
spherical harmonics with r̂ = r/r [19,20]. The M and MT
multipole moments are given as

Mlm =
∑

j

(
2l j

l + 1
+ σ j

)
· Olm(r j ), (2)

Tlm =
∑

j

{
r j

l + 1
×

(
2l j

l + 2
+ σ j

)}
· Olm(r j ), (3)

with

Olm(r) =
√

4π

2l + 1
∇[rlY ∗

lm(r̂)], (4)

where l j (σ j ) and r j are orbital (spin) angular momentum and
position vector of each electron, respectively, and ∇(rlYlm) =

rl−1
√

l (2l + 1)Y l−1
lm with parity for spatial inversion (−1)l+1.

We define M- and MT-multipole moments in an atomic cluster
by replacing the electron coordinate r j by atomic coordinate
of jth atom ξ j and neglecting the orbital magnetic moment
in Eqs. (2) and (3) as discussed in Refs. [2,21]. Here and
hereafter, the electric (E), M, electric toroidal (ET), and MT
multipoles are denoted by Q, M, G, and T , respectively ac-
cording to the notations in Ref. [22]. Taking into consideration
that the atomic cluster is not invariant under continuous ro-
tation but have a point group symmetry, the magnetic bases
ψ

(X )
l�γ

on the cluster characterized by symmetry-adapted mul-
tipole moments are obtained as follows:

ψ
(X )
l�γ

=
N∑

j=1

∑
μ=x,y,z

u(X )
l�γ , jμeaxial

jμ

=
N∑

j=1

u(X )
l�γ , j · eaxial

j (X = M, T ), (5)

where eaxial
jμ denotes the axial unit vector located on jth

atom along μ(= x, y, z) direction with odd parity under time-
reversal operation. Each magnetic basis ψ

(X )
l�γ

is defined as

3N-dimensional vector. The coefficients u(X )
l�γ , jμ are given as

follows:

u(M )
l�γ , j = Ol�γ (ξ j ), (6)

u(T )
l�γ , j = 1

l + 1
Ol�γ (ξ j ) × ξ j, (7)

where � and γ represent IRREPs of point group and its
component, respectively and Ol�γ is obtained by replacing
Ylm in Eq. (4) by symmetry-adapted function with �-IRREP
in the point group of a given atomic cluster, which can be
represented as linear combination of Ylm with fixed rank l . For
instance, if we replace Y2m by Y�γ ∝ x2 − y2 ∝ Y2−2 + Y22,
we obtain M (MT)-multipole u(X )

l�γ , j (X = M, l = 2, � = B1u)
[(X = T, l = 2, � = B1g)] with one-dimensional B1u (B1g)-
IRREP under D4h point group.

B. Virtual atomic cluster for the multipole expansion

We formulated schemes to generate symmetry-adapted
orthogonal magnetic structures without spacial modulation
of the alignment, i.e., k = 0, in earlier works [1,2]. In the
method, we first define a virtual cluster consisting of nonover-
lapped atoms related to each other by the rotation operations
of the crystallographic point group. The crystallographic point
group P is defined as

P =
Ncoset∑
i=1

{pi|0}H, (8)

for the space group G given as follows:

G =
Ncoset∑
i=1

{pi|τ i}HT , (9)

where pi represents the point group operation with p1 = E
being identity operation, τ i denotes nonprimitive translation
with τ1 = 0 and τ i �= 0 (i � 2), and T is the translation
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(a)      : Ferro in unit cell [k=(1/2,0,0)]

(b)      : Antiferro in unit cell [k=(1/2,0,0)]

a

b

c

FIG. 1. (a) Ferromagnetic and (b) antiferromagnetic structures in
the unit cell with k = ( 1

2 , 0, 0) on a zigzag chain.

group. The subgroup of the space group H is composed
only of the rotational operations of the space group, i.e.,
{hζ |0} ∈ H ⊂ G, with h1 = E (ζ = 1, 2, . . . , Nh). In Ref. [2],
a virtual cluster is composed of N0 ≡ NcosetNh sites whose
positions are defined by operating point group operations pihζ

(i = 1, 2, . . . , Ncoset, ζ = 1, 2, . . . , Nh) on a position vector
r = r1 to classify magnetic structures having k = 0 according
to the IRREPs of point group. For the case of finite prop-
agation vector k, there are specific IRREPs which are not
equivalent to IRREPs in the point group symmetry of k group
at the Brillouin zone boundary, associated with sublattice de-
grees of freedom by nonsymmorphic space group operations
[11,23,24]. For instance, the magnetic structures on zigzag
chain with k = ( 1

2 , 0, 0) shown in Figs. 1(a) and 1(b) are
obviously equivalent each other. Note that zigzag structure has
symmetry operations shown in Table I and the k-point group
at k = ( 1

2 , 0, 0) is D2h. The magnetic structures shown in
Figs. 1(a) and 1(b) are transformed to each other by symmetry
operations {C2y|( 1

2 , 0, 0)}, {C2x|( 1
2 , 0, 0)}, {IC2y|( 1

2 , 0, 0)}, and
{IC2x|( 1

2 , 0, 0)} according to Table I. The other independent
magnetic bases, in which the magnetic moments are directed
along b and c axes, have similar transformation properties.
Therefore these magnetic structures form two-dimensional
IRREPs inequivalent to the IRREPs of D2h point group,
all of which are one-dimensional. In this case, we cannot

TABLE I. Representative elements for space group in zigzag
chain and transformation properties of magnetic structures shown
in Figs. 1, where ψa and ψb denote magnetic states in Figs. 1(a)
and 1(b), respectively. The nonprimitive translation τ is given by
τ = ( 1

2 , 0, 0).

{E |0} {C2z|0} {C2y|τ} {C2x|τ}
ψa ψa −ψa ψb −ψb

ψb ψb ψb ψa ψa

{I|0} {IC2z|0} {IC2y|τ} {IC2x|τ}
ψa ψa −ψa ψb −ψb

ψb −ψb −ψb −ψa −ψa

FIG. 2. Virtual clusters in space group P4bm.

directly apply the generation scheme using virtual cluster for
k = 0 constructed according to point group operations. To
address this issue, we define Ncoset-virtual clusters of which
each cluster consists of Nh atoms for the magnetic struc-
ture generation for a finite propagation vector k as discussed
below.

C. Magnetic structure generation for single-k states

We first focus on single-k magnetic structure, whose pe-
riodicity is characterized by a single wave vector k. At a
given wave vector k, the magnetic bases are classified into
the IRREPs of the little group of k denoted as Gk. The group
elements in Gk are composed of a subset of symmetry oper-
ations in G which keeps k invariant under transformations.
Gk is thus a subgroup of a space group G. We construct the
Ncoset-virtual clusters, where each of them have Nh atoms. By
operating group elements {pi|τ i}hζ (i = 1, 2, . . . , Ncoset, ζ =
1, 2, . . . , Nh) on a position vector r1, we can obtain ith virtual
cluster in which ζ th atom is indexed by iζ and the internal
coordinates of iζ th atom is η̃iζ = pihζ r1 + τ i, where η̃iζ = r1

for i = 1 and ζ = 1 [25]. Note that r1 should be set to a
position off the symmetry axes and planes in this procedure.
For clarity of this construction, virtual clusters in space group
P4bm are shown in Fig. 2 as an example. There are two sets
of virtual clusters in this case, each of which consists of four
atoms in square lattice arrangement since space group P4bm is
decomposed as P4bm = {E |0}HT + {IC2y|τ}HT with H =
({E |0}, {C2z|0}, {C4z|0}, {C−1

4z |0}) and τ = ( 1
2 , 1

2 , 0).
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To take account of the interunit cell spatial modulation
characterized by a propagation vector k, we consider the
Fourier transform of magnetic bases as follows:

ψ
(X )
kl�sγsi

= 1√
N

∑
R

ψ
(X )
Rl�sγsi

eik·R, (10)

ẽaxial
kiζ = 1√

N

∑
R

ẽaxial
Riζ eik·R, (11)

where ẽaxial
Riζ is the axial unit vector located on the site iζ of

virtual cluster with position η̃iζ + R, and R is the primitive
translation vector assuming that the virtual clusters are period-
ically arranged. ψRl�sγsi are magnetic bases on the ith virtual
cluster whose centers are located on R + τ i given as follows:

ψ
(X )
Rl�sγsi

=
Nh∑

ζ=1

u(X )
l�sγs,iζ

· ẽaxial
Riζ , (12)

where �s and γs represent IRREP of point group of a vir-
tual cluster and its component, respectively. The coefficient
u(X )

l�sγs,iζ
is obtained by putting pihζ r1 into ξ j in Eqs. (6) and

(7). We can construct the complex basis vectors having IR-
REPs under k group as linear combinations of the magnetic
bases of Eq. (10) as follows:

�̃
(X )
l�kγ

=
Ncoset∑
i=1

∑
�sγs

C(X )
kl�sγsi;�γ

ψ
(X )
kl�sγsi

=
Ncoset∑
i=1

Nh∑
ζ=1

u(X )
l�kγ ,iζ

· ẽaxial
kiζ , (13)

where �k denotes the IRREPs of k group, γ represents its
component, u(X )

l�kγ ,αμ
is given as follows:

u(X )
l�kγ ,iζ

=
∑
�sγs

C(X )
l�sγsi;�kγ

u(X )
l�sγs,iζ

. (14)

Note that coefficients Cl�sγsi;�kγ can be obtained using
ordinary projection operator method to obtain the linear com-
bination of atomic orbitals (LCAO) for the tight-binding
model with the wave vector k and IRREP �s at site i [23]. The
complex magnetic basis �

(X )
l�kγ

in crystallographic systems can

be obtained by mapping �̃
(X )
l�kγ

onto crystallographic lattices
as follows:

�
(X )
l�kγ

=
Ncoset∑
i=1

Nh∑
ζ=1

e
−iϕk,1

iζ u(X )
l�kγ ,iζ

· eaxial
ksiζ [1], (15)

where eaxial
kα represents the Fourier component of axial unit

vector on site α in the crystallographic system and siζ [α]
is the permutation operator for indices of atomic sites α

associated with the symmetry operation {pihζ |τ i}, which
transforms an atomic site of crystallographic system ηα as
follows: {pihζ |τ i}ηα = ηsiζ [α] + Rα

iζ with Rα
iζ being a primitive

translation vector. α = 1 represents the atom mapped from
an atom in virtual cluster with i = 1 and ζ = 1. There is
arbitrariness for the choices of r1 and the atom in a unit
cell of crystal system firstly mapped from an atom of virtual
cluster, but the symmetry property does not depend on their
choices. Transformation properties of atomic sites on 2b site

TABLE II. Atomic indices transformed by representative ele-
ments for space group P4bm.

{E |0} {C2z|0} {C4z|0} {C−1
4z |0}

i 1 1 1 1
ζ 1 2 3 4
siζ [1] 1 1 2 2
siζ [2] 2 2 1 1

{IC2y|τ} {IC2x|τ} {IC2[11̄0]|τ} {IC2[110]|τ}
i 2 2 2 2
ζ 1 2 3 4
siζ [1] 2 2 1 1
siζ [2] 1 1 2 2

in space group P4bm are shown in Table II and Fig. 3 as an
example. The phase factor ϕk,α

iζ
is given as ϕk,α

iζ
= k · Rα

iζ . We
note that letting Natom be the number of magnetic atoms in
the crystallographic unit cell, each magnetic basis �

(X )
l�kγ

in

Eq. (15) is 3Natom-dimensional vector while �̃
(X )
l�kγ

in Eq. (13)
is 3N0-dimensional one with N0 � Natom. The magnetic bases
in Eq. (15) have transformation properties of IRREP �k in
k-group Gk as shown in Appendix. We can obtain complete
orthogonal symmetry-adapted magnetic structure basis set it-
eratively using Eqs. (6), (7), and (12)–(15) combined with the
following Gram-Schmidt orthogonalization increasing rank l
from l = 1 [2],

	
(1)
11 ≡ �

(1)
11√

�
(1)∗
11 · �

(1)
11

, (16)

FIG. 3. Transformation properties of atoms on 2b site in a crys-
tallographic system with space group P4bm. The arrow represents
primitive translation vector Rα

iζ
associated with each space group

operator (see main text).
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FIG. 4. Outline of magnetic bases generation.

�
′(X )
l� = �

(X )
l� −

l∑
l ′=1

X∑
X ′=1

�−1∑
�′=1

[
	

(X ′ )∗
l ′�′ · �

(X )
l�

]
	

(X ′ )
l ′�′ , (17)

	
(X )
l� = �

′(X )
l�√

�
′(X )∗
l� · �

′(X )
l�

, (18)

where 	
(X )
l� is the orthonormal magnetic basis and we reex-

press types of multipoles with X = M and T by the numbers
X = 1 and 2, respectively, and abbreviately denote the IRREP
of k-group �k and its component γ by �. The magnetic bases
generation procedure is summarized in Fig. 4. Although re-
sultant magnetic bases are generally complex, we can always
construct real (physical) magnetic bases by taking linear com-
binations of bases with k and −k. The present method can be
applied to incommensurate magnetic structures. In numerical
calculations, it may be treated by approximating the magnetic
structure to a commensurate magnetic structure over a long
period.

D. Multiple-k states

A single-k magnetic structure with propagation vector k in
an IRREP �k of k-group Gk is a basis vector in an IRREP
of G, that is (�k ↑G)↓Gk = �k [11,24]. Multiple-k magnetic
structures are induced as bases of IRREPs in space group G
from single-k magnetic structure bases with IRREPs in Gk by
taking account of the following relation between Gk and G
[11,24]:

G =
Sk∑

i=1

{pi|τ i}Gk, (19)

where {p1|τ1} = {E |0} and {pi|τ i} for i � 2 is the symme-
try operation of space group G not included in k-group Gk.
The set of wave vectors ki ≡ pik(i = 1, 2, . . . , Sk) which are
inequivalent with each other are called the star of k. The
bases in IRREP of G having propagation vector ki can be
generated by acting {pi|τ i} on a single-k magnetic structure
with IRREP �k of Gk. Dimension of IRREPs of G is therefore
equal to that of Gk multiplied by Sk. The multiple-k magnetic

structures formed as linear combination of the symmetry-
adapted single-k structures with propagation vectors asso-
ciated with each other by symmetry operations {pi|τ i} in
Eq. (19) can preserve the higher rotational symmetry than
that of the single-k structures, while it makes the translational
symmetry lower than that under the single-k structures.

To gain a clear insight into multiple-k magnetic states
constructed from single-k states, we here discuss two ped-
agogical examples of multiple-k states: double-k states on
the square lattice and triple-k states on the face centered
cubic (FCC) structure. Note that the former is one of the
simplest examples of multiple-k magnetic structures, which
is appropriate for an intuitive understanding of multiple-k
magnetic structures. Indeed, several real compounds with the
FCC structure are known to exhibit multiple-k magnetic or-
derings. A nonsymmorphic example will be discussed later in
Sec. III B.

The double-k states having high magnetic point group
symmetry with propagation vectors k = ( 1

2 , 0, 0) and (0, 1
2 , 0)

on the square lattice as well as the single-k states are shown in
Fig. 5. The double k states are obtained as linear combinations
of single-k states ψ1 and ψ2 as shown in Fig. 5. Note that the
space group of the square lattice is P4/mmm and point group
preserving k, referred as k-point group, is D2h. In this case,
all IRREPs of Gk are one-dimensional and Sk = 2, leading to
two-dimensional IRREPs under G. The representation matri-
ces for several space group elements are also explicitly shown
in Fig. 5. We can see that in the single-k (double-k) states, the
representation matrix for translational symmetry {E |Ra} with
Ra = (1, 0, 0) has diagonal (nondiagonal) form, while that
for rotational operation {C4z|0} or {C4z|Ra} has nondiagonal
(diagonal) form. This indicates that the rotational symmetry
in double-k states is higher than that in the single-k states but
translational symmetry in the double-k states is lower than that
in the single-k states, as mentioned before. It should be noted
that time-reversal symmetry is retained macroscopically both
in the single- and double-k states, that is, the time-reversal
operation combined with translational operation is preserved
in the magnetic states. As a result, the magnetic point group in
the double-k states shown in Fig. 5 is same as in the paramag-
netic state, that is 4/mmm1′, whereas that in the single-k states
is orthorhombic one mmm1′, which is lower than 4/mmm1′.
The breaking of four fold rotational symmetry along z axis
in the single-k states is understood from the uniaxial folding
of the Brillouin zone along x or y direction from the paramag-
netic state to magnetic state. This type of magnetic ordering
causing breaking of four fold rotational symmetry has been
discussed in the context of iron-pnictides [26,27].

The examples of triple-k states with propagation vectors at
the X points, k1 = (1, 0, 0), k2 = (0, 1, 0), and k3 = (0, 0, 1),
on FCC lattice are also shown in Figs. 6(a) and 6(b). The
space group of FCC lattice is Fm3̄m and the k-point group
is D4h. Note that the magnetic structure in Fig. 6(a) has
been observed in Fe-Mn alloys [28–30] and several f -electron
compounds such as NpX (X = As, Sb, Bi) [31–34] and USb
[34–36]. In contrast to the square lattice discussed above,
there are two types of two-dimensional IRREPs, E−

g - and
E−

u -IRREPs, in addition to the eight types of one-dimensional
IRREPs of D4h k-point group at the X points. Here and
hereafter, we label the odd (even) parity for time-reversal

014407-5



YUKI YANAGI et al. PHYSICAL REVIEW B 107, 014407 (2023)

FIG. 5. [(a), (c), and (e)] Single-k and [(b), (d), and (f)] double-k magnetic structures with k = ( 1
2 , 0, 0) and (0, 1

2 , 0) on the square lattice.
The representation matrices for symmetry operations {E |0}, {C4z|0}, and {C4z|Ra} with Ra = (1, 0, 0) are also shown.

symmetry as superscript − (+) in IRREPs such as E−
g (E+

g ).
The two- and one-dimensional IRREPs under Gk with Sk = 3
form six- and three-dimensional IRREPs under G since the
X points (1,0,0), (0,1,0), and (0,0,1) are transformed into
each other by symmetry operations {E |0}, {C3[111]|0}, and

FIG. 6. Triple-k magnetic structures on the FCC lattice induced
from magnetic structures with k = (1, 0, 0) having (a) A−

2g and (b) E−
g

representations.

{C2
3[111]|0}, where C3[111] is three fold rotation along [111]

direction. The single-k magnetic state with propagation vector
ki (i = 1, 2, 3) preserves macroscopic time-reversal symme-
try since ki is a time-reversal invariant momentum. On the
contrary, any linear combination of single-k magnetic bases
with ki to form triple-k states necessarily breaks macroscopic
time-reversal symmetry. For instance, when a translational
operation t carries the factor −1 for the magnetic bases with
k1 and k2, and then same translation carries factor +1 for
that with k3 = −k1 − k2. Since all the magnetic bases with
ki (i = 1, 2, 3) cannot be simultaneously transformed into
themselves with factor −1 under a primitive translation t ,
the triple-k magnetic ordering breaks the macroscopic time-
reversal symmetry. As a result, the triple-k magnetic order
is accompanied with the secondary uniform magnetic order
parameter, that is, magnetic multipoles with k = 0. In the
present case, triple-k magnetic ordering induces the secondary
uniform magnetic order parameter having A−

2g-IRREP of Oh

point group. The experimentally observed all-in-all-out type
magnetic order in a pyrochlore oxide Cd2Os2O7 with space
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group Fd 3̄m [37] has the same symmetry of the secondary
magnetic order parameter, A−

2g, of the triple-k state in the
FCC lattice, as shown in Fig. 6(a). Arima has pointed out
that the all-in-all-out magnetic order can be regarded as a
ferroic order of magnetic octupole Mxyz and leads to several
intriguing phenomena such as asymmetric magnetization and
linear magnetostriction [38]. It is, therefore, expected that
similar phenomena emerge also in Fe-Mn alloys, NpX , and
USb. On the other hand, the triple-k state shown in Fig. 6(b)
is induced from the magnetic structure with E−

g -symmetry
of k group at X point. This type of magnetic ordering has
been observed in UO2 [39–42]. This magnetic ordering with
magnetic point group m3̄ is absence of anti-unitary symmetry
operations, which belongs to type-I Shubnikov group [11].
The absence of anti-unitary symmetry operations indicates
that the axial (polar) tensors having opposite parities for time-
reversal operation, that is, M (MT) and ET (E) multipoles
cannot be distinguished from the symmetry viewpoint. These
multipoles thus are simultaneously activated in this situation
[43], resulting in intriguing physical phenomena. For instance,
the electric toroidal dipolar moment as well as the magnetic
moment are linearly coupled with magnetic field in the mag-
netic state shown in Fig. 6(b). The crystal symmetry is thus
lowered to C2h by magnetic field along [001] axis in contrast
to the case of similar paramagnetic point group m3̄1′, in which
the crystal symmetry is lowered to D2h by magnetic field along
[001] axis. Such characteristic magnetostriction is useful for
identifying the order parameter.

III. APPLICATION TO REPRESENTATIVE
AHE ANTIFERROMAGNETS

A. α-Mn

Unary manganese forms various crystal structures depend-
ing on temperature, which are called α-, β-, γ -, and δ-Mn
[44]. α-Mn with body centered cubic (BCC) structure, which
is realized at T � 980 K, has attracted interest due to its
intriguing and complex magnetic properties. A noncollinear
antiferromagnetism with ordering vector k = kH ≡ (1, 0, 0)
is realized at T � 95 K [45–49] under an ambient pressure,
while a first-order transition to the another magnetic phase
with tiny net magnetization ∼0.02 μB/Mn takes place under
an applied pressure P ∼ 1.4 GPa [50–52]. The recent experi-
mental study has revealed the emergence of large anomalous
Hall response reaching σxy ∼ 400–600 S cm−1 in the high-
pressure phase despite such small net magnetization [51]. We
here apply our theory to α-Mn to generate magnetic structures
at high-symmetry k points and provide a possible scenario for
large anomalous Hall response in the high-pressure magnetic
phase, in which magnetic structure has not been clarified
experimentally.

Figure 7 shows the crystal structure and the corresponding
first Brillouin zone for α-Mn. The primitive (conventional)
unit cell contains 29 (58) Mn atoms and resulting crystal
structure is relatively complicated. The space group symmetry
of α-Mn is I 4̄3m (No. 217, T 3

d ), and there are four distinct
types of Mn-sites, Mn-I, Mn-II, Mn-III, and Mn-IV sites
which are located on 2a, 8c, 24g, and 24g Wyckoff positions,
respectively. The sizes of local magnetic moments largely

FIG. 7. (a) Crystal structure and (b) first Brillouin zone of α-Mn.
Mn-I, -II, -III, and -IV sites are separately shown in (c), (d), (e), and
(f), respectively, where body-centered sites are not shown.

depend on the types of Mn-sites according to experiments in
the AFM phase at ambient pressure. The magnetic moments
on Mn-I and -II sites are quite larger than those on Mn-III
and -IV sites, as shown in Table III [47–49] and a simi-
lar tendency for local magnetic moments is obtained by the
first-principles calculations [53–56]. In addition, the internal
magnetic fields on Mn-III and -IV sites are rapidly suppressed
by an applied pressure according to the recent zero-field NMR

TABLE III. Local magnetic moments in units of μB on each Mn
site in AFM phase in α-Mn at ambient pressure from Ref. [49]. Note
that Mn-III and Mn-IV sites are split into two different types of Mn
sites due to lacking of C3 symmetry in AFM phase.

I II III-1 III-2 IV-1 IV-2

mx 0.0 0.14 0.43 −0.25 0.27 −0.08
my 0.0 0.14 0.43 −0.25 0.27 −0.45
mz 2.83 1.82 0.43 −0.32 −0.45 −0.48
|m| 2.83 1.83 0.74 0.48 0.59 0.66
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FIG. 8. (a) Magnetic structure bases with k = 0 on Mn-II sites in α-Mn. (b) Comparison between magnetic basis having A−
2 -IRREP with

k = 0 and that with k = (1, 0, 0). (c) Examples of magnetic structures without net magnetization compatible with finite AHE σxy �= 0.

measurements [57]. We thus focus on magnetic structures on
Mn-I and -II sites in this paper.

Nonzero anomalous Hall response requires symmetry
breaking same as ferromagnetic ordering, which belongs to
T −

1 -IRREP with k = 0 under Td -point group in the present
system [1,22,43,58–60]. According to the recent neutron
diffraction measurements, the magnetic reflection observed
in the ambient pressure phase is absent in the high-pressure
phase [61]. Therefore we focus on the cases of magnetic
orderings having T −

1 symmetry with ordering vector k = 0
and k = kH = (1, 0, 0) in the present study.

The transformation properties for arbitrary magnetic struc-
tures on each Wyckoff position are encoded in representation
matrices, which are called magnetic representations. The
magnetic representations of 2a and 8c sites, D(mag)

2a and D(mag)
8c ,

are decomposed into IRREPs of Gk with k = 0 as follows:

D(mag)
2a = T −

1 , (20)

D(mag)
8c = A−

2 ⊕ E− ⊕ 2T −
1 ⊕ T −

2 , (21)

where we use Mulliken notation for IRREPs under Td point
group since IRREPs of Gk with k = 0 are equivalent to those
of crystallographic point group of G. We show the symmetry-
adapted magnetic structures at 8c site with k = 0 in Fig. 8(a),
which are similar to the magnetic structures on pyrochlore
structures [62,63]. Note that the magnetic structures having
k = kH can be obtained by reversing magnetic moments on
body center tetrahedra for those with k = 0 as shown in
Fig. 8(b). The obtained magnetic structure bases with k = kH

are consistent with the preceding group theoretical analysis of
neutron diffraction experiment [46].

From Eqs. (20) and (21) and Fig. 8(a), we can see that
there are two sets of magnetic structure bases on 8c site with
T −

1 -IRREP whereas there is one set of magnetic structures on
2a site with T −

1 -IRREP, that is, ferromagnetic structure. One
of T −

1 -IRREP magnetic structures on 8c site corresponds to
the ordinary ferromagnetism, and the other is noncollinear
antiferromagnetism without net magnetization. The linear
combinations of these magnetic bases can generate nonzero
anomalous Hall response σxy �= 0. The magnetic structures
without net magnetization are shown in Fig. 8(c). It is note-
worthy that odd parity M and MT multipoles such as the M
quadrupole (Myz, Mzx, Mxy) and MT octupole (T β

x , T β
y , T β

z )
belong to the same T −

1 -IRREP of the primary order param-
eter under the point group Td . These thus can be finite in
magnetic structures with nonzero AHE. Since the odd-parity
MT multipoles are closely related to the second-order electri-
cal conductivity tensor σi; jk [43,64–69], the nonlinear charge
transport can emerge in the high-pressure magnetic phase of
α-Mn [70]. The off-diagonal components σx;zx, σy;yz, σz;xx, and
σz;yy are finite while the other components including diagonal
ones σi;ii vanish in the present case. This form of the tensor
σi; jk indicates that both the longitudinal and transverse cur-
rents can be generated under an applied electric field except
for several specific cases.

We here discuss the secondary order parameters based on
the Landau theory [71,72], which gives clear insight into
physical phenomena in the ordered phases and useful in-
formation about primary order parameters. In fact, detailed
analysis for couplings between primary and secondary order
parameters leads to deep understanding of complex multi-
polar ordered phases in the f -electron systems [20,73–76].
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The possible secondary order parameters are characterized by
k = 0 in case the primary order parameter has the ordering
vector k = 0. We first discuss the electric degrees of freedom
induced by the magnetic orderings, which are relevant to
elastic response and Edelstein effect, for instance. The electric
order parameters, which are time-reversal-even, are induced
by the coupling of the electric multipoles to the even order
terms of magnetic ones in Landau free energy expression due
to the time-reversal symmetry in the paramagnetic phase. The
electric order parameters emerging through the lowest third-
order terms, can be deduced by irreducible decomposition of
symmetric product of primary order parameters as follows:

[T −
1 ⊗ T −

1 ] = A+
1 ⊕ E+ ⊕ T +

2 , (22)

where the secondary order parameters with A+
1 , E+, and T +

2 -
IRREPs correspond to uniform electric monopole Q0, electric
quadrupoles (Qu(=3z2−r2 ), Qv(=x2−y2 ) ), and (Qyz, Qzx, Qxy), re-
spectively from the symmetry viewpoint. Note that in
the present case, electric toroidal quadrupole (electric
dipole) (Gv, Gu) [(Qx, Qy, Qz )] also emerges when electric
quadrupole (Qu, Qv ) [(Qyz, Qzx, Qxy)] is finite since those
have the same IRREP E+ (T +

2 ) under Td point group. The
explicit forms of the third-order terms in Landau free energy
are given as follows:

F (3) = c1
[
MyMzQyz + (cyclic perm.)

]
+ c2

√
3
(
M2

x − M2
y

)
Qv

+ c2
(
2M2

z − M2
x − M2

y

)
Qu, (23)

where we neglect trivial coupling with the fully symmetric
Q0 term and (cyclic perm.) represents the terms obtained
by cyclic permutations for indices of MyMzQyz as x, y, z →
y, z, x and z, x, y, and c1 and c2 are coupling constants de-
termined from microscopic models. Equation (23) represents
that the electric quadrupole is inevitably induced by primary
order parameter with T −

1 -IRREP. For example, Qu-type elec-
tric quadrupole emerges in the case that Mx = My = 0 and
Mz �= 0 while the electric quadrupoles having T +

2 symmetry
emerge with the same amplitude of all components, that is,
Qyz = Qzx = Qxy �= 0 in the case that Mx = My = Mz �= 0.
Therefore the symmetry of crystal structure is lowered to
tetragonal D2d point group in the former case, which can
induce gyrotropic magnetic effect, and polar trigonal C3v point
group in the latter case. Note that similar couplings to electric
multipoles with k = 0 emerges also in the case of the primary
order parameter with k = kH since the even powers of primary
order parameters carry the wave vector k = 0 modulo recip-
rocal lattice vector.

In the similar manner, secondary magnetic order parame-
ters are discussed. Due to the time reversal symmetry in the
nonmagnetic phase, the secondary magnetic order parameter
emerges through the fourth-order coupling in the Landau free
energy, which can be obtained by the irreducible decomposi-
tion of fully symmetric product [T −

1 ⊗ T −
1 ⊗ T −

1 ] as follows:

[T −
1 ⊗ T −

1 ⊗ T −
1 ] = A−

2 ⊕ 2T −
1 ⊕ T −

2 , (24)

where A−
2 and T −

2 correspond to magnetic octupoles Mxyz

and (Mβ
x , Mβ

y , Mβ
z ) from the symmetry viewpoint. The fourth-

order term of Landau free energy which represent coupling
of order parameter with T −

1 -IRREP to the secondary order
parameters having different symmetry is given as follows:

F (4) = d1MxMyMzMxyz

+ d2
[(

M2
y − M2

z

)
MxMβ

x + (cyclic perm.)
]
. (25)

From the above equation, we can see that in the case of
Mx = My = 0 and Mz �= 0, the magnetic secondary order pa-
rameter does not emerge while in the case of Mx = My =
Mz �= 0 (Mz = 0 and Mx = My �= 0), the magnetic octupole
Mxyz (Mβ

x = −Mβ
y ) is induced. On the other hand, when

the primary order parameter has a modulation vector k =
kH, secondary magnetic order parameters with k = 0 do not
emerge since combined symmetry of time-reversal operation
and primitive translation retains in the ordered phase. The
secondary induced magnetic multipoles have ordering vector
k = kH in this case.

The primary order parameters with inducing the secondary
order parameters discussed above give rise to deformation
of electronic states and resulting physical phenomena in the
ordered phases. In particular, the order parameters with the
ordering vector k = 0 are important since those can be sources
of macroscopic responses according to Neumann’s principle
[22,58,60,77] and experiments using macroscopic probes can
detect the order parameters relatively easier. The magnetic
order parameter Mz with k = 0 is finite in the high-pressure
phase, while that vanishes in the ambient pressure phase.
The former case leads to anomalous Hall, Nernst effects, and
magneto-optical effects.

On the other hand, electric order parameters Qu and Gv

with k = 0 can be finite in both ambient and high-pressure
magnetic phases. This gives rise to the antisymmetric spin-
splitting of band structures kxσx − kyσy, resulting in natural
optical activity and magnetocurrent effect such as the Edel-
stein effect [78–80], where σi (i = x, y, z) is the Pauli spin
matrix. We summarize band deformations as the hopping
terms in the 2 × 2 Hamiltonian with spin degree of freedom
and macroscopic responses in the ordered phases in Table IV.

TABLE IV. Band deformation and macroscopic responses in the magnetic ordered phases having T −
1 -IRREP with the ordering vectors

k = 0 (� point) in the high-pressure phase and k = kH (H point) in the ambient pressure phase. AHE, ANE, ME, MC, and MOKE represent
anomalous Hall, anomalous Nernst, magnetoelectric, magnetocurrent, and magneto-optical Kerr effects, respectively and NLC denotes the
nonlinear charge transport. Note that magneto-current effects correspond to Edelstein effect and its inverse response.

ordering vector band deformation macroscopic response

� : (0, 0, 0) (3k2
z − k2)σ0 kxσx − kyσy σz kz(k2

x − k2
y )σ0 AHE, ANE, MOKE, ME, MC, NLC

H : (1, 0, 0) (3k2
z − k2)σ0 kxσx − kyσy ✗ ✗ MC
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FIG. 9. (a) Crystal structure of CoTa3S6 and (b) that on ab plane
with only Co atoms. (c) First Brillouin zone for CoTa3S6 and (d) that
on kz = 0 plane, where several high-symmetry k points are shown by
dots.

B. CoM3S6

An intercalated compound of transition metal dichalco-
genides, T M3S6 (T = 3d-transition metal, M = Nb, Ta),
shows rich electronic and magnetic properties. For instance,
a helimagnetic ordering with a long period is formed in
CrNb3S6 [81,82], which turns into chiral soliton lattice under
an applied magnetic field. Another compound, ferromagnetic
VM3S6 is proposed as a candidate of Weyl semimetals or
topological insulators by first-principles calculations [83].
CoNb3S6 in particular has attracted growing interests due to
its large anomalous Hall conductivity in the magnetic ordered
phase with a tiny ferromagnetic moment [84–86]. This com-
pound crystallizes in the space group P6322 (No. 182, D6

6)
symmetry, where the crystal structure is shown in Fig. 9. Early
neutron diffraction studies by Parkin et al. indicate the mag-
netic structure with a single-k (0, 1

2 , 0) having multidomain
for CoNb3S6 and that with k = ( 1

3 , 1
3 , 0) for CoTa3S6 [87].

Recent neutron diffraction patterns for CoNb3S6, however, are
also compatible with multi-k magnetic order with single do-
main [85]. We here discuss possible magnetic structures with
ordering vector k at high-symmetry points in BZ and provide
a symmetry analysis of magnetic structures in connection with
emergence of anomalous Hall effect.

Let us consider magnetic structures with ordering vec-
tors k at M points. There are three symmetry equivalent M
points in the first Brillouin zone, which are given by kM(1) =
(0, 1

2 , 0), kM(2) = (− 1
2 , 0, 0), and kM(3) = ( 1

2 ,− 1
2 , 0) as shown

in Figs. 9(c) and 9(d). The k-point group at M points is D2 and
magnetic bases can be classified according to IRREPs under
this point group (see Table V). Figure 10 shows symmetry
adapted magnetic structures with a single propagation vector
k = kM(1) . All the magnetic structures in Fig. 10 are collinear
antiferromagnetism. Note that we can construct noncollinear
magnetic structures as linear combinations of (b) and (e) and
those of (d) and (f) without further symmetry lowering since
the magnetic structures in Figs. 10(b) and 10(e) and those in

TABLE V. Character table for k group at M (i) point. C2x,1 and
C2y,1 represent twofold rotation along x and y axes. C2x(y),i (i = 2, 3)
is defined as C2x(y),i = Ci−1

3z C2x(y),1C−i+1
3z .

E C2z C2y,i C2x,i

A 1 1 1 1
B1 1 1 −1 −1
B2 1 −1 1 −1
B3 1 −1 −1 1

10(d) and 10(f) have same IRREPs. Symmetry operation of
time-reversal combined with primitive lattice translation holds
in the magnetic states characterized by k = (0, 1

2 , 0) shown in
Fig. 10. As a result, anomalous Hall response is prohibited in
these magnetic states.

As mentioned in Sec. II C, triple-k magnetic structures
are obtained from single-k magnetic bases. Possible high-
symmetry triple-k magnetic structures related to anomalous
Hall effect are shown in Figs. 11 and 12. The two magnetic
structures, i.e., vortex-like arrangement of magnetic moments

FIG. 10. Magnetic structure bases with single-k (0, 1
2 , 0) in crys-

tal structure of CoM3S6. The arrow and red (green) sphere represents
magnetic moment in ab plane and along +z (−z) axis, respectively.
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FIG. 11. Triple-k magnetic structures induced from single-k magnetic bases with B−
1 symmetry at M points. (a) and (b) correspond to those

from magnetic bases shown in Figs. 10(b) and 10(e), respectively.

in ab plane and ferrimagnetic structure along c axis shown in
Fig. 11, can induce AHE since these magnetic point groups
are 62′2′ [88]. The other high-symmetry triple-k magnetic
states induced from single-k magnetic states having each of
A−, B−

2 , and B−
3 symmetry in Table V prohibit AHE since

these magnetic point groups are 622, 6′2′2, and 6′22′, respec-
tively [88]. The Landau free energy expression gives more
clear insight into emergence of AHE in magnetically ordered
phase. Secondary magnetic order parameters are coupled with
the primary ones through the even order terms in the Landau
free energy due to time-reversal symmetry in the paramag-
netic state. Magnetic multipoles with k = 0 are coupled with

FIG. 12. Examples of linear combinations of triple-k states
shown in Fig. 11.

magnetic order parameters with kM(i) through the fourth-order
terms in the Landau free energy since the sum of the wave
vectors at M points is zero: kM(1) + kM(2) + kM(3) = 0. In the
case that primary order parameters have B−

1 symmetry with
propagation vector at M points, the fourth-order term in the
Landau free energy is given as follows:

F (4) = d1MB(1)
1

MB(2)
1

MB(3)
1

Mz

+ d2
(
M2

B(2)
1

− M2
B(3)

1

)
MB(1)

1
MA(1)

+ d2
(
M2

B(3)
1

− M2
B(1)

1

)
MB(2)

1
MA(2)

+ d2
(
M2

B(1)
1

− M2
B(2)

1

)
MB(3)

1
MA(3) , (26)

where MA(i) and MB(i)
1

represent the magnetic order parameters

having A− and B−
1 symmetry with ordering vector k = kM(i) ,

respectively, and Mz represents the magnetic order parameter
having A−

2 symmetry with ordering vector k = 0, i.e., the
order parameter with same symmetry for z component of
net magnetization. The Eq. (26) clearly shows that uniform
Mz can be finite in the triple-k magnetic states induced from
single-k magnetic states having B−

1 symmetry, indicating the
emergence of AHE σxy �= 0 in the ordered phase though Mz is
not necessary to be finite. Note that magnetic toroidal dipole
Tz can be finite with Mz since Tz belongs to the same A−

2 -
IRREP of Mz in the present crystal structure having chiral
point group D6. The vortexlike arrangements of magnetic
moments can be regarded as toroidal dipole moments [89,90],
and this is consistent with the magnetic structure shown in
Fig. 11(a). The existence of magnetic toroidal dipole moments
allows the magneto-electric effect and nonreciprocal charge
transport, and these macroscopic responses can be footprints
of triple-k ordering in the present case.
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As mentioned in the previous subsection, the electric order
parameters are coupled with magnetic ones through the odd
order terms in Landau free energy. The third-order terms are
given as follows:

F (3) = c1
(
2M2

B(1)
1

− M2
B(2)

1
− M2

B(3)
1

)
Qv

+ c1

√
3
( − M2

B(2)
1

+ M2
B(3)

1

)
Qxy

+ c2MB(2)
1

MB(3)
1

QA(1)

+ c2MB(3)
1

MB(1)
1

QA(2)

+ c2MB(1)
1

MB(2)
1

QA(3) , (27)

where (Qxy, Qv ) is the electric multipole having E+
2 -symmetry

with propagation vector k = 0 and QA(i) represents electric
order parameter having A+-symmetry with k = kM(i) . We can
see that, from Eq. (27), single-k magnetic state MB(1)

1
�= 0

and MB(2)
1

= MB(3)
1

= 0 breaks the crystallographic point group
from hexagonal group D6 to orthorhombic one D2 and leads
to the emergence of the secondary electric order parameter
Qv . The triple-k state, MB(2)

1
= MB(2)

1
= MB(3)

1
�= 0, preserves

the crystallographic point group D6, and the electric multi-
poles with k = 0 are not induced as a result. Note that the
unit cell in the triple-k state is extended in the ab-plane
from the nonmagnetic one though the triple-k state has the
same crystallographic point group with that for the nonmag-
netic state. The resulting finite components of macroscopic
response tensors associated with electric order parameters are
thus unchanged from those in the paramagnetic phase. Mean-
while, the electric order parameters with k = kM(i) emerges
QA(1) = QA(2) = QA(3) �= 0. These order parameters QA(i) corre-
sponds to charge ordering with the propagation vector kM(i)

and can be measured by the microscopic probes such as x-ray
diffraction measurements. Thus the secondary order param-
eters are useful for gaining information about primary order
ones also in this case.

IV. SUMMARY AND OUTLOOK

We have proposed a generation method of symmetry-
adapted magnetic structure basis set with finite propagation
vector k based on the multipole expansion. In this method,
the magnetic configurations on a virtual cluster of each prop-
agation vector is first generated with use of the multipole
expansion and then these are mapped onto crystallographic
systems with a phase factor to take into consideration of
spatial modulation of magnetic structures specified by a wave
vector k. The iterative implementation of this procedure
with Gram-Schmidt orthogonalization provides complete or-
thonormal magnetic bases with a given k classified according
to irreducible representations under k-group in arbitrary crys-
tal structures. We can also construct the multi-k magnetic
structures as the induced representation of the single-k states.
The obtained magnetic structures can be good candidates for
initial magnetic configurations for density functional theory
(DFT) calculations [12] and thus high-throughput DFT cal-
culations for magnetic materials combined with the present
magnetic basis generation method is a possible future direc-
tion of our work.

Another potential application is a systematic analysis of
the neutron scattering data. Magnetic structures generated in
the present scheme form complete basis set and thus can
be used for fitting of neutron diffraction patterns to identify
magnetic structures. The detailed characterization of neutron
scattering data of complicated magnetic structures with the
use of magnetic bases based on the multipole expansion is an
interesting future issue.

The present method is applied to representative materials
α-Mn and CoM3S6 (M = Nb, Ta) showing large anoma-
lous Hall effect (AHE) with tiny net magnetization, whose
magnetic structures are not clarified experimentally. It is
demonstrated that magnetic structures compatible with both
AHE and small ferromagnetic moment can be constructed.
We also discuss the secondary order parameter, physical re-
sponses, and electronic properties under magnetic orders in
α-Mn and CoM3S6. We show that various phenomena such as
AHE, anomalous Nernst effect (ANE), and magneto-optical
Kerr effect (MOKE) can emerge through the primary mag-
netic order parameter having T −

1 symmetry with k = 0 for
the high-pressure phase in α-Mn, and the Edelstein effect
driven by the odd parity electric order parameters are possi-
ble both in the ambient and high-pressure phases since the
symmetry of secondary electric order parameters are same in
both phases. For CoM3S6, the magnetic order parameter with
T −

1 -symmetry with k = 0 are induced as a secondary order
parameter in triple-k state, leading to emergence of AHE,
ANE, MOKE, and nonreciprocal charge transport.

Our method is applicable to general magnets including
noncollinear and noncoplanar antiferromagnets and skyrmion
crystals [13]. The present magnetic structure generation
scheme thus would facilitate exploration of functional mag-
netic materials.

ACKNOWLEDGMENTS

The authors thank K. Akiba, T. C. Kobayashi, S. Araki,
H. Fukazawa, N. Shioda, T. Ohama, and Y. Kohori for
fruitful discussions on experimental data for α-Mn. They
are also grateful to S. Seki, H. Takagi, and S. Minami
for collaborative research on CoM3S6. This research was
supported by JSPS KAKENHI Grants No. JP15H05883 (J-
Physics), No. JP18H04230 (Topological Materials Science),
No. JP19H01842, No. JP19H05825 (Quantum Liquid Crys-
tals), No. JP20H05262 (Hypermaterials), No. JP20K05299,
No. JP20K21067, No. JP21H01031, No. JP21H01789, No.
JP21H04437, No. JP21H04990, and No. JP22H00290, by JST
PRESTO Grants No. JPMJPR17N8 and No. JPMJPR20L7,
and by JST-Mirai Program Grant No. JPMJMI20A1. They
acknowledge Center for Computational Materials Science,
Institute for Materials Research, Tohoku University for the
use of MASAMUNE-IMR. Figures of crystal and magnetic
structures are created by using VESTA [91].

APPENDIX: TRANSFORMATION PROPERTIES OF �l
kγ

In this Appendix, we show that �
(X )
l�kγ

in Eq. (15)
belongs to �k-IRREP. Since magnetic bases on virtual clus-
ter �̃l�kγ have transformation properties of IRREP �k,
we should show the following relation: {pihζ |τ i}�(X )

l�kγ
=
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∑
γ ′ D�k

γ ′γ ({pihζ |τ i})�(X )
l�kγ ′ , where {pihζ |τ i} ∈ Gk. The basis

eaxial
kαμ have the following transformation properties under a

k-group operation {pihζ |τ i},

{pihζ |τ i}eaxial
kαμ =

∑
ν

D(axial)
νμ (pihζ )e

−iϕk,α
iζ eaxial

ksiζ [α]ν, (A1)

where D(axial) is the transformation matrix of axial vector. We
here note that the following relation for RsI′ [α]

Ik
is satisfied,

R
si′

ζ
[α]

iζ
= {pihζ |τ i}ηsi′

ζ
[α] − ηsiζ [si′

ζ
[α]]

= {pihζ |τ i}{pi′hζ ′ |τ i′ }ηα − pihζ Rα
i′ζ

− ηsi′′
ζ

[α]

= {pi′′hζ ′′ |τ i′′ }ηα + T − pihζ Rα
i′ζ

− ηsi′′
ζ

[α], (A2)

where symmetry operation pi′′hζ ′′ and a primitive translation
T are given as follows:

pi′′hζ ′′ = pihζ pi′hζ ′ , (A3)

T = pihζ τ i′ + τ i − τ i′′ . (A4)

By taking account of the relations in Eqs. (A2)–(A4), it is
shown that {pihζ |τ i}�(X )

l�kγ
is written as follows:

{pihζ |τ i}�(X )
l�kγ

=
Ncoset∑
i′=1

Nh∑
ζ ′=1

∑
μ,ν

e
−iϕk,1

i′′
ζ

−ik·T

× D(axial)
μν (pihζ )u(X )

kl�γ ,i′ζ ν
eaxial

ksi′′
ζ

[1]μ. (A5)

Let us here derive the relation among D�k
γ γ ′ , D(axial)

μν , and

u(X )
kl�γ ,αν

from the transformation properties of magnetic bases

on virtual cluster �̃
(X )
l�kγ

. Similarly to Eq. (A1), the mag-
netic bases ẽaxial

ki′ζ μ
are transformed under a symmetry operation

{pihζ |τ i} as follows:

{pihζ |τ i}ẽaxial
ki′ζ μ

=
∑

ν

D(axial)
νμ (pihζ )e

−iϕ̃
k,i′

ζ
iζ ẽaxial

ki′′ζ ν
, (A6)

where the phase factor is given as ϕ̃
k,i′ζ
iζ

= k · R̃
i′ζ
iζ

with R̃
i′ζ
iζ

=
{pihζ |τ i}η̃i′ζ

− η̃i′′ζ
. We here use the definition of virtual cluster

described in Sec. II B, that is, η̃i′ζ
= {pi′hζ ′ |τ i′ }r1 and the re-

lation in Eq. (A3). Therefore the magnetic basis �̃
(X )
l�kγ

shows
following transformation properties:

{pihζ |τ i}�̃(X )
l�kγ

=
Ncoset∑
i′=1

Nh∑
ζ ′=1

∑
μν

D(axial)
μν (pihζ )

× e
−iϕ̃

k,i′
ζ

iζ u(X )
kl�γ ,i′ζ ν

ẽaxial
ki′′ζ μ

. (A7)

By considering the relation {pihζ |τ i}�̃(X )
l�kγ

= ∑
γ ′ D�k

γ ′γ

({pihζ |τ i})�̃
(X )
l�kγ ′ as well as Eq. (A7), we can obtain the fol-

lowing relation:

∑
ν

D(axial)
μν (pihζ )u(X )

kl�γ ,αν
e
−iϕ̃

k,i′
ζ

iζ

=
∑
γ ′

D�k
γ ′γ ({pihζ |τ i})u(X )

kl�γ ′,i′′ζ μ
. (A8)

Putting Eq. (A8) into Eq. (A5), we obtain the following rela-
tion:

{pihζ |τ i}�(X )
l�kγ

=
∑
γ ′

Ncoset∑
i′=1

Nh∑
ζ ′=1

∑
μ

e
−iϕk,1

i′′
ζ

−ik·T+iϕ̃
k,i′

ζ
iζ

× D�k
γ ′γ ({pihζ |τ i})u(X )

kl�kγ ′,i′′ζ μ
eaxial

ksi′′
ζ

[1]μ. (A9)

Using the relations in Eqs. (A3) and (A4) and following
the same manner of calculation in Eq. (A2), we can show

that R̃
i′ζ
iζ

= T and ϕ̃
k,i′ζ
iζ

= k · T . Consequently, the relation

{pihζ |τ i}�(X )
l�kγ

= ∑
γ ′ D�k

γ ′γ ({pihζ |τ i})�(X )
l�kγ ′ holds and thus,

the magnetic basis �
(X )
l�kγ

belongs to �k-IRREP under k-group
Gk.
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