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A nonperturbative lattice regularization of chiral fermions and bosons with anomaly-free chiral symmetry
G in 1+ 1D spacetime is proposed. More precisely, we ask “whether there is a local short-range quantum
Hamiltonian with a finite Hilbert space for a finite system realizing on-site symmetry G defined on a 1D spatial
lattice with continuous time, such that its low-energy physics produces a 1+ 1D anomaly-free chiral matter
theory of symmetry G?” In particular, we propose that the chiral fermion theory with chiral U(1) 3L-5R-4L-0R

symmetry, with two left-moving fermions of charge 3 and 4, and two right-moving fermions of charge 5 and 0 at
IR low energy, can emerge from a 1D UV spatial lattice with a chiral U(1) symmetry, if we include properly
designed multi-fermion interactions with intermediate strength (i.e., the dimensionless coupling constant is
naturally order 1). In general, we propose that any 1+ 1D U(1)-anomaly-free chiral matter theory can be
defined as a finite system on a 1D lattice with on-site symmetry by using a quantum Hamiltonian with continuous
time, but without suffering from Nielsen-Ninomiya theorem’s fermion doubling, if we include properly designed
interactions between matter fields. We propose how to design such interactions by looking for extra anomaly-free
symmetries via bosonization/fermionization. We comment on the new ingredients and the differences of ours
compared to Ginsparg-Wilson fermion, Eichten-Preskill and Chen-Giedt-Poppitz (CGP) models, and suggest
modifying CGP model to have successful mirror decoupling. Since a lattice on-site internal symmetry can be
gauged, we thus can further define a nonperturbative regularization of any anomaly-free U(1) chiral gauge theory
in 1+ 1D. As an additional remark, we show a topological nonperturbative proof of the equivalence relation
between the G-symmetric ’t Hooft anomaly cancellation conditions and the G-symmetry-preserving gapping
rules (e.g. Haldane’s stability conditions for Luttinger liquid) for multiple U(1) symmetries. We expect that our
result holds universally regardless of spatial Hamiltonian or spacetime Lagrangian/path integral formulation of
quantum theory. Numerical tests on our proposal are demanding tasks but highly desirable for future work.
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I. INTRODUCTION

Regulating and defining a chiral fermion field theory is
a very important problem, since the standard model is one
such theory with the parity symmetry maximally violated
in the weak force [1–5]. However, the Nielsen-Ninomiya’s
fermion-doubling problem [6–10] makes it very difficult to
define chiral fermions (in an even-dimensional spacetime)
on the lattice. Many previous papers attempt to solve this
important problem: These include the standard lattice gauge
theory method [11], the domain-wall fermion [12,13], and the
overlap fermion [9,14–16].

There is also the mirror fermion approach [17–20], which
starts with a lattice model containing chiral fermions in one
original light sector coupled to gauge theory, and its chiral
conjugated as the mirror sector. Then, one tries to include
direct interactions or boson mediated interactions [21,22] be-
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tween fermions to gap out the mirror sector only. The later
papers either end up with unsuccessful attempts [23–25] or
argue that it is almost impossible to gap out (i.e., fully open the
energy gaps of) the mirror sector without breaking the gauge
symmetry in some mirror fermion models [26].

The previous unsuccessful lattice-gauge approaches may
either (i) assume noninteracting lattice fermions, apart from
the interaction to the lattice gauge field, in the conventional
standard lattice gauge theory, or (ii) introduce certain in-
appropriate interactions between fermions that cause their
attempt to gapping the mirror gapless modes failed, such as
the Wilson-Yukawa approach from Refs. [21,22,27] and later
papers [28].

In this paper, we propose that the lattice mirror fermion
approach actually works if we include properly-designed
direct fermion-fermion interaction with appropriate interme-
diate strength (i.e., the dimensionless coupling constants are
of an order 1 [29–31]).

In other words, a general framework of the mirror fermion
approach actually works for constructing a lattice chiral
fermion theory, at least in 1+ 1D, as long as we design
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proper interactions between gapless modes. Specifically, any
anomaly-free chiral fermion/boson field theory can be de-
fined as a finite quantum system on a 1D-lattice where the
internal chiral symmetry is realized as an on-site global sym-
metry, provided that we allow lattice fermion/boson to have
interactions, instead of being free. (Here, the “chiral” theory
here means that it “breaks parity P symmetry.” Our 1+ 1D
chiral fermion theory breaks parity P and time reversal T
symmetry. (See Appendix A for C, P, T symmetry in 1+ 1D.)
Our insight comes from Refs. [29,30], where the connection
between (1) ’t Hooft anomalies of global symmetry G [32], (2)
dynamical gauge anomalies by gauging G, and (3) symmetry-
protected topological states (SPTs or SPT order) protected by
G [33] (in one-higher dimension) is found.

To welcome our readers fully appreciate our logic, we shall
first define our important basic concepts clearly:

(1) On-site symmetry [33,34] means that the overall sym-
metry transformation operator U (g) of symmetry group G can
be defined as the tensor product of each single site’s symmetry
transformation Ui(g), via U (g) = ⊗iUi(g) with g ∈ G. Nonsite
symmetry means U (g)non-onsite �= ⊗iUi(g).

(2) Local Hamiltonian with short-range interactions
means that the nonzero amplitude of matter (fermion/boson)
hopping/interactions in finite time has a finite range propa-
gation, and cannot be an infinite range. Strictly speaking, the
quasilocal exponential decay (of kinetic hopping/interactions)
is nonlocal and not short range.

(3) finite(-Hilbert-space) system means that the dimension
of Hilbert space is finite if the system has finite lattice sites
(e.g., on a finite-size cylinder).

Nielsen-Ninomiya theorem [6–8] states that the attempt to
regularize chiral fermion on a lattice as a local free nonin-
teracting fermion model with fermion number conservation
(i.e., with U(1) symmetry [35]) has fermion-doubling problem
[6–10] in an even-dimensional spacetime. To apply this no-go
theorem, however, the symmetry is assumed to be an on-site
symmetry.

Ginsparg-Wilson fermion approach copes with this no-go
theorem by solving Ginsparg-Wilson (GW) relation [36,37]
based on the quasilocal Neuberger-Dirac operator [38–40],
where quasiocal is strictly nonlocal. In this paper, we show
that the quasilocalness of Neuberger-Dirac operator in the
GW fermion approach imposes a non-on-site [33,41,42] U(1)
symmetry, instead of an on-site symmetry. (While here we
simply summarize the result, one can read the details of on-
site and non-on-site symmetry, and its relation to GW fermion
in Appendix B.) For our specific approach for the mirror-
fermion decoupling, we will not implement the GW fermions
(of non-on-site symmetry) construction, instead, we will use
lattice fermions with on-site symmetry but with particular
properly-designed interactions. Comparing GW fermion to
our approach, we see that

(1) Ginsparg-Wilson (GW) fermion approach obtains
“chiral fermions from a local free fermion lattice model
with non-on-site U(1) symmetry (without fermion doublers).”
(Here one regards Ginsparg-Wilson fermion applying the
Neuberger-Dirac operator, which is strictly non-on-site and
nonlocal.)

(2) Our approach obtains “chiral fermions from local in-
teracting fermion lattice model with on-site U (1) symmetry

(without fermion doublers, or gapping fermion doublers), if
and only if all U(1) anomalies are cancelled.”

Also, the conventional GW fermion approach discretizes
the Lagrangian/the action on the spacetime lattice, while we
use a local short-range quantum Hamiltonian on 1D spatial
lattice with a continuous time. Such a distinction causes some
difference. For example, it is known that Ginsparg-Wilson
fermion can implement a single Weyl fermion for the free
case without gauge field on a 1+ 1D space-time lattice due
to the studies of Neuberger, Lüscher, etc. Our approach can-
not implement a single Weyl fermion on a 1D-space lattice
within local short-range Hamiltonian. (However, only if we
are allowed to introduce a nonlocal infinite-range hopping
Hamiltonian term, our approach can implement a single Weyl
fermion.)

Comparison to Eichten-Preskill and Chen-Giedt-Poppitz
models: Due to the past investigations, a majority of the
high-energy lattice community believes that the mirror-
fermion decoupling (or lattice gauge approach) fails to realize
chiral fermion or chiral gauge theory. Thus one may chal-
lenge our approach by asking “how is our mirror-fermion
decoupling model different from Eichten-Preskill and Chen-
Giedt-Poppitz models?” And “why does the recent numerical
attempt of Chen-Giedt-Poppitz fail? [25]” We stress again
that, our approach provides properly designed fermion inter-
action terms to make things work: gapping the mirror-world
chiral fermions, due to the recent understanding to topological
gapped boundary conditions [43–46]:

(1) Eichten-Preskill (EP) [17] proposes a generic idea
of the mirror-fermion approach for the chiral gauge theory.
There the perturbative analysis on the weak-coupling and
strong-coupling expansions are used to demonstrate whether
mirror-fermion decoupling phases can exist in the phase di-
agram. The action is discretized on the spacetime lattice. In
EP approach, one tries to gap out the mirror-fermions via
the mass term of composite fermions that do not break the
(gauge) symmetry on lattice. The mass term of composite
fermions are actually fermion interacting terms. So in EP ap-
proach, one tries to gap out the mirror-fermions via the direct
fermion interaction that do not break the (gauge) symmetry
on lattice. However, including all the symmetry-preserving in-
teractions (or symmetric interactions) may not be compatible
with gapping mirror sectors. Even when the mirror sector is
anomalous, one can still add the direct fermion interaction
that do not break the (gauge) symmetry. So the presence
of symmetric direct fermion interaction may or may not be
able to gap out the mirror sector. When the mirror sector is
anomaly free, we will show in our paper, some symmetric
interactions are helpful for gapping out the mirror sectors,
while other symmetric interactions are harmful. The key issue
for us is to design the proper interaction to gap out the mirror
sector.

(2) Chen-Giedt-Poppitz (CGP) [25] follows the EP gen-
eral framework to deal with a 3-4-5 anomaly-free model
with a single U(1) symmetry. All the U(1) symmetry-allowed
Yukawa-Higgs terms are introduced to mediate multi-fermion
interactions. The Ginsparg-Wilson fermion and the Neu-
berger’s overlap Dirac operator are implemented, the fermion
actions are discretized on the spacetime lattice. Again, the
interaction terms are designed only based on symmetry, which

014311-2



NONPERTURBATIVE REGULARIZATION OF (1+ 1)- … PHYSICAL REVIEW B 107, 014311 (2023)

contain both helpful and harmful terms toward gapping mirror
fermions, as we will show.

(3) Our model in general belongs to the mirror-fermion-
decoupling idea. The anomaly-free model we proposed is
named as the 3L-5R-4L-0R model. Our 3L-5R-4L-0R is in reality
different from Chen-Giedt-Poppitz’s 3-4-5 model, since we
implement:

(i) An on-site symmetry local lattice model: Our lattice
Hamiltonian is built on 1D spatial lattice with on-site U(1)
symmetry. We neither implement the GW fermion nor the
Neuberger-Dirac operator (both have strictly non-on-site and
nonlocal symmetries).

(ii) A particular set of interaction terms with proper
strength: Our multi-fermion interaction terms are properly-
designed gapping terms that obey not only the symmetry but
also certain Lagrangian subgroup algebra. Those interaction
terms are called helpful gapping terms, satisfying boundary
fully gapping rules. We will show that the Chen-Giedt-
Poppitz’s Yukawa-Higgs terms induce extra multi-fermion
interaction terms, which do not satisfy boundary fully gap-
ping rules. Those extra terms are incompatible harmful terms,
competing with the helpful gapping terms and causing the
preformed energy gap (which is not a usual quadratic mass
gap) unstable so preventing the mirror sector from being
gapped out. (This can be one of the reasons for the failure of
mirror-decoupling in Ref. [25].) We stress that, due to a topo-
logical nonperturbative reason, only a particular set of ideal
interaction terms are helpful to fully gap the mirror sector.
Adding more or removing interactions can cause the energy
gap unstable thus the phase flowing to gapless states. In ad-
dition, we stress that only when the helpful interaction terms
are in a proper range, intermediate strength for dimensionless
coupling of order 1, can they fully gap the mirror sector, and
yet not gap the original sector (details in Sec. III B). Through-
out our paper, when we say strong coupling for our model, we
really mean intermediate(-strong) coupling in an appropriate
range. In CGP model, however, their strong coupling may be
too strong (with their kinetic term neglected); which can be
another reason for the failure of mirror-decoupling [25].

(iii) Extra symmetries: For our model, a total even num-
ber N of left/right moving Weyl fermions (NL = NR = N/2),
we will add only N/2 linear-independent helpful gapping
terms under the constraint of the Lagrangian subgroup alge-
bra and boundary fully gapping rules. As a result, the full
symmetry of our lattice model is U(1)N/2 (where the gapping
terms break U(1)N down to U(1)N/2). For the case of our
3L-5R-4L-0R model, the full U(1)2 symmetry has two sets of
U(1) charges, U(1)1st 3-5-4-0 and U(1)2nd 0-4-5-3, both are
anomaly free and mixed-anomaly free. Although the physical
consideration only requires the interaction terms to have on-
site U(1)1st symmetry, looking for interaction terms with extra
U(1) symmetry can help us to identify the helpful gapping
terms and design the proper lattice interactions. CGP model
has only a single U(1)1st symmetry. Here we suggest im-
proving that model by removing all the interaction terms that
break the U(1)2nd symmetry [thus adding all possible terms
that preserve the two U(1) symmetries] with an intermediate
strength.

The plan and a short summary (see Fig. 1) of our paper
are the following. In Sec. II we first consider a 3L-5R-4L-0R

anomaly-free chiral fermion field theory model, with a full
U(1)2 symmetry: A first 3-5-4-0 U(1)1st symmetry for two
left-moving fermions of charge 3 and charge 4, and for two
right-moving fermions of charge 5 and charge 0. And a second
0-4-5-3 U(1)2nd symmetry for two left-moving fermions of
charge 0 and charge 5, and for two right-moving fermions of
charge 4 and charge 3. If we wish to have a single U(1)1st

symmetry, we can weakly break the U(1)2nd symmetry by
adding tiny local U(1)2nd-symmetry breaking term.

We claim that this model can be put on the lattice with an
on-site U(1) symmetry, but without fermion-doubling prob-
lem. We construct a 2+ 1D lattice model by simply using
four layers of the zeroth Landau levels(or more precisely,
four filled bands with Chern numbers [47] −1,+1,−1,+1
on a lattice [48,49]), which produces charge 3 left-moving,
charge 5 right-moving, charge 4 left-moving, charge 0 right-
moving, totally four fermionic modes at low energy on one
edge. Therefore, by putting the 2D bulk spatial lattice on a
cylinder with two edges, one can leave edge states on one edge
untouched so they remain chiral and gapless, while turning on
interactions to gap out the mirror edge states on the other edge
with a large energy gap (which is not a usual quadratic mass
gap).

In Sec. III, we provide a correspondence from the contin-
uum field theory to a discrete lattice model. The numerical
result of the chiral-π flux square lattice with nonzero Chern
numbers, supports the free fermion part of our model. We
study the kinetic and interacting part of Hamiltonian with
dimensional scaling, energy scale and interaction strength
analysis. In Sec. IV, we justify the mirror edge can be gapped
by analytically bosonizing the fermion theory and confirm
the interaction terms obeys “the boundary fully gapping rules
[43–46,50–57].”

To consider a more general model construction, inspired
by the insight of SPTs [29,30,33], in Sec. IV A, we apply
the bulk-edge correspondence between Chern-Simons theory
and the chiral boson theory [43,45,46,52,54,58–61]. We re-
fine and make connections between the key concepts in our
paper in Secs. IV B and IV C. These are “the anomaly factor
[5,32,62,63]” and “effective Hall conductance” “ ’t Hooft
anomaly matching condition [32,63]” and “the boundary fully
gapping rules [43–46,52,54,56].” In Sec. V, a nonperturba-
tive lattice definition of 1+ 1D anomaly-free chiral matter
model is given, and many examples of fermion/boson models
are provided. These model constructions are supported by
our proof of the equivalence relations between “the anomaly
matching condition” and “the boundary fully gapping rules”
in Appendices C and D.

In Fig. 1, we put these various models with various
effective energy scales into a renormalization group (RG)
perspective from the UV (ultraviolet: high energy and short
distance) to IR (infrared: low energy and long distance):

(i) UV lattice Hamiltonian fermion model,
(ii) UV continuum (fermion/boson) field theory, and
(iii) IR fixed-point chiral fermion theory.
In contrast, we do not directly implement UV lattice field

theory regularization, which is the conventional method for
the lattice QCD community. In other words, we do not attempt
to directly discretize “the UV fermion field theory” [to be
shown in Eqs. (3) and (66)] on a lattice in order to obtain the
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FIG. 1. We construct a UV (ultraviolet high-energy) lattice model in Eqs. (8) and (67), whose energy scale �3,UV � 1/a. In contrast, the
lattice QCD community usually employs a direct lattice regularization of a continuum field theory at another energy scale �2,UV. In this paper,
we do not explore the UV lattice regularization of a field theory model. However, we consider the models marked with the (

√
) mark: The

UV continuum field theory, including both the fermionic model [Eqs. (3) and (66)] and the bosonic model [Eqs. (4) and (65)] at another
energy scale �1,UV. The UV continuum field theory does not have to be renormalizable in the renormalization group (RG) sense; however,
we provide a deeper UV completion of this UV continuum field theory by the UV Hamiltonian model at �3,UV. In this paper, we set the
�3,UV � �2,UV � �1,UV. Since the energy scale �3,UV � �2,UV � �1,UV is set about the same, the RG flow analysis can be controlled along
the way. This includes the controlled RG flow ���. Here we do not study anything along with the flows of two dotted arrows (· · · ), since we
do not attempt from the UV lattice field theory model (which is a conventional model of the lattice QCD community). We can also analyze
along with the two dashed-dotted arrows (-.-.-.): We find that the RG flows to a completely gapped phase for the mirror sector, which is known
in QFT and condensed matter literature [43–46]. The boldface ←→ arrow is based on the standard bosonization/fermionization method in
1+ 1D.

“UV lattice field theory model.” Namely, we do not attempt to
perform the analysis shown along the dotted arrows (· · · ) in
Fig. 1.

However, we comment on all the other RG flows and
the other correspondences (bosonization/fermionization in
1+ 1D) shown in Fig. 1. We formulate a UV lattice Hamil-
tonian model instead [to be shown in Eqs. (8) and (67)] at a
higher-energy scale �3,UV (�1/a), whose emergent effective
UV field theory at a lower-energy scale �1,UV becomes the
UV continuum fermionic field theory [to be shown in Eqs. (3)
and (66)] or the UV continuum bosonic field theory [to be
shown in Eqs. (4) and (65)]. In addition, the emergent IR field
theory at the deep IR becomes the desired “IR fixed point
chiral fermion field theory” [to be shown in Eq. (2)].

By providing a UV lattice Hamiltonian model [shown in
Eqs. (8) and (67)] whose emergent IR field theory at the deep
IR becomes the desired “IR fixed point chiral fermion field

theory” [shown in Eq. (2)], we propose that this model would
achieve our goal: a nonperturbative regularization of 1+ 1D
anomaly-free chiral fermions and bosons on a lattice.

In Appendix A, we discuss the C, P, T symmetry in a
1+ 1D fermion theory. In Appendix B, we show that GW
fermions realize its axial U(1) symmetry by a non-on-site
symmetry transformation. As the non-on-site symmetry sig-
nals the nontrivial edge states of bulk SPTs [33,41,42], thus
GW fermions can be regarded as gapless edge states of some
bulk fermionic SPT states, such as certain topological insu-
lators. We also explain why it is easy to gauge an on-site
symmetry (such as our chiral fermion model), and why it
is difficult to gauge a non-on-site symmetry (such as GW
fermions). Since the lattice on-site symmetry can always be
gauged, our result suggests a nonperturbative definition of any
anomaly-free chiral gauge theory in 1+ 1D. In Appendix E,
we provide physical, perturbative and nonperturbative under-
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standings on “boundary fully gapping rules.” In Appendix F,
we provide more details and examples about our lattice mod-
els. With this overall understanding, in Sec. VI we summarize
with deeper implications and future directions.

[Note on the terminology: Here in our paper, U(1) sym-
metry may generically imply copies of U(1) symmetry such
as U(1)n, with positive integer n. Topological boundary fully
gapping rules are defined as the rules to open the energy
gap (which is not necessarily a usual quadratic mass gap)
of the boundary states. Topological gapped boundary con-
ditions are defined to specify certain boundary types which
are gapped (thus topological). There are two kinds of usages
of lattices here discussed in our paper: one is the Hamil-
tonian lattice model to simulate the chiral fermions/bosons.
The other lattice is the Chern-Simons (representation) lattice
structure of Hilbert space, which is a quantized lattice due to
the level/charge quantization of Chern-Simons theory.]

Note added. After the completion of this present study in
2013, the authors have, later in 2018, reconstructed a variant
version of the 1+ 1D lattice model in Ref. [64], which low
energy realizes a 3L-5R-4L-0R chiral fermion field theory. Ref-
erence [64] lattice model is different but based on the same
topological nonperturbative proof given in our Appendices A
and B. Since our proof holds universally independent from
Hamiltonian or Lagrangian/path integral formulation of quan-
tum theory, the proof implies that the lattice regularization
of 1+ 1D U(1) chiral fermion theory based on proper non-
perturbative interactions shall work successfully, regardless
lattice Hamiltonian or lattice Lagrangian/path integral for-
mulations. Reference [65] successfully simulates the 1+ 1D
U(1) 3L-5R-4L-0R chiral fermion lattice model proposed in this
article.

II. 3L-5R-4L-0R CHIRAL FERMION MODEL: A NEW
LATTICE PROPOSAL

The simplest chiral (Weyl) fermion field theory with U(1)
symmetry in 1+ 1D is given by the action

S�,free =
∫

dtdx iψ†
L (∂t − ∂x )ψL. (1)

However, Nielsen-Ninomiya theorem claims that such a the-
ory cannot be put on a lattice with unbroken on-site U(1)
symmetry, due to the fermion-doubling problem [6–8]. While
the Ginsparg-Wilson fermion approach can still implement an
anomalous single Weyl fermion on the lattice, our approach
cannot (unless we modify local Hamiltonian to infinite-range
hopping nonlocal Hamiltonian). As we will show, our ap-
proach is more restricted, only limited to the anomaly-free
theory. Let us instead consider an anomaly-free 3L-5R-4L-0R

chiral fermion field theory with an action,

S�A,free =
∫

dtdx (iψ†
L,3(∂t − ∂x )ψL,3 + iψ†

R,5(∂t + ∂x )ψR,5

+ iψ†
L,4(∂t − ∂x )ψL,4 + iψ†

R,0(∂t + ∂x )ψR,0), (2)

where ψL,3, ψR,5, ψL,4, and ψR,0 are one-component Weyl
spinor, carrying U(1) charges 3,5,4,0, respectively. The sub-
script L (or R) indicates left (or right) moving along −x̂ (or
+x̂). Although this theory has equal numbers of left and right

L3 L4 

R5 R0

L5 L0 

R3 R4 (a) (c) 

A AB B 

x 

y L3 L4 

R5 

L5 L0 

R3 R4 R0 (b) 

A B 

x 

y 

FIG. 2. 3L-5R-4L-0R chiral fermion model: (a) The fermions
carry U(1) charge 3,5,4,0 for ψL,3, ψR,5, ψL,4, ψR,0 on the edge A, and
also for its mirror partners ψ̃R,3, ψ̃L,5, ψ̃R,4, ψ̃L,0 on the edge B. We
focus on the model with a periodic boundary condition along x, and
a finite-size length along y, effectively as (b) on a spatial cylinder.
(c) The ladder model on a cylinder with the t hopping term along
black links, the t ′ hopping term along brown links. The shadow on the
edge B indicates the gapping terms with G1, G2 couplings in Eq. (8)
are imposed.

moving modes, it violates the parity and time reversal sym-
metry, so it is a chiral theory (details about C, P, T symmetry
in Appendix A). Such a chiral fermion field theory is very
special because it is free from U(1) anomaly—it satisfies the
anomaly matching condition [5,32,62,63] in 1+ 1D, which
means

∑
j q2

L, j − q2
R, j = 32 − 52 + 42 − 02 = 0. It is crucial

to include the “neutrino” ψR,0 so the theory is gravitational-
anomaly free, because two left-moving and two right-moving
Weyl fermions give the zero chiral central charge cL − cR =
2− 2 = 0. We ask the following:

Question 1: “Whether there is a local finite Hamiltonian
realizing the above U(1) 3-5-4-0 symmetry as an on-site
symmetry with short-range interactions defined on a 1D
spatial lattice with a continuous time, such that its low en-
ergy physics produces the anomaly-free chiral fermion theory
Eq. (2)?”

Yes. We show that the above chiral fermion field theory can
be put on a lattice with unbroken on-site U(1) symmetry, if we
include properly-designed interactions between fermions. In
fact, we propose that the chiral fermion field theory in Eq. (2)
appears as the low energy effective theory of the following
2+ 1D lattice model on a cylinder (see Fig. 2) with a prop-
erly designed Hamiltonian. To derive such a Hamiltonian, we
start from thinking the full two-edges fermion theory with
the action S� , where the particularly chosen multi-fermion
interactions S�B,interact will be explained:

S� = S�A,free + S�B,free + S�B,interact

=
∫

dtdx (i�̄A�μ∂μ�A + i�̄B�μ∂μ�B

+g̃1((ψ̃R,3)(ψ̃L,5)(ψ̃†
R,4∇xψ̃

†
R,4)(ψ̃L,0∇xψ̃L,0)+ H.c.)

+ g̃2((ψ̃R,3∇xψ̃R,3)(ψ̃†
L,5∇xψ̃

†
L,5)(ψ̃R,4)(ψ̃L,0)+ H.c.)),

(3)

The notation for fermion fields on the edge A are �A =
(ψL,3, ψR,5, ψL,4, ψR,0), and fermion fields on the edge B are
�B = (ψ̃L,5, ψ̃R,3, ψ̃L,0, ψ̃R,4). (Here a left moving mode in
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�A corresponds to a right moving mode in �B because of
Landau level/Chern band chirality, the details of lattice model
will be explained.) The gamma matrices in 1+ 1D are pre-
sented in terms of Pauli matrices, with γ 0 = σx, γ 1 = iσy,
γ 5 ≡ γ 0γ 1 = −σz, and �0 = γ 0 ⊕ γ 0, �1 = γ 1 ⊕ γ 1, �5 ≡
�0�1 and �̄i ≡ �

†
i �0. The H.c. is a Hermitian conjugation of

the aforementioned term.
We emphasize that although the interaction terms in

S�B,interact in Eq. (3) look to be irrelevant operators in a
perturbative RG sense (so naively people may mistakenly
argue that the irrelevant operators cannot drive the gapless
phase to gapped phase on the B edge), we later prove
that, based on a nonperturbative and topological analysis
in Sec. IV C 2 and Appendix E, at strong coupling [or the
intermediate coupling at the lattice scale in Eq. (8)] the
interaction terms can drive the mirror B edge to a gapped
phase. See also a shorten version of the proof on gapping
mirror chiral fermions in Ref. [64].

In 1+ 1D, we can do bosonization [66], where the fermion
matter field � turns into bosonic phase field 
, more explic-
itly ψL,3 ∼ ei
A

3 , ψR,5 ∼ ei
A
5 , ψL,4 ∼ ei
A

4 , ψR,0 ∼ ei
A
0 on A

edge, ψ̃R,3 ∼ ei
B
3 , ψ̃L,5 ∼ ei
B

5 , ψ̃R,4 ∼ ei
B
4 , ψ̃L,0 ∼ ei
B

0 on
B edge, up to normal orderings : ei
 : and prefactors [67],
but the precise factor is not of our interest since our goal
is to obtain its nonperturbative lattice realization. So Eq. (3)
becomes

S
 = S
A
free
+ S
B

free
+ S
B

interact

= 1

4π

∫
dtdx

(
KA

IJ∂t

A
I ∂x


A
J −VIJ∂x


A
I ∂x


A
J

)
+ (KB

IJ∂t

B
I ∂x


B
J −VIJ∂x


B
I ∂x


B
J

)
+
∫

dtdx
(
g1 cos

(

B

3 +
B
5 − 2
B

4 + 2
B
0

)
+ g2 cos

(
2
B

3 − 2
B
5 +
B

4 +
B
0

))
. (4)

Here I, J runs over 3,5,4,0 while KA
IJ = −KB

IJ =
diag(1,−1, 1,−1) and VIJ = diag(1, 1, 1, 1) are diagonal
matrices.

All we have to show is that gapping terms, the cosine terms
with g1, g2 coupling can gap out all states on the edge B.

First, let us understand more about the full U(1) symmetry.
What are the U(1) symmetries? They are transformations of

fermions ψ → ψ · eiqθ , bosons 
 → 
+ q θ

making the full action invariant. The original four Weyl
fermions have an Abelian U(1)4 symmetry. Under two linear-
independent interaction terms in S�B,interact (or S
B

interact
), the

U(1)4 is broken down to a U(1)2 symmetry. If we denote these
q as a charge vector t = (q3, q5, q4, q0), we find there are such
two charge vectors

t1 = (3, 5, 4, 0) and t2 = (0, 4, 5, 3)

for U(1)1st and U(1)2nd symmetries respectively.
We emphasize that finding those gapping terms in this

U(1)2 anomaly-free theory is not accidental. The anomaly
matching condition [5,32,62,63] here is satisfied, for the co-
efficient of anomalies

∑
j q2

L, j − q2
R, j = 32 − 52 + 42 − 02 =

02 − 42 + 52 − 32 = 0, and the mixed anomaly: 3 · 0− 5 ·

4+ 4 · 5− 0 · 3 = 0, which can be formulated as

tT
i · (KA) · t j = 0 , i, j ∈ {1, 2} (5)

with the U(1) charge vector t = (3, 5, 4, 0), with its
transpose tT .

On the other hand, the boundary fully gapping rules
(as we will explain, and the full details in Appendix E)
[43,45,46,54], for a theory of Eq. (4), require two gapping
terms, here g1 cos(�1 ·
)+ g2 cos(�2 ·
), such that self and
mutual statistical angles θi j [60,61] defined below among the
Wilson-line operators �i, � j are zeros,

θi j/(2π ) ≡ �T
i · (KB)−1 · � j = 0 , i, j ∈ {1, 2}. (6)

Indeed, here we have

�1 = (1, 1,−2, 2), �2 = (2,−2, 1, 1)

satisfying the rules. We can alternatively choose

�1 = (3,−5, 4, 0), �2 = (0, 4,−5, 3).

The g1 cos(�1 ·
)+ g2 cos(�2 ·
) is symmetric interaction,
invariant respect the symmetry 
 → 
+ q θ for q charges
labeled by t1 and t2, because

tT
i · � j = 0 , i, j ∈ {1, 2}. (7)

So both U(1)1st and U(1)2nd for any θ ∈ [0, 2π ) are preserved.
We propose that the mirror edge states on the edge B can be
fully gapped out by the symmetric interaction.

We will prove the anomaly matching condition is equiva-
lent to find a set of gapping terms ga cos(�a ·
), obeying the
boundary fully gapping rules, detailed in Secs. IV B and IV C,
and in Appendices C and D. Simply speaking,

“The anomaly matching condition [Eq. (7)] in 1+ 1D is
equivalent to (an if and only if relation) the boundary fully
gapping rules [Eq. (6)] in 1+ 1D boundary/2+ 1D bulk for
an equal number of left-right moving modes (NL = NR, with
central charge cL = cR).”

We prove this is true at least for U(1) symmetry case, with
the bulk theory is a 2+ 1D SPT state and the boundary theory
is in 1+ 1D.

We now propose a lattice Hamiltonian model for this
3L-5R-4L-0R chiral fermion realizing Eq. (3) [thus Eq. (2) at
the low-energy once the Edge B is gapped out]. Importantly,
we do not discretize the action Eq. (3) on the spacetime
lattice. We do not use Ginsparg-Wilson (GW) fermion nor the
Neuberger-Dirac operator. GW and Neuberger-Dirac scheme
contains non-on-site symmetry (details in Appendix B), which
cause the lattice difficult to be gauged to a chiral gauge the-
ory. Instead, the key step is that we implement the on-site
symmetry lattice fermion model. The free kinetic part is a
fermion-hopping model, which has a finite 2D bulk energy gap
but with gapless 1D edge states. This can be done by using any
lattice Chern insulator.

We stress that any lattice with on-site symmetry shall work,
and we design one as in Fig. 2. (In fact, we later design
another variant version of 1D lattice model in Ref. [64].)
Our full Hamiltonian with two interacting G1 and G2 gapping

014311-6



NONPERTURBATIVE REGULARIZATION OF (1+ 1)- … PHYSICAL REVIEW B 107, 014311 (2023)

terms is

H =
∑

q=3,5,4,0

⎛
⎝∑
〈i, j〉

(ti j,q f̂ †
q (i) f̂q( j)+ H.c.)+

∑
〈〈i, j〉〉

(t ′i j,q f̂ †
q (i) f̂q( j)+ H.c.)

⎞
⎠

+G1

∑
j∈B

(( f̂3( j))1( f̂5( j))1( f̂ †
4 ( j)pt .s.)

2( f̂0( j)pt .s.)
2 + H.c.)+ G2

∑
j∈B

(( f̂3( j)pt .s.)
2( f̂ †

5 ( j)pt .s.)
2( f̂4( j))1( f̂0( j))1 + H.c.)

(8)

where
∑

j∈B sums over the lattice points on the right bound-
ary (the edge B in Fig. 2), and the fermion operators
f̂3, f̂5, f̂4, f̂0 carry a U(1)1st charge 3,5,4,0 and another
U(1)2nd charge 0,4,5,3 respectively. The lattice fermion opera-
tors are nonrelativistic, satisfying canonical anticommutation
relations

{ f̂q(i), f̂ †
q′ ( j)} = δ(i, j)δ(q,q′ ).

We emphasize that this lattice model has on-site U(1)2 sym-
metry, since this Hamiltonian, including interaction terms,
is invariant under a global U(1)1st transformation on each
site for any θ angle: f̂3 → f̂3ei3θ , f̂5 → f̂5ei5θ , f̂4 → f̂4ei4θ ,
f̂0 → f̂0, and invariant under another global U(1)2nd transfor-
mation for any θ angle: f̂3 → f̂3, f̂5 → f̂5ei4θ , f̂4 → f̂4ei5θ ,
f̂0 → f̂0ei3θ . The U(1)1st charge is the reason why it is named
as 3L-5R-4L-0R model.

As for notations, 〈i, j〉 stands for nearest-neighbor hopping
along black links and 〈〈i, j〉〉 stands for next-nearest-neighbor
hopping along brown links in Fig. 2. Here pt .s. stands for
point-splitting. For example, ( f̂3( j)pt .s.)2 ≡ f̂3( j) f̂3( j + x̂).
We stress that the full Hamiltonian (including interactions)
Eq. (8) is short range and local, because each term only
involves coupling within finite number of neighbor sites. The
hopping amplitudes ti j,3 = ti j,4 and t ′i j,3 = t ′i j,4 produce the
energy bands with a Chern number−1, while the hopping am-
plitudes ti j,5 = ti j,0 and t ′i j,5 = t ′i j,0 produce the energy bands
with a Chern number+1 (see Sec. III A 2) [47,48,68–71]. The
ground state is obtained by filling the above four bands. The
fermionic particle or hole excitations near the filled energy
bands become the relativistic fermions.

As Eq. (8) contains U(1)1st and an accidental extra U(1)2nd

symmetry, we shall ask:
Question 2: “Whether there is a local finite Hamilto-

nian realizing only a chiral U(1) 3-5-4-0 symmetry as an
on-site symmetry with short-range interactions defined on
a 1D spatial lattice with a continuous time, such that its
low-energy physics produces the anomaly-free chiral fermion
theory Eq. (2)?”

Yes, by adding a small local perturbation to break U(1)2nd

0-4-5-3 symmetry, we can achieve a faithful U(1)1st 3-5-4-0
symmetry chiral fermion theory of Eq. (2). For example, we
can adjust Eq. (8)’s H → H + δH by adding

δH = G′tiny

∑
j∈B

(( f̂3( j)pt .s.)
3( f̂ †

5 ( j)pt .s.)
1( f̂ †

4 ( j))1 + H.c.)

⇔ g̃′tiny

((
ψ̃L,3∇xψ̃L,3∇2

x ψ̃L,3
)
(ψ̃†

R,5)(ψ̃†
L,4)+ H.c.

)
⇔ g′tiny cos

(
3
B

3 −
B
5 −
B

4

)
≡ g′tiny cos(�′ ·
B). (9)

Here we have �′ = (3,−1,−1, 0). The g′tiny cos(�′ ·
B) is
not designed to be a gapping term (its self and mu-
tual statistics happen to be nontrivial: �′T · (KB)−1 · �′ �= 0,
�′T · (KB)−1 · �2 �= 0), but this tiny perturbation term is meant
to preserve U(1)1st 3-5-4-0 symmetry only, thus

�′T · t1 = �′T · (KB)−1 · �1 = 0. (10)

We must set (|G′tiny|/|G|) � 1 with |G1| ∼ |G2| ∼ |G| about
the same magnitude, so that the tiny local perturbation will
not destroy the energy gap (not a usual quadratic mass gap for
fermions).

Without the interaction, i.e., G1 = G2 = 0, the edge exci-
tations of the above four bands produce the chiral fermion
theory Eq. (2) on the left edge A and the mirror partners on
the right edge B. So the total low energy effective theory is
nonchiral. In Sec. III A 2, we will provide an explicit lattice
model for this free fermion theory.

However, by turning on the intermediate-strength interac-
tion G1, G2 �= 0, we claim the interaction terms can fully gap
out the edge excitations on the right mirror edge B as in Fig. 2.
To find those gapping terms is not accidental—it is guaranteed
by our proof (see Secs. IV B and IV C, and Appendices C and
D) of the equivalence between the anomaly matching condi-
tion [5,32,62,63] [as tT

i · (K )−1 · t j = 0 of Eq. (7)] and the
boundary fully gapping rules [43–46,52,54,56] (here G1, G2

terms can gap out the edge) in 1+ 1D. The low-energy effec-
tive theory of the interacting lattice model with only gapless
states on the edge A is the chiral fermion theory in Eq. (2).
Since the width of the cylinder is finite, the lattice model
Eq. (8) is actually a 1+ 1D lattice model, which gives a
nonperturbative lattice definition of the chiral fermion theory
Eq. (2). Indeed, the Hamiltonian and the lattice need not to
be restricted merely to Eq. (8) and Fig. 2, we stress that
any on-site symmetry lattice model produces four bands with
the desired Chern numbers would work. We emphasize again
that the U(1) symmetry is realized as an on-site symmetry
[33,34] in our lattice model. It is easy to gauge such an on-site
U(1) symmetry (explained in Appendix B) to obtain a chiral
fermion theory coupled to a U(1) gauge field.

III. FROM A CONTINUUM FIELD THEORY TO A
DISCRETE LATTICE MODEL

We now comment about the mapping from a continuum
field theory of the action Eq. (2) to a discretized space
Hamiltonian Eq. (8) with a continuous time. We do not use
Ginsparg-Wilson scheme, and our gapless edge states are not
derived from the discretization of spacetime action. Instead,
we will show that the Chern insulator Hamiltonian in Eq. (8)
as we described can provide essential gapless edge states for a
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free theory (without interactions G1 and G2). We may view
that the continuum field theory is an IR fixed point of the
UV lattice Hamiltonian under RG flow, see Fig. 5. But the
continuum field theory is not directly derived from taking
the lattice constant a → 0: we see that the lattice fermion f̂q

is a nonrelativistic operator satisfying the canonical anticom-
mutation relations, while the fermion field ψ is a relativistic
spacetime Weyl spinor.

Energy and Length Scales: We consider a finite 1+ 1D
quantum system with a periodic length scale L for the com-
pact circle of the cylinder in Fig. 2. The finite size width of
the cylinder is w. The lattice constant is a. The energy gap
(not a usual quadratic mass gap) we wish to generate on the
mirror edge is �m, which causes a two-point correlator has an
exponential decay

〈ψ†(r)ψ (0)〉 ∼ 〈e−i
(r)ei
(0)〉 ∼ exp(−|r|/ξ ) (11)

with a correlation length scale ξ . The expected length scales
follow that

a < ξ � w � L. (12)

The 1D system size L is larger than the width w, the width w

is larger than the correlation length ξ , the correlation length ξ

is larger than the lattice constant a.

A. Free kinetic part and the edge states of a Chern insulator

1. Kinetic part mapping and RG analysis

The kinetic part of the lattice Hamiltonian contains
the nearest-neighbor hopping term

∑
〈i, j〉 (ti j,q f̂ †

q (i) f̂q( j)+
H.c.) together with the next-nearest-neighbor hopping term∑
〈〈i, j〉〉 (t ′i j,q f̂ †

q (i) f̂q( j)+ H.c.), which generate the leading
order field theory kinetic term via

ti j f̂ †
q (i) f̂q( j) ∼ a iψ†

q ∂xψq + · · · , (13)

here hopping constants ti j, t ′i j with a dimension of energy
[ti j] = [t ′i j] = 1, and a is the lattice spacing with a value

[a] = −1. Thus, [ f̂q( j)] = 0 and [ψq] = 1
2 . The map from

fq →
√

a ψq + · · · (14)

contains subleading terms. Subleading terms . . . potentially
contain higher derivative ∇n

x ψq are only subleading perturba-
tive effects

fq →
√

a
(
ψq + · · · + an αsmall∇n

x ψq + · · ·
)

with small coefficients of the polynomial of the small lat-
tice spacing a via αsmall = αsmall(a) � (a/L). It is common
in condensed-matter systems that the nonrelativistic fermion
f̂q at a UV Hamiltonian is dressed up to be a relativistic
fermionic spinor ψq at IR under RG flow, see Figs. 1 and 5.

We comment that only the leading term in the mapping is
important, the full account for the exact mapping from the
fermion operator fq to ψq is immaterial to our model, because
of two main reasons:

(i) Our lattice construction is based on several layers
of Chern insulators, and the chirality of each layer’s edge
states are protected by a topological number—the first Chern
number C1 ∈ Z. Such an integer Chern number cannot be
deformed by small perturbation, thus it is nonperturbative

FIG. 3. Chiral π -flux square lattice. (a) A unit cell is indicated
as the shaded darker region, containing two sublattice as a black dot
a and a white dot b. The lattice Hamiltonian has hopping constants,
t1eiπ/4 along the black arrow direction, t2 along dashed brown links,
−t2 along dotted brown links. (b) Put the lattice on a cylinder. (c) The
ladder: the lattice on a cylinder with a square lattice width. The
chirality of edge state is along the direction of blue arrows.

topologically robust, hence the chirality of edge states will be
protected and will not be eliminated by small perturbations.
The origin of our fermion chirality (breaking parity and time
reversal symmetries) is an emergent phenomena due to the
complex hopping amplitude of some hopping constant t ′i j or
ti j ∈ C. Beside, it is well known that Chern insulator can
produce the gapless fermion energy spectrum at low energy.
More details and the energy spectrum are explicitly presented
in Sec. III A 2.

(ii) The properly-designed interaction effect (from bound-
ary fully gapping rules) is a nonperturbative topological effect
(as we will show in Sec. IV C and Appendix E).

2. Numerical simulation for the free fermion theory with a
nontrivial Chern number C1

Following from Secs. II and III A 1, here we provide a con-
crete lattice realization for free fermions part of Eq. (8) (with
G1 = G2 = 0), and show that the Chern insulator provides the
desired gapless fermion energy spectrum (say, a left-moving
Weyl fermion on the edge A and a right-moving Weyl fermion
on the edge B, and totally a Dirac fermion for the combined).
We adopt the chiral π -flux square lattice model [49] in Fig. 3
as an example. This lattice model can be regarded as a free
theory of 3-5-4-0 fermions of Eq. (2) with its mirror conju-
gate. We will explicitly show filling the first Chern number
[47] C1 = −1 band of the lattice on a cylinder would give the
edge states of a free fermion with U(1) charge-3, similar four
copies of model together render 3-5-4-0 free fermions theory
of Eq. (8).

We design hopping constants ti j,3 = t1eiπ/4 along the
black arrow direction in Fig. 3, and its Hermitian conjugate
determines ti j,3 = t1e−iπ/4 along the opposite hopping direc-
tion; t ′i j,3 = t2 along dashed brown links, t ′i j,3 = −t2 along
dotted brown links. The shaded blue region in Fig. 3 indicates
a unit cell, containing two sublattice as a black dot a and a
white dot b. If we put the lattice model on a torus with periodic
boundary conditions for both x, y directions, then we can
write the Hamiltonian in k = (kx, ky) space in Brillouin zone
(BZ), as H =∑k f †

k H (k) fk, where fk = ( fa,k, fb,k ). For two
sublattice a and b, we have a generic pseudospin form of
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FIG. 4. Two nearly-flat energy bands E± in Brillouin zone for the
kinetic hopping terms of our model Eq. (8).

Hamiltonian H (k),

H (k) = B0(k)+ �B(k) · �σ , (15)

�σ are Pauli matrices (σx, σy, σz ). In this model B0(k) = 0 and
�B = (Bx(k), By(k), Bz(k)) have three components in terms of
k and lattice constants ax, ay. The eigenenergy E± of H (k)
provide two nearly-flat energy bands, shown in Fig. 4, from
H (k)|ψ±(k)〉 = E± |ψ±(k)〉.

For the later purpose to have the least mixing between edge
states on the left edge A and right edge B on a cylinder in
Fig. 3(b), here we fine tune t2/t1 = 1/2. For convenience,
we simply set t1 = 1 as the order magnitude of E±. We set
lattice constants ax = 1/2, ay = 1 such that BZ has −π �
kx < π,−π � ky < π . The first Chern number [47] of the

energy band |ψ±(k)〉 is

C1 = 1

2π

∫
k∈BZ

d2k εμν∂kμ
〈ψ (k)| − i∂kν

|ψ (k)〉. (16)

We find C1,± = ±1 for two bands. The C1,− = −1 lower
energy band indicates the clockwise chirality of edge states
when we put the lattice on a cylinder as in Fig. 3(b). Overall
it implies the chirality of the edge state on the left edge A
moving along −x̂ direction, and on the right edge B moving
along +x̂ direction—the clockwise chirality as in Fig. 3(b),
consistent with the earlier result C1,− = −1 of Chern number.
This edge chirality is demonstrated in Fig. 5. Details are
explained in its captions and in Appendix F 1.

The above construction is for free fermion edge states with
U(1) charge 3 of the 3L-5R-4L-0R fermion model. Add the
same copy with C1,− = −1 lower band gives another layer of
U(1) charge 4 free fermion. For another layers of U(1) charge
5 and 0, we simply adjust hopping constant ti j to t1e−iπ/4

along the black arrow direction and t1eiπ/4 along the oppo-
site direction in Fig. 3, which makes C1,− = +1. Stack four
copies of chiral π -flux ladders with C1,− = −1,+1,−1,+1
provides the lattice model of 3-5-4-0 free fermions with its
mirror conjugate.

The lattice model so far is an effective 1+ 1D nonchiral
theory. We claim the interaction terms (G1, G2 �= 0) can gap
out the mirror edge states on the edge B. The simulation
including interactions can be numerically expansive, even so
on a simple ladder model. Because of higher-power interac-
tions, one can no longer diagonalize the model in k space
as the case of the quadratic free-fermion Hamiltonian. For
interacting case, one may need to apply exact diagonalization
in real space, or density matrix renormalization group (DMRG
[72]), which is powerful in 1+ 1D. We must acknowledge
that the numerical simulation of the full interacting systems
is far beyond the scope of this present article. Reference [65]

(a) (b) (c)

FIG. 5. The energy spectrum E(kx ) and the density matrix 〈 f † f 〉 of the chiral π -flux model on a cylinder: (a) On a 10-sites width (9ay-
width) cylinder. The blue curves are edge states spectrum. The black curves are for states extending in the bulk. The chemical potential at
zero energy fills eigenstates in solid curves, and leaves eigenstates in dashed curves unfilled. (b) On the ladder, a two-sites width (1ay-width)
cylinder: the same as the (a)’s convention. (c) The density 〈 f † f 〉 of the edge eigenstates [the solid-blue curve in (b)] on the ladder lattice. The
dotted-blue curve shows the total density sums to 1, the darker-purple curve shows 〈 f †

A fA〉 on the left edge A, and the lighter-purple curve
shows 〈 f †

B fB〉 on the right edge B. The dotted-darker (or lighter) purple curve shows density 〈 f †
A,a fA,a〉 (or 〈 f †

B,a fB,a〉) on sublattice a, while the
dashed-darker (or lighter) purple curve shows density 〈 f †

A,b fA,b〉 (or 〈 f †
B,b fB,b〉) on sublattice b. This edge eigenstate has the left edge A density

with majority quantum number kx < 0, and has the right edge B density with majority quantum number kx > 0. Densities on two sublattice
a, b are equally distributed as we desire. Note that here we do not use the domain wall fermion approach, and we do not require a 1D domain
wall in an infinite large 2D lattice system. We cannot over-emphasize that our 1D spatial lattice model [effectively 1D ladder, or a 2D cylinder
with a finite width along y, here we focus on the quadratic free part of Hamiltonian in Eq. (8)] with a finite Hilbert space can already effectively
simulate the relativistic 1+ 1D Weyl fermion doubling theory at low energy.
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performs this demanding numerical task on our model, and
successfully achieves the lattice chiral fermion.

B. Interaction gapping terms and the intermediate/strong
coupling scale

Similar to Sec. III A 1, for the interaction gapping terms of
the Hamiltonian, we can do the mapping based on Eq. (14),
where the leading terms on the lattice is

ga cos(�a,I ·
I ) = Uinteraction
(
ψ̃q, . . . ,∇n

x ψ̃q, . . .
)

→ Upoint.split.
(

f̂q( j), . . .
(

f̂ n
q ( j)

)
pt .s.

, . . .
)

+αsmall . . . (17)

Again, potentially there may contain subleading pieces, such
as further higher-order derivatives αsmall∇n

x ψq with a small
coefficient αsmall, or tiny mixing of the different U(1)-charge
flavors α′smallψq1ψq2 . . .. However, using the same RG analysis
in Sec. III A 1, at both the weak-coupling and the strong-
coupling fixed points, we learn that those αsmall terms are only
subleading-perturbative effects, which are further irrelevant
perturbation at the infrared comparing to the dominant piece
(which is the kinetic term for the weak g coupling, but is
replaced by the cosine term for the strong g coupling).

One more question to ask is: what is the scale of
coupling G such that the gapping term becomes domi-
nant and the B edge states form the energy gaps, but
maintaining (without interfering with) the gapless A edge
states?

To answer this question, we first know the absolute value
of energy magnitude for each term in the desired Hamiltonian
for our chiral fermion model,

|G gapping term|
� |ti j, t ′i j kinetic term|
� ∣∣G higher order ∇n

x and mixing terms
∣∣

� ∣∣ti j, t ′i j higher order ψq . . .∇n
x ψq

∣∣. (18)

For field theory, the gapping terms (the cosine poten-
tial term or the multi-fermion interactions) are irrelevant for
a weak g coupling, this implies that g needs to be large
enough. Here the g≡ (ga)/a2 really means the dimensionless
quantity ga.

For lattice model, however, the dimensional analysis is
very different. Since the G coupling of gapping terms and
the hopping amplitude ti j both have the dimension of energy
[G] = [ti j] = 1, this means that the scale of the dimensionless
quantity of |G|/|ti j | is important. (The |ti j | and |t ′i j | are about
the same order of magnitude.)

Presumably we can design the lattice model under Eq. (12),
a < ξ < w < L, such that their ratios between each length
scale are about the same. We expect the ratio of couplings of
|G| to |ti j | is about the ratio of energy gap �m to kinetic energy
fluctuation δEk caused by ti j hopping, thus very roughly

|G|
|ti j | ∼

�m

δEk
∼ (ξ )−1

(w)−1
∼ w

ξ
∼ L

w
∼ ξ

a
. (19)

We expect that the scales at strong coupling G is about

|G| � |ti j | · ξ

a
(20)

this magnitude can support our lattice chiral fermion model
with mirror-fermion decoupling. If G is too much smaller than
|ti j | · ξ

a , then mirror sector stays gapless. On the other hand, if
|G|/|ti j | is too much stronger or simply |G|/|ti j | → ∞ may
cause either of two disastrous cases:

(i) Both edges would be gapped and the whole 2D plane
becomes dead without kinetic hopping.

(ii) The B edge (say at site nŷ) becomes completely gapped,
but forms a dead layer—an overly high-energy 1D line de-
coupled from the remain lattice. The neighbored line [along
(n− 1)ŷ] next to edge B experiences no interaction thus may
still form mirror gapless states near B. (This may be another
reason why CGP fails in Ref. [25] due to implementing over-
large strong coupling.)

So either the two cases caused by too much strong |G|/|ti j |
is not favorable. Only |G| � |ti j | · ξ

a , we can have the mirror
sector at edge B gapped, meanwhile keep the chiral sector at
edge A gapless. |G||ti j | is somehow larger than order 1 is what we
referred as the intermediate(-strong) coupling,

|G|
|ti j | � O(1). (21)

[Our O(1) means some finite values, possibly as large as
101, 102, etc, but still finite. And the kinetic term is not neg-
ligible.] The sign of G coupling shall not matter, since in the
cosine potential language, either g1, g2 greater or smaller than
zero are related by sifting the minimum energy vaccua of the
cosine potential.

To summarize, the two key messages in Sec. III are:
(i) First, the free-kinetic hopping part of lattice model

has been simulated and there gapless energy spectra have
been computed shown in figures. The energy spectra indeed
show the gapless Weyl fermions on each edge. So, the con-
tinuum field theory to a lattice model mapping is immaterial
to the subleading terms of Eq. (14), the physics is as good
or as exact as we expect for the free kinetic part. We com-
ment that this lattice realization of quantum Hall-like states
with chiral edges have been implemented for long in con-
densed matter, dated back as early such as Haldane’s study
[48].

(ii) Second, by adding the interaction gapping terms,
the spectra will be modified from the mirror gapless edge
to the mirror gapped edge. The continuum field theory to
a lattice model mapping based on Eq. (14) for the gap-
ping terms in Eq. (17) is as good or as exact as the free
kinetic part Eq. (13), because the mapping is the same pro-
cedure as in Eq. (14). Since the subleading correction for
the free and for the interacting parts are further irrelevant
perturbation at the infrared, the nonperturbative topological
effect of the gapped edge contributed from the leading terms
remains.

In the next section, we will provide a topological non-
perturbative proof to justify that the G1, G2 interaction
terms can gap out mirror edge states, without employ-
ing numerical methods, but purely based on an analytical
derivation.
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IV. TOPOLOGICAL NONPERTURBATIVE PROOF OF
ANOMALY MATCHING CONDITIONS = BOUNDARY

FULLY GAPPING RULES

As Secs. II and III prelude, we now show that Eq. (8)
indeed gaps out the mirror edge states on the edge B in Fig. 2.
This proof will support the evidence that Eq. (8) gives the
nonperturbative lattice definition of the 1+ 1D chiral fermion
theory of Eq. (2).

In Sec. IV A, we first provide a generic way to formu-
late our model, with an insulating bulk but with gapless
edge states. This can be done via the bulk-edge correspon-
dence, namely the Chern-Simons theory in the bulk and the
Wess-Zumino-Witten (WZW) model on the boundary. More
specifically, for our case with U(1) symmetry chiral mat-
ter theory, we only need a U(1)N rank-N Abelian K matrix
Chern-Simons theory [73] in the bulk and the multiplet chiral
boson theory on the boundary. We can further fermionize the
multiplet chiral boson theory to the multiplet chiral fermion
theory.

In Sec. IV B, we provide a physical understanding be-
tween the anomaly matching conditions and the effective Hall
conductance. This intuition will be helpful to understand the
relation between the anomaly matching conditions and bound-
ary fully gapping rules, to be discussed in Sec. IV C.

A. Bulk-edge correspondence—2 + 1D bulk Abelian SPTs by
Chern-Simons theory

With our 3L-5R-4L-0R chiral fermion model in mind, below
we will trace back to fill in the background how we obtain
this model from the understanding of symmetry-protected
topological states (SPTs). This understanding in the end leads
to a more general construction.

We first notice that the bosonized action of the free part of
chiral fermions in Eq. (4), can be regarded as the edge action
S∂ of a bulk U(1)N Abelian K matrix Chern-Simons theory
Sbulk (on a 2+ 1D manifold M with the 1+ 1D boundary
∂M) [73],

Sbulk = KIJ

4π

∫
M

aI ∧ daJ = KIJ

4π

∫
M

dt d2xεμνρaI
μ∂νaJ

ρ,

(22)

S∂ = 1

4π

∫
∂M

dt dx KIJ∂t
I∂x
J −VIJ∂x
I∂x
J .

(23)

Here aμ is an intrinsic dynamical 1-form gauge field from
a low energy viewpoint. Both indices I, J run from 1 to N .
Given a symmetric integer-valued KIJ matrix, it is known the
ground-state degeneracy (GSD, counting zero energy modes)
of this theory on the T 2 torus is [73]

GSD = | det K|.
VIJ is the symmetric “velocity” matrix, we can simply choose
VIJ = I, without losing generality of our argument. The U(1)N

gauge transformation is aI → aI + dλI and 
I → 
I + λI .
The bulk-edge correspondence is meant to have the gauge
noninvariances of the bulk-only and the edge-only cancel with
each other, so that the total gauge invariances is achieved from
the full bulk and edge as a whole.

We will consider only an even integer N ∈ 2Z+. The rea-
son is that only such even number of edge modes, we can
potentially gap out the edge states. (For odd integer N , such
a set of gapping interaction terms generically do not exist, so
the mirror edge states remain gapless.)

To formulate 3L-5R-4L-0R fermion model, as shown in
Eq. (4), we need a rank-4 K matrix (1 0

0 −1)⊕(1 0
0 −1). Gener-

ically, for a general U(1) chiral fermion model, we can use a
canonical fermionic matrix

K f
N×N =

(1 0
0 −1

)
⊕
(1 0

0 −1

)
⊕
(1 0

0 −1

)
⊕ . . . (24)

Such a matrix is special, because it describes a more-restricted
Abelian Chern-Simons theory with GSD = | det K f

N×N | = 1
on the T 2 torus. In the condensed matter language, the unique
GSD implies it has no long-range entanglement, and it has no
intrinsic topological order. Such a state may be wronged to be
regarded as only a trivial insulator, but actually this is recently
known to be potentially nontrivial as the symmetry-protected
topological states (SPTs) [74].

The bulk spin Chern-Simons theory with a K f
N×N matrix

of | det K| = 1 describes fermionic SPT states. A spin Chern-
Simons theory only exists on the spin manifold, which has
spin structure and can further define spinor bundles [75].
However, there is another simpler class of SPT states, the
bosonic SPT states, which is described by the canonical form
Kb±

N×N [45,76,77] with blocks of (0 1
1 0) and a set of all pos-

itive (or negative) coefficients E8 lattices KE8 [45,54,55,76],
namely,

Kb0
N×N =

(0 1
1 0

)
⊕
(0 1

1 0

)
⊕ . . . .

Kb±
N×N = Kb0 ⊕ (±KE8 )⊕ (±KE8 )⊕ . . . (25)

The KE8 matrix Chern-Simons theory describes the eigth-
multiplet chiral bosons moving in the same direction, thus
it cannot be gapped by adding multifield interaction among
themselves. We will neglect E8 chiral boson states but only
focus on Kb0

N×N , for the reason to consider only the gappable
states. The K matrix form of Eqs. (24) and (25) is called the
unimodular indefinite symmetric integral matrix.

After fermionizing the boundary action Eq. (23) with K f
N×N

matrix, we obtain multiplet chiral fermions (with several pairs,
each pair contains the left-right moving Weyl fermions form-
ing a Dirac fermion)

S� =
∫

∂M
dt dx (i�̄A�μ∂μ�A), (26)

with �0 =⊕N/2
j=1γ

0, �1 =⊕N/2
j=1γ

1, �5 ≡ �0�1, �̄i ≡ �i�
0

and γ 0 = σx, γ 1 = iσy, γ 5 ≡ γ 0γ 1 = −σz.
Symmetry transformation for the edge states. The edge

states of K f
N×N and Kb0

N×N Chern-Simons theory are nonchiral,
in the sense there are equal number of left and right moving
modes. However, we can make them with a charged “chi-
rality” respect to a global (or external probed, or dynamical
gauge) symmetry group. For the purpose to build up our “chi-
ral fermions and chiral bosons” model with “charge chirality,”
we consider the simplest possibility to couple it to a global
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U(1) symmetry with a charge vector t. (This is the same as
the symmetry charge vector of SPT states [54,56,77].)

Chiral Bosons. For the case of a multiplet chiral boson
theory of Eq. (23), the group element gθ of U(1) symmetry
acts on chiral fields as

gθ : W U(1)θ = IN×N , δφU(1)θ = θ t, (27)

with the following symmetry transformation:

φ →W U(1)θ φ + δφU(1)θ = φ + θ t. (28)

To derive this boundary symmetry transformation from the
bulk Chern-Simons theory via bulk-edge correspondence, we
first write down the charge coupling bulk Lagrangian term,
namely qI

2π
εμνρAμ∂νaI

ρ , where the global symmetry current

qI JIμ = qI

2π
εμνρ∂νaI

ρ is coupled to an external gauge field
Aμ. The bulk U(1)-symmetry current qI JIμ induces a bound-

ary U(1)-symmetry current qI jIμ = qI

2π
εμν∂νφI . This implies

the boundary symmetry operator is Ssym = exp(i θ qI

2π

∫
∂xφI ),

with an arbitrary U(1) angle θ . The induced symmetry trans-
formation on φI is

(Ssym )φI (Ssym )−1 = φI − iθ
∫

dx
ql

2π
[φI , ∂xφl ]

= φI + θ (K−1)Ilql ≡ φI + θ tI , (29)

here we have used the canonical commutation relation
[φI , ∂xφl ] = i2π (K−1)Il . Compare the two Eqs. (28) and (29),
we learn that

tI ≡ (K−1)Ilql .

The charge vectors tI and ql are related by an inverse of the
K matrix. The generic interacting or gapping terms [45,46,54]
for the multiplet chiral boson theory are the sine-Gordon or
the cosine term

S∂,gap =
∫

dt dx
∑

a

ga cos(�a,I ·
I ). (30)

If we insist that S∂,gap obeys U(1) symmetry, to make Eq. (30)
invariant under Eq. (29), we have to impose

�a,I ·
I → �a,I · (
I + δφU(1)θ )mod 2π

so �a,I · tI = 0 (31)

⇒ �a,I · (K−1)Il · ql = 0. (32)

The above generic U(1) symmetry transformation works
for bosonic Kb0

N×N as well as fermionic K f
N×N .

Chiral Fermions. In the case of fermionic K f
N×N , we will do

one more step to fermionize the multiplet chiral boson theory.
Fermionize the free kinetic part from Eqs. (23) to (26), as well
as the interacting cosine term,

ga cos(�a,I ·
I )

→ g̃a

(
N∏

I=1

(
(ψqI )(∇xψqI ) . . .

(∇|�a,I |−1
x ψqI

))ε + H.c.

)

≡ Uinteraction
(
ψq, . . . ,∇n

x ψq, . . .
)

(33)

to a multi-fermion interaction. The ε is defined as the complex
conjugation operator, which depends on sgn(�a,I ), the sign

(a) (b)

FIG. 6. Feynman diagrams with solid lines representing chiral
fermions and wavy lines representing U(1) gauge bosons. (a) 3+ 1D
chiral fermionic anomaly shows A =∑q(q3

L − q3
R ). (b) 1+ 1D chi-

ral fermionic anomaly shows A =∑q(q2
L − q2

R).

of �a,I . When sgn(�a,I ) = −1, we define ψε ≡ ψ† and also
for the higher power polynomial terms. Again, we absorb
the normalization factor and the Klein factors through normal
ordering of bosonization into the factor g̃a. The precise factor
is not of our concern, since our goal is a nonperturbative
lattice model. Obviously, the U(1) symmetry transformation
for fermions is

ψqI → ψqI e
itI θ = ψqI e

i(K−1 )Il ·ql .θ . (34)

In summary, we have shown a framework to describe U(1)
symmetry chiral fermion/boson model using the bulk-edge
correspondence, the explicit Chern-Simons/WZW actions are
given in Eqs. (22), (23), (26), (30), and (33), and their sym-
metry realization Eqs. (29) and (34) and constraints are given
in Eqs. (31) and (32). Their physical properties are tightly
associated with the fermionic/bosonic SPT states.

B. Anomaly matching conditions and effective Hall conductance

The bulk-edge correspondence is meant, not only to
achieve the gauge invariance by canceling the noninvariance
of bulk-only and boundary-only, but also to have the bound-
ary anomalous current flow can be transported into the extra
dimensional bulk. This is known as Callan-Harvey effect [78]
in high energy physics. It is also known as Laughlin thought
experiment [79], or simply the quantum-Hall-like state bulk-
edge correspondence in condensed matter theory.

The goal of this subsection is to provide a concrete phys-
ical understanding of the anomaly matching conditions and
effective Hall conductance.

The anomalous current inflowing from the boundary is
transported into the bulk. We now show that this thinking
can easily derive the 1+ 1D U(1) Adler-Bell-Jackiw (ABJ)
anomaly, or Schwinger’s 1+ 1D quantum electrodynamics
(QED) anomaly.

We will focus on the U(1) chiral anomaly, which is ABJ
anomaly [80,81] type. It is well known that ABJ anomaly can
be captured by the anomaly factor A of the 1-loop polygon
Feynman diagrams (see Fig. 6). The anomaly matching con-
dition requires

A = tr[T aT bT c . . . ] = 0. (35)

Here T a is the matrix representation of the Lie algebra gen-
erator of the global or gauge symmetry, which corresponds to
one of the vertices of 1-loop polygon Feynman diagrams.

For example, the 3+ 1D chiral anomaly one-loop triangle
diagram of U(1) symmetry in Fig. 6(a) with chiral fermions on
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y 
x 

Jb Jb

Jy

Quantum Hall or SPT State 

FIG. 7. A physical picture illustrates how the anomalous current
J of the boundary theory along x direction leaks to the extended
bulk system along y direction. Laughlin flux insertion d
B/dt =
− ∮ E · dL induces the electric Ex field along the x direction. The
effective Hall effect shows Jy = σxyEx = σxyε

μν ∂μAν , with the ef-
fective Hall conductance σxy probed by an external U(1) gauge field
A. The anomaly-free condition implies no anomalous bulk current,
so Jy = 0 for any flux 
B or any Ex , thus we derive the anomaly-free
condition must be σxy = 0.

the loop gives A =∑(q3
L − q3

R). Similarly, the 1+ 1D chiral
anomaly one-loop diagram of U(1) symmetry in Fig. 6(b) with
chiral fermions on the loop gives A =∑(q2

L − q2
R). Here L

and R stand for the left-moving and right-moving modes.
How to derive this anomaly matching condition from a

condensed matter theory viewpoint? Conceptually, we un-
derstand that “A d-dimensional anomaly free theory (which
satisfies the anomaly matching condition) means that there is
no anomalous current leaking from its d-dimensional space-
time (as the boundary) to an extended bulk theory of d +
1-dimension.”

More precisely, for a 1+ 1D U(1) anomalous theory re-
alization of the above statement, we can formulate it as
the boundary of a 2+ 1D bulk as in Fig. 7 with a Chern-
Simons action [S = ∫ ( K

4π
a ∧ da+ q

2π
A ∧ da)]. Here the

field strength F = dA is equivalent to the external U(1)
flux in the Laughlin’s flux-insertion thought experiment [79]
threading through the cylinder (see a precise derivation in
Appendix of Ref. [42]). Without losing generality, let us first
focus on the boundary action of Eq. (23) as a chiral boson
theory with only one edge mode. We derive its equations of
motion as

∂μ jμb =
σxy

2
εμν Fμν = σxy εμν ∂μAν = Jy, (36)

∂μ jL = ∂μ

(
q

2π
εμν∂ν


)
= ∂μ(qψ̄γ μPLψ ) = +Jy, (37)

∂μ jR = −∂μ

(
q

2π
εμν∂ν


)
= ∂μ(qψ̄γ μPRψ ) = −Jy.

(38)

Here we derive the Hall conductance, easily obtained from its
definitive relation Jy = σxyEx in Eq. (36), as [60]

σxy = qK−1q/(2π ).

Here jb stands for the edge current, with a left-moving cur-
rent jL = jb on one edge and a right-moving current jR = − jb
on the other edge, as in Fig. 7. We convert a compact bosonic
phase 
 to the fermion field ψ by bosonization. We can
combine currents jL + jR as the vector current jV, then find

its U(1)V current conserved. We combine currents jL − jR as
the axial current jA, then we obtain the famous ABJ U(1)A

anomalous current in 1+ 1D (or Schwinger 1+ 1D QED
anomaly),

∂μ jμV = ∂μ

(
jμL + jμR

) = 0, (39)

∂μ jμA = ∂μ

(
jμL − jμR

) = σxyε
μν Fμν. (40)

This simple physical derivation shows that the left and right
edges’ boundary theories [living on the edge of a 2+ 1D U(1)
Chern-Simons theory] can combine to be a 1+ 1D anomalous
world of Schwinger’s 1+ 1D QED.

In other words, when the anomaly-matching condition
holds (A = 0), then there is no anomalous leaking current into
the extended bulk theory [78], as in Fig. 7, so no “effective
Hall conductance” for this anomaly-free theory [82].

It is straightforward to generalize the above discussion to
a rank-N K matrix Chern-Simons theory. It is easy to show
that the Hall conductance in a 2+ 1D system for a generic K
matrix is (via ql = KIl tI )

σxy = 1

2π
q · K−1 · q = 1

2π
t · K · t. (41)

For a 2+ 1D fermionic system for K f matrix of Eq. (24),

σxy = q2

2π
t
(
K f

N×N

)
t = 1

2π

∑
q

(
q2

L − q2
R

) = 1

2π
A. (42)

Remarkably, this physical picture demonstrates that we can
reverse the logic, starting from the “effective Hall conduc-
tance of the bulk system” to derive the anomaly factor from
the relation

A (anomaly factor) = 2πσxy (effective Hall conductance).
(43)

And from the “no anomalous current in the bulk” means that
“σxy = 0”, we can further understand “the anomaly matching
condition A = 2πσxy = 0.”

For the U(1) symmetry case, we can explicitly derive the
anomaly matching condition for fermions and bosons.

Anomaly matching conditions for 1+ 1D chiral fermions
with U(1) symmetry

A = 2πσxy = q2t
(
K f

N×N

)
t =

N/2∑
j=1

(
q2

L, j − q2
R, j

) = 0. (44)

Anomaly matching conditions for 1+ 1D chiral bosons
with U(1) symmetry

A = 2πσxy = q2t
(
Kb0

N×N

)
t =

N/2∑
j=1

2qL, jqR, j = 0. (45)

Here qt ≡ (qL,1, qR,1, qL,2, qR,2, . . . , qL,N/2, qR2,N/2). (For a
bosonic theory, we note that the bosonic charge for this the-
ory is described by nonchiral Luttinger liquids. One should
identify the left- and right-moving charge as q′L ∝ qL + qR and
q′R ∝ qL − qR.)
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FIG. 8. The braiding statistical angle θab of two quasiparticles la-
beled by �a, �b, obtained from the phase gain eiθab in the wavefunction
by winding �a around �b. Here the effective 2+ 1D Chern-Simons
action with the internal one-form gauge field aI is

∫
( 1

4π
KIJ aI ∧

daJ + a ∧ ∗ j(�a)+ a ∧ ∗ j(�b)). One can integrate out a field to
obtain the Hopf term, which coefficient as a self-statistical angle �a is
θaa/2 ≡ π�a,I K

−1
IJ �a,J and the mutual-statistical angle between �a, �b

is θab ≡ 2π�a,I K
−1
IJ �b,J [60].

C. Anomaly matching conditions and boundary
fully gapping rules

This subsection is the main emphasis of our paper, and we
encourage the readers paying extra attentions on the result pre-
sented here. We will first present a heuristic physical argument
on the rules that under what situations the boundary states can
be gapped, named as the boundary fully gapping rules. We
will then provide a topological nonperturbative proof using
the notion of Lagrangian subgroup and the exact sequence,
following our previous paper Ref. [45] and the work in Refs.
[46,50].

1. Physical picture

Here is the physical intuition: To define a topological
gapped boundary conditions, it means that the energy spec-
trum of the edge states are gapped. We require the gapped
boundary to be stable against quantum fluctuations in or-
der to prevent it from flowing back to the gapless states.
Such a gapped boundary must take a stable classical values
at the partition function of edge states. From the bosoniza-
tion techniques, we can map the multi-fermion interactions
to the cosine potential term ga cos(�a ·
). From the bulk-
edge correspondence, we learn to regard the 1+ 1D chiral
fermion/boson theory as the edge states of a K matrix Chern-
Simons theory, and further learn that the �a vector indeed
corresponds to a Wilson line operator exp(i

∫
�a,I aI ) of anyons

[integer anyons (fermions or bosons) for det(K ) = 1 matrix
(e.g., SPT states), fractional anyons for det(K ) > 1 (e.g.,
topological orders).] However, the nontrivial braiding statis-
tics of anyons of �a vectors will cause quantum fluctuations to
the partition function (or the path integral)

Zstatistics ∼ exp[iθab] = exp
[
i 2π �a,I K

−1
IJ �b,J

]
. (46)

Here the Abelian braiding statistics angle can be derived from
the effective action between anyon vectors �a, �b by integrat-
ing out the internal gauge field a of the Chern-Simons action∫

( 1
4π

KIJaI ∧ daJ + a ∧ ∗ j(�a)+ a ∧ ∗ j(�b)). (See Fig. 8.)
In order to define a classically-stable topological gapped
boundary, we need to stabilize the unwanted quantum fluc-
tuations. We are forced to choose the trivial statistics for the

Wilson lines from the set of interaction terms ga cos(�a ·
).
This requires the trivial statistics rule

Rule (1) �a,I K
−1
IJ �b,J = 0, (47)

known as the Haldane null condition [43].
What else rules do we require? For a total N edge

modes, NL = NR = N/2 number of left/right moving free
Weyl fermion modes, we need to have at least N/2 interaction
terms to open the energy gap. This can be intuitively under-
stood as a pair of modes can be gapped together if it is a pair
of one left-moving to one right-moving mode. It turns out that
if we include more linear-independent interactions of �a than
N/2 terms, such �a cannot be compatible with the previous set
of N/2 terms for a compatible trivial mutual or self statistics
θab = 0. So we arrive the Rule (2), “no more or no less than
the exact N/2 interaction terms.” And implicitly, we must have
the Rule (3), “NL = NR = N/2 number of left/right moving
modes.”

So from this physical picture, we have the following rules
in order to gap out the edge states of Abelian K-matrix Chern-
Simons theory:

Boundary Fully Gapping Rules [43,45,46,52,54,56].
There exists a Lagrangian subgroup [44,46,52] �∂ ≡
{∑a ca�a,I |ca ∈ Z, �a,I ∈ Z} (or named as the boundary
gapping lattice [45] in the KN×N Abelian Chern-Simons
theory), such that giving a set of interaction terms as the
cosine potential terms ga cos(�a ·
):
(1) ∀�a, �b ∈ �∂ , the self and mutual statistical angles θab are
zeros among quasiparticles. Namely,

θab ≡ 2π�a,I K
−1
IJ �b,J = 0. (48)

(For a = b, the self-statistical angle θaa/2 = 0 is called the
self-null condition. And for a �= b, the mutual-statistical angle
θab = 0 is called the mutual-null conditions [43].)
(2) The dimension of the lattice �∂ is N/2, where N must be
an even integer. This means the Chern-Simons lattice �∂ is
spanned by N/2 linear independent vectors of �a.
(3) The signature of K matrix (the number of left moving
modes − the number of left moving modes) is zero. Namely
NL = NR = N/2.
(4) �a ∈ �e, where �e is composed by column vectors of K
matrix, namely �e = {

∑
J cJKIJ | cJ ∈ Z}. �e is names as the

nonfractionalized Chern-Simons lattice [45,73,83].

The Rule (4) is an extra rule, which is not of our main
concern here. This extra rule is for the ground state degeneracy
(GSD) matching between the bulk GSD and the boundary
GSD while applying the cutting-glueing (or sewing) relations,
studied in Ref. [45]. (Note that the bulk GSD is the topo-
logical ground state degeneracy for a bulk closed manifold
without boundary, the boundary GSD is the topological GSD
for a compact manifold with gapped boundaries.) Since we
have the unimodular indefinite symmetric integral K matrix
of Eqs. (24) and (25), so Rule (4) is always true, for our chiral
fermion/boson models.
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2. Topological nonperturbative proof

The above physical picture is suggestive, but not yet rig-
orous enough mathematically. Here we will formulate some
topological nonperturbative proofs for boundary fully gapping
rules, and its equivalence to the anomaly-matching conditions
for the case of U(1) symmetry. The first approach is using the
topological quantum field theory (TQFT) along the logic of
Ref. [44]. The new ingredient for us is to find the equivalence
of the gapped boundary to the anomaly-matching conditions.
We intentionally save the details in Appendix E, especially in
E 5.

For a field theory, the boundary condition is defined by
a Lagrangian submanifold in the space of Cauchy boundary
condition data on the boundary. For a topological gapped
boundary condition of a TQFT with a gauge group, we must
choose a Lagrangian subspace in the Lie algebra of the gauge
group. A subspace is Lagrangian if and only if it is both
isotropic and coisotropic.

Specifically, for W be a linear subspace of a finite-
dimensional vector space V. Define the symplectic comple-
ment of W to be the subspace W⊥ as

W⊥ = {v ∈ V | ω(v,w) = 0, ∀w ∈ W}. (49)

Here ω is the symplectic form, in the matrix form ω =
( 0 1
−1 0) with 0 and 1 are the block matrix of the zero and the

identity. The symplectic complement W⊥ satisfies (W⊥)⊥ =
W, dim W+ dim W⊥ = dim V. We have:

W is Lagrangian if and only if it is both isotropic and
coisotropic, namely, if and only if W = W⊥. In a finite-
dimensional V, a Lagrangian subspace W is an isotropic one
whose dimension is half that of V.

Now let us focus on the K-matrix U(1)N Chern-Simons
theory, the symplectic form ω is given by (with the restricted
a‖,I on ∂M)

ω = KIJ

4π

∫
M

(δa‖,I ) ∧ d (δa‖,J ). (50)

The bulk gauge group U(1)N ∼= T� as the torus, is the quotient
space of N-dimensional vector space V by a subgroup � ∼=
ZN . Locally the gauge field a is a 1-form, which has values
in the Lie algebra of T�, we can denote this Lie algebra t� as
the vector space t� = �⊗R.

Importantly, for topological gapped boundary, a‖,I lies in
a Lagrangian subspace of t� implies that the boundary gauge
group (≡ T�0 ) is a Lagrangian subgroup. We can rephrase it
in terms of the exact sequence for the vector space of Abelian
group � ∼= ZN and its subgroup �0,

0 → �0
h→ �→ �/�0 → 0. (51)

Here 0 means the trivial zero-dimensional vector space and h
is an injective map from �0 to �. A self-consistent boundary
condition must define a Lagrangian submanifold with respect
to this symplectic form ω.

The generic Lagrangian subgroup condition applies to K-
matrix with the above symplectic form Eq. (50) renders three
conditions on W:

(i) The subspace W is isotropic with respect to the symmetric
bilinear form K .

(ii) The subspace dimension is a half of the dimension of t�.
(iii) The signature of K is zero. This means that K has the
same number of positive and negative eigenvalues.

Now we can examine the if and only if conditions
(i), (ii), (iii) listed above.

For (i) “The subspace is isotropic with respect to the sym-
metric bilinear form K” to be true, we have an extra condition
on the injective h matrix (h with N × (N/2) components) for
the K matrix,

hT Kh = 0 . (52)

Since K is invertible (det(K ) �= 0), by defining a N × (N/2)-
component L ≡ Kh, we have an equivalent condition

LT K−1L = 0 . (53)

For (ii), “the subspace dimension is a half of the dimension
of t�” is true if �0 is a rank-N/2 integer matrix.

For (iii), “the signature of K is zero” is true, because our
Kb0 and fermionic Kf matrices implies that we have same
number of left moving modes (N/2) and right moving modes
(N/2), with N ∈ 2Z+ an even number.

Lo and behold, these above conditions (i), (ii), (iii) are
equivalent to the boundary fully gapping rules listed earlier.
We can interpret (i) as trivial statistics by either writing in

the column vector of h matrix (h ≡ (η1, η2, . . . , ηN/2) with
N × (N/2)-components),

ηa,I ′KI ′J ′ηb,J ′ = 0 , (54)

or writing in the column vector of L matrix (L ≡
(�1, �2, . . . , �N/2) with N × (N/2)-components),

�a,I K
−1
IJ �b,J = 0 , (55)

for any �a, �b ∈ �∂ ≡ {∑α cα�α,I |cα, �α,I ∈ Z} of boundary
gapping lattice (Lagrangian subgroup). Namely,

The boundary gapping lattice �∂ is basically the N/2-
dimensional integer-valued vector space of a Chern-Simons
lattice spanned by the N/2-independent integer-valued col-

umn vectors of L matrix, L ≡ (�1, �2, . . . , �N/2).

Moreover, we can go a step further to relate the above rules
equivalent to the anomaly-matching conditions. By adding
the corresponding cosine potential ga cos(�a ·
) to the edge
states of U(1)N Chern-Simons theory, we break the symmetry
down to

U(1)N → U(1)N/2.

What are the remained U(1)N/2 symmetry? By Eq. (31), this
remained U(1)N/2 symmetry is generated by a number of N/2
of tb,I vectors satisfying �a,I · tb,I = 0. We can easily construct

tb,I ≡ K−1
IJ �b,J , t ≡ K−1L (56)

with N/2 number of them [or define t as the linear-
combination of tb,I ≡

∑
I ′ cII ′ (K−1

I ′J �b,J )]. It turns out that
U(1)N/2 symmetry is exactly generated by tb,I with b =
1, . . . , N/2, and these remained unbroken symmetry with N/2
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of U(1) generators are anomaly-free and mixed anomaly-free,
due to

ta,I ′KI ′J ′tb,J ′ = �a,I ′K
−1
I ′J ′�b,J ′ = 0 . (57)

Indeed, ta must be anomaly free, because that by defining an

N × N/2 matrix t ≡ (t1, t2, . . . , tN/2) = (η1, η2, . . . , ηN/2) of
Eq. (52), we must have

tT Kt = 0 , where t = h. (58)

This is exactly the anomaly factor and the effective Hall con-
ductance discussed in Sec. IV B.

In summary of the above, we have provided a topological
nonperturbative proof that the boundary fully gapping rules
(following Ref. [44]), and its extension to the equivalence re-
lation to the anomaly-matching conditions. We emphasize that
boundary fully gapping rules provide a topological statement
on the gapped boundary conditions, which is nonperturbative,
while the anomaly-matching conditions are also nonperturba-
tive in the sense that the conditions hold at any energy scale,
from low-energy IR to high-energy UV. Thus, the equivalence
between the twos is remarkable, especially that both are non-
perturbative statements (namely the proof we provide is as
exact as integer number values without allowing any small
perturbative expansion). Our proof apply to a bulk U(1)N K
matrix Chern-Simons theory (describing bulk Abelian topo-
logical orders or Abelian SPT states) with boundary multiplet
chiral boson/fermion theories. More discussions can be found
in Appendices C–E.

3. Perturbative arguments

Apart from the nonperturbative proof using TQFT, we
can use other well-known techniques to show the boundary
is gapped when the boundary fully gapping rules are satis-
fied. Using the techniques systematically studied in Ref. [51]
and detailed in Appendix E 4, it is convenient to map the
KN×N -matrix multiplet chiral boson theory to N/2 copies of
nonchiral Luttinger liquids, each copy with an action∫

dt dx

(
1

4π
((∂t φ̄a∂x θ̄a + ∂xφ̄a∂t θ̄a)−VIJ∂x
I∂x
J )

+g cos(β θ̄a)

)
(59)

at large coupling g at the low-energy ground
state. Notice that the mapping sends 
→ 
′′ =
(φ̄1, φ̄2, . . . , φ̄N/2, θ̄1, θ̄2, . . . , θ̄N/2) in a new basis, such
that the cosine potential only takes one field θ̄a decoupled
from the full multiplet. However, this mapping has been
shown to be possible if LT K−1L = 0 is satisfied.

When the mapping is done (in Appendix E 4), we can
simply study a single copy of nonchiral Luttinger liquids,
and which, by changing of variables, is indeed equivalent to
the action of Klein-Gordon fields with a sine-Gordon cosine
potential studied by S. Coleman [84]. There are various ways
to show the existence of energy gap of this sine-Gordon
action. For example, there is a duality between the quan-
tum sine-Gordon action of bosons and the massive Thirring
model of fermions in 1+ 1D. In the sense, it is an integrable
model, and the Zamolodchikov formula is known [106,107]

and Bethe ansatz can be applicable. The energy gap is known
unambiguously at the large g.

In short, from the mapping to decoupled N/2-copies of
nonchiral Luttinger liquids with gapped spectra together with
the anomaly-matching conditions proved in Appendices C and
D, we obtain the relations:

the U(1)N/2 anomaly-free theory
(qT · K−1 · q = tT · K · t = 0) with gapping terms

LT K−1L = 0 satisfied;
�

the K matrix multiplet-chirla boson theories with
gapping terms LT K−1L = 0 satisfied;

↓
N/2-decoupled-copies of nonchiral Luttinger liquid

actions with gapped energy spectra.

We can also answer other questions using perturbative
analysis: (Please see Appendix E 2 for the details of calcu-
lation.)

(Q1) How can we see explicitly the formation of energy
gap necessarily requiring trivial braiding statistics among Wil-
son line operators (the �a vectors)?

(A1) To evaluate the mass gap, we need to know the energy
gap of the lowest energy state, namely the zero mode. The
mode expansion of chiral boson 
 field on a compact circular
S1 boundary of size 0 � x < L is


I (x) = φ0I + K−1
IJ PφJ

2π

L
x + i

∑
n �=0

1

n
αI,ne−inx 2π

L , (60)

where zero modes φ0I and winding modes PφJ satisfy the
commutator [φ0I , PφJ ] = iδIJ ; and the Fourier modes satisfy
generalized Kac-Moody algebra, [αI,n, αJ,m] = nK−1

IJ δn,−m. A
perturbative way to figure the zero mode’s mass is to learn
when the zero mode φ0I can be pinned down at the minimum
of cosine potential, with only quadratic fluctuations. In that
case, we can evaluate the mass by solving the simple harmonic
oscillator problem. This requires the following approximation
to hold:

ga

∫ L

0
dx cos(�a,I ·
I )

→ ga

∫ L

0
dx cos

(
�a,I ·

(
φ0I + K−1

IJ PφJ

2π

L
x

))
→ gaL cos(�a,I · φ0I )δ(�a,I ·K−1

IJ PφJ ,0). (61)

In the second line, one neglects the higher energetic Fourier
modes; while to have the third line to be true, it demands
a commutator, [�a,Iφ0I , �a,I ′K

−1
I ′J PφJ ] = 0. Remarkably, this

demands the null-condition �a,JK−1
I ′J �a,I ′ = 0, and the Kro-

necker delta function restricts the Hilbert space of winding
modes PφJ residing on the boundary gapping lattice �∂ due to
�a,I · K−1

IJ PφJ = 0. Thus, we see that, even at the perturbative
level, the formation of energy gap requires trivial braiding
statistics among the �a vectors of interaction terms.

(Q2) What is the scale of the mass gap?
(A2) At the perturbative level, we compute from a quan-

tum simple harmonic oscillator solution and find the mass gap
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�m above the zero mode,

�m �
√

2π ga�a,l1�a,l2VIJK−1
Il1 K−1

Jl2 .

(Q3) What happens to the mass gap if we include more
(incompatible) interaction terms or less interaction terms with
respect to the set of interactions dictated by boundary fully
gapping rules (adding �′ /∈ �∂ , namely �′ is not a linear com-
bination of column vectors of L)?

(A3) Let us check the stability of the mass gap against
any incompatible interaction term �′ (which has nontrivial
braiding statistics respect to at least one of �a ∈ �∂ ), by adding
an extra interaction g′ cos(�′I ·
I ) to the original set of in-
teractions

∑
a ga cos(�a,I ·
I ). We find that as �a,I K

−1
IJ �′J �=

0 for the newly added �′, then the energy spectra for zero
modes as well as the higher Fourier modes have the unstable
form

En =
⎛
⎝
√√√√�2

m + #

(
2πn

L

)2

+
∑

a

#ga g′
(

L

n

)2

· · · + · · · + . . .

⎞
⎠. (62)

Here # are denoted as some numerical factors. Comparing to
the case for g′ = 0 (without �′ term), the energy changes from

the stable form En = (
√

�2
m + #( 2πn

L )2 + · · · ) to the unsta-
ble form Eq. (62) at long-wave length low-energy (L →∞),
due to the disastrous term ga g′( L

n )2. The energy has an infi-
nite jump, either from n = 0 (zero mode) to n �= 0 (Fourier
modes), or at L →∞.

With any incompatible interaction term of �′, the pre-
formed mass gap shows an instability. This indicates the
perturbative analysis may not hold, and the zero modes cannot
be pinned down at the minimum. The consideration of instan-
ton tunneling and talking between different minimum may be
important when �a,I K

−1
IJ �′J �= 0. In this case, we expect the

massive gapped phase is not stable, and the phase could be
gapless. Importantly, this can be one of the reasons why the
numerical attempts of Chen-Giedt-Poppitz model finds gap-
less phases instead of gapped phases. The immediate reason is
that their Higgs terms induce many extra interaction terms, not
compatible with the terms dictated by boundary fully gapping
rules. As we checked explicitly, many of their induced terms
break the U(1)2nd symmetry 0-4-5-3, which is not compatible
to the set inside �∂ or L matrix. See further discussions in Sec.
VI B.

4. Preserved U(1)N/2 symmetry and a unique ground state

We would like to discuss the symmetry of the system
further. As we mention in Sec. IV C 2, the symmetry is broken
down from U(1)N → U(1)N/2 by adding N/2 gapping terms
with N = 4. In the case of gapping terms �1 = (1, 1,−2, 2)
and �2 = (2,−2, 1, 1), we can find the unbroken symmetry
by Eq. (56), where the symmetry charge vectors are t1 =
(1,−1,−2,−2) and t2 = (2, 2, 1,−1). The symmetry vector
can have another familiar linear combination t1 = (3, 5, 4, 0)
and t2 = (0, 4, 5, 3), which indeed matches to our original
U(1)1st 3-5-4-0 and U(1)2nd 0-4-5-3 symmetries. Similarly,
the two gapping terms can have another linear combina-
tions, �1 = (3,−5, 4, 0) and �2 = (0, 4,−5, 3). We can freely
choose any linear-independent combination set of the follow-
ing:

L =

⎛
⎜⎜⎝

3 0
−5 4
4 −5
0 3

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1 2
1 −2
−2 1
2 1

⎞
⎟⎟⎠, . . .

⇐⇒ t =

⎛
⎜⎜⎝

3 0
5 4
4 5
0 3

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1 2
−1 2
−2 1
−2 −1

⎞
⎟⎟⎠, . . . . (63)

and we emphasize the vector space spanned by the column
vectors of L and t (the complement space of L’s) will be the
entire four-dimensional vector space Z4. In Appendix F 2 b,
we will provide the lattice construction for the alternative L,
see Eq. (F11).

Now we like to answer:
(Q4) Whether the U(1)N/2 symmetry stays unbroken when

the mirror sector becomes gapped by the strong interactions?
(A4) The answer is Yes. We can check: There are two

possibilities that U(1)N/2 symmetry is broken. One is that it
is explicitly broken by the interaction term. This is not true.
The second possibility is that the ground state (of our chiral
fermions with the gapped mirror sector) spontaneously or
explicitly break the U(1)N/2 symmetry. This possibility can be
checked by calculating its ground-state degeneracy (GSD) on
the cylinder with gapped boundary. Using the method devel-
oping in our previous work Ref. [45], also in Refs. [50,51,57],
we find GSD=1, there is only a unique ground state. Because
there is only one lowest energy state, it cannot spontaneously
or explicitly break the remained symmetry. The GSD is 1 as
long as the �a vectors are chosen to be the minimal vector,
namely the greatest common divisor(gcd) among each com-

ponent of any �a is 1, | gcd(�a,1, �a,2, . . . , �a,N/2)| = 1, such
that

�a ≡ (�a,1, �a,2, . . . , �a,N/2)

| gcd(�a,1, �a,2, . . . , �a,N/2)| .

In addition, thanks to Coleman-Mermin-Wagner theorem,
there is no spontaneous symmetry breaking for any continuous
symmetry in 1+ 1D, due to no Goldstone modes in 1+ 1D, we
can safely conclude that U(1)N/2 symmetry stays unbroken.

To summarize the whole Sec. IV, we provide both nonper-
turbative and perturbative analysis on boundary fully gapping
rules. This applies to a generic K-matrix U(1)N Abelian
Chern-Simons theory with a boundary multiplet chiral bo-
son theory. (This generic K matrix theory describes general
Abelian topological orders including all Abelian SPT states.)
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In addition, in the case when K is unimodular indefinite
symmetric integral matrix, for both fermions K = K f and
bosons K = Kb0, we have further proved:

Theorem 1. The boundary fully gapping rules of 1+ 1D
boundary/2+ 1D bulk with unbroken U(1)N/2 symmetry pre-
serving ↔ ABJ’s U(1)N/2 anomaly matching conditions in
1+ 1D preserving.

Similar to our nonperturbative algebraic result on topolog-
ical gapped boundaries, the ’t Hooft anomaly matching here
is a nonperturbative statement, being exact from IR to UV,
insensitive to the energy scale.

V. GENERAL CONSTRUCTION OF NONPERTURBATIVE
ANOMALY-FREE CHIRAL MATTER MODEL FROM SPTS

As we already had an explicit example of 3L-5R-4L-0R

chiral fermion model introduced in Secs. II and III A 2, and we
had paved the way building up tools and notions in Sec. IV,
now we are finally here to present our general model construc-
tion. Our construction of nonperturbative anomaly-free chiral
fermions and bosons model with on-site U(1) symmetry is the
following:

Step 1: We start with a K matrix Chern-Simons theory
as in Eqs. (22) and (23) for unimodular indefinite symmetric
integral K matrices, both fermions K = K f of Eq. (24) and
bosons K = Kb0 of Eq. (25) (describing generic Abelian SPT
states with GSD on torus is | det(K )| = 1.)

Step 2: We assign charge vectors ta of U(1) symmetry
as in Eq. (27), which satisfies the anomaly matching con-
dition Eq. (44) for fermionic model, or satisfies Eq. (45)
for bosonic model. We can assign up to N/2 charge vector

t ≡ (t1, t2, . . . , tN/2) with a total U(1)N/2 symmetry with the
matching A = tT Kt = 0 such that the model is anomaly and
mixed-anomaly free.

Step 3: In order to be a chiral theory, it needs to violate the
parity symmetry. In our model construction, assigning qL, j �=
qR, j generally fulfills our aims by breaking both parity and
time reversal symmetry. (See Appendix A for details.)

Step 4: By the equivalence of the anomaly matching condi-
tion and boundary fully gapping rules (proved in Sec. IV C 2
and Appendices C and D), our anomaly-free theory guar-
antees that a proper choice of gapping terms of Eq. (30)
can fully gap out the edge states. For NL = NR = N/2
left/right Weyl fermions, there are N/2 gapping terms [L ≡
(�1, �2, . . . , �N/2)], and the U(1) symmetry can be extended to
U(1)N/2 symmetry by finding the corresponding N/2 charge
vectors [t ≡ (t1, t2, . . . , tN/2)]. The topological nonpertur-
bative proof found in Sec. IV C 2 guarantees the duality
relation

LT · K−1 · L = 0
t=K−1L←→
L=K t

tT · K · t = 0 . (64)

Given K as a N × N-component matrix of K f or Kb0, we have
L and t are both N × (N/2)-component matrices.

So our strategy is that constructing the bulk SPTs on
a 2D spatial lattice with two edges (for example, a cylin-
der in Figs. 2 and 7). The low energy edge property of
the 2D lattice model has the same continuum field the-

ory [66] as we had in Eq. (23), and selectively only
fully gapping out states on one mirror edge with a large
energy gap by adding symmetry-allowed gapping terms
Eq. (30), while leaving the other side gapless edge states
untouched [30].

In summary, we start with a chiral edge theory of SPT
states with cos(�I ·
B

I ) gapping terms on the edge B, which
action is

S
 = 1

4π

∫
dtdx

(
KA

IJ∂t

A
I ∂x


A
J −VIJ∂x


A
I ∂x


A
J

)
+ 1

4π

∫
dtdx

(
KB

IJ∂t

B
I ∂x


B
J −VIJ∂x


B
I ∂x


B
J

)
+
∫

dtdx
∑

a

ga cos(�a,I ·
B
I ). (65)

We fermionize the action to

S� =
∫

dt dx
(
i�̄A�μ∂μ�A + i�̄B�μ∂μ�B

+Uinteraction
(
ψ̃q, . . . ,∇n

x ψ̃q, . . .
))

, (66)

with �0, �1, �5 follow the notations of Eq. (26).
The gapping terms on the field theory side need to be

irrelevant operators or marginally irrelevant operators with ap-
propriate strength [to be order 1 intermediate-strength for the
dimensionless lattice coupling |G|/|ti j | � O(1)], so it can gap
the mirror sector, but it is weak enough to keep the original
light sector gapless.

Use several copies of Chern bands to simulate the free ki-
netic part of Weyl fermions, and convert the higher-derivative
fermion interactions Uinteraction to the point-splitting Upoint.split.

term on the lattice, we propose its corresponding lattice
Hamiltonian

H =
∑

q

(∑
〈i, j〉

(
ti j,q f̂ †

q (i) f̂q( j)+ H.c.
)

+
∑
〈〈i, j〉〉

(t ′i j,q f̂ †
q (i) f̂q( j)+ H.c.)

)

+
∑
j∈B

Upoint.split.
(

f̂q( j), . . .
(

f̂ n
q ( j)

)
pt .s., . . .

)
. (67)

The key to avoid Nielsen-Ninomiya challenge [6–8] is that our
model has the properly-designed interactions.

We have obtained a 1+ 1D nonperturbative lattice Hamilto-
nian construction (and realization) of anomaly-free massless
chiral fermions (and chiral bosons) on one gapless edge. Since
the extra-dimensional trivially gapped bulk (that separates two
1+1D edges) has a finite width, the whole system can be
effectively regarded as a 1+1D system.

For readers with interests, In Appendix F 2, we will
demonstrate a step-by-step construction on several lattice
Hamiltonian models of chiral fermions and chiral bosons,
based on our general prescription above. In short, our ap-
proach is generic for constructing many anomaly-free lattice
chiral matter models in 1+1D.
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VI. CONCLUSION: COMPARE OURS WITH
EICHTEN-PRESKILL AND CHEN-GIEDT-POPPITZ

MODELS

We have proposed a 1+ 1D lattice Hamiltonian definition
of nonperturbative anomaly-free chiral matter models with
U(1) symmetry. Our 3L-5R-4L-0R fermion model is under the
framework of the mirror fermion decoupling approach. How-
ever, some importance essences make our model distinct from
the lattice models of Eichten-Preskill [17] and Chen-Giedt-
Poppitz 3-4-5 model [25]. The differences between our and
theirs are listed below.

A. On-site vs non-on-site symmetry

On-site or non-on-site symmetry. Our model only imple-
ments on-site symmetry, which can be easily to be gauged.
While Chen-Giedt-Poppitz model implements Ginsparg-
Wilson (GW) fermion approach with non-on-site symmetry
(details explained in Appendix B). To have GW relation
{D, γ 5} = 2aDγ 5D to be true (a is the lattice constant), the
Dirac operator is non-on-site (not strictly local) as D(x1, x2) ∼
e−|x1−x2|/ξ but with a distribution range ξ . The axial U(1)A

symmetry is modified

δψ (y) =
∑
w

i θAγ̂5(y,w)ψ (w), δψ̄ (x) = i θAψ̄ (x)γ5

with the operator γ̂5(x, y) ≡ γ5 − 2aγ5D(x, y). Since its axial
U(1)A symmetry transformation contains D and the Dirac
operator D is non-on-site, the GW approach necessarily im-
plements non-on-site symmetry. GW fermion has non-on-site
symmetry in the way that it cannot be written as the ten-
sor product structure on each site, U (θA)non-onsite �= ⊗ jUj (θA),
for eiθA ∈ U(1)A. The Neuberger-Dirac operator also contains
such a non-on-site symmetry feature. The non-on-site sym-
metry is the signature property of the boundary theory of SPT
states. The non-on-site symmetry causes GW fermion difficult
(or impossible for certain groups) to be gauged to a chiral
gauge theory, because the gauge theory is originally defined
by gauging the local (on-site) degrees of freedom.

B. Interaction terms

Interaction terms. Our model has properly chosen a par-
ticular set of interactions satisfying the Eq. (64), from
the Lagrangian subgroup algebra to define a topological
gapped boundary conditions. On the other hand, Chen-Giedt-
Poppitz model proposed different kinds of interactions—all
Higgs terms obeying U(1)1st 3-5-4-0 symmetry (Eq. 2.4 of
Ref. [25]), including the Yukawa-Dirac terms∫

dtdx
(
g30ψ

†
L,3ψR,0φ

†3
h + g40ψ

†
L,4ψR,0φ

†4
h

+g35ψ
†
L,3ψR,5φ

2
h + g45ψ

†
L,4ψR,5φ

1
h + H.c.

)
, (68)

with Higgs field φh(x, t ) carrying charge (−1). There are also
Yukawa-Majorana terms∫

dtdx
(
igM

30ψL,3ψR,0φ
3
h + igM

40ψL,4ψR,0φ
4
h

+igM
35ψL,3ψR,5φ

8
h + igM

45ψL,4ψR,5φ
9
h + H.c.

)
, (69)

Notice that the Yukawa-Majorana coupling has an extra imag-
inary number i in the front, and implicitly there is also a

Pauli matrix σy if we write the Yukawa-Majorana term in the
two-component Weyl basis.

The question is: How can we compare between interactions
of ours and Ref. [25]’s? If integrating out the Higgs field φh,
we find that

(1) Yukawa-Dirac terms of Eq. (68) cannot generate any
of our multifermion interactions of L in Eq. (63) for our
3L-5R-4L-0R model.

(2) Yukawa-Majorana terms of Eq. (69) cannot generate
any of our multi-fermion interactions of L in Eq. (63) for our
3L-5R-4L-0R model.

(3) Combine Yukawa-Dirac and Yukawa-Majorana terms
of Eqs. (68) and (69), one can indeed generate the multi-
fermion interactions of L in Eq. (63); however, many more
multi-fermion interactions outside of the Lagrangian sub-
group (not being spanned by L) are generated. Those extra
unwanted multi-fermion interactions do not obey the bound-
ary fully gapping rules. As we have shown in Sec. IV C 3 and
Appendix E 2, those extra unwanted interactions induced by
the Yukawa term will cause the preformed mass gap unstable
due to the nontrivial braiding statistics between the interac-
tion terms. This explains why the massless mirror sector is
observed in Ref. [25]. In short, we know that Ref. [25]’s inter-
action terms are different from us, and know that the properly-
designed interactions are crucial, and our proposal will
succeed the mirror-sector-decoupling even if Ref. [25] fails.

Symmetry breaking: U(1)N → U(1)N/2 → U(1). We have
shown that for a given NL = NR = N/2 equal-number-left-
right moving mode theory, the N/2 gapping terms break
the symmetry from U(1)N → U(1)N/2. Its remained U(1)N/2

symmetry is unbroken and mixed-anomaly free. Is it possi-
ble to further add interactions to break U(1)N/2 to a smaller
symmetry, such as a single U(1)? For example, breaking
the U(1)2nd 0-4-5-3 of 3L-5R-4L-0R model to only a sin-
gle U(1)1st 3-5-4-0 symmetry remained. We argue that it is
doable. Adding any extra explicit-symmetry-breaking term
may be incompatible to the original Lagrangian subgroup
and thus potentially ruins the stability of the energy gap.
Nonetheless, as long as we add an extra interaction term
(breaking the U(1)2nd symmetry), which is irrelevant op-
erator with a tiny coupling, it can be weak enough not
driving the system to gapless states. Thus, our setting
to obtain 3-5-4-0 symmetry is still quite different from
Chen-Giedt-Poppitz where the universal intermediate/strong
couplings are applied.

We show that GW fermion approach implements the non-
on-site symmetry (more in Appendix B), thus GW can avoid
the fermion-doubling no-go theorem (limited to an on-site
symmetry ) to obtain chiral fermion states. Remarkably, this
also suggests that

The nontrivial edge states of SPT order [33], such as topo-
logical insulators [85–87] alike, can be obtained in its own
dimension (without the need of an extra dimension to the
bulk) by implementing the non-on-site symmetry as Ginsparg-
Wilson fermion approach.

To summarize, so far we have learned (see Fig. 9)
(i) Nielsen-Ninomiya theorem claims that local free chi-

ral fermions on the lattice with on-site (U(1) or chiral [35])
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qR 

qL 

qR 

Our approach Ginsparg-Wilson’s 

    Trivial SPT 
  (Trivial insulator) 

   Nontrivial SPT 
(Topological insulator) 

FIG. 9. Ginsparg-Wilson fermions can be viewed as putting gap-
less states on the edge of a nontrivial SPT state (e.g., topological
insulator). Our approach can be viewed as putting gapless states on
the edge of a trivial SPT state (trivial insulator).

symmetry have fermion-doubling problem in an even-
dimensional spacetime.

(ii) Ginsparg-Wilson (G-W) fermions: quasilocal free chi-
ral fermions on the lattice with non-on-site U(1) symmetry
[35] have no fermion doublers. G-W fermions correspond to
gapless edge states of a nontrivial SPT state.

(iii) Our 3-5-4-0 chiral fermion and general model con-
structions: local interacting chiral fermions on the lattice with
on-site U(1) symmetry [35] have no fermion-doublers. Our
model corresponds to unprotected gapless edge states of a
trivial SPT state (i.e., a trivial insulator).

We should also clarify that, from SPT classification view-
point, all our chiral fermion models are in the same class
of K f = (1 0

0 −1) with t = (1,−1), a trivial class in the
fermionic SPT with U(1) symmetry [54,77,88]. All our chiral
boson models are in the same class of Kb = (0 1

1 0) with t =
(1, 0), a trivial class in the bosonic SPT with U(1) symmetry
[54,77,88]. In short, we understand that

From the 2+ 1D bulk theory viewpoint, all our chiral matter
models are equivalent to the trivial class of SPT (trivial bulk
insulator), thus the 2+ 1D bulk can be entirely removed.
However, the 1+ 1D boundary theories with different U(1)
charge vectors t can be regarded as differentchiral matter
theories on its own 1+ 1D.

1. Proof of a special case and some conjectures

At this stage, we already fulfill proposing our models.
On the other hand, the outcome of our proposal becomes
fruitful with deeper implications. We prove that, at least
for 1+ 1D boundary/2+ 1D bulk SPT states with U(1)
symmetry,

There are equivalence relations between
(a) “ ’t Hooft anomaly matching conditions satisfied”,
(b) “the boundary fully gapping rules satisfied”,
(c) “the effective Hall conductance is zero,” and

(d) “a bulk trivial SPT (i.e. trivial insulator), with unpro-
tected boundary edge states (realizing an on-site symmetry),
which can be decoupled from the bulk.”

Rigorously speaking, what we actually prove in Sec. IV C 2
and Appendices C and D is the equivalence of

Theorem 2. ABJ’s perturbative local U(1) anomaly matching
condition in 1+ 1D ↔ the boundary fully gapping rules of
1+ 1D boundary/2+ 1D bulk with unbroken U(1) symmetry
for an equal number of left-right moving Weyl-fermion modes
(NL = NR, cL = cR) of 1+ 1D theory.

We show that the U(1)-anomaly free condition with
zero chiral central charge cL − cR = 0 (thus no gravitational
anomaly) is equivalent to the U(1) symmetric interaction
gapping rule. Under the Narain-Chern-Simons lattice level
quantization [89] in the context of chiral boson and Chern-
Simons theories, when the numbers of left and right 1+
1D Weyl fermions equal to NL = NR = N/2 ∈ Z+, we have
constructed the symmetry group (U(1)N/2)’t Hooft

anomaly free and

the dual group (U(1)N/2)gapping
term sectors via a short exact

sequence,

1 → (U(1)N/2)’t Hooft
anomaly free → U(1)N → (U(1)N/2)gapping

term → 1.

(70)

The (U(1)N/2)’t Hooft
anomaly free as a normal subgroup is the maximal

group carrying the anomaly-free chiral U(1)N/2 symmetry.
The (U(1)N/2)gapping term as a quotient group is the symmetry-
breaking group as the Poincaré dual space in the quantized
lattice space in the sense of Narain lattice of Chern-Simons
coupling [89].

Note that possible modifications are needed for more
generic symmetry cases:

(i) For unbalanced left-right moving modes, the un-
balanced chirality also implies the additional gravitational
anomaly.

(ii) For a bulk with topological order (instead of pure
SPT states), even if the boundary is gappable without break-
ing the symmetry, there still can be nontrivial signature on
the boundary, such as degenerate ground states (with gapped
boundaries) or surface topological order. This modifies the
above specific Theorem to a more general Conjecture on the
equivalence relation:

A possible conjecture: The anomaly matching condition in an
even-dimensional (d + 1)D ↔ the boundary fully gapping
rules of (d + 1)D boundary/(d + 2)D bulk with unbroken
G symmetry for an equal number of left-right moving de-
grees of freedom of (d + 1)D theory, such that the system
with arbitrary gapped boundaries has a unique nondegenerate
ground state (GSD=1) [45,50,57], no surface topological or-
der [90], no symmetry/quantum number fractionalization [91]
and without any nontrivial (anomalous) boundary signature.

However, for an arbitrary given theory, we do not know “all
kinds of anomalies,” and thus in principle we do not know
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“all anomaly matching conditions.” However, our paper re-
veals some deep connection between the “anomaly matching
conditions” and the “boundary fully gapping rules.” Alter-
natively, if we take the following statement as a definition
instead:

A proposed definition: The anomaly matching conditions in
(d + 1)D (all anomalies need to be canceled) for symmetry
G ↔ the boundary fully gapping rules without breaking
symmetry G and without anomalous boundary signatures for
a (d + 1)D boundary.

Then the Theorem and the proposed definition together
reveal that the only anomaly type of a theory with an equal
number of left/right-hand Weyl fermion modes and only with
a U(1) symmetry in 1+ 1D is the perturbative local or ABJ’s
U(1) anomaly.

Arguably the most interesting future direction is to test
our above conjecture for more general cases, such as other
dimensions or other symmetry groups. One may test the above
statements via the modular invariance [46,92] of boundary
theory. It will also be profound to address the boundary fully
gapping rules for non-Abelian symmetry and for nonpertur-
bative global or non-ABJ anomalies [29,30,93,94], including
the old and the new SU(2) anomalies [93,94].

Although being numerically challenging, it will be inter-
esting to test our models on the lattice (see a recent successful
attempt Ref. [65]). Our local spatial-lattice Hamiltonian with
a finite Hilbert space, on-site symmetry and short-range
hopping/interaction terms is exactly a condensed matter sys-
tem we can realize in the lab. It may be possible in the future
we can simulate the lattice chiral model in the physical in-
stant time using the condensed matter set-up in the laboratory
(such as in cold atoms system). Such a real-quantum-world
simulation may be much faster than any classical computer or
quantum computer.

Note added. After the completion of this present study in
2013, the authors have learned the potential relations between
the “G-symmetric anomaly-free condition” to the “trivial
cobordism class in the cobordism group given by the classi-
fying space BG of symmetry group G” stated in Ref. [95].
The cobordism theory is relevant for the classifications of
topological phases, studied recently in Refs. [96–99]. Our
topological nonperturbative statement on the equivalence re-
lation between the ’t Hooft anomaly matching conditions and
the boundary fully gapping rules is in fact a special case of
the deformation classes of QFTs advocated by Seiberg [100],
determined by two inputs: (1) global symmetries and (2) their
’t Hooft anomalies. Our major claim is a special case as the
trivial deformation class of QFTs that

Any G-symmetry anomaly-free theory can be deformed
from a G-symmetry-preserving gapless phase to a G-
symmetry-preserving gapped phase via the “symmetric mass
generation [101]” by preserving the full G symmetry along
the deformation.

In addition, recently Ref. [95] checks the classifications of
all ’t Hooft anomalies (including perturbative local and non-
perturbative global anomalies) for the weakly-gauged stan-

dard models from the 16n-number of chiral Weyl-fermions in
3+ 1D, the so(10) grand unification [more precisely, Spin(10)
chiral gauge theory]. Reference [95] shows that the only pos-
sible Z2 anomaly class for the Spin(10) symmetry for chiral
Weyl-fermions in 3+ 1D. References [94,95] also find that
the new anomaly is absent in the so(10) grand unification,
therefore the so(10) grand unification is all anomaly free. Ref-
erence [95] also finds that the same conclusion holds for the
so(18) grand unification [more precisely, the Spin(18) chiral
gauge theory]. This analysis supports the nonperturbatively
lattice regularization of these “standard models” via a 3+ 1D
local lattice model of Refs. [30,95]. Recently Ref. [102] also
provides alternative arguments to support our claim that the
1+ 1D interaction we designed in Sec. II can gap out the
mirror chiral fermions.
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APPENDIX

In Appendix A, we discuss the C, P, T symmetry in a 1+
1D fermion theory. In Appendix B, we show that Ginsparg-
Wilson fermions realizing its axial U(1) symmetry by a
non-on-site symmetry transformation. In Appendices C and
D, under the specific assumption for a 2+ 1D bulk Abelian
symmetric protected topological (SPT) states [29,30,33] with
U(1) symmetry, we prove that

Boundary fully gapping rules (in Sec. IV C) [43,45,46,52,54]
are sufficient and necessary conditions of the ’t Hooft anomaly
matching condition (in Sec. IV B) [32].

The SPT order (explained in Sec. IV A) are short-range en-
tangled states with some on-site symmetry G in the bulk. For
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the nontrivial SPT order, the symmetry G is realized as a non-
on-site symmetry on the boundary [33,41,42]. The 1+ 1D
edge states are protected to be gapless as long as the symmetry
G is unbroken on the boundary [33,54]. Importantly, SPT has
no long-range entanglement, so no gravitational anomalies
[29,30]. The only anomaly here is the ABJ’s U(1) anomaly
[5,80,81] for chiral matters.

Appendix E includes several approaches for proving
boundary fully gapping rules. In Appendix F, we discuss
the property of our Chern insulator in details, and pro-
vide additional models of lattice chiral fermions and chiral
bosons.

APPENDIX A: C, P, T SYMMETRY IN THE 1 + 1D
FERMION THEORY

Here we show the charge conjugate C, parity P, time rever-
sal T symmetry transformation for the 1+ 1D Dirac fermion
theory. Recall that the massless Dirac fermion Lagrangian is
L = �̄iγ μ∂μ�. Here the Dirac fermion field � = �(t, �x) =
�(x) can be written as a two-component spinor. For conve-
nience, but without losing the generality, we choose the Weyl
basis, so � = (ψL, ψR), where each component of ψL, ψR is a
chiral Weyl fermion with left and right chirality respectively.
Specifically, gamma matrices in the Weyl basis are

γ 0 = σx =
(

0 1
1 0

)
, γ 1 = iσy =

( 0 1
−1 0

)
,

γ 5 = γ 0γ 1 = −σz =
(−1 0

0 1

)
, (A1)

and satisfy Clifford algebra {γ μ, γ ν} = 2ημν ; here the sig-
nature of the Minkowski metric is (+,−). The projection
operators are

PL = 1− γ 5

2
=
(1 0

0 0

)
,

PR = 1+ γ 5

2
=
(0 0

0 1

)
, (A2)

mapping a massless Dirac fermion to two Weyl fermions, i.e.,
L = iψ†

L (∂t − ∂x )ψL + iψ†
R(∂t + ∂x )ψR. We derive the P, T,C

transformation on the fermion field operator �̂ in 1+ 1D, up
to some overall complex phases ηP, ηT degree of freedom,

P�̂(t, �x)P−1 = ηP γ 0�̂(t,−�x) = ηP

(0 1
1 0

)
�̂(t,−�x),

T �̂(t, �x)T−1 = ηT γ 0�̂(−t, �x) = ηT

(0 1
1 0

)
�̂(−t, �x),

C�̂(t, �x)C−1 = γ 0γ 1�̂∗(t, �x) =
(−1 0

0 1

)
�̂∗(t, �x),

CPT �̂(t, �x)T−1P−1C−1 = γ 0γ 1�̂∗(−t,−�x). (A3)

We can quickly derive these symmetry transformations (which
are preserved by a massive Dirac fermion theory).

a. P symmetry. Recall for the passive P transformations
on the coordinates, we require that sending (t, �x) to (t,−�x),
which is a Z2 symmetry on the vector coordinates. But we
shall, instead, consider the active transformation viewpoint
on the fields, in terms of operators, such that P�̂(x)P−1 =

P�̂(t, �x)P−1 = �̂ ′(t, �x) = MP�̂(t,−�x) = MP�̂(x′), where
the MP is a linear transformation matrix on the �̂(t,−�x) ≡
�̂(x′) and now we also define (t,−�x) ≡ x′ (x′μ or ∂ ′μ =
∂/∂x′μ for each transformed coordinate, μ = 0, 1).

We want the P transformation on the Dirac equation
(iγ μ∂μ − m)�(x) becomes (iγ μ∂ ′μ − m)� ′(x′) = (iγ μ∂ ′μ −
m)(MP�(t, �x)) = 0 where the prime notation implies un-
der the P transformation. Then we can identify � ′(x′) =
MP�(t, �x), or conversely � ′(x) = MP�(t,−�x). To achieve
this goal, we multiply Dirac equation by γ 0, we ob-
tain γ 0(iγ μ∂μ − m)�(t, �x) = (iγ μ∂ ′μ − m)(γ 0�(t, �x)) = 0.
In comparison, this means we should identify � ′(x′) =
MP�(t, �x) = γ 0�(t, �x) up to a phase. In other words, re-
naming the coordinates, we get � ′(x) = MP�(t,−�x) =
γ 0�(t,−�x). In the operator form, we derive: P�̂(t, �x)P−1 =
�̂ ′(t, �x) = MP�̂(t,−�x) = γ 0�̂(t,−�x) up to a ηP phase,
hence Eq. (A3). The parity P transforms the left (L) and the
right (R) to each other, which is also a Z2 symmetry on the
spinor.

b. T symmetry. Recall a passive T symmetry trans-
formation on the vector coordinates, sending (t, �x) to
(−t, �x) as a Z2 symmetry transformation; for convenience
we also redefine the transformed coordinates (−t, �x) ≡
x′μ. It is much easier to derive the fact that T iT−1 =
−i in the passive T transformation, we see that the
generic Schrödinger equation i∂t�(t, �x) = H�(t, �x) acted by
T is (T iT−1)(T ∂t T−1)(T �(t, �x)) = (T HT−1)(T �(t, �x)) =
H (T �(t, �x)), where the last line assumes that T HT−1 = H is
time-reversal invariant. The passive transformation acts on the
coordinates so (T ∂t T−1) = −∂t . Then (T �(t, �x)) is a time-
reversed solution of the original Schrödinger equation if and
only if T iT−1 = −i.

Below we shall, instead, consider the active transfor-
mation viewpoint on the fields, in terms of operators, so
that we can derive T �̂(x)T−1 = T �̂(t, �x)T−1 = �̂ ′(t, �x) =
MT �̂(−t, �x) = MT �̂(x′), where the MT is a linear trans-
formation matrix on the �̂(−t, �x) ≡ �̂(x′). We want the
T transformation on the Dirac equation (iγ μ∂μ − m)�(x)
becomes (iγ μ∂ ′μ − m)� ′(x′) = (iγ μ∂ ′μ − m)(MT �(t, �x)) =
0 where the prime notation implies under the T transforma-
tion. Then we can identify � ′(x′) = MT �(t, �x), or conversely
� ′(x) = MT �(−t, �x). To this end, we massage the Dirac
equation in terms of Schrödinger equation form, i∂t�(t, �x) =
H�(t, �x) = (−iγ 0γ j∂ j + mγ 0)�(t, �x), here j are spatial co-
ordinates (we have j = 1 only for 1+ 1D). Then we wanted
to identify the T transformed equation to be i∂t ′�

′(t ′, �x) =
H� ′(t ′, �x) = (−iγ 0γ 1∂1 + mγ 0)� ′(t ′, �x). Since T is anti-
unitary, T can be written as T = UK with a unitary
transformation part U and an extra K does the complex
conjugate so T−1iT = −i. Then T−1HT = H imposes the
constraints U−1γ 0U = γ 0∗ and U−1γ jU = −γ j∗. In 1+ 1D
Weyl basis, since γ 0 and γ 1 both are reals, we conclude that
U = γ 0 up to a complex phase. This means we should identify
� ′(−t, �x) = γ 0K�(t, �x) up to a phase to make a time-reversal
symmetric solution. So in the operator form, T �̂(t, �x)T−1 =
ηT γ 0�̂(−t, �x), also T z�̂(t, �x)T−1 = ηT z∗γ 0�̂(−t, �x) since
the antiunitary T sends a complex number z ∈ C to its conju-
gate z∗.

c. C symmetry. For the C transformation, we transform
a particle to its antiparticle. This means that we flip the
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charge q (in the term coupled to a background gauge field
A), which can be done by taking the complex conjugate
on the Dirac equation, [− iγ μ∗(∂μ + iqAμ)− m]�∗(t, �x) =
0, where −γ μ∗ satisfies Clifford algebra. We can rewrite
the equation as [iγ μ(∂μ + iqAμ)− m]�c(t, �x) = 0, by iden-
tifying the charge conjugated state as �c = MCγ 0�∗ and
imposing the constraint −MCγ 0γ μ∗γ 0M−1

C = γ μ. Addition-
ally, we already have γ 0γ μγ 0 = γ μ†. So the constraint
reduces to−MCγ μT M−1

C = γ μ. In the 1+ 1D Weyl basis, we
obtain −MCγ 0M−1

C = γ 0 and MCγ 1M−1
C = γ 1. Thus, MC =

ηC γ 1 up to a phase, and we derive �c = γ 0γ 1�∗ as a state.
In the operator form, we obtain C�̂(t, �x)C−1 = �̂c(t, �x) =
γ 0γ 1�̂∗(t, �x).

The important feature is that our chiral matter theory has
the parity P and time reversal T symmetry explicitly bro-
ken. Because both P and T exchange between left-handness
and right-handness particles, i.e., ψL, ψR become ψR, ψL.
Thus both P and T transformations switch left/right moving
charges by switching its charge carrier. If qL �= qR and if no
field redefinition can restore the charge assignment, then our
chiral matter theory breaks P and T .

Our chiral matter theory, however, does not break charge
conjugate symmetry C. Because the symmetry transformation
acting on the state induces C�C−1 = −σz�

∗ = (−1 0
0 1)�∗,

while ψL/ψR maintains its left-handness/right-handness as
ψL/ψR.

Of course, if the theory is a vector-like Dirac theory with
qL = qR, then it preserves C, P, and T .

APPENDIX B: GINSPARG-WILSON FERMIONS WITH A
NON-ON-SITE U(1) SYMMETRY AS SPT EDGE STATES

We firstly review the meaning of on-site symmetry and
non-on-site symmetry transformation [33,34], and then we
will demonstrate that Ginsparg-Wilson fermions realize the
U(1) symmetry in the non-on-site symmetry manner.

1. On-site symmetry and non-on-site symmetry

The on-site symmetry transformation as an operator U (g),
with g ∈ G of the symmetry group, transforms the state |v〉
globally, by U (g)|v〉. The on-site symmetry transformation
U (g) must be written in the tensor product form acting on each
site i [33,34],

U (g) = ⊗iUi(g), g ∈ G. (B1)

For example, consider a system with only two sites. Each
site with a qubit degree of freedom (i.e., with |0〉 and |1〉
eigenstates on each site). The state vector |v〉 for the two-sites
system is |v〉 =∑ j1, j2

c j1, j2 | j1〉 ⊗ | j2〉 =
∑

j1, j2
c j1, j2 | j1, j2〉

with 1,2 site indices and | j1〉, | j2〉 are eigenstates chosen
among |0〉, |1〉.

An example for the on-site symmetry transformation can
be

Uonsite = |00〉〈00| + |01〉〈01| − |10〉〈10| − |11〉〈11|
= (|0〉〈0| − |1〉〈1|)1 ⊗ (|0〉〈0| + |1〉〈1|)2

= ⊗iUi(g). (B2)

Here Uonsite is in the tensor product form, where U1(g) =
(|0〉〈0| − |1〉〈1|)1 and U2(g) = (|0〉〈0| + |1〉〈1|)2, again with
1,2 subindices are site indices. Importantly, this operator does
not contain nonlocal information between the neighbored
sites.

A non-on-site symmetry transformation U (g)non-onsite can-
not be expressed as a tensor product form

U (g)non-onsite �= ⊗iUi(g), g ∈ G. (B3)

An example for the non-on-site symmetry transformation can
be the CZ operator [34],

CZ = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|.

CZ operator contains nonlocal information between the neigh-
bored sites, which flips the sign of the state vector if both sites
1,2 are in the eigenstate |1〉. One cannot achieve writing CZ
as a tensor product structure.

Now let us discuss how to gauge the symmetry. Gauging an
on-site symmetry simply requires replacing the group element
g in the symmetry group to gi with a site dependence, i.e.,
replacing a global symmetry to a local (gauge) symmetry. All
we need to do is

U (g) = ⊗iUi(g)
Gauge ⇒ U (gi ) = ⊗iUi(gi ), (B4)

with gi ∈ G. Following Eq. (B5), it is easy to gauge such an
on-site symmetry to obtain a chiral fermion theory coupled to
a gauge field. Since our chiral matter theory is implemented
with an on-site U(1) symmetry, it is easy to gauge our chiral
matter theory to be a U(1) chiral gauge theory.

On the other hand, a non-on-site symmetry transformation
cannot be written as a tensor product form. So, it is difficult (or
unconventional) to gauge a non-on-site symmetry. As we will
show below Ginsparg-Wilson fermions realizing a non-on-site
symmetry, so that is why it is difficult to gauge it.

2. Ginsparg-Wilson relation, Wilson fermions
and non-on-site symmetry

Below we attempt to show that Wilson fermions imple-
mented with Ginsparg-Wilson (G-W) relation realizing the
symmetry transformation by the non-on-site manner. Follow
the notation of Ref. [62], the generic form of the Dirac fermion
ψ path integral on the lattice (with the lattice constant a) is

∫
Dψ̄Dψ exp

⎡
⎣adm

∑
x1,x2

ψ̄ (x1)D(x1, x2)ψ (x2)

⎤
⎦. (B5)

Here the exponent dm is the dimension of the spacetime. For
example, the action of Wilson fermions with Wilson term (the
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term with the front coefficient r) can be written as

S� = adm

⎛
⎝∑

x,μ

i

2a
(ψ̄ (x)γ μUμ(x)ψ (x + aμ)

−ψ̄ (x + aμ)γ μU †
μ(x)ψ (x))−

∑
x

1

a
m0ψ̄ (x)ψ (x)

+ r

2a

∑
x,μ

( − ψ̄ (x)Uμ(x)ψ (x + aμ)

− ψ̄ (x + aμ)U †
μ(x)ψ (x)+ 2ψ̄ (x)ψ (x))

⎞
⎠. (B6)

Here Uμ(x) ≡ exp(iagAμ) are the gauge field connection. At
the weak g coupling, it is also fine for us simply consider
Uμ(x) � 1. One can find its Fermion propagator⎛
⎝∑

μ

1

a
γ μ sin(akμ)− m0 −

∑
μ

r

a
(1− cos(akμ))

⎞
⎠
−1

.

The Wilson fermions with r �= 0 kills the doubler (at kμ =
π/a) by giving a mass of order r/a to it. As a → 0, the
doubler disappears from the spectrum with an infinite large
mass.

This Dirac operator D(x1, x2) is not strictly local, but de-
creases exponentially as

D(x1, x2) ∼ e−|x1−x2|/ξ (B7)

with ξ = (local range) · a as some localized length scale of
the Dirac operator. We call D(x1, x2) as a quasilocal operator,
which is strictly nonlocal.

One successful way to treat the lattice Dirac operator is
imposing the Ginsparg-Wilson (G-W) relation [36],

{D, γ 5} = 2aDγ 5D. (B8)

Thus in the continuum limit a → 0, this relation becomes
{�D, γ 5} = 0. One can choose a Hermitian γ 5, and ask for the
Hermitian property on γ 5D, which is (γ 5D)† = D†γ 5 = γ 5D.

It can be shown that the action (in the exponent of the path
integral) is invariant under the axial U(1) chiral transformation
with a θA rotation,

δψ (y) =
∑
w

iθAγ̂ 5(y,w)ψ (w), δψ̄ (x) = iθAψ̄ (x)γ 5

(B9)
where

γ̂ 5(x, y) ≡ γ 5 − 2aγ 5D(x, y). (B10)

The chiral anomaly on the lattice can be reproduced from the
Jacobian J of the path integral measure

J = exp[−iθA tr(γ̂ 5 + γ 5)] = exp[−2iθA tr(�5)], (B11)

here �5(x, y) ≡ γ 5 − aγ 5D(x, y). The chiral anomaly follows
the index theorem tr(�5) = n+ − n−, with n± counts the num-
ber of zero mode eigenstates ψ j , with zero eigenvalues, i.e.,
γ 5Dψ j = 0, where the projection is γ 5ψ j = ±ψ j for n± re-
spectively.

FIG. 10. Feynman diagrams with solid lines representing chiral
fermions and wavy lines representing U(1) gauge bosons: 1+ 1D
chiral fermionic anomaly shows A =∑(q2

L − q2
R ). For a generic 1+

1D theory with U(1) symmetry, A = q2tK−1t.

Note that G-W relation can be rewritten as

γ 5D+ Dγ̂ 5 = 0. (B12)

Importantly, now axial U(1)A transformation in Eq. (B9)
involves with γ̂5(x, y), which contains the piece of quasilocal
operators D(x, y) ∼ e−|x1−x2|/ξ . Thus, it becomes apparent that
U(1)A transformation Eq. (B9) is a non-on-site symmetry,
which carries nonlocal information between different sites x1

and x2. It is analogous to the CZ symmetry transformation in
Eq. (B4), which contains the entangled information between
neighbored sites j1 and j2.

Thus we have shown G-W fermions realizing axial U(1)
symmetry [U(1)A symmetry] with a non-on-site symmetry
transformation. While the left and right chiral symmetries,
U(1)L and U(1)R, mix between the linear combination of
vector U(1)V symmetry and axial U(1)A symmetry. So U(1)L

and U(1)R have non-on-site symmetry transformations, too. In
short,

The axial U(1)A symmetry in G-W fermion is a non-on-site
symmetry. Also the left and right chiral symmetry U(1)L and
U(1)R in G-W fermion are non-on-site symmetry.

The non-on-site symmetry here indicates the nontrivial
edge states of bulk SPTs [33,41,42], thus Ginsparg-Wilson
fermions can be regarded as gapless edge states of some bulk
fermionic SPT order. With the above analysis, we emphasize
again that our approach in the main text is different from
Ginsparg-Wilson fermions - while our approach implements
only on-site symmetry, Ginsparg-Wilson fermion implements
non-on-site symmetry. In Chen-Giedt-Poppitz model [25], the
Ginsparg-Wilson fermion is implemented. Thus this is one of
the major differences between Chen-Giedt-Poppitz and our
approaches.

APPENDIX C: PROOF: BOUNDARY FULLY GAPPING
RULES → ANOMALY MATCHING CONDITIONS

Here we show that if boundary states can be fully gapped
(there exists a boundary gapping lattice �∂ satisfies bound-
ary fully gapping rules (1), (2), and (3) in Sec. IV C
[43,45,46,52,54]) with U(1) symmetry unbroken, then the
boundary theory is an anomaly-free theory free from ABJ’s
U(1) anomaly. This theory satisfies the effective Hall conduc-
tance σxy = 0, so the anomaly factor A = 0 by Eq. (43) in
Sec. IV B, and illustrated in Fig. 10.

Importantly, for N numbers of 1+ 1D Weyl fermions, in
order to gap out the mirror sector, our model enforces N ∈
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2Z+ is an even positive integer, and requires equal numbers
of left/right moving modes NL = NR = N/2. When there is
no interaction, we have a total U(1)N symmetry for the free
theory. We will then introduce the properly-designed gapping
terms, and (if and only if) there are N/2 allowed gapping
terms. The total symmetry is further broken from U(1)N down
to U(1)N/2 due to N/2 gapping terms.

The remained U(1)N/2 symmetry stays unbroken for the
following reasons:

(i) The gapping terms obey the U(1)N/2 symmetry. The
symmetry is thus not explicitly broken.

(ii) In 1+ 1D, there is no spontaneous symmetry breaking
of a continuous symmetry [such as our U(1) symmetry] due
to Coleman-Mermin-Wagner-Hohenberg theorem.

(iii) We explicitly check the ground degeneracy of our
model with a gapped boundary has a unique ground state, fol-
lowing the procedure of Refs. [45,50]. Thus, a unique ground
state implies that there is no spontaneous symmetry breaking
degeneracy nor topological ground state degeneracy.

Below we will prove that all the remained U(1)N/2 symme-
try is anomaly-free and mixed-anomaly-free. We will prove
for both fermionic and bosonic cases together, under Chern-
Simons symmetric-bilinear K matrix notation, with fermions
K = K f and bosons K = Kb0, where K = K−1.

Proof: There are N/2 linear-independent terms of �a

for cos(�a ·
) in the boundary gapping terms �∂ , for
{�a} = {�1, �2, . . . , �N/2} ∈ �∂ . To find the remained unbro-
ken U(1)N/2 symmetry, we notice that we can define charge
vectors

ta ≡ K−1�a (C1)

where any �a ∈ �∂ is allowed, and a = 1, . . . , N/2. So there
are totally N/2 charge vectors. These ta charge vectors are
linear-independent because all �a are linear independent to
each other.

Now we show that these N/2 charge vectors ta span the
whole unbroken U(1)N/2-symmetry. Indeed, follow the condi-
tion Eq. (31), this is true,

�c,I · ta = �cK−1�a = 0 (C2)

for all �c ∈ �∂ . This proves that N/2 charge vectors ta are
exactly the U(1)N/2-symmetry generators. We end the proof
by showing our construction is indeed an anomaly-free theory
among all U(1)N/2-symmetries or all U(1) charge vectors ta,
thus we check that they satisfy the anomaly matching condi-
tions,

A(a,b) = 2πσxy,(a,b) = q2taK tb = q2�aK−1�b = 0. (C3)

Here �a, �b ∈ {�1, �2, . . . , �N/2}, where we use K = K−1.
Therefore, our U(1)N/2-symmetry theory is fully anomaly-
free (A(a,a) = 0) and mixed anomaly-free (A(a,b) = 0 for a �=
b). We thus proved

Theorem 3. The boundary fully gapping rules of 1+ 1D
boundary/2+ 1D bulk with unbroken U(1) symmetry →
ABJ’s U(1) anomaly matching condition in 1+ 1D.

for both fermions K = K f and bosons K = Kb0. (Q.E.D.)

APPENDIX D: PROOF: ANOMALY MATCHING
CONDITIONS → BOUNDARY FULLY GAPPING RULES

Here we show that if the boundary theory is an anomaly-
free theory [free from ABJ’s U(1) anomaly], which satisfies
the anomaly factor A = 0 (i.e., the effective Hall conduc-
tance σxy = 0 in the bulk, in Sec. IV B), then boundary states
can be fully gapped with U(1) symmetry unbroken. Given a
charge vector t, we will prove in the specific case of U(1)
symmetry, by finding the set of boundary gapping lattice
�∂ satisfies boundary fully gapping rules (1), (2), and (3)
in Sec. IV C [43,45,46,52,54]. We denote the charge vec-
tor as t = (t1, t2, t3, . . . , tN ). We will prove this for fermions
K = K f and bosons K = Kb0 separately. Note the fact that
K = K−1 for both K f and Kb0.

1. Proof for fermions K = K f

Given a N-component charge vector

t = (t1, t2, . . . , tN ) (D1)

of a U(1) charged anomaly-free theory satisfying A = 0,
which means t(K f )−1t = 0. Here the fermionic K f matrix is
written in this canonical form

K f
N×N =

(1 0
0 −1

)
⊕
(1 0

0 −1

)
⊕ . . . (D2)

We now construct �∂ obeying boundary fully gapping
rules. We choose

�1 = (K f )t, (D3)

which satisfies self-null condition �1(K f )−1�1 = 0. To com-
plete the proof, we continue to find out a total set of
�1, �2, . . . , �N/2, so �∂ is a dimension N/2 Chern-Simons-
charge lattice (Lagrangian subgroup).

For �2, we choose its form as

�2 = (�2,1, �2,1, �2,3, �2,3, 0, . . . , 0) (D4)

where even component of �2 duplicates its odd component
value, to satisfy �2(K f )−1�1 = �2(K f )−1�2 = 0. The second
constraint is automatically true for our choice of �2. The
first constraint is achieved by solving �2,1(t1 − t2)+ �2,3(t3 −
t4) = 0. We can properly choose �2 to satisfy this constraint.

For �n, by mathematical induction, we choose its form as

�n = (�n,1, �n,1, �n,3, �n,3, . . . , �n,2n−1, �n,2n−10, . . . , 0)
(D5)

where even component of �n duplicates its odd component
value, to satisfy

�n(K f )−1� j, j = 1, . . . , n, (D6)

for any n. For 2 � j � n, the constraint is automatically true
for our choice of �n and � j . For �n(K f )−1�1 = 0, it leads to the
constraint �n,1(t1 − t2)+ �n,3(t3 − t4)+ · · · + �n,2n−1(t2n−1 −
t2n) = 0, we can generically choose �n,2n−1 �= 0 to have a new
�n independent from other � j with 1 � j � n− 1.

Notice the gapping term obeys U(1) symmetry, because
�n · t = �n(K f )−1�1 = 0 is always true for all �n. Thus we
have constructed a dimension N/2 Lagrangian subgroup �∂ =
{�1, �2, . . . , �N/2}, which obeys the boundary fully gapping
rules (1), (2), and (3) in Sec. IV C. (Q.E.D.)
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2. Proof for bosons K = Kb0

Similar to the proof of fermion, we start with a given N-
component charge vector t,

t = (t1, t2, . . . , tN ), (D7)

of a U(1) charged anomaly-free theory satisfying A = 0,
which means t(Kb0)−1t = 0.

Here the bosonic Kb0 matrix is written in this canonical
form,

Kb0
N×N =

(0 1
1 0

)
⊕
(0 1

1 0

)
⊕ . . . (D8)

We now construct �∂ obeying boundary fully gapping
rules. We choose

�1 = (Kb0)t, (D9)

which satisfies self-null condition �1(Kb0)−1�1 = 0. To com-
plete the proof, we continue to find out a total set of
�1, �2, . . . , �N/2, so �∂ is a dimension N/2 Chern-Simons-
charge lattice (Lagrangian subgroup).

For �2, we choose its form as

�2 = (�2,1, 0, �2,3, 0, . . . , 0) (D10)

where even components of �2 are zeros, to satisfy
�2(Kb0)−1�1 = �2(Kb0)−1�2 = 0. The second constraint is au-
tomatically true for our choice of �2. The first constraint is
achieved by �2,1(t1)+ �2,3(t3) = 0. We can properly choose
�2 to satisfy this constraint.

For �n, by mathematical induction, we choose its form as

�n = (�n,1, 0, �n,3, 0, . . . , �n,2n−1, 0, . . . , 0) (D11)

where even components of �n are zeros, to satisfy

�n(Kb0)−1� j, j = 1, . . . , n, (D12)

for any n. For 2 � j � n, the constraint is automatically true
for our choice of �n and � j . For �n(Kb0)−1�1 = 0, it leads to
the constraint: �n,1(t1)+ �n,3(t3)+ . . . �n,2n−1(t2n−1) = 0, we
can generically choose �n,2n−1 �= 0 to have a new �n indepen-
dent from other � j with 1 � j � n− 1.

Notice the gapping term obeys U(1) symmetry, because
�n · t = �n(Kb0)−1�1 = 0 is always true for all �n. Thus we
have constructed a dimension N/2 Lagrangian subgroup �∂ =
{�1, �2, . . . , �N/2}, which obeys the boundary fully gapping
rules (1), (2), and (3) in Sec. IV C. (Q.E.D.)

Theorem 4. ABJ’s U(1) anomaly matching condition in
1+ 1D → the boundary fully gapping rules of 1+ 1D
boundary/2+ 1D bulk with unbroken U(1) symmetry.

We emphasize again that although we start with a
single-U(1)-anomaly-free theory [aiming for a single U(1)-
symmetry], it turns out that the full symmetry after adding
interacting gapping terms will result in a theory with an
enhanced total U(1)N/2 symmetry. The N/2 number of gap-
ping terms break a total U(1)N symmetry (for N free Weyl
fermions) down to U(1)N/2 symmetry. The derivation follows
directly from the statement in Appendix C, which we shall not
repeat it.

We comment that our proofs in Appendices C and D are
algebraic and topological, thus it is a nonperturbative result
(instead of a perturbative result in the sense of doing weak or
strong coupling expansions).

APPENDIX E: MORE ABOUT THE PROOF OF
“BOUNDARY FULLY GAPPING RULES”

This section aims to demonstrate that the boundary fully
gapping rules used throughout our paper, indeed can gap the
edge states. We discuss this proof here to make our paper self-
contained and to further convince the readers.

1. Canonical quantization

Here we set up the canonical quantization of the bosonic
field φI for a multiplet chiral boson theory of Eq. (23) on a 1+
1D spacetime, with a spatial S1 compact circle. The canonical
quantization means that imposing a commutation relation be-
tween φI and its conjugate momentum field �I (x) = δL

δ(∂t φI ) =
1

4π
KIJ∂xφJ . Since φI is a compact phase of a matter field,

its bosonization contains both zero mode φ0I and winding
momentum PφJ , in addition to Fourier modes αI,n [45],


I (x) = φ0I + K−1
IJ PφJ

2π

L
x + i

∑
n �=0

1

n
αI,ne−inx 2π

L . (E1)

The periodic boundary has a size of length 0 � x < L, with x
identified with x + L. We impose the commutation relation for
zero modes and winding modes, and generalized Kac-Moody
algebra for Fourier modes,

[φ0I , PφJ ] = iδIJ , [αI,n, αJ,m] = nK−1
IJ δn,−m. (E2)

Consequently, the commutation relations for the canonical
quantized fields are

[φI (x1), KI ′J∂xφJ (x2)] = 2π iδII ′δ(x1 − x2), (E3)

[φI (x1),�J (x2)] = 1
2 iδIJδ(x1 − x2). (E4)

2. Approach I: Mass gap for gapping zero energy modes

We provide the first approach to show that the anomaly-
free edge states can be gapped under the properly-designed
gapping terms. Here we explicitly calculate the mass gap for
the zero energy mode and its higher excitations. The generic
theory is

S∂ = 1

4π

∫
dt dx (KIJ∂t
I∂x
J −VIJ∂x
I∂x
J )

+
∫

dt dx
∑

a

ga cos(�a,I ·
I ). (E5)

We will consider the even-rank symmetric K matrix, so the
full edge theory has an even number of modes and thus poten-
tially be gappable. In the following we shall determine under
what conditions that the edge states can obtain a mass gap.
Imagining at the large coupling g, the 
I field get trapped at
the minimum of the cosine potential with small fluctuations.
We will perform an expansion of cos(�a,I ·
I ) � 1− 1

2 (�a,I ·

I )2 + · · · to a quadratic order and see what it implies about
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the mass gap. We can diagonalize the Hamiltonian,

H �
(∫ L

0
dx VIJ∂x
I∂x
J

)
+ 1

2

∑
a

ga(�a,I ·
I )2L + · · ·
(E6)

under a complete 
 mode expansion, and find the energy
spectra for its eigenvalues. To summarize the result, we find
that:

(E-1). If and only if we include all the gapping terms
allowed by boundary full gapping rules, we can open the
mass gap above zero modes (n = 0) as well as Fourier modes
(nonzero modes n �= 0). Namely, the energy spectrum is in the
form of

En =
(√

�2 + #

(
2πn

L

)2

+ · · ·
)

, (E7)

where � is the mass gap. Here we emphasize the energy of
Fourier modes (n �= 0) behaves towards zero modes at long
wave-length low energy limit (L →∞). Such spectra become
continuous at L →∞ limit, which is the expected energy
behavior.

(E-2). If we include the incompatible Wilson line operators,
such as � and �′ where �K−1�′ �= 0, while the interaction terms
contain incompatible gapping terms gcos(� ·
)+ g′ cos(�′ ·

), we find the unstable energy spectra

En =
(√

�2 + #

(
2πn

L

)2

+ gg′
(

L

n

)2

· · · + · · · + . . .

)
,

(E8)
The energy spectra shows an instability of the system, because
at low energy limit (L →∞), the spectra become discon-
tinuous (from n = 0 to n �= 0) and jump to infinity as long
as there are incompatible gapping terms (namely, g · g′ �= 0).
Such disastrous behavior of (L/n)2 implies the quadratic ex-
pansion analysis may not account for the whole physics. In
that case, the disastrous behavior invalidates the trapping of

 field at a local minimum, thus invalidates the mass gap, and
the unstable system potentially seeks to be gapless phases.

Below we demonstrate the result explicitly for the simplest
rank-2 K matrix, while the case for higher rank K matrix can
be straightforwardly generalized. The most general rank-2 K
matrix is

K ≡
(

k1 k3

k3 k2

)
≡
(

k1 k3

k3
(
k2

3 − p2
)
/k1

)
, V =

(
v1 v2

v2 v1

)
,

(E9)

while the V velocity matrix is chosen to be rescaled as the
above. (Actually the V matrix is immaterial to our conclu-
sion.) Our discussion below holds for both k3 = ±|k3| cases.
We define k2 = (k2

3 − p2)/k1, so that det(K ) = −p2 We find
that only when

√
| det(K )| ≡ p ∈ Z,

p is an integer, we can find gapping terms allowed by bound-
ary fully gapping rules. [A side comment is that det(K ) =
−p2 implies its bulk can be constructed as a quantum double
or a twisted quantum double model on the lattice.] For the
above rank-2 K matrix, we find two independent sets, {�1 =
(�1,1, �1,2)} and {�′1 = (�′1,1, �

′
1,2)}, each set has only one �

vector. Here the � vector is written as �a,I , with the index a la-
beling the ath (linear independent) � vector in the Lagrangian
subgroup, and the index I labeling the I component of the �a

vector. Their forms are

�1,1

�1,2

= k1

k3 + p
= k3 − p

k2
, (E10)

�′1,1

�′1,2

= k1

k3 − p
= k3 + p

k2
. (E11)

We denote the cosine potentials spanned by these �1 and �′1
vectors in Eq. (E5) as

gcos(�1 ·
)+ g′ cos(�′1 ·
). (E12)

From our understanding of boundary full gapping rules, these
two �1, �′1 vectors are not compatible to each other. In this
sense, we shall not include both terms if we aim to fully gap
the edge states.

Now we focus on computing the mass gap of our interests
for the bosonic K matrix Kb

2×2 = (0 1
1 0) and the fermionic

K matrix K f
2×2 = (1 0

0 −1). We use both the Hamiltonian or
the Lagrangian formalism to extract the energy, for both zero
modes (n = 0) and Fourier modes (nonzero modes n �= 0). For
both the Hamiltonian and Lagrangian formalisms, we obtain
the consistent result for energy gaps En:

1st Case: Bosonic Kb
2×2 = (0 1

1 0):

En =
√

2π (g+ g′)v1 +
(

2πn

L

)2

v2
1 + gg′

(
L

n

)2

±
(

2πn

L

)
v2. (E13)

2nd Case: Fermionic K f
2×2 = (1 0

0 −1):

En =
√

4πg(v1 − v2)+ 4πg′(v1 + v2)+
(

2πn

L

)2(
v2

1 − v2
2

)+ (2L

n

)2

gg′. (E14)
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Logically, for a rank-2 K matrix, we have shown that
(i) If we include the gapping terms allowed by Bound-

ary Full Gapping Rules, either (i) g �= 0, g′ = 0, or (ii)
g= 0, g′ �= 0, then we have the stable form of the
mass gap in Eq. (E7). Thus we show the if-statement
in (E-1).

(ii) If we include incompatible interaction terms (here
�1K−1�′1 �= 0), such that both g �= 0 and g′ �= 0, then the en-
ergy gap is of the unstable form in Eq. (E8). Thus we show
the statement in (E-2).

(iii) Meanwhile, this (E-2) implies that if we include more
interaction terms allowed by Boundary Full Gapping Rules,
we have an unstable energy gap, thus it may drive the system
to the gapless states due to the instability. Moreover, if we
include less interaction terms allowed by Boundary Full Gap-
ping Rules (i.e. if we do not include all allowed compatible
gapping terms), then we cannot fully gap the edge states (For
1-left-moving mode and 1-right-moving mode, we need at
least 1 interaction term to gap the edge.) Thus we also show
the only-if-statement in (E-1).

This approach works for a generic even-rank K matrix thus
can be applicable to show the above statements (E-1) and
(E-2) hold in general. More generally, for a rank-N K ma-
trix Chern-Simons theory, with the boundary N/2-left-moving
modes and N/2-right-moving modes, we need at least and
at most N/2-linear-independent interaction terms to gap the
edge. If one includes more terms than the allowed terms
(such as the numerical attempt in Ref. [25]), it may drive the
system to the gapless states due to the instability from the
unwanted quantum fluctuation. This can be one of the reasons
why Ref. [25] fails to achieve gapless fermions by gapping
mirror-fermions.

3rd Case: General even-rank K matrix: Here we outline
another view of the energy-gap-stability for the edge states,
for a generic rank-N K matrix Chern-Simons theory with
multiplet-chiral-boson-theory edge states. We include the full
interacting cosine term for the lowest energy states—zero and
winding modes,

cos(�a,I ·
I ) → cos

(
�a,I ·

(
φ0I + K−1

IJ PφJ

2π

L
x

))
, (E15)

while we drop the higher energy Fourier modes. [Note when
L →∞, the kinetic term Hkin = (2π )2

4πL VIJK−1
Il1 K−1

Jl2Pφl1 Pφl2 has
an order O(1/L) so is negligible, thus the cosine potential
Eq. (E15) dominates. Though to evaluate the mass gap, we
keep both kinetic and potential terms.] The stability of the
mass gap can be understood from under what conditions
we can safely expand the cosine term to extract the leading
quadratic terms by only keeping the zero modes via cos(�a,I ·

I ) � 1− 1

2 (�a,I · φ0I )2 + · · · . (If one does not decouple the
winding mode term, there is a complicated x dependence in
PφJ

2π
L x along the x integration.) The challenge for this co-

sine expansion is rooted in the noncommuting algebra from
[φ0I , PφJ ] = iδIJ . This can be resolved by requiring �a,Iφ0I and
�a,I ′K

−1
I ′J PφJ commute in Eq. (E15),

[
�a,Iφ0I , �a,I ′K

−1
I ′J PφJ

] = �a,I K
−1
I ′J �a,I ′ (iδIJ )

= (i)
(
�a,JK−1

I ′J �a,I ′
) = 0. (E16)

This is indeed the boundary full gapping rules (1), the trivial
statistics rule among the Wilson line operators for the gapping
terms. Under this commuting condition (we can interpret that
there is no unwanted quantum fluctuation), we can thus expand
Eq. (E15) using the trigonometric identity for c numbers as

cos(�a,Iφ0I ) cos

(
�a,I K

−1
IJ PφJ

2π

L
x

)

− sin(�a,Iφ0I ) sin

(
�a,I K

−1
IJ PφJ

2π

L
x

)
(E17)

and then we safely integrate over L. Note that both cos(. . . x)
and sin(. . . x) are periodic in the region [0, L), so both x
integrations vanish unless when �a,I · K−1

IJ PφJ = 0 such that
cos(�a,I K

−1
IJ PφJ

2π
L x) = 1. We thus obtain

ga

∫ L

0
dx Eq. (E15) = gaL cos(�a,I · φ0I )δ(�a,I ·K−1

IJ PφJ ,0).

(E18)
The Kronecker-delta-condition δ(�a,I ·K−1

IJ PφJ ,0) = 1 implies that

there is a nonzero value if and only if �a,I · K−1
IJ PφJ = 0. This

is also consistent with the Chern-Simons quantized lattice as
the Hilbert space of the ground states. Here Pφ forms a discrete
quantized lattice because its conjugate φ0 is periodic. This
result can be applied to count the ground-state degeneracy
of Chern-Simons theory on a closed manifold or a compact
manifold with gapped boundaries [45,50].

In short, we have shown that when �T K−1� = 0, we have
the desired cosine potential expansion via the zero-mode
quadratic expansion at large ga coupling, ga

∫ L
0 dx cos(�a,I ·


I ) � −gaL 1
2 (�a,I · φ0I )2 + · · · . The nonzero mass gaps of

zero modes can be readily shown by solving the quadratic
simple harmonic oscillators of both the kinetic and the leading
order of the potential terms,

(2π )2

4πL
VIJK−1

Il1 K−1
Jl2Pφl1 Pφl2 +

∑
a

gaL
1

2
(�a,I · φ0I )2. (E19)

The mass gap is independent of the system size, the order one
finite energy gap

� � O
(√

2π ga�a,l1�a,l2VIJK−1
Il1 K−1

Jl2

)
, (E20)

which the mass matrix can be properly diagonalized, since
there are only conjugate variables φ0I and Pφ,J in the quadratic
order.

We again find that the above statements consistent with (E-
1) and (E-2) for a generic even-rank K matrix.

3. Mass Gap for Klein-Gordon fields and nonchiral Luttinger
liquids under sine-Gordon potential

First, we recall the two statements (E-3) and (E-4).
(E-3) A scalar boson theory of a Klein-Gordon action with

a sine-Gordon potential:

S∂ =
∫

dt dx
κ

2
(∂tϕ∂tϕ − ∂xϕ∂xϕ)+ g cos(βϕ). (E21)

at strong coupling g can induce the mass gap for the scalar
mode ϕ.
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(E-4) A nonchiral Luttinger liquids [nonchiral in the sense
of equal left-right moving modes, but can have U(1)-charge-
chirality with respect to a U(1) symmetry] with φ and θ dual
scalar fields with a sine-Gordon potential for φ field,

S∂ =
∫

dt dx
( 1

4π
((∂tφ∂xθ + ∂xφ∂tθ)−VIJ∂x
I∂x
J )

+ g cos(β θ)
)
. (E22)

at strong coupling g can induce the mass gap for all the scalar
mode 
 ≡ (φ, θ ).

Indeed, the statement (E-3) and (E-4) are related because
Eqs. (E21) and (E22) are identified by the canonical conjugate
momentum relation

∂tφ ∼ ∂xθ, ∂tθ ∼ ∂xφ, (E23)

up to a normalization factor and up to some Euclidean time
transformation.

There are immense and broad amount of literatures demon-
strating (E-3) and (E-4) are true, and we recommend to look
for Refs. [60,103,104].

4. Approach II: Map the anomaly-free theory with gapping
terms to the decoupled nonchiral Luttinger

liquids with gapped spectrum

Here we provide the second approach to show that the
anomaly-free edge states can be gapped under the properly-
designed gapping terms. The key step is that we will map the
N-component anomaly-free theory with properly-designed
gapping terms to N/2-decoupled-copies of nonchiral Lut-
tinger liquids of the statement (E-4), each copy has the gapped
spectrum. (This key step is logically the same as the proof in
Appendix A of Ref. [51].) Thus, by the equivalence mapping,
we can prove that the anomaly-free edge states can be fully
gapped. We include this proof [51] to make our claim self-
contained.

We again consider the generic theory of Eq. (E5),

S∂ (
, K, {�a})
= 1

4π

∫
dt dx (KIJ∂t
I∂x
J −VIJ∂x
I∂x
J )

+
∫

dt dx
∑

a

ga cos(�a,I ·
I ),

where 
, K , {�a} are the data for this 1+ 1D action
S∂ (
, K, {�a}), while the velocity matrix is not universal and
is immaterial to our discussion below. In Appendix D, we had
shown that the N-component anomaly-free theory guarantees
the N/2-linear-independent gapping terms of boundary gap-
ping lattice (Lagrangian subgroup) �∂ satisfying

�a,I K
−1
IJ �b,J = 0 (E24)

for any �a, �b ∈ �∂ . In our case (both bosonic and fermionic
theory), all the K is invertible due to det(K ) �= 0, thus one can
define a dual vector as in Ref. [51], �a,I = KII ′ηa,I ′ , such that
Eq. (E24) becomes

ηa,I ′KIJηb,J ′ = 0. (E25)

The data of action becomes S∂ (
, K, {�a}) → S∂ (
, K, {ηa}).
In our proof, we will stick to the data S∂ (
, K, {�a}). We can
construct a N × (N/2)-component integer-valued matrix L,

L ≡ (�1, �2, . . . , �N/2) (E26)

with N/2 column vectors, and each column vector is
�1, �2, . . . , �N/2. We can write L base on the Smith normal
form, so L = V DW , with V is a N × N integer-valued matrix
and W is a (N/2)× (N/2) integer-valued matrix. Both V
and W have a determinant det(V ) = det(W ) = 1. The D is
a N × (N/2) integer-valued matrix

D ≡
(

D̄
0

)
≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 . . . 0
0 d2 . . . 0
...

...
...

...

0 0 . . . dN/2
...

...
...

...

0 0
... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E27)

with D̄ is a diagonal integer-valued matrix. Since L has N/2-
linear-independent column vectors, thus det(D̄) �= 0, and all
entries of D̄ are nonzero.

1st Mapping—We do a change of variables,


′ = V T 
,

�′ = V−1�,

K ′ = V−1K (V T )−1,

S∂ (
, K, {�a}) → S∂ (
′, K ′, {�′a}).
This makes the L′ form simpler,

L′ = V−1L = V−1(V DW ) =
(

D̄W
0

)
. (E28)

Here is the key step: due to Eq. (E24), we have the important
equality,

LT K−1L = 0 , (E29)

thus

(V DW )T K−1V DW = 0 (E30)

=W T DT K ′−1DW = 0 (E31)

= (D̄W, 0)K ′−1

(
D̄W

0

)
= 0. (E32)

Hence, K ′−1 can be written as the following four blocks of
N × N matrices F, G (F, G can have fractional values),

K ′−1 =
(

0 F
FT G

)
, (E33)

with det(F) �= 0 and G is symmetric. Thus the integer K ′
matrix has the form

K ′ =
(−(FT )−1GF−1 (FT )−1

F−1 0

)
. (E34)
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We notice that

Lemma 1. Due to K ′ matrix is an integer matrix, the three
matrices −(FT )−1GF−1, F−1 and (FT )−1 are integer matrices.
Therefore, F and G can be fractional matrices.

2nd Mapping—To obtain the final mapping to N/2-
decoupled-copies of nonchiral Luttinger liquids, we do
another change of variables,


′′ = U
′,

�′′ = (U−1)T �′,

K ′′ = (U T )−1K ′(U )−1,

S∂ (
′, K ′, {�′a}) → S∂ (
′′, K ′′, {�′′a}).
With the goal in mind to make the new K matrix K ′′ =
(K ′′)−1 = (0 1

1 0) and 1 is the N × N identity matrix. This
constrains U , and we find

(K ′′)−1 = U (K ′)−1U T =
(

0 1
1 0

)
(E35)

⇒ U =
(− 1

2 (FT )−1GF−1 (FT )−1

1 0

)
. (E36)

Importantly, due to Lemma 1, we have (FT )−1 and
−(FT )−1GF−1 are integer matrices, so U is at most a matrix
taking half-integer values (almost an integer matrix).

In the new 
′′ basis, we define the N-component column
vector


′′ = (φ̄1, φ̄2, . . . , φ̄N/2, θ̄1, θ̄2, . . . , θ̄N/2).

Based on Appendix E 1, the canonical quantization in the new
basis becomes

[
′′
I (x1), ∂x


′′
J (x2)] = 2π i(K ′′−1)IJδ(x1 − x2),

[φ̄I (x1), ∂xφ̄J (x2)] = [θ̄I (x1), ∂x θ̄J (x2)] = 0, (E37)

[φ̄I (x1), ∂x θ̄J (x2)] = 2π iδIJδ(x1 − x2).

This is exactly what we aim for the decoupled nonchiral
Luttinger liquids as the form of N/2-copies of (E-4). However,
the cosine potential in the new basis is not yet fully decoupled
due to

�′′T 
′′ = �T (V−1)T (U−1)
′′

⇒ L′′T = LT (V−1)T (U−1) = (W T DT )(U−1)

⇒ L′′T = (W T D̄, 0)

(
0 1

FT 1
2 GF−1

)
= (0, W T D̄).

We obtain the cosine potential term as

ga cos(�a,I ·
I ) = ga cos(WJadJ θ̄J ). (E38)

If WJa is a diagonal matrix, the nonchiral Luttinger liquids
are decoupled into N/2-copies also in the interacting potential
terms. In general, WJadJ may not be diagonal, but the charge
quantization and the large coupling ga of the cosine potentials
cause ∑

J

WJadJ θ̄J = 2πnI , I = 1, . . . , N/2, nI ∈ Z

locked to the minimum value. Equivalently, due to both W and
W−1 are integer matrices with det(W ) = 1, we have

dJ θ̄J = 2πn′J , J = 1, . . . , N/2, n′J ∈ Z. (E39)

The last step is to check the constraint on the φ̄I and θ̄J .
The original particle number quantization constraint changes
from 1

2π

∫ L
0 dx∂x
I = ζI with an integer ζI ∈ Z, to

∫ L

0
dx

∂xφ̄I

2π
= −1

2
((FT )−1GF−1V T )I jζ j +

N/2∑
j=1

(FT )−1
I, jζN/2+ j,

∫ L

0
dx

∂x θ̄I

2π
=

N/2∑
j=1

V T
I,I+ jζ j . (E40)

Again, from Lemma 1, we have (FT )−1 and −(FT )−1GF−1

are integer matrices, and V is an integer matrix, so at least the
particle number quantization of

∫ L
0 dx ∂x φ̄I

2π
takes as multiples

of half-integer values, due to the half-integer valued matrix
term 1

2 ((FT )−1GF−1V T ). Meanwhile,
∫ L

0 dx ∂x θ̄I
2π

must have in-
teger values.

In the following, we verify that the physics at strong
coupling g of cosine potentials still render the decoupled
nonchiral Luttinger liquids with integer particle number quan-
tization regardless a possible half-integer quantization at
Eq. (E40). The reason is that, at large g, the cosine potential
ga cos(WJadJ θ̄J ) effectively acts as ga cos(daθ̄a). In this way,
θ̄a is locked, so ∂x θ̄a = 0 and that constrains

∫ L
0 dx ∂x θ̄I

2π
= 0

with no instanton tunneling. This limits Eq. (E40)’s ζ j = 0 for
j = 1, . . . , N/2. And Eq. (E40) at large g coupling becomes

∫ L

0
dx

∂xφ̄I

2π
=

N/2∑
j=1

(FT )−1
I, jζN/2+ j ∈ Z,

∫ L

0
dx

∂x θ̄I

2π
= 0. (E41)

We now conclude that, the allowed Hilbert space at large g
coupling is the same as the Hilbert space of N/2-decoupled-
copies of nonchiral Luttinger liquids.

Although we choose a different basis for the gapping rules
than Ref. [51], we still reach the same conclusion as long as
the key criteria Eq. (E29) holds. Namely, with LT K−1L = 0,
we can derive these three equations (E37), (E39), and (E41),
thus we have mapped the theory with gapping terms (con-
strained by LT K−1L = 0) to the N/2-decoupled-copies of
nonchiral Luttinger liquids with N/2 number of effective de-
coupled gapping terms cos(dJ θ̄J ) with J = 1, . . . , N/2. This
maps to N/2-copies of nonchiral Luttinger liquids (E-4), and
we have shown that each (E-4) has the gapped spectrum. We
prove the mapping:

the K matrix multiplet-chirla boson theories with gapping
terms LT K−1L = 0

→
N/2-decoupled-copies of nonchiral Luttinger liquids of (E-

4) with energy gapped spectra. (Q.E.D.)

Since we had shown in Appendix D that for the U(1) theory
of totally even-N left/right chiral Weyl fermions, only the
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anomaly-free theory can provide the N/2-gapping terms with
LT K−1L = 0, this means that we have established the map:

the U(1)N/2 anomaly-free theory (q · K−1 · q = t · K · t = 0)
with gapping terms LT K−1L = 0

→
N/2-decoupled-copies of nonchiral Luttinger liquids of (E-

4) with gapped energy spectra.

This concludes the second approach proving the 1+ 1D
U(1)-anomaly-free theory can be gapped by adding prop-
erly designed interacting gapping terms with LT K−1L = 0.
(Q.E.D.)

5. Approach III: Nonperturbative statements of Topological
Boundary Conditions, Lagrangian subspace,

and the exact sequence

In this subsection, from a TQFT viewpoint, we provide an-
other nonperturbative proof of topological boundary gapping
rules (which logically follows Ref. [44])

LT K−1L = 0 , (E42)

with

L ≡ (�1, �2, . . . , �N/2) (E43)

with N/2 column vectors, and each column vector is
�1, �2, . . . , �N/2; the even-N-component left/right chiral Weyl
fermion theory with topological boundary gapping rules
must have N/2-linear independent gapping terms of bound-
ary gapping lattice (Lagrangian subgroup) �∂ satisfying
�a,I K

−1
IJ �b,J = 0 for any �a, �b ∈ �∂ .

Here is the general idea: For any field theory, a boundary
condition is defined by a Lagrangian submanifold in the space
of Cauchy boundary condition data on the boundary. If we
want a boundary condition, which is topological (namely with
a mass gap without gapless modes), then importantly it must
treat all directions on the boundary in the equivalent way. So,
for a gauge theory, we end up choosing a Lagrangian subspace
in the Lie algebra of the gauge group. A subspace is La-
grangian if and only if it is both isotropic and coisotropic. For
a finite-dimensional vector space V, a Lagrangian subspace
is an isotropic one whose dimension is half that of the vector
space.

More precisely, for W be a linear subspace of a finite-
dimensional vector space V. Define the symplectic com-
plement of W to be the subspace W⊥ as W⊥ = {v ∈ V |
ω(v,w) = 0, ∀w ∈ W}. Here ω is the symplectic form,
in the commonly-seen matrix form is ω = ( 0 1

−1 0) with 0
and 1 are the block matrix of the zero and the identity. In
our case, ω is related to the fermionic K = K f and bosonic
K = Kb0 matrices. The symplectic complement W⊥ satis-
fies: (W⊥)⊥ = W and dim W+ dim W⊥ = dim V. Isotropic,
coisotropic, Lagrangian means the following:

(i) W is isotropic if W ⊆ W⊥. This is true if and only if ω

restricts to 0 on W.
(ii) W is coisotropic if W⊥ ⊆ W. W is coisotropic if and

only if ω has a nondegenerate form on the quotient space
W/W⊥. Equivalently W is coisotropic if and only if W⊥ is
isotropic.

(iii) W is Lagrangian if and only if it is both isotropic
and coisotropic, namely, if and only if W = W⊥. In a finite-
dimensional V, a Lagrangian subspace W is an isotropic one
whose dimension is half that of V.

With this understanding, following Ref. [44], we consider
a U(1)N Chern-Simons theory, whose bulk action is Sbluk =
KIJ
4π

∫
M aI ∧ daJ . and the boundary action for a manifold M

with a boundary ∂M (with the restricted a‖,I on ∂M) is
S∂ = δSbluk = KIJ

4π

∫
M(δa‖,I ) ∧ da‖,J . The symplectic form ω

is given by the K matrix via the differential of this one-form
δSblukω = KIJ

4π

∫
M(δa‖,I ) ∧ d (δa‖,J ).

The gauge group U(1)N can be viewed as the torus T�, as
the quotient space of N-dimensional vector space V by a sub-
group � ∼= ZN . Namely, U(1)N ∼= T�

∼= (�⊗R)/(2π�) ≡
t�/(2π�). Locally the gauge field a is a one-form, which has
values in the Lie algebra of T�, we will denote this Lie algebra
t� as the vector space t� = �⊗R.

A self-consistent boundary condition must define a La-
grangian submanifold with respect to this symplectic form
ω and must be local. (For example, the famous chiral bo-
son theory has az̄ = 0 along the complex coordinate z̄. This
defines a consistent boundary condition, but it is gapless not
topologically gapped.)

In addition, a topological boundary gapping condition must
be invariant in respect of the orientation-preserving diffeo-
morphism of M. A local diffeomorphism-invariant constraint
on the Lie algebra t�-valued 1-form a‖,I demands it to live
in the subspace of t�. This corresponds to the if and only if
conditions that

(i) The subspace is isotropic with respect to the symmetric
bilinear form K .

(ii) The subspace dimension is a half of the dimension of
t�.

(iii) The signature of K is zero. This means that K has the
same number of positive and negative eigenvalues.

We notice that (ii) is true for our boundary gapping lattice,

L ≡ (�1, �2, . . . , �N/2), where there are N/2-linear indepen-
dent gapping terms. And (iii) is true for our bosonic Kb0 and
fermionic Kf matrices. Importantly, for topological gapped
boundary conditions, a‖,I lies in a Lagrangian subspace of
t� implies that the boundary gauge group is a Lagrangian
subgroup. (Here we consider the boundary gauge group is
connected and continuous; one can read Sec. 6 of Ref. [44]
for the case of more general disconnected or discrete boundary
gauge group.)

The bulk gauge group is T�, and we denote the boundary
gauge group as T�0 , which T�0 is a Lagrangian subgroup of
T� for topological gapped boundary conditions.

Here the torus T� can be decomposed into a product
of T�0 and other torus. � ∼= ZN contains the subgroup �0,
and � contains a direct sum of �0. These form an exact

sequence: 0 → �0
h→ �→ �/�0 → 0. Here 0 means the

trivial Abelian group with only the identity, or the zero-
dimensional vector space. The exact sequence means that a
sequence of maps fi from domain Ai to Ai+1: fi : Ai → Ai+1

satisfies a relation between the image and the kernel: Im( fi ) =
Ker( fi+1).

Here we have h as an injective map from �0

to �: �0
h→ �. Since � is a rank-N integer matrix
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generating a N-dimensional vector space, and �0 is a rank-
N/2 integer matrix generating a N/2-dimensional vector
space; we have h as an integral matrix of N × (N/2)-
components.

The transpose matrix hT is an integral matrix of

(N/2)× N-components. hT is a surjective map: �∗ hT→
�∗

0. Some mathematical relations are �0 = H1(T�0 ,Z),
Hom(T�0 , U(1)) = �∗

0 and Hom(T�, U(1)) = �∗. Here
H1(T�0 ,Z) is the first homology group of T�0 with a Z co-
efficient. Hom(X,Y ) is the set of all module homomorphisms
from the module X to the module Y .

Furthermore, for t∗� being the dual of the Lie algebra t�,
one can properly define the topological boundary conditions
by restricting the values of boundary gauge fields (taking
values in Lie algebra t∗� or t�), and one can obtain the corre-
sponding exact sequence by choosing the following splitting
of the vector space t∗� [44], 0 → t∗(�/�0 ) → t∗� → t∗�0

→ 0.

In Sec. IV C 2, these above conditions (i), (ii), and (iii) are
shown to be equivalent to the boundary full gapping rules. To
summarize, in this subsection, we provide a third approach
from a nonperturbative TQFT viewpoint to prove that, for
U(1)N -Chern-Simons theory, topological boundary conditions
hold if and only if the boundary interaction terms satisfy
topological boundary fully gapping rules.(Q.E.D.)

APPENDIX F: MORE ABOUT OUR LATTICE
HAMILTONIAN CHIRAL MATTER MODELS

1. More details on our lattice model producing
nearly-flat Chern-bands

We fill more details on our lattice model presented in
Sec. III A 2 for the free-kinetic part. The lattice model shown
in Fig. 3 has two sublattices: a (black dots) and b (white dots).
In momentum space, we have a generic pseudospin form of
Hamiltonian H (k),

H (k) = B0(k)+ �B(k) · �σ . (F1)

�σ are Pauli matrices (σx, σy, σz ). In this model B0(k) = 0 and
�B have three components,

Bx(k) = 2t1 cos (π/4)(cos(kxax )+ cos(kyay)),

By(k) = 2t1 sin(π/4)( cos(kxax )− cos(kyay)), (F2)

Bz(k) = −4t2 sin(kxax ) sin(kyay).

In Fig. 5(a), the energy spectrum E(kx ) is solved from
putting the system on a 10-sites width (9ay width) cylinder.
Indeed the energy spectrum E(kx ) in Fig. 5(b) is as good
when putting on a smaller size system such as the ladder
[Fig. 3(c)]. The cylinder is periodic along x̂ direction so kx

momentum is a quantum number, while E(kx ) has real-space
y dependence along the finite-width ŷ direction. Each band
of E(kx ) in Fig. 5 is solved by exactly diagonalizing H (kx, y)
with y dependence. By filling the lower energy bands and
setting the chemical potential at zero, we have Dirac fermion
dispersion at kx = ±π for the edge state spectrum, shown as
the blue curves in Figs. 5(a) and 5(b).

In Fig. 5(c), we plot the density 〈 f † f 〉 of the edge eigen-
state on the ladder [which eigenstate is the solid-blue curve
in Fig. 5(b)], for each of two edges A and B, and for each

of two sublattice a and b. One can fine tune t2/t1 such that
the edge A and the edge B have the least mixing. The least
mixing implies that the left edge and right edge states nearly
decouple. The least mixing is very important for the inter-
acting G1, G2 �= 0 case, so we can impose interaction terms
on the right edge B only as in Eq. (8), decoupling from the
edge A. We can explicitly make the left edge A density 〈 f †

A fA〉
dominantly locates in kx < 0, the right edge B density 〈 f †

B fB〉
dominantly locates in kx > 0. The least mixing means the
eigenstate is close to the form |ψ (kx )〉 = |ψkx<0〉A ⊗ |ψkx>0〉B.
The fine-tuning is done with t2/t1 = 1/2 in our case. Interpret
this result together with Fig. 5(b), we see the solid blue curve
at kx < 0 has negative velocity along x̂ direction, and at kx > 0
has positive velocity along x̂ direction. Overall it implies the
chirality of the edge state on the left edge A moving along −x̂
direction, and on the right edge B moving along +x̂ direction
— the clockwise chirality as in Fig. 3(b), consistent with the
earlier result C1,− = −1 of Chern number.

An additional bonus for this ladder model is that the density
〈 f † f 〉 distributes equally on two sublattice a and b on either
edges, shown in Fig. 5(c). Thus, it will be beneficial for the
interacting model in Eq. (8) when turning on interaction terms
G1, G2 �= 0, we can universally add the same interaction terms
for both sublattice a and b.

For the free kinetic theory, all of the above can be achieved
by a simple ladder lattice, which is effectively as good as
1+ 1D because of finite size width. To have mirror sector
becomes gapped and decoupled without interfering with the
gapless sector, we propose to design the lattice with length
scales of Eq. (18).

2. Explicit lattice chiral matter models

For model constructions, we will follow the four steps
introduced earlier in Sec. V.

a. 1L-(-1R) chiral fermion model

The most simplest model of fermionic model suitable for
our purpose is, Step 1, K f

2×2 = (1 0
0 −1) in Eqs. (22) and (23).

We can choose, Step 2, t = (1,−1), so this model satisfies
Eq. (44) as anomaly free. It also satisfies the total U(1) charge
chirality

∑
qL −

∑
qR = 2 �= 0 as Step 3. As Step 4, we can

fully gap out one side of edge states by a gapping term Eq. (30)
with �a = (1, 1), which preserves U(1) symmetry by Eq. (32).
Written in terms of t and L matrices,

t =
(

1
−1

)
⇐⇒ L =

(
1
1

)
. (F3)

Through its U(1) charge assignment t = (1,−1), we name
this model as 1L-(-1R) chiral fermion model. It is worthwhile
to go through this 1L-(-1R) chiral fermion model in more
details, where its bosonized low energy action is

S
 = 1

4π

∫
dtdx

(
KA

IJ∂t

A
I ∂x


A
J −VIJ∂x


A
I ∂x


A
J

)
+ 1

4π

∫
dtdx

(
KB

IJ∂t

B
I ∂x


B
J −VIJ∂x


B
I ∂x


B
J

)
+
∫

dtdx g1 cos
(

B

1 +
B
−1

)
. (F4)
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Its fermionized action [following the notation as Eq. (3), with
a relevant interaction term of g1 coupling] is

S� =
∫

dt dx (i�̄A�μ∂μ�A + i�̄B�μ∂μ�B

+g̃1(ψ̃R,1ψ̃L,−1 + H.c.)). (F5)

We propose that a lattice Hamiltonian below (analogue to
Fig. 2’s) realizes this 1L-(-1R) chiral fermions theory nonper-
turbatively,

H =
∑

q=1,−1

⎛
⎝∑
〈i, j〉

(ti j,q f̂ †
q (i) f̂q( j)+ H.c.)

+
∑
〈〈i, j〉〉

(t ′i j,q f̂ †
q (i) f̂q( j)+ H.c.)

⎞
⎠

+G1

∑
j∈B

(( f̂1( j)pt .s.)( f̂−1( j)pt .s.)+ H.c.). (F6)

This Hamiltonian is in a perfect quadratic form. We can solve
it exactly by writing down Bogoliubov-de Gennes (BdG)
Hamiltonian in the Nambu space form, on a cylinder (in
Fig. 2),

H = 1

2

∑
kx,px

( f †, f )

(
Hkinetic G†(kx, px )

G(kx, px ) −Hkinetic

)(
f
f †

)
. (F7)

Here f † = ( f †
1,kx

, f †
−1,px

), f = ( f1,kx
, f−1,px

), while Hkinetic is
the hopping term and G is from the G1 interaction term. Here
momentum kx, px (for charge 1 and –1 fermions) along the
compact direction x are good quantum numbers. Along the
noncompact y direction, we use the real space basis instead.
We diagonalize this BdG Hamiltonian exactly and find out the
edge modes on the right edge B become fully gapped at large
G1. For example, at |G1| � 104, the edge state density on the
edge B is 〈 f †

B fB〉 � 5× 10−8 [88]. We also check that the low
energy spectrum realizes the 1-(-1) chiral fermions on the left
edge A [88],

S�A,free =
∫

dt dx (iψ†
L,1(∂t − ∂x )ψL,1

+ iψ†
R,−1(∂t + ∂x )ψR,−1). (F8)

Thus Eq. (F6) defines/realizes 1L-(-1R) chiral fermions non-
perturbatively on the lattice.

The 1L-(-1R) chiral fermion model provides a wonderful
example that we can confirm, both numerically and analyti-
cally, the mirror fermion idea and our model construction will
work.

However, unfortunately the 1L-(-1R) chiral fermion model
is not strictly a chiral theory. In a sense that one can do a field
redefinition,

ψ1 → ψ1, and ψ−1 → ψ
†
1′ ,

sending the charge vector t = (1,−1) → (1, 1). So the model
becomes a 1L-1R fermion model with one left-moving mode
and one right-moving mode both carry the same U(1) charge
1. Here we use ψ1′ to indicate another fermion field carries
the same U(1) charge as ψ1. The 1L-1R fermion model is
obviously a nonchiral Dirac fermion theory, where the mirror
edge states can be gapped out by forward scattering mass
terms g̃1(ψ̃R,1ψ̃

†
L,1′ + h.c.), or the g1 cos(
B

1 −
B
1′ ) term in

the bosonized language. Since 1L-(-1R) chiral fermion model
is a field redefinition of 1L-1R fermion model, it becomes
apparent that we can gap out the mirror edge of 1L-(-1R) chiral
fermion model.

It turns out that the next simplest U(1)-symmetry chiral
fermion model, which violates parity and time reversal sym-
metry (but strictly being chiral under any field redefinition),
is the 3L-5R-4L-0R chiral fermion model, appeared already in
Sec. II.

b. 3L-5R-4L-0R chiral fermion model and others

We consider a rank-4 K f
4×4 = (1 0

0 −1)⊕ (1 0
0 −1) in

Eqs. (22) and (23) for Step 1. We can choose ta =
(3, 5, 4, 0) to construct a 3L-5R-4L-0R chiral fermion model
in Sec. II for Step 2. One can choose the gapping terms
in Eq. (30) with �a = (3,−5, 4, 0), �b = (0, 4,−5, 3). An-
other U(1)2nd symmetry is allowed, which is tb = (0, 4, 5, 3).
By writing down the chiral boson theory of Eqs. (23)
and (30) on a cylinder with two edges A and B as in
Fig. 2, it becomes a multiplet chiral boson theory with an
action

S
 = S
A
free
+ S
B

free
+ S
B

interact
= 1

4π

∫
dtdx

(
KA

IJ∂t

A
I ∂x


A
J −VIJ∂x


A
I ∂x


A
J

)+ (KB
IJ∂t


B
I ∂x


B
J −VIJ∂x


B
I ∂x


B
J

)
+
∫

dtdx
(
g1 cos

(
3
B

3 − 5
B
5 + 4
B

4

)+ g2 cos
(
4
B

5 − 5
B
4 + 3
B

0

))
. (F9)

After fermionizing Eq. (4) by � ∼ ei
, we match it to Eq. (3) [67],

S� = S�A,free + S�B,free + S�B,interact

=
∫

dt dx
(
i�̄A�μ∂μ�A + i�̄B�μ∂μ�B

+ g̃1
((

ψ̃R,3∇xψ̃R,3∇2
x ψ̃R,3

)(
ψ̃

†
L,5∇xψ̃

†
L,5∇2

x ψ̃
†
L,5∇3

x ψ̃
†
L,5∇4

x ψ̃
†
L,5

)(
ψ̃R,4∇xψ̃R,4∇2

x ψ̃R,4∇3
x ψ̃R,4

)+ H.c.
)

+ g̃2
((

ψ̃L,5∇xψ̃L,5∇2
x ψ̃L,5∇3

x ψ̃L,5
)(

ψ̃
†
R,4∇xψ̃

†
R,4∇2

x ψ̃
†
R,4∇3

x ψ̃
†
R,4∇4

x ψ̃
†
R,4

)(
ψ̃L,0∇xψ̃L,0∇2

x ψ̃L,0
)+ H.c.

))
, (F10)
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Our 3-5-4-0 fermion model satisfies Eqs. (32) and (44) and boundary fully gapping rules, and also violates parity and time-
reversal symmetry, so the lattice version of the Hamiltonian

H =
∑

q=3,5,4,0

⎛
⎝∑
〈i, j〉

(ti j,q f̂ †
q (i) f̂q( j)+ H.c.)+

∑
〈〈i, j〉〉

(t ′i j,q f̂ †
q (i) f̂q( j)+ H.c.)

⎞
⎠

+G1

∑
j∈B

(( f̂3( j)pt .s.)
3( f̂ †

5 ( j)pt .s.)
5( f̂4( j)pt .s.)

4 + H.c.)+ G2

∑
j∈B

(( f̂5( j)pt .s.)
4( f̂ †

4 ( j)pt .s.)
5( f̂0( j)pt .s.)

3 + H.c.), (F11)

provides a nonperturbative anomaly-free chiral fermion
model on the gapless edge A when putting on the lattice.
We notice that the choices of gapping terms with �a =
(3,−5, 4, 0), �b = (0, 4,−5, 3) of the model in Eqs. (F9)–
(F11) here are distinct from the version of gapping terms
�a = (1, 1,−2, 2), �b = (2,−2, 1, 1) of the model Eqs. (3),
(4), and (8) in the main text. This is rooted in the different
choice of basis for the same vector space of column vectors of
L, t matrices, and the dual structure shown in Eq. (63). Both
ways (or other linear-independent linear combinations) will
produce a 3L-5R-4L-0R model.

In Appendix E 4, we outline that our anomaly-free chi-
ral model can be mapped to decoupled Luttinger liquids of
Eq. (E22). Here let us explicitly find out the outcomes of
mapping. Based on the Smith normal form L = V DW shown
in Appendix E 4, we can rewrite the gapping term matrices
L. From Eq. (E38), the original cosine term ga cos(�a,I ·
I )
in the old basis will be mapped to ga cos(WJadJ θ̄J ). Namely,
given the model of Eq. (F9),⎛
⎜⎜⎝

3 0
−5 4

4 −5
0 3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

3 −1 0 1
−5 3 0 −2

4 −3 1 2
0 1 0 0

⎞
⎟⎟⎠.

⎛
⎜⎜⎝

1 0
0 3
0 0
0 0

⎞
⎟⎟⎠.

(
1 1
0 1

)

⇒ ga cos(θ̄1)+ gb cos(θ̄1 + 3θ̄2). (F12)

On the other hand, given the model of Eq. (8), we have⎛
⎜⎜⎝

1 2
1 −2

−2 1
2 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 2 0 −1
1 −2 0 0

−2 1 1 1
2 1 0 −1

⎞
⎟⎟⎠.

⎛
⎜⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎟⎠.

(
1 0
0 1

)

⇒ ga cos(θ̄1)+ gb cos(θ̄2). (F13)

One reason that we choose Eq. (8) for our model in the
main text, instead of Eq. (F11) is that the interaction terms
for the model of Eq. (8) has the order of six-body interaction
among each gapping term, which is easier to simulate than the
12-body interaction among each gapping term for the model
of Eq. (F11).

We list down another three similar chiral fermion models
of K f

4×4 matrix, with different choices of t, such as
(i) 1L-5R-7L-5R chiral fermions: ta = (1, 5, 7, 5), ta =

(0, 3, 5, 4), with gapping terms �a = (1,−5, 7,−5), �b =
(0, 3,−5, 4). Written in terms of t and L matrices

t =

⎛
⎜⎜⎝

1 0
5 3
7 5
5 4

⎞
⎟⎟⎠⇐⇒ L =

⎛
⎜⎜⎝

1 0
−5 3

7 −5
−5 4

⎞
⎟⎟⎠. (F14)

(ii) 1L-4R-8L-7R chiral fermions: ta = (1, 4, 8, 7), tb =
(3,−3,−1, 1), with gapping terms �a = (1,−4, 8,−7), �b =
(3, 3,−1,−1).

t =

⎛
⎜⎜⎝

1 3
4 −3
8 −1
7 1

⎞
⎟⎟⎠⇐⇒ L =

⎛
⎜⎜⎝

1 3
−4 3

8 −1
−7 −1

⎞
⎟⎟⎠. (F15)

(iii) 2L-6R-9L-7R chiral fermions: ta = (2, 6, 9, 7), tb =
(2,−2,−1, 1) with gapping terms �a = (2,−6, 9,−7), �b =
(2, 2,−1,−1).

t =

⎛
⎜⎜⎝

2 2
6 −2
9 −1
7 1

⎞
⎟⎟⎠⇐⇒ L =

⎛
⎜⎜⎝

2 2
−6 2

9 −1
−7 −1

⎞
⎟⎟⎠. (F16)

Indeed, there are infinite many possible models just for K f
4×4

matrix-Chern Simons theory construction. One can also con-
struct a higher rank K f theory with infinite more models of
U(1)N/2-anomaly-free chiral fermions.

c. Chiral boson model

Similar to fermionic systems, we will follow the four
steps introduced earlier for bosonic systems. The most simple
model of bosonic SPT suitable for our purpose is, Step 1,
Kb

2×2 = (0 1
1 0) in Eqs. (22) and (23). We can choose, Step 2,

t = (1, 0), so this model satisfies Eq. (45) as anomaly-free,
and violates parity and time-reversal symmetry as Step 3.
As Step 4, we can fully gap out one-side of edge states by
gapping term Eq. (30) with �a = (0, 1), which preserves U(1)
symmetry by Eq. (32). Written in terms of t and L matrices

t =
(

1
0

)
⇐⇒ L =

(
0
1

)
. (F17)

For Kb0
4×4 = (0 1

1 0)⊕ (0 1
1 0), we list down two models:

(i) 2L-2R-4L-(−1)R chiral bosons: ta = (2, 2, 4,−1), tb =
(0, 2, 0,−1) with gapping terms �a = (2, 2,−1, 4), �b =
(2, 0,−1, 0).

t =

⎛
⎜⎜⎝

2 0
2 2
4 0
−1 −1

⎞
⎟⎟⎠⇐⇒ L =

⎛
⎜⎜⎝

2 2
2 0
−1 −1

4 0

⎞
⎟⎟⎠. (F18)

(ii) 6L-6R-9L-(−4)R chiral bosons: ta = (6, 6, 9,−4),
tb = (0, 3, 0,−2) with gapping terms �a = (6, 6,−4, 9),
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�b = (3, 0,−2, 0).

t =

⎛
⎜⎜⎝

6 0
6 3
9 0

−4 −2

⎞
⎟⎟⎠⇐⇒ L =

⎛
⎜⎜⎝

6 3
6 0

−4 −2
9 0

⎞
⎟⎟⎠. (F19)

Infinite many chiral boson models can be constructed in the similar manner.
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