
PHYSICAL REVIEW B 107, 014403 (2023)
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We present several interesting phenomena related to flat-band ferromagnetism in the Hubbard model. The first
is a mathematical theorem stating certain conditions under which a flat-band ferromagnetic must necessarily be
degenerate with a nonferromagnetic state. This theorem is generally applicable and geometry independent but
holds only for a small number of holes in an otherwise filled band. The second phenomenon is a peculiar example
where the intuition fails that particles prefer to doubly occupy low-energy states before filling higher-energy
states. Lastly, we show a pattern of ferromagnetism which appears in small pentagonal and hexagonal plaquettes
at filling factors of roughly 3/10 and 1/4. These examples require only a small number of lattice sites and may
be observable in quantum dot arrays currently available as laboratory spin qubit arrays.
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I. INTRODUCTION

The Hubbard model [1] was originally formulated with
the goal of explaining the existence of ferromagnetism in
common transition metals. The tight-binding Hamiltonian
simplistically describes screened electron-electron interac-
tions in a narrow-band metal with the use of only two
parameters: the tunneling constant between lattice sites ti j ,
and the onsite Coulomb repulsion energy U , as seen in Eq. (1):

H =
∑
i, j

∑
s∈{↑,↓}

−ti jc
†
isc js +

∑
i

U

2
ni(ni − 1), (1)

where i, j are summed over the lattice sites. Despite the sim-
plicity of the Hubbard model, no general solution is known,
and while some progress has been made, a complete descrip-
tion of ferromagnetism using this model has not been found
after 60 years. However, ferromagnetism has been rigorously
proven to occur in the Hubbard model in two very specific
instances, namely Nagaoka ferromagnetism and flat-band
ferromagnetism.

One specific situation where the Hubbard model can be
proven to exhibit ferromagnetism is when one electron is
added to a half-filled band. This result, proven by Nagaoka,
requires that U = ∞, ti j � 0 and that the lattice be suffi-
ciently connected [2]. Nagaoka ferromagnetism is a somewhat
surprising result when considering that, for an exactly half
filled band, the Hubbard model reduces to the Heisenberg
model, which generally exhibits antiferromagnetism; yet the
addition of a single electron is proven to completely change
the magnetic phase. This exact finding of Nagaoka suggests
that the Hubbard model, in spite of its apparent simplicity
and its seeming dependence on a single effective dimension-
less interaction parameter U/t , is extremely rich and subtle,
since just adding one particle to the half-filled state changes
the ground state from being an antiferromagnetic insulator

to a ferromagnetic metal. The model is considered to be the
paradigmatic model of strong correlations in many-body in-
teracting systems and is foundational in theoretical studies of
many phenomena such as Mott transition, ferromagnetism and
antiferromagnetism, narrow-band systems, high-Tc cuprate
superconductivity, spin liquids, etc. Recently, Nagaoka fer-
romagnetism has been experimentally observed in a small
plaquette of four quantum dots which simulates the Hubbard
model [3]. In an earlier work, we studied Nagaoka ferro-
magnetism in small quantum dot plaquettes theoretically [4],
connecting with this recent experiment [3] and establishing
the continued validity of Nagaoka-type ferromagnetism in the
Hubbard model even when some of the stringent conditions of
the original work [2] are relaxed. The idea that the Hubbard
model can be simulated by quantum dot plaquettes has been
proposed decades ago [5–7], but current technologies [3,8,9]
are capable of realizing these experiments now or in the near
future. In fact, the laboratory emulation of the Hubbard model
and the associated Mott transition reflected in the observation
of the collective Coulomb blockade in a recent experiment
on a few quantum dots establish the exquisite control and
measurement capability achieved in solid-state nanostructures
inspired by experimental advances in the semiconductor spin
qubit quantum computing platforms [10]. Such experiments
should enable direct laboratory simulations of the Hubbard
model in small lattices of a few electrons. Although our work
is entirely theoretical and quite mathematical in nature, we
have been inspired by the rapid recent experimental advance
in semiconductor spin qubit platforms consisting of quantum
dot arrays, which should enable an experimental verification
of our exact (and counterintuitive) results for the Hubbard
model.

In specific cases, it has been proven that the Hubbard model
exhibits a different type of ferromagnetism (i.e., distinct from
Nagaoka ferromagnetism) known as flat-band ferromagnetism

2469-9950/2023/107(1)/014403(18) 014403-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.014403&domain=pdf&date_stamp=2023-01-06
https://doi.org/10.1103/PhysRevB.107.014403


DONOVAN BUTERAKOS AND SANKAR DAS SARMA PHYSICAL REVIEW B 107, 014403 (2023)

[11]. The original proposition for flat-band ferromagnetism
consisted of a system with a highly degenerate ground state,
which could in principle can occur for low-energy (elec-
tron) states or high-energy (hole) states. However, due to the
Perron-Frobenius theorem, when ti j is positive, the lowest-
energy state of a connected lattice is always nondegenerate.
Thus flat-band ferromagnetism as mathematically proven in
Ref. [11] requires degenerate highest-energy states. There has
since been much work concerning flat-band ferromagnetism
[12–18]. Flat-band ferromagnetism has been predicted to oc-
cur in armchair graphene nanoribbons [19] and twisted bilayer
graphene [20]. It has also been shown that flat-band ferro-
magnetism can occur at half filling and other filling factors
if the flat band occurs in the middle of the spectrum [14–16].
However, for this present work, we shall focus on the math-
ematical formalism originally presented by Tasaki, in which
the flat band lies at the top of the spectrum. Because our focus
is holes filling in an otherwise filled band, it is convenient to
use the particle-hole transformation c̃is = c†

is, where c̃is is the
hole annihilation operator. Under this transformation, Eq. (1)
becomes as follows, up to a constant energy shift:

H =
∑
i, j

∑
s∈{↑,↓}

ti j c̃
†
isc̃ js +

∑
i

U

2
ñi(ñi − 1). (2)

The weak flat-band ferromagnetism theorem is as follows:
Consider the Hubbard model (2) such that the single-hole

ground state is k-fold degenerate. Then for h holes, with
h � k, the ferromagnetic ground-state energy will be less than
or equal to the energy of any nonferromagnetic state.

The proof of this statement [11] follows a similar line
of reasoning as Hund’s rule. The ferromagnetic ground state
consists of the holes filling h of the k degenerate states, and
the ground energy corresponds to h times the energy of these
states. Because of the Pauli exclusion principle, there will
be no doubly occupied lattice sites, and thus there will be
no contribution from the onsite interaction term. Nonferro-
magnetic states can at best match the same energy, but the
onsite interaction term could potentially increase the energy
of the states, since doubly occupied lattice sites are no longer
forbidden by the Pauli exclusion principle.

This theorem does not by itself guarantee ferromagnetism,
since the inequality between the ferromagnetic ground-state
energy and the nonferromagnetic energies is not a strict
inequality. There have been many works showing that the
inequality is strict in certain classes of lattice geometries
[11,21–24]; however, it is not known in general for which
cases or under what prescribed conditions there will be a
unique ferromagnetic ground state.

In this paper we present several results. In Sec. II, we give
a mathematical theorem which prescribes certain conditions
under which there will be ferromagnetic and antiferromag-
netic degeneracy. This theorem is only applicable for a small
number of holes, but is independent of geometry, relying only
on the number of lattice sites, holes, and flat-band single-
particle states. In Sec. III, we give an example of a six-dot
configuration where the ground state is ferromagnetic despite
not having any degenerate flat-band single-particle states. This
is, therefore, an example in which ferromagnetism in the
Hubbard model can exist without having any band-induced

single-particle degeneracy. Additionally, the lowest-energy
antiferromagnetic state does not doubly occupy the single-
particle ground state as one might expect—instead doubly
occupying a higher-energy state. In Sec. IV, we present a
pattern observed in the ground-state energies of various small
plaquettes. Specifically, for small plaquettes comprised of
hexagons (subsections of hexagonal or diamond lattices) the
ground state is ferromagnetic at 1/4 filling. Similarly, for
plaquettes consisting of pentagons, the ground state is ferro-
magnetic at around 3/10 filling. We give a brief explanation
for why this may occur and discuss its applicability to the
thermodynamic limit. Finally, in Sec. V, we give our con-
clusions, briefly noting in particular that the examples we
present are experimentally accessible with current quantum
dot technologies, each requiring only a few quantum dots. A
long Appendix (which can be skipped by the reader) provides
many additional results for the experts and is provided only
for the sake of completeness, showing that our theory can
be generalized up to 15 dots and many different plaquette
geometries, thus guiding any future experiments on studying
quantum ferromagnetism using semiconductor quantum dot
spin qubit platforms. We have many additional results also
which are not presented in the current work because the main
text and the Appendix already provide all representative ex-
amples of interest.

II. FLAT-BAND FERROMAGNETIC AND
NONFERROMAGNETIC DEGENERACY

Although it is not known in general which lattice ge-
ometries and filling factors are strictly ferromagnetic, it is
interesting to ask the converse: are there cases where it is
known with certainty that the ferromagnetic ground state
is degenerate with nonferromagnetic ground states? This
was discussed for certain cases in Ref. [25]. We discuss
additional cases where this is true and present a general
combinatorics-based theoretical result which is completely
geometry independent, although to apply it to specific phys-
ical situations requires rather strict conditions on the number
of states and holes present in the system. Note that much of
the literature about ferromagnetism is concerned with large
or infinite lattices. Since we present our results in the context
of small quantum dot plaquettes, we are concerned with small,
finite systems. For these systems, we define a “ferromagnetic”
state to be a state with maximal spin (spin n/2 if there are n
electrons), and an “antiferromagnetic” state to be a state with
spin 0 or 1/2 (depending on whether there are an odd or even
number of fermions).

For the Hubbard model given by Eq. (2), if there are fewer
particles in the system than the number of degenerate single-
particle flat-band states, then there must be a ferromagnetic
ground state (possibly among other ground states) [11]. We
wish to know in what cases is that ground state is unique.
One simple case where flat-band ferromagnetic ground states
can be shown to be degenerate with nonferromagnetic ground
states is when the degenerate flat-band states are local. In
this case, multiple nonoverlapping local states can be filled
with any spin configuration without having any doubly occu-
pied dots. Then the interaction term of the Hamiltonian will
not contribute to ground-state energy, and thus there will be
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degenerate ferromagnetic and nonferromagnetic ground
states. For example, in the Kagome lattice, single-hole ground
states localize, occupying only six sites comprising one
hexagon of the lattice. These local states can be filled with
holes without overlap if the filling factor νh � 1/18, and thus
there will be degenerate ferromagnetic and nonferromagnetic
ground states for these filling factors (note that Mielke proved
a stronger statement [22] for νh � 1/6, but this proof relies
strictly on the fact that the Kagome lattice is a line graph,
and is not extendable to other lattices). Another example is a
small plaquette of dots forming a complete graph (ti j = t for
any i �= j). Here the single-hole ground states localize to just
two dots, and there is ferromagnetic and nonferromagnetic
degeneracy for any νh � 1/4.

This effect of nonoverlapping local states leading to fer-
romagnetic and nonferromagnetic degeneracy is an example
of the importance of the so-called “connectivity condition”
to the study of ferromagnetism. The connectivity condition is
satisfied only if the flat-band states cannot be represented in a
basis where they do not overlap with each other. This is often
a requisite condition for ferromagnetism to occur without
nonferromagnetic degeneracy due to the reason we discussed.
However, the connectivity condition is not completely syn-
onymous with flat-band ferromagnetism, as it has been shown
that flat-band ferromagnetism can still exist in cases when the
connectivity condition does not hold due to the behavior of
neighboring bands [15]. Likewise, the connectivity condition
by itself does not necessarily guarantee a nondegenerate fer-
romagnetic ground state when the flat band is not completely
filled. For example, consider the Hubbard model with hopping
determined by the edges of the (2,3)-Hamming graph. This
system has a flat band consisting of four states. These states
must be represented using at least four sites each, and there is
no way to represent any two of these states using disjoint sets
of lattice sites, and thus the connectivity condition is fulfilled.
This system does indeed have a ferromagnetic ground state
when filled with four particles. However, when this system
is occupied by two particles, the ferromagnetic ground state
is degenerate with the antiferromagnetic ground state. Thus,
there is a way that even completely nonlocal states can still
lead to degeneracy. Holes can fill the degenerate flat-band
states in a number of ways, each leading to doubly occupied
terms c̃†

i↑c̃†
i↓ in the full multiparticle many-body state. How-

ever, because there are many different ways these states can
be filled, it is often possible to form linear combinations in
which all doubly occupied terms cancel out. If this is possi-
ble, then there will be ferromagnetic and nonferromagnetic
ground-state degeneracy. In particular, we show that, if the
number of distinct ways the flat-band states can be filled for
a given choice of total spin quantum numbers s and sz (which
we call Nf ) is greater than the number of possible doubly
occupied terms (which we call Nd ), then there will always
exist a linear combination of flat-band states that cancel out
all doubly occupied terms. We will first explicitly calculate the
quantities Nf and Nd using combinatorics. We will then give
a mathematically rigorous theorem and proof which gives a
sufficient condition for degenerate ferromagnetic and nonfer-
romagnetic states.

We calculate the quantities Nf and Nd for a system with n
lattice sites, k degenerate flat-band states, h holes, and a given

total spin s. Because spin is conserved, the quantities Nf and
Nd will be independent of the choice of sz. We first calculate
the total number of multiparticle states M f (sz ) where each
spin-up hole occupies one of the k spin-up flat-band states,
and each spin-down hole occupies one of the k spin-down flat-
band states. From basic combinatoric techniques, the number
of ways this can occur is simply given by

M f (sz ) =
(

k

u

)(
k

d

)
, (3)

where u = h/2 + sz is the number of up spins, and d = h/2 −
sz is the number of down spins. This quantity M f (sz ) is related
to Nf ; specifically, it is the sum of Nf (s) for all values of s
between sz and h/2:

M f (sz ) =
h/2∑
s=sz

Nf (s). (4)

From this relationship, Nf (s) can be obtained:

Nf (s) = M f (sz ) − M f (sz + 1)

=
(

k
h
2 + s

)(
k

h
2 − s

)
−

(
k

h
2 + s + 1

)(
k

h
2 − s − 1

)
.

(5)

Let Ns(s) be the total number of multiparticle states with
spin s and a given choice of sz (Ns is again independent of sz

by symmetry). Then Ns can be calculated in much the same
way, except that the number of flat-band states k is replaced
by the total number of dots n:

Ns =
(

n
h
2 + s

)(
n

h
2 − s

)
−

(
n

h
2 + s + 1

)(
n

h
2 − s − 1

)
. (6)

Let Mu(sz ) be the total number of states with u up spins and
d down spins such that each hole occupies a unique dot. Then
Mu is given by

Mu(sz ) =
(

n

u

)(
n − u

d

)
. (7)

Let Nu(s) be the number of states with spin s and a given
choice of sz such that each hole occupies a unique dot. Then
like above, Nu(s) = Mu(sz ) − Mu(sz + 1). Then Nd (s), which
is the number of states with spin s and a given choice of sz

such that at least one dot is doubly occupied, can be found
simply by subtracting Nu(s) from the total number of states
Ns(s):

Nd (s) = Ns(s) − Nu(s)

=
(

n
h
2 + s

)(
n

h
2 − s

)
−

(
n

h
2 + s + 1

)(
n

h
2 − s − 1

)

−
(

n
h
2 + s

)(
n − h

2 − s
h
2 − s

)

+
(

n
h
2 + s + 1

)(
n − h

2 − s − 1
h
2 − s − 1

)
. (8)
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Then we have the following theorem:
Consider the Hubbard model (2) with n lattice sites such

that the single-hole ground state is k-fold degenerate. Then
for h holes and some total spin s, with 2s � h � k, if the
quantities given in Eqs. (5) and (8) satisfy Nf > Nd , then there
will exist a spin s ground state that is degenerate with the
ferromagnetic ground state.

The proof of this theorem is as follows: let HT =∑
i, j

∑
s∈{↑,↓} ti j c̃

†
isc̃ js be the kinetic part of the Hamiltonian,

and let HU = ∑
i

U
2 ñi(ñi − 1) be the interaction term of the

Hamiltonian. Restrict the Hilbert space that this Hamiltonian
acts on to the set of multiparticle states with h holes, some
total spin s, and a given choice of sz, and call this Hilbert
space Vs. Then any state where each dot is occupied no more
than once will be an eigenstate of HU with energy zero, and
any state with at least one doubly occupied dot will be an
eigenstate of HU with nonzero energy. By definition, there
will be precisely Nd of these nonzero-energy states, and thus
the rank of HU is equal to Nd . Now let Vf be the subspace of
Vs where all holes occupy one of the k flat-band states, and
let T be any linear transformation from Vf → Vs. Then due
to the properties of ranks, rank(T †HU T ) � rank(HU ) = Nd .
However, since dim(Vf ) = Nf > Nd , by the rank-nullity the-
orem, the nullity of T †HU T is nonzero, and thus there is a state
ψ0 ∈ Vf which is an eigenstate of T †HU T with zero energy.
Because any state in Vf is an eigenstate of HT with energy
equal to the ferromagnetic ground-state energy, then ψ0 will
be an eigenstate of H with energy equal to the ferromagnetic
ground-state energy.

While this theorem is completely general and geometry
independent, in practice the condition Nf > Nd is somewhat
difficult to satisfy, and thus the situations where it applies are
somewhat limited. However, this theorem simplifies dramati-
cally for the special case where there are only two holes in the
system, becoming as follows:

For two holes in the Hubbard model given by Eq. (2) with
n lattice sites and k degenerate single-particle ground states, if
k(k + 1)/2 > n, then there will exist a spin-zero ground state
that is degenerate with the spin-one ground state.

There are several small configurations of sites which
satisfy this condition, including a four-site complete graph
(tetrahedron), the nine-site (2,3)-Hamming graph, and a 13-
site fcc-sublattice centered around a single site, among other
configurations.

It is interesting to see how this theorem scales in the
limit where the number of lattice sites n is very large. We
will assume in this limit that the number of flat-band states
k scales proportionally with n. For s = 0, we use Ster-
ling’s approximation to simplify the expressions in Eqs. (5)
and (8) and find the following asymptotic behavior of Nf

and Nd :

Nf ≈ (k + 1)
h
2 +1k

h
2 −1(

h
2 + 1

)
!
(

h
2

)
!

∼ kh,

Nd ≈ (n + 1)
h
2 +1n

h
2 −1 − n

h
2
(
n − h

2

) h
2(

h
2 + 1

)
!
(

h
2

)
!

∼ nh−1. (9)

Then, in the large-n limit, the condition Nf > Nd is met
for h < ln n/ ln(n/k), and thus the maximum number of holes

FIG. 1. (left) Six-dot plaquette which exhibits unusual properties
when filled with three holes. (right) Single-particle energy levels of
the plaquette to the left ordered from lowest to highest energy. Note
these energies include the effect of the particle-hole transformation,
thus corresponding to Eq. (2).

for which this theorem applies scales as ln of the system size.
Thus while this theorem is useful for studying small systems
of quantum dot plaquettes with just a few sites (since ln n is
still comparable in magnitude with n in small systems), as
the system size increases the number of holes for which it is
valid drops off quickly compared with the total system size. In
fact, this serves as an important reminder of the fact that small
systems that can be numerically or experimentally simulated
cannot always be extrapolated to the thermodynamic limit,
as there are effects that are quite strong for small systems
which become negligible as the system size increases (in
fact, Nagaoka ferromagnetism itself is a dramatic example of
this effect also, obviously a filling with one electron or one
hole away from half filling makes no physical sense for a
large system although it is a meaningful concept for a small
system [4]). Other examples of this include the finite-size
effect at the edges of a small lattice, but we have given an
example which depends only on the number of states and
lattice sites, which stems from the difference between ln n
and n.

III. EXAMPLE OF HOLES FILLING
HIGHER-ENERGY STATES

The basic intuition behind Hund’s rule is that particles
will fill the lowest-energy single-particle states available first
and, in the case of degeneracies, will form a ferromagnetic
spin configuration to avoid energy penalties from double-
occupancy of sites. However, in the Hubbard model when
U 
 t , there are cases where the system breaks this general
rule, preferring to fill higher-energy single-particle states than
necessary in order to eliminate the onsite interaction energy
from doubly occupied sites. Thus, strong correlation effects
in the Hubbard model explicitly violate Hund’s rule leading
to counterintuitive ground states. We give one such example
below.

Consider the plaquette of six lattice sites shown in Fig. 1,
with uniform tunneling constant t between nearest neighbors,
and U 
 t . The single particle-energies for this system are
nondegenerate and at a glance are somewhat evenly spaced, as
shown in Fig. 1, although of course there is some anharmonic-
ity. A simple application of Hund’s rule would suggest that
the ground state should be antiferromagnetic, as holes should
attempt to fill the lowest energy state first before beginning
to fill the higher-energy states, and this is indeed the case
when U is small compared with t . However, when U becomes
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FIG. 2. For each product state |φi〉 of single-particle states, the
energy of the state is plotted against the wave function overlap of |φi〉
with the lowest-energy spin 1/2 state |�1/2〉. States at the bottom of
the plot have an overlap of exactly zero because they are protected
by symmetry.

large, the antiferromagnetic ground state must include some
contribution from higher-energy hole configurations, which in
some cases can even exceed the energy benefit from doubly
occupying the lowest-energy state. This is the case for three
holes filling the six-site plaquette discussed above. Exact di-
agonalization yields a ferromagnetic ground-state energy of
E3/2 = −4.146t , whereas the lowest energy antiferromagnetic
state has an energy given by

E1/2 = −3.949t − 1.704t2/U + O(t3/U 2). (10)

Thus, in the large-U limit, the system exhibits a type
of ‘pseudo-flat-band ferromagnetism” (and not antiferromag-
netism) despite the single-particle states being nondegenerate.

This result becomes even more striking when considering
the wave function of the lowest-energy antiferromagnetic state
|�1/2〉. Specifically, we consider the product states of single-
particle eigenstates. These product states, which we denote by
|φi〉 are not necessarily eigenstates themselves, and in general
the eigenstates of the system will be linear combinations of
the |φi〉. However, it is often assumed (for example, in Hund’s
rule) that the ground state is simply the lowest-energy of these
product states, and that electrons fill the single-particle states
one at a time in order of increasing energy, with perhaps some
small correction from interaction effects. However, for this
specific configuration, this assumption breaks down entirely.
In Fig. 2, we plot the energy of each of the product states
|φi〉 versus their overlap with �1/2. We find that |�1/2〉 has
an overlap of exactly zero with the lowest energy product
state |1↑1↓2↑〉 (here we have notated the single-hole eigen-
states from |1〉 to |6〉 in order of increasing energy). Instead,
the lowest-energy antiferromagnetic state has a large over-
lap with the “excited” state |1↑2↑2↓〉 as follows, with the
rest of the wave function being comprised of higher-energy
states:

|〈�1/2|1↑2↑2↓〉|2 = 0.573. (11)

The fact that the overlap with |1↑1↓2↑〉 is exactly zero
is due to the K4 symmetry of the Hamiltonian (H is un-
changed by π rotations about the x, y, and z axes). The states
|1↑1↓2↑〉 and |1↑2↑2↓〉 fall under different symmetry classes,
and thus eigenstates of H will not mix these two states. What

is surprising is that the system prefers the higher energy of
these two states |1↑2↑2↓〉 because this completely contradicts
the naive assumption that the system will attempt to fill the
lowest-energy single-particle states first, only mixing with
higher-energy states to eliminate terms corresponding to dou-
bly occupied lattice sites. In this case, the system actually
prefers to start with a slightly-higher-energy state because it
makes the cancellation of doubly occupied lattice site terms
easier. While the symmetry can account for the fact that many
of the |φi〉 states have zero overlap with |�1/2〉, we find no
simple explanation for why the lowest-energy |φi〉 state does
not have the same symmetry class as |�1/2〉. For nearly every
other cluster this size, the lowest-energy |φi〉 state has a large
overlap with the multiparticle ground state. This example is
exceptional because it shows that Hund’s rule cannot always
be relied upon to gain an understanding of the properties of
the multiparticle ground state. This is a subtle and highly
nontrivial correlation effect which cannot be captured in terms
of any simple general rules based on single-particle physics.

IV. FERROMAGNETISM IN PENTAGONAL
AND HEXAGONAL PLAQUETTES

We use exact diagonalization methods to find Hubbard
model ground states of many different plaquette geometries
with up to 16 dots in the infinite U limit. In addition to
Nagaoka and flat-band ferromagnetism, we also find certain
conditions that produce ferromagnetic ground states but do
not directly satisfy the Nagaoka or flat-band conditions. For
example, for a pentagonal plaquettes, we find ferromagnetic
ground states when the electron filling factor νe is at or near
3/10, and we find the same for hexagonal plaquettes at 1/4
filling. Here we define a pentagonal (or hexagonal) plaquette
as the Hubbard model on a graph with several five-cycles
(six-cycles), but with no cycles of length fewer than five (six).

In Table I, we give the ground-state energies of a 14-dot
section of a diamond lattice. Energies are given for every
value of the total spin and number of electrons. In each row,
the ground state is printed in bold, and if this ground state
is in the rightmost column (corresponding to the maximum
value of spin), then the ground state is ferromagnetic. We find
that there are two filling factors which produce ferromagnetic
ground states (up to particle-hole symmetry). The first is at 13
electrons, which is an example of Nagaoka ferromagnetism.
The second is at seven electrons, corresponding to νe = 1/4.
In Fig. 3, we plot the single-particle spectrum in order of
increasing energy. Interestingly, the ferromagnetic state at
seven electrons corresponds exactly to a significant gap in
the single-particle spectrum between the seventh- and eighth-
lowest energy states. In the Appendix, we give many more
examples of plaquettes comprised of pentagons or hexagons,
and all examples feature ferromagnetic states at a filling near
3/10 or 1/4 and, in all cases, this filling corresponds to a
significant gap in the single-particle spectrum. We have many
such data sets for many different numbers of dots and many
different plaquettes, but we restrict ourselves mainly to pen-
tagons and hexagons in the Appendix because the number of
finite graphs grows fast with the number of sites and because
pentagons and hexagons most strikingly demonstrate the un-
expected flat-band ferromagnetism with large gaps which we
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TABLE I. Ground-state energies of the 14-dot diamond lattice shown in Fig. 3 for each number of electrons and spin. The ground-state
energy for each row is printed in bold. Bold values in the rightmost column represent ferromagnetism.

14 dots: Diamond lattice

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2

13, 15 −2.593t −2.599t −2.6119t −2.6253t −2.6339t −2.6444t −2.6554t
12, 16 −4.7895t −4.7838t −4.7671t −4.7492t −4.7385t −4.6294t −4.5216t
11, 17 −6.7058t −6.7155t −6.642t −6.5838t −6.567t −6.1397t
10, 18 −8.3493t −8.3128t −8.2818t −8.1885t −8.0084t −7.7577t
9, 19 −9.2748t −9.244t −9.2344t −9.0984t −8.9685t
8, 20 −9.9614t −9.9571t −9.9493t −9.9453t −9.5865t
7, 21 −9.9891t −10.0439t −10.1117t −10.2045t
6, 22 −9.7506t −9.7754t −9.7284t −9.5865t
5, 23 −8.975t −9.165t −8.9685t
4, 24 −7.847t −7.9151t −7.7577t
3, 25 −6.6649t −6.1397t
2, 26 −4.9985t −4.5216t

believe should be of experimental interest in the context of
semiconductor spin qubits.

The exact reason why ferromagnetism occurs in these sit-
uations is not immediately apparent. It has been proposed
that pentagon chains could lead to flat bands which ex-
hibit ferromagnetism at half filling [16]. Pentagon chains
were specifically chosen such that the Wannier orbitals must
overlap, which is necessary to fulfill the local connectivity
condition. Satisfying the connectivity condition is nontrivial,
and particularly difficult in lattices, which is why pentagon
chains were studied [16]. It was also important that the rings
be odd numbered so that electrons filling the rings would
be frustrated. Additionally, the band itself required careful
tuning of hopping amplitudes and onsite interaction strengths
in order to become flat [16–18]. However, the ferromagnetic
states we present are almost certainly created by a differ-
ent mechanism. Our ferromagnetic states are present both in
pentagonal and hexagonal plaquettes, the latter of which are
bipartite. They also occur at different filling factors (3/10 and
1/4, not at half filling). Our results are also for small, highly
interconnected plaquettes rather than long chains, and we
find ferromagnetic states without fine-tuning the Hamiltonian
parameters to create a flat band.

We provide a nonrigorous explanation that these states may
again be related to the ‘pseudo-flat-band” ferromagnetism we
discuss above. While the lowest-energy states do not form an
exactly flat band, they are perhaps still flat enough to yield

FIG. 3. (left) Graph of a 14-dot section of a diamond lat-
tice. (right) Single-particle spectrum of the 14-dot diamond lattice
plaquette.

ferromagnetic ground states. First, we motivate why a gap
appears in the single-particle spectrum around filling factors
of 3/10 or 1/4. We note that the single-particle spectrum
of the Hubbard model on a five-dot ring has a fairly large
energy gap between the energies −t cos 2π/5 ≈ −0.3t and
−t cos 4π/5 ≈ 0.8t . Likewise, the single-particle spectrum of
a six-dot ring has a large gap between the energies ±t/2.
Because the plaquettes we study are comprised of several
of these connected together, it follows that the states below
the gap will hybridize together, as will the states above the
gap. Thus we would expect the single-particle spectrum of the
composite graph to consist roughly of a group of states with
similar energies, followed by a gap, followed by another group
of states with similar energies, which is what we observe, al-
though the exact size and location of the gap varies somewhat
between examples.

It is possible to see a similar phenomenon to flat-band
ferromagnetism even if the band is not completely flat. As
long as the energy levels in the band are fairly close together,
the system will not gain much energy by choosing an anti-
ferromagnetic configuration. However, if there is a large gap
between bands, then antiferromagnetic states will have to pay
a large energy cost in order to mix with the other band to elim-
inate doubly occupied dots. This appears to be the case in the
systems which we discussed. However, it is unclear whether
the pattern of ferromagnetism at filling factors 3/10 and 1/4
in pentagon or hexagon lattices extends to the thermodynamic
limit, as in the thermodynamic limit, energy bands will be
continuous, and the explanation we provide will not apply.

V. CONCLUSION

We give examples of several interesting and exact
theoretical phenomena in the Hubbard model which re-
quire only a few (four to six) lattice sites. The first is
a general geometry-independent theorem which has lim-
ited applicability (particularly, in the thermodynamic limit)
but is mathematically exact. This theorem outlines certain
cases of flat-band ferromagnetism which necessarily have a
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nonferromagnetic state that is degenerate with the ferromag-
netic ground state, relying only on the number of holes,
lattice sites, and degenerate flat-band states. The second ex-
ample is a particular geometric arrangement of six sites which
exhibits the unusual behavior where the lowest-energy anti-
ferromagnetic state has no overlap with the product state of
the lowest-energy single-particle states, and the many-body
ground state is ferromagnetic rather than antiferromagnetic
as implied by Hund’s rule. We also show a pattern of fer-
romagnetic ground states in small pentagonal and hexagonal
plaquettes and discuss its possible relation to imperfect flat-
band ferromagnetism. Since these phenomena rely only on
a small number of sites, these are good candidates to be
observed in quantum dot experiments using current technolo-
gies. In particular, we believe both can be studied on existing
quantum dot arrays associated with spin qubit platforms,
directly experimentally establishing nontrivial many-body
correlation effects in the Hubbard model ground states.
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APPENDIX: GROUND-STATE ENERGIES FOR
VARIOUS QUANTUM DOT PLAQUETTES

Below in Figs. 4–23, we consider various quantum dot
plaquettes of different geometries and show their single-
particle spectra. In Tables II–XXI, we give the Hubbard model
ground-state energies of these plaquettes in the infinite-U
limit. Every entry in each table represents the the lowest
energy for the corresponding value of total spin, and in each
row the ground state is printed in bold.

FIG. 4. (left) Graph of a 10-dot plaquette comprised of two
adjacent hexagons. (right) Single-particle spectrum of the 10-dot
hexagon plaquette.

FIG. 5. (left) Graph of a 13-dot plaquette comprised of three
adjacent hexagons. (right) Single-particle spectrum of the 13-dot
hexagon plaquette.

FIG. 6. (left) Graph of the 14-dot Heawood graph. (middle) Hea-
wood graph represented as a hexagon lattice with periodic boundary
conditions. (right) Single-particle spectrum of the 14-dot Heawood
graph plaquette.

FIG. 7. (left) Graph of the 16-dot Mobius-Kantor graph. (mid-
dle) Mobius-Kantor graph represented as a hexagon lattice with
periodic boundary conditions. (right) Single-particle spectrum of the
16-dot Mobius-Kantor graph plaquette.

FIG. 8. (left) Graph of an eight-dot plaquette comprised of two
adjacent pentagons. (right) Single-particle spectrum of the eight-dot
pentagon plaquette.
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FIG. 9. (left) Graph of a 10-dot plaquette comprised of three
adjacent pentagons. (right) Single-particle spectrum of the 10-dot
pentagon plaquette.

FIG. 10. (left) Graph of the 10-dot Petersen graph. (right) Single-
particle spectrum of the 10-dot Petersen graph plaquette.

FIG. 11. (left) Graph of a 12-dot plaquette comprised of four
adjacent pentagons. (right) Single-particle spectrum of the 12-dot
pentagon plaquette.

FIG. 12. (left) Graph of a 14-dot star-shaped plaquette comprised
of pentagons. (right) Single-particle spectrum of the 14-dot star-
shaped pentagon plaquette.

FIG. 13. (left) Graph of a 15-dot plaquette comprised of six
adjacent pentagons. (right) Single-particle spectrum of the 15-dot
pentagon plaquette.

FIG. 14. (left) Graph of a 15-dot extended Petersen-graph-like
plaquette. (right) Single-particle spectrum of the 15-dot Petersen-like
plaquette.

FIG. 15. (left) Graph of a 15-dot interconnected pentagon pla-
quette. (right) Single-particle spectrum of the 15-dot interconnected
pentagon plaquette.

FIG. 16. (left) Graph of a six-dot octahedron plaquette. (right)
Single-particle spectrum of the six-dot octahedron plaquette.
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FIG. 17. (left) Graph of a six-dot triangular prism plaquette.
(right) Single-particle spectrum of the six-dot triangular prism
plaquette.

FIG. 18. (left) Graph of a eight-dot cubic plaquette. (right)
Single-particle spectrum of the eight-dot cubic plaquette.

FIG. 19. (left) Graph of a nine-dot plaquette arrange in a (2,3)-
Hamming graph. (right) Single-particle spectrum of the nine-dot
(2,3)-Hamming graph.

FIG. 20. (left) Graph of a 12-dot cuboctahedron plaquette. (right)
Single-particle spectrum of the 12-dot cuboctahedron plaquette.

FIG. 21. (left) Graph of a 13-dot subsection of a fcc lattice.
(right) Single-particle spectrum of the 13-dot fcc lattice.

FIG. 22. (left) Graph of the Paley-13 graph. (middle) Paley-
13 graph represented as a triangle lattice with periodic boundary
conditions. (right) Single-particle spectrum of the Paley-13 graph
plaquette.

FIG. 23. (left) Graph of a 15-dot Kagome lattice. (right) Single-
particle spectrum of the 15-dot Kagome lattice.

TABLE II. Ground-state energies of the 10-dot hexagon plaque-
tte shown in Fig. 4. The ground-state energy for each row is printed
in bold.

10 dots: Two adjacent hexagons

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2

9, 11 −2.293t −2.293t −2.298t −2.297t −2.303t
8, 12 −4.093t −4.082t −4.043t −4.016t −3.921t
7, 13 −5.579t −5.585t −5.487t −5.224t
6, 14 −6.513t −6.504t −6.489t −6.224t
5, 15 −6.726t −6.782t −6.842t
4, 16 −6.366t −6.369t −6.224t
3, 17 −5.517t −5.224t
2, 18 −4.16t −3.921t
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TABLE III. Ground-state energies of the 13-dot hexagon plaquette shown in Fig. 5. The ground-state energy for each row is printed in bold.

13 dots: Three adjacent hexagons

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6

12, 14 −2.4283t −2.4299t −2.4355t −2.4364t −2.4422t −2.4434t −2.4495t
11, 15 −4.4122t −4.4067t −4.3793t −4.3515t −4.33t −4.1815t
10, 16 −6.1311t −6.1271t −6.1235t −6.0445t −6.0155t −5.9136t
9, 17 −7.515t −7.5121t −7.4809t −7.256t −6.9136t
8, 18 −8.4948t −8.4917t −8.4796t −8.4616t −7.9136t
7, 19 −8.8459t −8.8752t −8.897t −8.9136t
6, 20 −8.7807t −8.7935t −8.8623t −8.9136t
5, 21 −8.341t −8.2314t −7.9136t
4, 22 −7.2468t −7.4316t −6.9136t
3, 23 −6.0194t −5.9136t
2, 24 −4.5183t −4.1815t

TABLE IV. Ground-state energies of the 14-dot Heawood graph plaquette shown in Fig. 6. The ground-state energy for each row is printed
in bold.

14 dots: Heawood graph (hexagons with PBC)

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2

13, 15 −2.8389t −2.8083t −2.8259t −2.8618t −2.9148t −2.9477t −3t
12, 16 −5.2483t −5.2275t −5.1252t −5.0448t −4.9828t −4.8928t −4.4142t
11, 17 −7.3059t −7.2518t −7.1223t −6.9363t −6.5107t −5.8284t
10, 18 −9.0061t −8.9841t −8.9156t −8.5495t −8.0241t −7.2426t
9, 19 −10.0634t −10.0469t −10.0938t −9.5609t −8.6569t
8, 20 −10.8095t −10.7021t −10.7533t −11.1262t −10.0711t
7, 21 −10.7005t −10.836t −11.1354t −11.4853t
6, 22 −9.9128t −10.0607t −10.3206t −10.0711t
5, 23 −9.1832t −9.1906t −8.6569t
4, 24 −8.0058t −8.0358t −7.2426t
3, 25 −6.8259t −5.8284t
2, 26 −5.6569t −4.4142t

TABLE V. Ground-state energies of the 16-dot Mobius-Kantor graph plaquette shown in Fig. 7. The ground-state energy for each row is
printed in bold.

16 dots: Mobius-Kantor graph (hexagons with PBC)

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7, 15/2

15, 17 −2.8396t −2.8379t −2.8544t −2.8799t −2.9059t −2.9396t −2.9652t −3t
14, 18 −5.3152t −5.3044t −5.2578t −5.2204t −5.186t −5.1218t −5.0402t −4.7321t
13, 19 −7.4952t −7.4692t −7.406t −7.3157t −7.2562t −6.9284t −6.4641t
12, 20 −9.3443t −9.3546t −9.3072t −9.1263t −8.884t −8.8116t −8.1962t
11, 21 −10.8322t −10.8302t −10.8063t −10.4843t −10.1118t −9.9282t
10, 22 −11.8867t −11.7957t −11.8724t −11.864t −11.3916t −10.9282t
9, 23 −12.2914t −12.3379t −12.4179t −12.6624t −11.9282t
8, 24 −12.6193t −12.5361t −12.5753t −12.6746t −12.9282t
7, 25 −11.9385t −12.0729t −12.1114t −11.9282t
6, 26 −11.1999t −11.2377t −11.5091t −10.9282t
5, 27 −10.0982t −10.1133t −9.9282t
4, 28 −8.6982t −8.6991t −8.1962t
3, 29 −7.2016t −6.4641t
2, 30 −5.7139t −4.7321t
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TABLE VI. Ground-state energies of the eight-dot pentagon pla-
quette shown in Fig. 8. The ground-state energy for each row is
printed in bold.

Eight dots: Two adjacent pentagons

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2

14 −3.499t −3.814t
13 −5.063t −5.228t
12 −5.612t −5.547t −5.228t
11 −5.153t −5.066t −4.757t
10 −4.023t −3.945t −3.878t −3.757t
9 −2.299t −2.329t −2.327t −2.343t
8 0 0 0 0
7 −2.325t −2.328t −2.267t −2t
6 −4.033t −4.024t −4.006t −3.814t
5 −5.095t −5.16t −5.228t
4 −5.418t −5.436t −5.228t
3 −5.102t −4.757t
2 −4.093t −3.757t

TABLE VII. Ground-state energies of the 10-dot pentagon pla-
quette shown in Fig. 9. The ground-state energy for each row is
printed in bold.

10 dots: Three adjacent pentagons

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2

18 −3.756t −3.966t
17 −5.548t −5.845t
16 −6.511t −6.741t −6.845t
15 −7.171t −7.117t −6.498t
14 −6.816t −6.783t −6.457t −6.15t
13 −5.888t −5.746t −5.733t −5.578t
12 −4.429t −4.352t −4.318t −4.268t −4.046t
11 −2.466t −2.472t −2.488t −2.496t −2.514t
10 0 0 0 0 0
9 −2.48t −2.481t −2.451t −2.342t −2.086t
8 −4.424t −4.421t −4.41t −4.396t −3.966t
7 −5.798t −5.827t −5.841t −5.845t
6 −6.63t −6.657t −6.762t −6.845t
5 −6.984t −6.861t −6.498t
4 −6.434t −6.72t −6.15t
3 −5.698t −5.578t
2 −4.535t −4.046t

TABLE VIII. Ground-state energies of the 10-dot Petersen graph
plaquette shown in Fig. 10. The ground-state energy for each row is
printed in bold.

10 dots: Petersen graph

No. Spin

of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2

18 −3.9173t −4t
17 −5.7459t −6t
16 −6.8988t −7.2802t −8t
15 −7.8383t −7.9503t −7t
14 −7.7187t −7.6523t −6.9835t −6t
13 −6.708t −6.2825t −5.8116t −5t
12 −5.1579t −4.8585t −4.8241t −4.5823t −4t
11 −2.6981t −2.7244t −2.8192t −2.8951t −3t
10 0 0 0 0 0
9 −2.8097t −2.7863t −2.6564t −2.4142t −2t
8 −4.9536t −4.9468t −4.9152t −4.5866t −4t
7 −6.5726t −6.5144t −6.8102t −6t
6 −7.3782t −7.309t −7.614t −8t
5 −7.0921t −7.3878t −7t
4 −6.7057t −6.7932t −6t
3 −6.0931t −5t
2 −5.4641t −4t
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TABLE IX. Ground-state energies of the 12-dot pentagon plaquette shown in Fig. 11. The ground-state energy for each row is printed in bold.

12 dots: Four adjacent pentagons

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2

22 −3.9693t −4.1149t
21 −5.9239t −6.1149t
20 −7.4645t −7.594t −7.7329t
19 −8.3466t −8.362t −8.351t
18 −8.7285t −8.7119t −8.6377t −8.0969t
17 −8.4649t −8.4168t −8.0788t −7.7149t
16 −7.7016t −7.6604t −7.5074t −7.2633t −7.0969t
15 −6.4056t −6.2942t −6.2205t −6.2093t −6.0969t
14 −4.6774t −4.6668t −4.629t −4.6165t −4.6019t −4.4788t
13 −2.5629t −2.5744t −2.5851t −2.5981t −2.6078t −2.618t
12 0 0 0 0 0 0
11 −2.5706t −2.5699t −2.5571t −2.5202t −2.3996t −2.1149t
10 −4.7029t −4.6957t −4.6949t −4.6881t −4.5666t −4.1149t
9 −6.3047t −6.3257t −6.3346t −6.341t −6.1149t
8 −7.5825t −7.619t −7.6594t −7.6986t −7.7329t
7 −8.2239t −8.2711t −8.3296t −8.351t
6 −8.5705t −8.502t −8.4079t −8.0969t
5 −8.3087t −8.2013t −7.7149t
4 −7.5317t −7.5333t −7.0969t
3 −6.3387t −6.0969t
2 −4.8299t −4.4788t

TABLE X. Ground-state energies of the 14-dot star-shaped pentagon plaquette shown in Fig. 12. The ground-state energy for each row is
printed in bold.

14 dots: Star-shaped pentagon graph

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2

26 −4.6516t −4.8788t
25 −6.843t −6.9169t
24 −8.3003t −8.5319t −8.955t
23 −9.6889t −9.9269t −10.1911t
22 −10.7263t −10.6943t −10.6052t −10.3337t
21 −10.8712t −10.8228t −10.6194t −10.4762t
20 −10.6737t −10.6383t −10.5149t −10.3202t −9.8388t
19 −10.1317t −10.0306t −9.8912t −9.5418t −9.2013t
18 −9.2059t −9.0941t −8.9555t −8.7185t −8.4936t −7.8118t
17 −7.5784t −7.5486t −7.4442t −7.3295t −6.9062t −6.4223t
16 −5.4834t −5.5146t −5.4605t −5.396t −5.3068t −5.1925t −4.8292t
15 −2.994t −3.0349t −3.0819t −3.1251t −3.1634t −3.2004t −3.2361t
14 0 0 0 0 0 0 0
13 −3.0808t −3.0604t −3.0238t −2.9802t −2.8432t −2.7189t −2.4394t
12 −5.5364t −5.5334t −5.5321t −5.5309t −5.4289t −5.1191t −4.8788t
11 −7.5631t −7.5427t −7.5198t −7.4747t −7.4352t −6.9169t
10 −8.9555t −8.9506t −8.9781t −9.0435t −9.1168t −8.955t
9 −9.8684t −9.9301t −10.0162t −10.1007t −10.1911t
8 −10.2233t −10.2606t −10.357t −10.4852t −10.3337t
7 −10.2405t −10.3396t −10.411t −10.4762t
6 −10.1756t −10.0685t −10.1432t −9.8388t
5 −9.5293t −9.4899t −9.2013t
4 −8.4608t −8.5781t −7.8118t
3 −7.3018t −6.4223t
2 −6.002t −4.8292t
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TABLE XI. Ground-state energies of the 15-dot pentagon plaquette shown in Fig. 13. The ground-state energy for each row is printed in bold.

15 dots: Six adjacent pentagons

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7

28 −4.1656t −4.261t
27 −6.2104t −6.3859t
26 −8.041t −8.241t −8.2206t
25 −9.7301t −9.8536t −10.0553t
24 −10.5774t −10.6633t −10.7221t −10.3955t
23 −11.0792t −11.0193t −10.8981t −10.7357t
22 −11.1434t −11.0974t −10.9806t −10.8783t −10.298t
21 −10.7828t −10.722t −10.6327t −10.1435t −9.8604t
20 −10.0089t −9.921t −9.8132t −9.5486t −9.3563t −9.0077t
19 −8.6727t −8.5827t −8.4358t −8.3604t −8.2785t −8.155t
18 −6.9682t −6.9991t −6.9221t −6.8653t −6.8325t −6.8253t −6.7917t
17 −4.9952t −4.9896t −4.9808t −4.9726t −4.9694t −4.9027t −4.7766t
16 −2.6776t −2.6881t −2.701t −2.7135t −2.726t −2.7386t −2.7495t −2.7616t
15 0 0 0 0 0 0 0 0
14 −2.6851t −2.6818t −2.6765t −2.6681t −2.6388t −2.5725t −2.4528t −2.1305t
13 −5.0292t −5.0331t −5.0218t −5.0206t −4.9224t −4.7281t −4.261t
12 −6.9623t −6.9552t −6.9534t −6.956t −6.9545t −6.6837t −6.3859t
11 −8.542t −8.5681t −8.5977t −8.6152t −8.6389t −8.2206t
10 −9.8367t −9.853t −9.8985t −9.9529t −10.0067t −10.0553t
9 −10.5t −10.5615t −10.5803t −10.5673t −10.3955t
8 −10.9259t −10.8696t −10.8431t −10.8018t −10.7357t
7 −10.9384t −10.793t −10.7796t −10.298t
6 −10.6643t −10.4915t −10.2417t −9.8604t
5 −9.7389t −9.633t −9.0077t
4 −8.3722t −8.5969t −8.155t
3 −6.9472t −6.7917t
2 −5.2119t −4.7766t

TABLE XII. Ground-state energies of the 15-dot extended Petersen-like plaquette shown in Fig. 14. The ground-state energy for each row
is printed in bold.

15 dots: Extended Petersen-like graph

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7

28 −4.5578t −4.6056t
27 −6.7961t −6.9083t
26 −8.6315t −8.8174t −9.2111t
25 −10.4787t −10.6351t −10.8291t
24 −11.6656t −12.0689t −12.2841t −12.4472t
23 −12.4858t −12.5233t −12.5833t −11.8614t
22 −12.6648t −12.6154t −12.5055t −11.9606t −11.2433t
21 −12.1192t −12.0669t −11.6202t −11.1259t −10.6253t
20 −11.2825t −11.2616t −10.9126t −10.7145t −10.1352t −9.3225t
19 −9.8989t −9.6739t −9.4964t −9.2168t −8.8314t −8.0198t
18 −8.1578t −7.9353t −7.8594t −7.7094t −7.4947t −7.3014t −6.717t
17 −5.7461t −5.7127t −5.7355t −5.6199t −5.5861t −5.5328t −5.4142t
16 −3.128t −3.1876t −3.2409t −3.2798t −3.3158t −3.35t −3.3827t −3.4142t
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TABLE XII. (Continued).

15 dots: Extended Petersen-like graph

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7

15 0 0 0 0 0 0 0 0
14 −3.1551t −3.1446t −3.1343t −3.0957t −3.0657t −2.9451t −2.7321t −2.3028t
13 −5.7321t −5.7071t −5.6682t −5.5907t −5.5169t −5.1702t −4.6056t
12 −7.9853t −7.9708t −7.9409t −7.899t −7.8151t −7.6481t −6.9083t
11 −9.6699t −9.7094t −9.7719t −9.8425t −9.5661t −9.2111t
10 −11.0719t −11.0686t −11.1806t −11.2834t −11.3775t −10.8291t
9 −11.7586t −12.0485t −12.1864t −12.321t −12.4472t
8 −11.7941t −11.8133t −11.957t −12.0985t −11.8614t
7 −11.7435t −11.8323t −11.7768t −11.2433t
6 −11.1132t −11.2399t −11.0298t −10.6253t
5 −10.3743t −10.2175t −9.3225t
4 −9.533t −9.1764t −8.0198t
3 −8.1235t −6.717t
2 −6.3917t −5.4142t

TABLE XIII. Ground-state energies of the 15-dot interconnected pentagon plaquette shown in Fig. 15. The ground-state energy for each
row is printed in bold.

15 dots: Interconnected pentagon plaquette

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7

28 −4.5578t −4.6056t
27 −6.7942t −6.9083t
26 −8.6338t −8.8308t −9.2111t
25 −10.5143t −10.7091t −11.2111t
24 −11.5908t −11.9746t −12.0824t −11.8291t
23 −12.4735t −12.5575t −12.4857t −12.4472t
22 −12.5256t −12.5462t −12.4654t −12.3996t −11.8614t
21 −12.1594t −12.0903t −12.1075t −11.4736t −10.5586t
20 −11.2943t −11.1636t −11.1431t −10.7053t −10.1749t −9.2558t
19 −9.8447t −9.8206t −9.4717t −9.1139t −8.6654t −7.9531t
18 −8.0126t −8.0651t −7.8529t −7.6361t −7.4074t −7.0808t −6.6503t
17 −5.7649t −5.7158t −5.6139t −5.5336t −5.4402t −5.3162t −5.0322t
16 −3.0676t −3.122t −3.187t −3.2314t −3.2796t −3.3269t −3.372t −3.4142t
15 0 0 0 0 0 0 0 0
14 −3.1482t −3.1447t −3.1318t −3.1036t −3.0661t −2.9458t −2.7321t −2.3028t
13 −5.7276t −5.7142t −5.6867t −5.6525t −5.5176t −5.171t −4.6056t
12 −7.9645t −7.955t −7.9477t −7.9326t −7.8926t −7.6479t −6.9083t
11 −9.6185t −9.6901t −9.7601t −9.7642t −9.824t −9.2111t
10 −10.9797t −10.9955t −11.1103t −11.1181t −11.1385t −11.2111t
9 −11.7087t −11.8905t −12.0485t −12.1421t −11.8291t
8 −11.9041t −11.9978t −12.1455t −12.3799t −12.4472t
7 −11.5821t −11.7688t −11.9279t −11.8614t
6 −10.9339t −10.9717t −11.187t −10.5586t
5 −10.0513t −10.1728t −9.2558t
4 −8.8997t −9.1522t −7.9531t
3 −7.7868t −6.6503t
2 −6.39t −5.0322t
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TABLE XIV. Ground-state energies of the six-dot octahedron
plaquette shown in Fig. 16. The ground-state energy for each row
is printed in bold.

Six dots: Octahedron

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3

10 −3.236t −0.724J −4t
9 −4.509t −1.088J −4t
8 −5.123t −1.894J −4.503t −1.102J −4t
7 −3t −2.55J −3.449t −1.638J −4t
6 −6J −5J −3J 0
5 −3t −5.75J −3t −4.25J −2t
4 −4.275t −4.947J −4.302t −3.867J −4t
3 −5.413t −3.573J −4t
2 −6.472t −2.894J −4t

TABLE XV. Ground-state energies of the six-dot triangular
prism plaquette shown in Fig. 17. The ground-state energy for each
row is printed in bold.

Six dots: Triangular prism

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3

10 −3.323t −0.556J −4t
9 −4.39t −1.305J −4t
8 −4.614t −2.138J −4.459t −1.207J −4t
7 −2.562t −1.852J −2.791t −1.173J −3t
6 −5.303J −4.281J −2.5J 0
5 −2.732t −3.684J −2.618t −3.171J −2t
4 −4.152t −4.126J −4.07t − 2.284J −4t
3 −4.766t −2.509J −4t
2 −4.962t − 1.306J −4t

TABLE XVII. Ground-state energies of the nine-dot (2,3)-
Hamming graph shown in Fig. 19. The ground-state energy for each
row is printed in bold.

Nine dots: (2,3)-Hamming graph

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4

16 −4t −4t
15 −5.5857t −6t
14 −7.1945t −7.1315t −8t
13 −7.4647t −7.7421t −7t
12 −7.7014t −7.2919t −6.8076t −6t
11 −5.9511t −5.9366t −5.8503t −5t
10 −3.1623t −3.3456t −3.5616t −3.7762t −4t
9 0 0 0 0 0
8 −3.4142t −3.3162t −3.1009t −2.7321t −2t
7 −5.5185t −5.534t −5.063t −4t
6 −6.7831t −6.9136t −7.4357t −6t
5 −7.507t −7.9138t −8t
4 −7.5146t −7.8541t −7t
3 −7.4774t −6t
2 −7.1231t −5t

TABLE XVI. Ground-state energies of the eight-dot cubic plaquette shown in Fig. 18. The ground-state energy for each row is printed in
bold.

Eight dots: Cube

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4

8 −7.82J −7J −5.414J −3J 0
7, 9 −2.625t −3.573J −2.714t − 1.636J −2.858t − 1.124J −3t
6, 10 −4.788t −1.811J −4.673t − 2.032J −4.51t − 1.092J −4t
5, 11 −5.546t −3.056J −5.984t − 2.47J −5t
4, 12 −5.962t −2.157J −5.951t − 1.717J −6t
3, 13 −5.658t −1.329J −5t
2, 14 −5.292t −0.857J −4t
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TABLE XVIII. Ground-state energies of the 12-dot cuboctahedron plaquette shown in Fig. 20. The ground-state energy for each row is
printed in bold.

12 dots: Cuboctahedron

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2

22 −4t −4t
21 −5.9153t −6t
20 −7.7375t −7.7468t −8t
19 −9.2002t −9.451t −10t
18 −10.3255t −10.1679t −10.2674t −10t
17 −10.2328t −10.3376t −10.3892t −10t
16 −9.9934t −9.9072t −9.7962t −9.7505t −10t
15 −8.3886t −8.471t −8.4547t −8.4338t −8t
14 −6.6394t −6.5918t −6.534t −6.5102t −6.4667t −6t
13 −3.5224t −3.6096t −3.7088t −3.809t −3.9058t −4t
12 0 0 0 0 0 0
11 −3.4943t −3.4683t −3.2978t −3.0755t −2.7913t −2t
10 −6.0941t −6.0754t −6.0063t −5.5833t −5.0187t −4t
9 −8.2176t −8.1762t −7.9333t −7.1942t −6t
8 −10.1759t −9.6179t −9.3573t −9.3707t −8t
7 −10.9403t −10.5902t −10.2t −10t
6 −11.2782t −11.3335t −10.8622t −10t
5 −10.9465t −11.4593t −10t
4 −10.0423t −10.2462t −10t
3 −8.8681t −8t
2 −7.4186t −6t

TABLE XIX. Ground-state energies of the 13-dot fcc lattice shown in Fig. 21. The ground-state energy for each row is printed in bold.

13 dots: FCC lattice

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6

24 −4t −4t
23 −6t −6t
22 −7.7403t −7.871t −8t
21 −9.5552t −9.6625t −10t
20 −10.8105t −11.0213t −11.3645t −12t
19 −12.0246t −11.988t −12.1859t −12t
18 −11.7258t −11.9205t −12.1634t −12.2829t −12t
17 −11.5713t −11.5946t −11.6016t −11.6503t −12t
16 −9.7317t −9.9794t −10.1818t −10.2407t −10.3303t −10t
15 −8.0492t −8.135t −8.2188t −8.3152t −8.3707t −8t
14 −5.3755t −5.3902t −5.4543t −5.5604t −5.6951t −5.8436t −6t
13 0 0 0 0 0 0 0
12 −3.7243t −3.7077t −3.646t −3.5509t −3.3313t −2.9438t −2t
11 −7.1654t −7.1024t −6.7447t −6.2969t −5.6731t −4t
10 −9.6813t −9.637t −9.535t −8.9292t −8.1277t −6t
9 −11.7707t −11.701t −11.395t −10.4625t −8t
8 −13.7166t −13.0744t −12.7837t −12.8213t −10t
7 −14.3472t −13.9839t −13.5181t −12t
6 −14.546t −14.6431t −14.1514t −12t
5 −14.2217t −14.748t −12t
4 −13.2602t −13.4679t −12t
3 −12.0947t −10t
2 −10.6671t −8t
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TABLE XX. Ground-state energies of the Paley-13 graph plaquette shown in Fig. 22. The ground-state energy for each row is printed in bold.

13 dots: Paley-13 graph

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6

24 −4.6056t −4.6056t
23 −6.9083t −6.9083t
22 −8.7177t −8.9812t −9.2111t
21 −10.7043t −10.9538t −11.5139t
20 −11.79t −12.1959t −12.7335t −13.8167t
19 −12.8266t −12.9854t −13.4368t −12.5139t
18 −12.6951t −12.8908t −13.0302t −12.1777t −11.2111t
17 −12.3798t −12.1954t −11.618t −10.8536t −9.9083t
16 −10.784t −10.7897t −10.5095t −10.1266t −9.4571t −8.6056t
15 −8.3931t −8.3615t −8.3062t −8.2131t −7.9285t −7.3028t
14 −4.4142t −4.629t −4.9018t −5.1824t −5.4527t −5.7152t −6t
13 0 0 0 0 0 0 0
12 −4.1205t −4.1019t −3.9503t −3.8287t −3.5009t −3.2361t −2.3028t
11 −7.5209t −7.4412t −7.0293t −6.5704t −5.8856t −4.6056t
10 −9.8407t −9.9917t −9.9107t −9.2735t −8.6215t −6.9083t
9 −11.498t −11.7485t −12.0227t −11.2606t −9.2111t
8 −12.6485t −12.819t −13.2218t −13.9952t −11.5139t
7 −13.2178t −13.6182t −14.034t −13.8167t
6 −13.3629t −13.3112t −13.8504t −12.5139t
5 −13.0425t −13.233t −11.2111t
4 −12.5132t −12.5738t −9.9083t
3 −11.773t −8.6056t
2 −11.0828t −7.3028t

TABLE XXI. Ground-state energies of the 15-dot Kagome lattice shown in Fig. 23. The ground-state energy for each row is printed in bold.

15 dots: Kagome lattice

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7

28 −3.9277t −4t
27 −5.8787t −6t
26 −7.4213t −7.5991t −7.5764t
25 −8.9092t −9.0222t −9.1528t
24 −10.1696t −10.11t −10.1066t −9.9003t
23 −10.7478t −10.8128t −10.7663t −10.6478t
22 −10.9083t −11.0028t −11.0315t −11.0732t −11.129t
21 −10.8369t −10.9169t −10.9944t −11.0684t −11.129t
20 −10.0649t −10.0992t −10.1195t −10.1389t −10.1282t −9.9318t
19 −8.9526t −8.9717t −8.9863t −8.9146t −8.8603t −8.7347t
18 −7.5772t −7.5839t −7.5922t −7.5996t −7.5299t −7.4605t −7.4236t
17 −5.4241t −5.4286t −5.4323t −5.4351t −5.4267t −5.4108t −5.2968t
16 −3.1477t −3.1506t −3.1532t −3.1568t −3.159t −3.1628t −3.1657t −3.1701t
15 0 0 0 0 0 0 0 0
14 −3.1363t −3.1362t −3.1361t −3.136t −3.0327t −2.8955t −2.6492t −2t
13 −5.4285t −5.4336t −5.4327t −5.4302t −5.2029t −4.8018t −4t
12 −7.5739t −7.5375t −7.5017t −7.4698t −7.0525t −6.6443t −6t
11 −9.0721t −9.0462t −8.9431t −8.6048t −8.4393t −7.5764t
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TABLE XXI. (Continued).

15 dots: Kagome lattice

Spin

No. of el. 0, 1/2 1, 3/2 2, 5/2 3, 7/2 4, 9/2 5, 11/2 6, 13/2 7

10 −10.3647t −10.3502t −10.3714t −9.8731t −9.514t −9.1528t
9 −11.3738t −11.3691t −11.0776t −10.5407t −9.9003t
8 −11.7808t −11.752t −11.7035t −11.4988t −10.6478t
7 −11.6469t −11.6703t −11.6974t −11.129t
6 −11.2495t −11.1487t −11.1253t −11.129t
5 −10.3727t −10.2133t −9.9318t
4 −9.023t −9.2046t −8.7347t
3 −7.6089t −7.4236t
2 −5.74t −5.2968t
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